JP2011238476A - Laminate, nonaqueous electrolyte secondary battery and laminate manufacturing method - Google Patents

Laminate, nonaqueous electrolyte secondary battery and laminate manufacturing method Download PDF

Info

Publication number
JP2011238476A
JP2011238476A JP2010109214A JP2010109214A JP2011238476A JP 2011238476 A JP2011238476 A JP 2011238476A JP 2010109214 A JP2010109214 A JP 2010109214A JP 2010109214 A JP2010109214 A JP 2010109214A JP 2011238476 A JP2011238476 A JP 2011238476A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
material layer
laminate
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010109214A
Other languages
Japanese (ja)
Inventor
Mikihiro Takano
幹裕 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010109214A priority Critical patent/JP2011238476A/en
Publication of JP2011238476A publication Critical patent/JP2011238476A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode which has an active material layer involving just minimum necessities in structure and achieves an excellent adhesion strength of its collector base and active material layer particularly in a nonaqueous electrolyte secondary battery.SOLUTION: A laminate has: a collector base 120; and an active material layer 110 stacked on the collector base. The active material layer 110 includes at least an active material 111, a conductive agent 112, a binding agent 113 and a thickener 114. The active material layer has a volume density of 1.2 g/cmor larger. A laminate manufacturing method includes the steps of: coating the collector base with a composition for active material layer formation including at least an active material 111, a conductive agent 112, a binding agent 113, a thickener 114 and a solvent to form an active material coating film; drying the active material coating film at a temperature between 100°C and 150°C inclusive; re-heating the active material coating film at a temperature between 65°C and 115°C inclusive; and applying a pressure per unit area of 320 kgf/cmor larger on the active material coating film.

Description

本発明は基材上に粒子を含む層を積層した積層体及びその製造方法に関するものであり、特に、銅箔等を集電基材とし、その上にリチウムイオンを吸蔵することのできる負極活物質粒子を含む層を備えた非水電解質二次電池用途の積層体及びその製造方法に関する。   The present invention relates to a laminate in which a layer containing particles is laminated on a base material and a method for producing the same, and in particular, a negative electrode active material capable of occluding lithium ions on a current collector base material such as a copper foil. The present invention relates to a laminate for use in a non-aqueous electrolyte secondary battery including a layer containing substance particles, and a method for manufacturing the same.

近年のデジタルカメラやノートパソコン等のポータブル機器の目覚ましい普及により、その電源として、非水電解質二次電池の一種であるリチウムイオン二次電池の需要は高まっている。
リチウムイオン二次電池はリチウムイオンが小さいことからエネルギー密度が高く、非水系の電解質を用いるため高い電圧を得ることができるという特徴があることから、ノートパソコンなどの携帯型電子機器に用いられ、また電気自転車、電気自動車などの次世代電気産業製品への応用に向けた研究・開発が進められている。また、金属リチウム二次電池に比較してメモリー効果が小さいことから継ぎ足し充電を行う携帯電話等の機器にも適している。
With the remarkable spread of portable devices such as digital cameras and notebook computers in recent years, demand for lithium ion secondary batteries, which are a kind of non-aqueous electrolyte secondary batteries, is increasing as a power source.
Lithium ion secondary batteries have high energy density due to their small lithium ion, and can be used for portable electronic devices such as notebook computers, because they use non-aqueous electrolytes and have a high voltage. Research and development for application to next-generation electric industry products such as electric bicycles and electric vehicles are also underway. In addition, since the memory effect is smaller than that of a metal lithium secondary battery, it is also suitable for a device such as a mobile phone that performs recharging.

このようなリチウムイオン二次電池として、角型や円筒型であり、金属缶に封入されるタイプのものと、フレキシブルなフィルムにパッケージされるラミネート型(積層型)を挙げることができる。角型及び円筒型のリチウムイオン二次電池では、正極電極層とセパレーター層、負極電極層を扁平形状あるいは円筒状に巻いた巻回型となる。また、ラミネート型は正極電極層と負極電極層とをセパレーター層を介して交互に積層した形状となる。
いずれのタイプのリチウムイオン二次電池も、正極及び負極電極層は、シート状の集電体(集電基材)上に、リチウムイオンを吸蔵及び放出可能な活物質と呼ばれる粒子を含む層(活物質層)が積層された積層体である。正極電極層及び負極電極層にはそれぞれの活物質における電位差を電流として取り出すための端子が設けられる。正極電極層と負極電極層の間にはリチウムイオンが透過可能なセパレーターが配置され、全体に有機電解液が介装される。
Examples of such a lithium ion secondary battery include a rectangular type and a cylindrical type, which are enclosed in a metal can, and a laminated type (laminated type) packaged in a flexible film. In the rectangular and cylindrical lithium ion secondary batteries, a positive electrode layer, a separator layer, and a negative electrode layer are wound in a flat shape or a cylindrical shape. In addition, the laminate type has a shape in which positive electrode layers and negative electrode layers are alternately laminated via separator layers.
In any type of lithium ion secondary battery, the positive electrode and the negative electrode layer are layers containing particles called active materials capable of inserting and extracting lithium ions on a sheet-like current collector (current collector base material) ( Active material layer). The positive electrode layer and the negative electrode layer are provided with terminals for taking out a potential difference in each active material as a current. A separator capable of transmitting lithium ions is disposed between the positive electrode layer and the negative electrode layer, and an organic electrolyte is interposed in the whole.

しかし、リチウムイオン二次電池の活物質層は、リチウムイオンを最大限吸蔵するために活物質の割合が非常に多い。また、リチウムイオンの吸蔵/放出を繰り返すことで、活物質が膨張と収縮を繰り返す。従って、集電基材から活物質がはがれてしまうという問題が発生しており、この問題は特に負極活物質層と負極集電基材との間で顕著である。   However, the active material layer of the lithium ion secondary battery has a very large ratio of the active material in order to absorb lithium ions to the maximum extent. Moreover, the active material repeats expansion and contraction by repeating insertion / extraction of lithium ions. Accordingly, there is a problem that the active material is peeled off from the current collecting base material, and this problem is particularly remarkable between the negative electrode active material layer and the negative current collecting base material.

従来は、活物質に加えてバインダー(結着剤)、分散媒、増粘を含む活物質層形成用スラリーを調整し、これを集電体(集電基材)に塗工して電極を製造していた(特許文献1参照)。しかし、スラリー中に含まれる結着剤が塗工膜上層へ偏在し、塗工膜下層の結着剤量が少なくなるマイグレーションと呼ばれる現象が起こることから、塗工膜(活物質層)と集電基材との密着強度が著しく弱くなるという問題があった。   Conventionally, an active material layer forming slurry containing a binder (binder), a dispersion medium, and a thickening agent in addition to the active material is prepared, and this is applied to a current collector (current collector base material) to form an electrode. It was manufactured (see Patent Document 1). However, a phenomenon called migration occurs in which the binder contained in the slurry is unevenly distributed in the upper layer of the coating film and the amount of the binder in the lower layer of the coating film is reduced. There was a problem that the adhesion strength with the electric base material was remarkably weakened.

このような問題を解決するために、集電基材と塗工膜(活物質層)との密着強度低下を解決するために、スラリー(負極合剤)中に第1のポリマーに加えて、第2のポリマーを添加する方法(特許文献2参照、図2(a))や、結着剤を含む負極活物質層と負極集電基材との間に双方の密着性を高めるための密着層を設ける方法(特許文献3参照、図2(b))が提案されている。   In order to solve such a problem, in order to solve the decrease in the adhesion strength between the current collecting substrate and the coating film (active material layer), in addition to the first polymer in the slurry (negative electrode mixture), A method of adding a second polymer (see Patent Document 2, FIG. 2 (a)) and adhesion for enhancing the adhesion between the negative electrode active material layer containing the binder and the negative electrode current collector substrate A method of providing a layer (see Patent Document 3 and FIG. 2B) has been proposed.

特開平4−51459号公報JP-A-4-51459 特開2003−242967号公報JP 2003-242967 A 特開2004−200011号公報JP 2004-200011 A

しかし、スラリーに新たなポリマーを添加する方法では、活物質層として必要ではない材料の添加は好ましくなく、コスト的にも不利である。また、密着層を設ける方法では、密着層を設ける工程が1工程増えるため、製造に時間がかかり、生産性が低下してしまう。いずれにしても、活物質層の構成が複雑になるのは好ましくない。
本発明は、活物質層の構成を必要最小限にとどめつつ、集電基材と活物質層の密着強度を保つことを課題とする。より具体的には、結着剤が活物質層内で偏在する(マイグレーション)のを防ぎ、活物質層の性能を低下させることなく密着強度を保つことを課題とする。
However, in the method of adding a new polymer to the slurry, it is not preferable to add a material that is not necessary for the active material layer, which is disadvantageous in terms of cost. Further, in the method of providing an adhesion layer, the number of steps for providing the adhesion layer is increased by one step, so that it takes time to manufacture and the productivity is lowered. In any case, it is not preferable that the structure of the active material layer is complicated.
An object of the present invention is to maintain the adhesion strength between the current collecting base material and the active material layer while keeping the configuration of the active material layer to the minimum necessary. More specifically, it is an object to prevent the binder from being unevenly distributed (migration) in the active material layer and to maintain the adhesion strength without degrading the performance of the active material layer.

上記課題を解決するための第1の発明は、活物質層が集電基材上に積層された積層体であって、前記活物質層は、少なくとも活物質と、導電剤と、結着剤と、増粘剤を含み、当該活物質層の嵩密度は1.2g/cm以上であることを特徴とする積層体である。
さらに、前記活物質は負極活物質であり、前記集電基材は銅箔であることを特徴とする積層体である。
さらに、前記積層体を非水電解質二次電池の負極電極層として用いたことを特徴とする非水電解質二次電池である。
A first invention for solving the above problem is a laminate in which an active material layer is laminated on a current collecting base material, and the active material layer includes at least an active material, a conductive agent, and a binder. And a thickening agent, and the bulk density of the active material layer is 1.2 g / cm 3 or more.
Furthermore, the active material is a negative electrode active material, and the current collecting base material is a copper foil.
Furthermore, the non-aqueous electrolyte secondary battery is characterized in that the laminate is used as a negative electrode layer of a non-aqueous electrolyte secondary battery.

上記課題を解決するための第2の発明は、活物質層が集電基材上に積層された積層体の製造方法であって、前記活物質層は、1.少なくとも活物質と、導電剤と、結着剤と、増粘剤と、溶媒を含む活物質層形成用組成物を前記集電基材上に塗工し、活物質塗膜を形成する工程、2.前記活物質塗膜を100℃以上150℃以下の温度で乾燥する工程、3.前記活物質塗膜を65℃以上115℃以下の温度で再度加熱する工程、4.前記活物質塗膜に単位面積あたり320kgf/cm以上の圧力を加える工程、を1から4の順で行うことを特徴とする積層体の製造方法である。
さらに、前記工程2と前記工程3との間に、前記活物質塗膜を室温まで冷ます工程を備え、前記工程2は10分以上15分以下、前記工程3は60分以上行われることを特徴とする積層体の製造方法である。
さらに、前記工程4は、前記工程3において加えた熱を前記結着剤の融点以上に保ちながら行うことを特徴とする積層体の製造方法である。
A second invention for solving the above-described problem is a method for manufacturing a laminate in which an active material layer is laminated on a current collecting base material. A step of applying an active material layer-forming composition containing at least an active material, a conductive agent, a binder, a thickener, and a solvent on the current collecting substrate to form an active material coating film; 2. 2. a step of drying the active material coating film at a temperature of 100 ° C. or higher and 150 ° C. or lower; 3. heating the active material coating film again at a temperature of 65 ° C. or higher and 115 ° C. or lower; The method for producing a laminate, wherein the step of applying a pressure of 320 kgf / cm 2 or more per unit area to the active material coating is performed in the order of 1 to 4.
Further, the method includes a step of cooling the active material coating film to room temperature between the step 2 and the step 3, wherein the step 2 is performed for 10 minutes to 15 minutes and the step 3 is performed for 60 minutes or more. It is the manufacturing method of the laminated body characterized.
Further, the step 4 is a method for producing a laminate, which is performed while keeping the heat applied in the step 3 at or above the melting point of the binder.

第1の発明によれば、活物質層と集電基材との密着強度の優れた積層体とすることができる。また、活物質同士が近接するため、単位体積あたりの活物質の放電容量を増加させ、かつサイクル特性を向上させる効果がある。従って、非水電解質二次電池の負極電極層として好適に用いることができる。   According to 1st invention, it can be set as the laminated body excellent in the adhesive strength of an active material layer and a current collection base material. Further, since the active materials are close to each other, there are effects of increasing the discharge capacity of the active material per unit volume and improving the cycle characteristics. Therefore, it can be suitably used as a negative electrode layer of a nonaqueous electrolyte secondary battery.

第2の発明によれば、新たなポリマーの添加や層の形成をすることなく、活物質層の構成を変えずに、該活物質層と集電基材との密着性を高めることができた。
乾燥工程で溶剤を除き、その後再加熱工程を行うことで、活物質塗膜内の上下層での結着剤の偏在を解消し、負極活物質の分布を均一にすることができると考えられる。そして、単位面積あたり320kgf/cm以上の圧力で活物質塗膜をプレスをすることで、活物質塗膜内に存在する空隙に、結着剤を押し込むことができる。
According to the second invention, it is possible to improve the adhesion between the active material layer and the current collecting base material without changing the configuration of the active material layer without adding a new polymer or forming a layer. It was.
By removing the solvent in the drying step and then performing the reheating step, it is considered that the uneven distribution of the binder in the upper and lower layers in the active material coating can be eliminated and the distribution of the negative electrode active material can be made uniform. . And a binder can be pushed in into the space | gap which exists in an active material coating film by pressing an active material coating film with the pressure of 320 kgf / cm < 2 > or more per unit area.

特に、再加熱工程に十分な時間をかけ、その後、結着剤の融点より高い温度でプレスを行うことで、活物質塗膜の温度が一定となり、当該結着剤を活物質塗膜と集電基材との界面に存在する空隙を効率よく充填することができ、活物質層と集電基材との密着性を向上させ、活物質層の嵩密度の増加を図ることができる。
本発明によれば、結着剤の偏在がなく、空隙が少なく、嵩密度の高い(負極)活物質層を備えた積層体を得ることができるので、特に、非水電解質二次電池の負極電極層として用いる際に、負極活物質からの電気容量の取り出しにおいて、前記結着剤が電気化学反応を妨げる影響を低減させる働きが期待できる。
In particular, by taking a sufficient time for the reheating step and then pressing at a temperature higher than the melting point of the binder, the temperature of the active material coating becomes constant, and the binder is collected with the active material coating. It is possible to efficiently fill the voids present at the interface with the electric substrate, improve the adhesion between the active material layer and the current collecting substrate, and increase the bulk density of the active material layer.
According to the present invention, there can be obtained a laminate including an active material layer having no uneven distribution of the binder, less voids, and a high bulk density (negative electrode), and in particular, the negative electrode of the nonaqueous electrolyte secondary battery. When used as an electrode layer, it can be expected that the binder reduces the influence of the binder preventing the electrochemical reaction in taking out the electric capacity from the negative electrode active material.

本発明の製造方法を構成する工程4の前後における積層体を模式的に示した断面図である。It is sectional drawing which showed typically the laminated body before and behind the process 4 which comprises the manufacturing method of this invention. 従来の技術による負極電極層と本発明による負極電極層を模式的に示す断面図である。It is sectional drawing which shows typically the negative electrode layer by a prior art, and the negative electrode layer by this invention. 空気圧平板プレス機により積層体をプレスする工程を示す説明図である。It is explanatory drawing which shows the process of pressing a laminated body with a pneumatic flat plate press. 手動ピール試験の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of a manual peel test. 本発明の製造方法を構成する工程4の前後における積層体の断面写真である。It is a cross-sectional photograph of the laminated body before and behind the process 4 which comprises the manufacturing method of this invention.

本発明を実施例に基づいて説明する。
<積層体の構成>
本発明の積層体は、活物質層が集電基材上に積層された積層体であって、前記活物質層は、少なくとも活物質と、導電剤と、結着剤と、増粘剤を含み、当該活物質層の嵩密度は1.2g/cm以上であることを特徴とする。以下、積層体の構成について説明する。
The present invention will be described based on examples.
<Configuration of laminate>
The laminate of the present invention is a laminate in which an active material layer is laminated on a current collecting substrate, and the active material layer includes at least an active material, a conductive agent, a binder, and a thickener. And the bulk density of the active material layer is 1.2 g / cm 3 or more. Hereinafter, the structure of a laminated body is demonstrated.

<集電基材>
集電基材には、高電流の電流を流すという観点から、導電性の物質が好ましい。その中でも、銅、ニッケル、ステンレス、鉄、アルミニウム等が挙げられ、その中でも、コスト面で比較的に安価で、また、金属のイオン化傾向の観点から正極集電基材にはアルミニウム、負極集電基材には銅が好ましい。
負極集電基材としては、銅の中でも圧延銅箔が好ましい。これは、圧延銅箔中の銅結晶が圧延方向に並んでいるため、これを用いた負極電極層は、応力を加えたときにも割れにくいため、積層体を形成する場合に、成形性に富むといった利点があるからである。
そのため、本発明においても圧延銅箔を使用した。しかし、圧延銅箔には、その製造方法から長さの制約もあるので、作製工程で長さに制約が無いといった利点からは電解銅箔の使用も好ましい。正極集電基材には、圧延銅箔と同様の理由によりに圧延アルミ箔が好ましい。これも、アルミ結晶が圧延方向に並んでいるため、これを用いた正極電極層は、応力を加えたときにも割れにくい。従って、積層体を形成する場合に、成形性に富むといった利点があるからである。
<Current collector base>
From the viewpoint of flowing a high current, the conductive material is preferably used as the current collecting base material. Among them, copper, nickel, stainless steel, iron, aluminum and the like can be mentioned. Among them, aluminum and negative electrode current collectors are used as the positive electrode current collector base material in terms of cost and relatively low in terms of metal ionization. Copper is preferred for the substrate.
As the negative electrode current collecting substrate, rolled copper foil is preferable among copper. This is because the copper crystals in the rolled copper foil are lined up in the rolling direction, and the negative electrode layer using this is difficult to break even when stress is applied. This is because there is an advantage of being rich.
Therefore, rolled copper foil was used also in the present invention. However, since the rolled copper foil also has a length limitation due to its manufacturing method, it is also preferable to use an electrolytic copper foil from the advantage that the length is not limited in the production process. For the positive electrode current collector base material, a rolled aluminum foil is preferable for the same reason as the rolled copper foil. Again, since the aluminum crystals are arranged in the rolling direction, the positive electrode layer using the aluminum crystals is not easily broken when stress is applied. Therefore, when forming a laminated body, there exists an advantage that it is rich in a moldability.

<活物質>
活物質には、リチウムイオンを吸蔵・放出可能なものであれば使用可能である。詳しくは、正極活物質としては、すでに公知であるLiMn、LiFePO、LiCoO、LiMnO、LiMnO、LiFeSiO、LiFeVO等のリチウム含有金属酸化物、V、MoO等の遷移金属酸化物、TiS、非晶質MoS等の遷移金属硫化物が挙げられる。
また、負極活物質としては、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ(MCMB)等の炭素系材料、LiTiO、SiO等の酸化物系材料、リチウム金属合金、リチウム金属等が挙げられる。
この中でも、人造黒鉛や天然黒鉛は、現在工業的に広く用いられ、コストが安価で扱いやすいといった利点から負極活物質に好ましい。本発明においても人造黒鉛及び天然黒鉛を好ましく使用できる。
<Active material>
Any active material that can occlude and release lithium ions can be used. Specifically, as the positive electrode active material, lithium-containing metal oxides such as LiMn 2 O 4 , LiFePO 4 , LiCoO 2 , Li 2 MnO 3 , LiMnO 2 , LiFeSiO 4 , and LiFeVO 4 that are already known, V 2 O 5 , Examples thereof include transition metal oxides such as MoO 3 and transition metal sulfides such as TiS 2 and amorphous MoS 3 .
Examples of the negative electrode active material include carbon-based materials such as amorphous carbon, graphite, natural graphite, and mesocarbon microbeads (MCMB), oxide-based materials such as LiTiO 4 and SiO 2 , lithium metal alloys, and lithium metals. It is done.
Among these, artificial graphite and natural graphite are currently widely used industrially, and are preferable for the negative electrode active material because they are inexpensive and easy to handle. Also in the present invention, artificial graphite and natural graphite can be preferably used.

<結着剤>
結着剤としては、後述する分散溶媒に対して化学的に安定な高分子が好ましい。例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PTFE)、芳香族ポリアミド等の樹脂系高分子、スチレン・ブタジエンラバー(SBR)、エチレン・プロピレンラバー等のゴム系高分子、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン等のフッ素系高分子等が挙げられる。
その中でも、正極電極層には集電基材と正極活物質の密着性及び正極活物質間の密着性の向上という観点から、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン等のフッ素系高分子が好ましい。
また、負極電極層にはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン等のフッ素系高分子やスチレン・ブタジエンラバー(SBR)、エチレン・プロピレンラバー等のゴム系高分子が好ましい。特に、SBRは、低融点(115℃)であり再加熱工程及びプレス工程での熱量を抑えられる、また、水系の溶媒を用いることが可能であり、工業的に用いる場合、環境負荷の低減、溶剤回収が不必要でありコストの低減が図れるといった観点から、本発明の実施例においてSBRを負極結着剤として使用した。
<Binder>
As the binder, a polymer that is chemically stable with respect to the dispersion solvent described later is preferable. For example, resin polymers such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PTFE), aromatic polyamide, rubber polymers such as styrene / butadiene rubber (SBR) and ethylene / propylene rubber, polyvinylidene fluoride ( PVDF) and fluorine-based polymers such as polytetrafluoroethylene.
Among them, the positive electrode layer is a fluorine-based polymer such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene from the viewpoint of improving the adhesion between the current collecting base material and the positive electrode active material and the adhesion between the positive electrode active material. Is preferred.
The negative electrode layer is preferably a fluorine polymer such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene, or a rubber polymer such as styrene / butadiene rubber (SBR) or ethylene / propylene rubber. In particular, SBR has a low melting point (115 ° C.) and can suppress the amount of heat in the reheating step and the pressing step, and an aqueous solvent can be used. SBR was used as the negative electrode binder in the examples of the present invention from the viewpoint that the solvent recovery was unnecessary and the cost could be reduced.

<導電剤>
導電剤には、電極材料(集電基材)の導電性を確保でき、かつ、充放電反応において化学反応を起こさない物質が好まれる。一般的には、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック等の炭素系材料、金属繊維、導電性ポリマー、フッ化カーボン、金属粉末等が用いられる。この中でもアセチレンブラック、ケッチェンブラックが特に好ましい。
<Conductive agent>
As the conductive agent, a substance that can ensure the conductivity of the electrode material (current collecting base material) and does not cause a chemical reaction in the charge / discharge reaction is preferred. In general, carbon-based materials such as acetylene black, ketjen black, channel black, and furnace black, metal fibers, conductive polymers, carbon fluoride, and metal powder are used. Among these, acetylene black and ketjen black are particularly preferable.

<増粘剤>
本発明の非水電解質二次電池は活物質が溶媒に分散した活物質層形成用組成物を集電基材上に塗工し、活物質塗膜を形成するが、このとき活物質層形成用組成物の粘度を調整するために増粘剤を加えても良い。増粘剤には、カルボキシメチルセルロース(CMC)やポリエチレングリコール等の高分子材料が好ましい。
<Thickener>
In the nonaqueous electrolyte secondary battery of the present invention, an active material layer-forming composition in which an active material is dispersed in a solvent is applied onto a current collecting substrate to form an active material coating film. A thickener may be added to adjust the viscosity of the composition. The thickener is preferably a polymer material such as carboxymethyl cellulose (CMC) or polyethylene glycol.

<溶媒>
本発明の非水電解質二次電池の活物質層の形成には、活物質層形成用組成物を集電基材上に塗工する。活物質層形成用組成物は活物質と、導電剤と、結着剤と、増粘剤と溶媒とを含み、スラリー状に調整されたものである。活物質層形成用組成物の調整に用いることのできる溶媒としては、水や、水にエタノール、N−メチルピロリドン(NMP)等を混合した水系溶媒、NMP等の環状アミド系、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖上アミド系、トルエン、キシレン等の芳香族炭化水素等を挙げることができる。
<Solvent>
In order to form the active material layer of the nonaqueous electrolyte secondary battery of the present invention, the composition for forming an active material layer is applied onto a current collecting substrate. The composition for forming an active material layer includes an active material, a conductive agent, a binder, a thickener, and a solvent, and is adjusted in a slurry form. Solvents that can be used to adjust the composition for forming an active material layer include water, water-based solvents obtained by mixing ethanol, N-methylpyrrolidone (NMP), and the like, cyclic amides such as NMP, N, N- Examples thereof include linear amides such as dimethylformamide and N, N-dimethylacetamide, and aromatic hydrocarbons such as toluene and xylene.

<非水電解質二次電池の構造>
本発明の非水電解質二次電池は例えばリチウムイオン二次電池であり、金属缶に封入されるタイプのものと、フレキシブルなフィルムにパッケージされるラミネート型(積層型)を挙げることができる。角型及び円筒型のリチウムイオン二次電池では、正極電極層とセパレーター層、負極電極層を扁平形状あるいは円筒状に巻いた巻回型となる。また、ラミネート型は正極電極層と負極電極層をセパレーター層を介して交互に積層した形状となる。
いずれのタイプのリチウムイオン二次電池も、正極及び負極電極層は、シート状の集電基材上に、リチウムイオンを吸蔵及び放出可能な活物質と呼ばれる粒子を含む層(活物質層)が積層された積層体である。正極電極層及び負極電極層にはそれぞれの活物質における電位差を電流として取り出すための端子が設けられる。正極電極層と負極電極層の間にはリチウムイオンが透過可能なセパレーターが配置され、全体に有機電解液が介装される。
<Structure of non-aqueous electrolyte secondary battery>
The nonaqueous electrolyte secondary battery of the present invention is, for example, a lithium ion secondary battery, and includes a type sealed in a metal can and a laminate type (laminated type) packaged in a flexible film. In the rectangular and cylindrical lithium ion secondary batteries, a positive electrode layer, a separator layer, and a negative electrode layer are wound in a flat shape or a cylindrical shape. In addition, the laminate type has a shape in which positive electrode layers and negative electrode layers are alternately laminated via separator layers.
In any type of lithium ion secondary battery, the positive electrode and the negative electrode layer each have a layer (active material layer) containing particles called an active material capable of inserting and extracting lithium ions on a sheet-like current collecting base material. It is the laminated body laminated | stacked. The positive electrode layer and the negative electrode layer are provided with terminals for taking out a potential difference in each active material as a current. A separator capable of transmitting lithium ions is disposed between the positive electrode layer and the negative electrode layer, and an organic electrolyte is interposed in the whole.

<セパレーター>
セパレーターとしては、リチウムイオンを透過し、有機電解液によって変質しない多孔性のシート状ポリマーが好ましい。例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのオレフィン系のシート状ポリマー、ポリイミド、ポリアラミド等のシート状ポリマーが好まれる。これらのシート状ポリマーは非水電解質二次電池の用途によっても異なるが、自動車などの大型産業用であれば40〜60μmの厚みが好ましい。また、これらのシート状ポリマーは、細孔径が1μm以下であることが好ましく、空隙率は20〜80%であることが好ましい。
セパレーターとしては不織布も用いることができる。セパレーターとして用いることのできる不織布としては、綿、レーヨン、アセテート、ナイロン、ポリエステル、ポリオレフィン系樹脂、ポリイミド、アラミド、などの従来公知のものが挙げられる。これら不織布は、1種類を単独で使用してもよく、2種類以上を併用してもよい。
不織布の嵩密度は特に限定されない。不織布の空隙率は30〜90%が好ましい。また、不織布の厚みは、電解液が保持される層と同じ程度であればよく、5〜200μmが好ましい。不織布の厚みが5μm以下であれば、電解液の保持がより良好になる。不織布の厚みが200μm以下であれば、内部抵抗がより小さくなる。
<Separator>
As the separator, a porous sheet polymer that transmits lithium ions and does not change in quality by the organic electrolyte is preferable. For example, olefin-based sheet polymers such as polyethylene (PE) and polypropylene (PP), and sheet polymers such as polyimide and polyaramid are preferred. These sheet polymers differ depending on the use of the non-aqueous electrolyte secondary battery, but a thickness of 40 to 60 μm is preferable for large-scale industries such as automobiles. Further, these sheet-like polymers preferably have a pore size of 1 μm or less, and a porosity of 20 to 80%.
A nonwoven fabric can also be used as the separator. Examples of the nonwoven fabric that can be used as the separator include conventionally known ones such as cotton, rayon, acetate, nylon, polyester, polyolefin resin, polyimide, and aramid. These nonwoven fabrics may be used alone or in combination of two or more.
The bulk density of the nonwoven fabric is not particularly limited. The porosity of the nonwoven fabric is preferably 30 to 90%. Moreover, the thickness of a nonwoven fabric should just be the same grade as the layer by which electrolyte solution is hold | maintained, and 5-200 micrometers is preferable. When the thickness of the nonwoven fabric is 5 μm or less, the electrolyte solution is better retained. If the thickness of the nonwoven fabric is 200 μm or less, the internal resistance becomes smaller.

<有機電解液>
本発明の非水電解質二次電池に用いることのできる有機電解液としては、公知の有機電解液が使用できる。
このような有機電解液の溶媒としては、ジエチルエーテル、エチレングリコールフェニルエーテル等のエーテル系、ホルムアミド、N−エチルホルムアミド等のアミド系、ジメチルスルホキシド、スルホラン等の含有硫化物系、エチレンカーボネート、プロピレンカーボネート等のカーボネート系、γ−ブチロラクトン、NMP等の有機溶媒を用いることができる。さらに好ましくは、エチレンカーボネート、プロピレンカーボネート等のカーボネート系を使用するのが好ましい。これらの溶媒は、1種類でもよく、2種類以上を混合して使用することも出来る。
これらの有機電解液に含まれる電解質にはリチウム塩が使用され、リチウム塩には、LiClO、LiPF、LiCl、LiBF、LiAlCl、LiSbF,LiSCN、LiCFSO、LiCFCO等が用いられる。この中でも特に耐電圧特性がよいことからLiPFが好ましい。
<Organic electrolyte>
As the organic electrolytic solution that can be used in the nonaqueous electrolyte secondary battery of the present invention, known organic electrolytic solutions can be used.
Solvents for such organic electrolytes include ethers such as diethyl ether and ethylene glycol phenyl ether, amides such as formamide and N-ethylformamide, sulfides such as dimethyl sulfoxide and sulfolane, ethylene carbonate, propylene carbonate Organic solvents such as carbonates such as γ-butyrolactone and NMP can be used. More preferably, a carbonate system such as ethylene carbonate or propylene carbonate is used. These solvents may be used alone or in combination of two or more.
Lithium salt is used for the electrolyte contained in these organic electrolytes, and LiClO 4 , LiPF 6 , LiCl, LiBF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 are used as the lithium salt. Etc. are used. Of these, LiPF 6 is preferred because of its particularly good withstand voltage characteristics.

<正極電極層>
本発明の積層体は非水電解質二次電池の負極電極層として特に好ましく用いることができる。このとき、正極電極層としても本発明の積層体を用いることができるが、そのほかとしては、例えば正極活物質としてLiMn、LiFePO、LiCoO、LiFeVO、LiFeSiO、LiMnOを用いた積層体を好ましく用いることができる。
<Positive electrode layer>
The laminate of the present invention can be particularly preferably used as a negative electrode layer of a nonaqueous electrolyte secondary battery. At this time, the laminate of the present invention can also be used as the positive electrode layer. For example, LiMn 2 O 4 , LiFePO 4 , LiCoO 2 , LiFeVO 4 , LiFeSiO 4 , Li 2 MnO 3 can be used as the positive electrode active material. A laminate using can be preferably used.

<積層体の製造方法>
次に本発明の積層体の製造方法を説明する。
<Method for producing laminate>
Next, the manufacturing method of the laminated body of this invention is demonstrated.

<塗工工程>
<塗工液の調整>
活物質層を集電基材上に積層して本発明の積層体を製造する。活物質層の形成には、まず活物質、導電剤、結着剤を溶媒に分散させ、混練し、スラリー状として活物質層形成用組成物(塗工液)を調整する。
活物質層形成用組成物に添加する導電剤は、活物質100質量部に対し、0.5質量部以上20質量部以下、好ましくは1質量部以上10質量部以下であることが好ましい。
また、結着剤に関しては、活物質100質量部に対し、5質量部以上20質量部以下、好ましくは1質量部以上10質量部以下であることが好ましい。これは、結着剤が上記の上限以上では、活物質の割合が減り、電池容量の低下を招いてしまうからであり、下限以下では活物質同士や活物質と集電基材の密着性の劣化につながってしまうからである。
また、活物質層形成用組成物における活物質の濃度は、30質量%以上、70質量%以下が好ましく、さらに好ましい条件としては40質量%以上、55質量%以下である。これは、上限以上では活物質の凝集が起こってしまい、下限以下では活物質の沈降が起こってしまうからである。
<Coating process>
<Adjustment of coating solution>
The active material layer is laminated on the current collecting base material to produce the laminate of the present invention. For forming the active material layer, first, an active material, a conductive agent and a binder are dispersed in a solvent and kneaded to prepare a composition for forming an active material layer (coating liquid) as a slurry.
The conductive agent added to the composition for forming an active material layer is 0.5 parts by mass or more and 20 parts by mass or less, preferably 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the active material.
Further, the binder is preferably 5 parts by mass or more and 20 parts by mass or less, and more preferably 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the active material. This is because when the binder is equal to or higher than the above upper limit, the ratio of the active material is reduced, resulting in a decrease in battery capacity. When the binder is lower than the upper limit, the adhesiveness between the active materials and between the active material and the current collecting substrate is reduced. It will lead to deterioration.
Further, the concentration of the active material in the composition for forming an active material layer is preferably 30% by mass or more and 70% by mass or less, and more preferably 40% by mass or more and 55% by mass or less. This is because aggregation of the active material occurs above the upper limit, and sedimentation of the active material occurs below the lower limit.

本発明で用いる活物質層形成用組成物の調整は、材料の混合方法及び混合順序には特に限定されない。混錬にボールミル、ビーズミル、サンドミル、ディスパー、超音波分散機、ホモジナイザー、プラネタリーミキサー等の混合機を用い、高度に分散されたスラリーを得ることができる。
また、必要な粘度に応じて、増粘剤を添加することも可能である。
The adjustment of the composition for forming an active material layer used in the present invention is not particularly limited by the mixing method and mixing order of materials. A highly dispersed slurry can be obtained by using a ball mill, bead mill, sand mill, disper, ultrasonic disperser, homogenizer, planetary mixer or the like for kneading.
Moreover, it is also possible to add a thickener according to a required viscosity.

<塗工方法>
作製した活物質層形成用組成物の塗工方法に関しては、一般的なウェット材料の塗工方法が採用され、スラリー状となった活物質層形成用組成物の粘度等の物性に合わせて塗工が可能である。例えば、グラビアコート、マイクログラビアコート、ダイコート、デップコート、スリットコート、コンマコート、リップコート、ダイレクトコート法が挙げられる。一般的には、活物質塗膜の厚みが0.01mm以上1mm以下になることが好ましく、さらに好ましくは0.03mm以上0.2mm以下になることが良い。
<Coating method>
As for the coating method of the produced active material layer forming composition, a general wet material coating method is adopted, and it is applied in accordance with physical properties such as viscosity of the active material layer forming composition in a slurry form. Work is possible. Examples include gravure coating, micro gravure coating, die coating, dip coating, slit coating, comma coating, lip coating, and direct coating. In general, the thickness of the active material coating film is preferably 0.01 mm or more and 1 mm or less, more preferably 0.03 mm or more and 0.2 mm or less.

<乾燥工程>
乾燥工程は、活物質層に溶剤が残留しない状態とできれば、特に制限はなく、例えば、小型乾燥オーブンなどでの温風乾燥、熱風乾燥、真空乾燥、遠赤外乾燥、紫外線乾燥、電子線乾燥、恒温高湿乾燥が好ましい。これら乾燥方法は、1種類を単独で行ってもよく、2種類以上を組み合わせて行っても良い。
熱風乾燥においては、風量、風あたり角度、吹き出し口からの距離などが乾燥効率に影響するため、これらの条件を適宜選択する。
さらに、ロール・トゥ・ロール方式により塗工と乾燥を連続に行う場合には、ロールサポート、フローティングなどにより乾燥を行ってもよく、これらを組み合わせても良い。
乾燥工程後の活物質塗膜に占める残留溶剤はできるだけ少ないほうがよく、1質量%以下、さらに好ましい条件としては、0.5質量%以下である。
<Drying process>
The drying process is not particularly limited as long as no solvent remains in the active material layer. For example, hot air drying, hot air drying, vacuum drying, far infrared drying, ultraviolet drying, electron beam drying in a small drying oven or the like. Constant temperature and high humidity drying is preferred. These drying methods may be performed singly or in combination of two or more.
In hot air drying, the air volume, the angle per wind, the distance from the outlet, etc. affect the drying efficiency, so these conditions are appropriately selected.
Furthermore, when coating and drying are continuously performed by a roll-to-roll method, drying may be performed by roll support, floating, or the like, or a combination of these may be performed.
The residual solvent occupies as little as possible in the active material coating film after the drying step, preferably 1% by mass or less, and more preferably 0.5% by mass or less.

<再加熱工程>
<乾燥工程後の冷却>
前記加熱工程後、活物質塗膜を室温まで徐冷する。その工程としては、室温で放冷することが好ましく、例えば温度20℃以上30℃未満の恒温高湿室等に2時間以上置き徐冷することが好ましい。
この工程を経ることによって、プレス工程時の活物質塗膜温度が全体で均一となり、ムラのない嵩密度の活物質層を形成することができる。
<Reheating process>
<Cooling after drying process>
After the heating step, the active material coating film is gradually cooled to room temperature. As the process, it is preferable to cool at room temperature. For example, it is preferable to cool in a constant temperature and high humidity chamber having a temperature of 20 ° C. or higher and less than 30 ° C. for 2 hours or longer.
By passing through this process, the active material coating film temperature at the time of a press process becomes uniform as a whole, and the active material layer of the bulk density without a nonuniformity can be formed.

<再加熱>
再加熱工程で行うことのできる加熱方法としては、小型の乾燥オーブンなどでの温風加熱、熱風加熱、密閉容器内での真空加熱、遠赤外線加熱、紫外線照射加熱、電子線加熱、恒温高湿加熱が好ましくこれら加熱方法は、1種類を単独で行ってもよく、2種類以上を組み合わせて行っても良い。再加熱工程においては、活物質塗膜の温度を結着剤の融点付近まで均一に上げたいため、温度一定となるオーブンやホットプレートによる加熱法が好ましい。
熱風乾燥においては、風量、風あたり角度、吹き出し口からの距離などが乾燥効率に影響するため、これらの条件を適宜選択する。
再加熱時間としては30分以上が好ましく、さらに好ましい条件としては1時間以上である。再加熱温度は、活物質塗膜に含まれる結着剤によって融点が異なるため適切な温度は異なるが、結着剤を再加熱により軟化させ活物質などの空隙に押し込むといった観点から、65℃以上115℃以下、より好ましくは結着剤の融点以上が好ましい。
<Reheating>
Heating methods that can be performed in the reheating process include hot air heating in a small drying oven, hot air heating, vacuum heating in a sealed container, far infrared heating, ultraviolet irradiation heating, electron beam heating, constant temperature and high humidity. Heating is preferred, and these heating methods may be performed alone or in combination of two or more. In the reheating step, in order to uniformly raise the temperature of the active material coating film to near the melting point of the binder, a heating method using an oven or a hot plate in which the temperature is constant is preferable.
In hot air drying, the air volume, the angle per wind, the distance from the outlet, etc. affect the drying efficiency, so these conditions are appropriately selected.
The reheating time is preferably 30 minutes or more, and more preferably 1 hour or more. The reheating temperature varies depending on the binder contained in the active material coating, so the appropriate temperature is different. However, from the viewpoint of softening the binder by reheating and pushing it into the voids of the active material, etc. 115 ° C. or lower, more preferably higher than the melting point of the binder.

<プレス工程>
単位面積当たりのエネルギー密度の向上のために、再加熱後、あるいは再加熱しながら前記活物質塗膜のプレスを行う。プレスには、金属ロールプレス法、ゴムロールプレス法、平板プレス法が挙げられる。
プレス後の活物質塗膜、すなわち活物質層の嵩密度は、積層体が正極電極層である場合は1.0g/cm以上3.8g/cm以下の範囲であることが好ましく、負極電極層である場合は1.0g/cm以上2.5g/cm以下であることが好ましい。嵩密度がこの範囲以上であると、活物質層に空隙がほとんど存在しなくなり、有機電解液が活物質層に浸透できず、電池性能の低下を招くからであり、この範囲以下であると、結着剤が集電基材付近にほとんど存在できないため、活物質層と集電基材との密着不良の原因となってしまうからである。
プレス工程は、活物質塗膜の温度が当該活物質塗膜に含まれる結着剤の融点以上に保たれた状態で行うことが好ましい。再加熱工程後、活物質塗膜の温度が下がる前にプレスを行うこともできるが、再加熱工程で所定の時間の加熱後に加熱を行いながらプレスを行うことが最も好ましい。再加熱工程の加熱を行いながらプレスを行うことで、結着剤が融点で均一に溶けた状態でプレスすることができるので、空隙に結着剤が効率よく潜り込むことができるためである。
<Pressing process>
In order to improve the energy density per unit area, the active material coating film is pressed after reheating or while reheating. Examples of the press include a metal roll press method, a rubber roll press method, and a flat plate press method.
The bulk density of the active material coating, i.e. the active material layer after pressing is preferably laminate when a positive electrode layer is in the range of 1.0 g / cm 2 or more 3.8 g / cm 2 or less, the negative electrode In the case of an electrode layer, it is preferably 1.0 g / cm 2 or more and 2.5 g / cm 2 or less. If the bulk density is above this range, there are almost no voids in the active material layer, the organic electrolyte cannot penetrate into the active material layer, resulting in a decrease in battery performance, and below this range, This is because the binder hardly exists in the vicinity of the current collecting base material, which causes poor adhesion between the active material layer and the current collecting base material.
The pressing step is preferably performed in a state in which the temperature of the active material coating film is maintained at or above the melting point of the binder contained in the active material coating film. Although it is possible to perform pressing after the reheating step and before the temperature of the active material coating film is lowered, it is most preferable to perform pressing while heating after a predetermined time in the reheating step. This is because the pressing can be performed in a state where the binder is uniformly melted at the melting point by performing the pressing while performing the heating in the reheating step, so that the binder can efficiently sink into the voids.

<二次電池の作成方法>
上記のように作製した正極電極層、負極電極層をセパレーターと組み合わせて正極電極層/セパレーター/負極電極層に正極電極層と負極電極層が触れないように積層、または巻回し、コイン型、角型、円筒型、ラミネート型等の容器の中に有機電解液とともに封入する。これにより非水電解質二次電池を作製する。作製時には、低露点(−50℃以下)の雰囲気であるドライルームや、アルゴンガスが容積の95質量部以上100質量部以下を占めるグローブボックス等で作業を行い、水分が非水電解質二次電池に封入されないようにすることが必須である。
<Method for making secondary battery>
The positive electrode layer and the negative electrode layer prepared as described above are combined with a separator and laminated or wound so that the positive electrode layer and the negative electrode layer do not touch the positive electrode layer / separator / negative electrode layer. It is sealed with an organic electrolyte in a container such as a mold, cylinder, or laminate mold. Thereby, a nonaqueous electrolyte secondary battery is produced. At the time of production, the work is performed in a dry room having a low dew point (-50 ° C. or lower) atmosphere, a glove box in which argon gas occupies 95 parts by mass or more and 100 parts by mass or less, and water is contained in a non-aqueous electrolyte secondary battery. It is indispensable not to be sealed in.

(実施例1)
<負極活物質層形成用組成物の調整>
以下の材料を活物質:導電剤:結着剤:増粘剤=85:15:1.5:1.5の割合で混錬し、固形物が55質量%となるように溶媒で希釈し、負極活物質層形成用組成物とした。
結着剤:SBR(スチレンブタジエンゴム)(融点115℃、BM−400B:日本ゼオン製)
増粘剤:CMC(カルボキシメチルセルロース)(CMCダイセル<アンモニウム>ダイセル化学製)
導電剤:アセチレンブラック
負極活物質:カーボン(M1−001、日本KMFC黒鉛化品、JFEケミカル製)
溶媒:水
<負極活物質層の形成>
負極集電基材として銅箔(厚み10μm)を幅15cm、長さ50cmに切り取り、当該銅箔の中央部に、スリットクリアランス300μmのYA−Cアプリケーターで先に調整した負極活物質層形成用組成物を幅10cm、長さ40cmに渡って塗工し、負極活物質塗膜を形成した(塗工工程)。
負極活物質塗膜を銅箔ごとオーブンに入れ、100℃で15分間乾燥した(乾燥工程)。
乾燥後、膜内の温度が室温になるまで放冷し、負極活物質塗膜が形成されている部分を銅箔ごと幅5cmm、長さ5cmとなるように切り取った。膜内の温度は温度センサーで測定した。
切り取った試験片を再びオーブンに入れて、115℃で60分間加熱した(図1(a))(再加熱工程)。
オーブンから取り出した試験片をすぐにステンレス板で挟みこみ、空気圧式平板プレス機で320kgf/cmの圧力を10分間保持した(図1(b)及び図3参照)(プレス工程)。プレス工程直後の膜内の温度は115℃であった。こうして、負極活物質層が銅箔上に積層された実施例1の積層体を得た。
Example 1
<Preparation of negative electrode active material layer forming composition>
The following materials are kneaded at a ratio of active material: conductive agent: binder: thickener = 85: 15: 1.5: 1.5, and diluted with a solvent so that the solid content becomes 55% by mass. A negative electrode active material layer forming composition was obtained.
Binder: SBR (styrene butadiene rubber) (melting point 115 ° C., BM-400B: manufactured by Nippon Zeon)
Thickener: CMC (Carboxymethylcellulose) (CMC Daicel <Ammonium> manufactured by Daicel Chemical)
Conductive agent: Acetylene black negative electrode active material: Carbon (M1-001, Nippon KMFC graphitized product, manufactured by JFE Chemical)
Solvent: water
<Formation of negative electrode active material layer>
A negative electrode active material layer forming composition prepared by cutting a copper foil (thickness: 10 μm) as a negative electrode current collecting substrate into a width of 15 cm and a length of 50 cm, and adjusting the center of the copper foil with a YA-C applicator having a slit clearance of 300 μm. The product was applied over a width of 10 cm and a length of 40 cm to form a negative electrode active material coating (coating process).
The negative electrode active material coating film was placed in an oven together with the copper foil and dried at 100 ° C. for 15 minutes (drying step).
After drying, the film was allowed to cool to room temperature, and the portion where the negative electrode active material coating film was formed was cut out together with the copper foil so as to have a width of 5 cm and a length of 5 cm. The temperature in the membrane was measured with a temperature sensor.
The cut specimen was put into the oven again and heated at 115 ° C. for 60 minutes (FIG. 1 (a)) (reheating step).
The test piece taken out from the oven was immediately sandwiched between stainless plates, and a pressure of 320 kgf / cm 2 was maintained for 10 minutes with a pneumatic flat plate press (see FIG. 1B and FIG. 3) (pressing step). The temperature in the film immediately after the pressing step was 115 ° C. Thus, a laminate of Example 1 in which the negative electrode active material layer was laminated on the copper foil was obtained.

(実施例2)
実施例1で調整したものと同じ負極活物質形成用組成物を用い、乾燥工程を150℃で10分、再加熱工程を65℃で60分行った以外は実施例1と同様にして、実施例2の積層体を得た。プレス工程直後の膜内の温度は65℃であった。
(Example 2)
The same negative electrode active material forming composition as that prepared in Example 1 was used, and the same procedure as in Example 1 was carried out except that the drying step was performed at 150 ° C. for 10 minutes and the reheating step was performed at 65 ° C. for 60 minutes. The laminate of Example 2 was obtained. The temperature in the film immediately after the pressing step was 65 ° C.

(比較例1)
実施例1で調整したものと同じ負極活物質形成用組成物を用い、実施例1と同様に塗工工程を行い、実施例1と同様に乾燥工程を100℃で15分行った。
乾燥後、膜内の温度が室温になるまで放冷し、負極活物質塗膜が形成されている部分を銅箔ごと幅5cmm、長さ5cmとなるように切り取ったものを比較例1の積層体とした。
(Comparative Example 1)
Using the same negative electrode active material forming composition prepared in Example 1, the coating process was performed in the same manner as in Example 1, and the drying process was performed at 100 ° C. for 15 minutes in the same manner as in Example 1.
After drying, the film was allowed to cool to room temperature, and the portion where the negative electrode active material coating film was formed was cut out together with the copper foil so as to have a width of 5 cm and a length of 5 cm. The body.

(比較例2)
実施例1で調整したものと同じ負極活物質形成用組成物を用い、実施例1と同様に塗工工程を行い、実施例2と同様に乾燥工程を150℃で10分行った。
乾燥後、膜内の温度が室温になるまで放冷し、負極活物質塗膜が形成されている部分を銅箔ごと幅5cmm、長さ5cmとなるように切り取ったものを比較例2の積層体とした。
(Comparative Example 2)
Using the same negative electrode active material forming composition prepared in Example 1, the coating process was performed in the same manner as in Example 1, and the drying process was performed at 150 ° C. for 10 minutes in the same manner as in Example 2.
After drying, the film was allowed to cool to room temperature, and the part where the negative electrode active material coating film was formed was cut out together with the copper foil so as to have a width of 5 cmm and a length of 5 cm. The body.

(比較例3)
実施例1で調整したものと同じ負極活物質形成用組成物を用い、実施例1と同様に塗工工程を行い、実施例1と同様に乾燥工程を100℃で15分行った。
乾燥後、膜内の温度が室温になるまで放冷し、負極活物質塗膜が形成されている部分を銅箔ごと幅5cmm、長さ5cmとなるように切り取った。
切り取った試験片を再びオーブンに入れて、実施例1と同様に115℃で60分間加熱したものを比較例3の積層体とした。
(Comparative Example 3)
Using the same negative electrode active material forming composition prepared in Example 1, the coating process was performed in the same manner as in Example 1, and the drying process was performed at 100 ° C. for 15 minutes in the same manner as in Example 1.
After drying, the film was allowed to cool to room temperature, and the portion where the negative electrode active material coating film was formed was cut out together with the copper foil so as to have a width of 5 cm and a length of 5 cm.
The cut specimen was placed in an oven again and heated at 115 ° C. for 60 minutes in the same manner as in Example 1 to obtain a laminate of Comparative Example 3.

(比較例4)
実施例1で調整したものと同じ負極活物質形成用組成物を用い、実施例1と同様に塗工工程を行い、実施例2と同様に乾燥工程を150℃で10分行った。
乾燥後、膜内の温度が室温になるまで放冷し、負極活物質塗膜が形成されている部分を銅箔ごと幅5cmm、長さ5cmとなるように切り取った。
切り取った試験片を再びオーブンに入れて、実施例2と同様に65℃で60分間加熱したものを比較例4の積層体とした。
(Comparative Example 4)
Using the same negative electrode active material forming composition prepared in Example 1, the coating process was performed in the same manner as in Example 1, and the drying process was performed at 150 ° C. for 10 minutes in the same manner as in Example 2.
After drying, the film was allowed to cool to room temperature, and the portion where the negative electrode active material coating film was formed was cut out together with the copper foil so as to have a width of 5 cm and a length of 5 cm.
The cut specimen was placed in the oven again and heated at 65 ° C. for 60 minutes in the same manner as in Example 2 to obtain a laminate of Comparative Example 4.

(比較例5)
実施例1で調整したものと同じ負極活物質形成用組成物を用い、実施例1と同様に塗工工程を行い、実施例1と同様に乾燥工程を100℃で15分行った。
乾燥後、膜内の温度が室温になるまで放冷し、負極活物質塗膜が形成されている部分を銅箔ごと幅5cmm、長さ5cmとなるように切り取った。
この試験片をステンレス板で挟みこみ、空気圧式平板プレス機で320kgf/cmの圧力を10分間保持した。プレス工程直後の膜内の温度は25℃であった。こうして、負極活物質層が銅箔上に積層された比較例5の積層体を得た。
(Comparative Example 5)
Using the same negative electrode active material forming composition prepared in Example 1, the coating process was performed in the same manner as in Example 1, and the drying process was performed at 100 ° C. for 15 minutes in the same manner as in Example 1.
After drying, the film was allowed to cool to room temperature, and the portion where the negative electrode active material coating film was formed was cut out together with the copper foil so as to have a width of 5 cm and a length of 5 cm.
The test piece was sandwiched between stainless plates, and a pressure of 320 kgf / cm 2 was held for 10 minutes with a pneumatic flat plate press. The temperature in the film immediately after the pressing step was 25 ° C. Thus, a laminate of Comparative Example 5 in which the negative electrode active material layer was laminated on the copper foil was obtained.

(比較例6)
実施例1で調整したものと同じ負極活物質形成用組成物を用い、実施例1と同様に塗工工程を行い、実施例1と同様に乾燥工程を100℃で15分行った。
乾燥後、膜内の温度が室温になるまで放冷し、負極活物質塗膜が形成されている部分を銅箔ごと幅5cmm、長さ5cmとなるように切り取った。
切り取った試験片を再びオーブンに入れて、実施例1と同様に115℃で60分間加熱した。
オーブンから取り出した試験片をすぐにステンレス板で挟みこみ、空気圧式平板プレス機で80kgf/cmの圧力を10分間保持した。プレス工程直後の膜内の温度は115℃であった。こうして、負極活物質層が銅箔上に積層された比較例6の積層体を得た。
(Comparative Example 6)
Using the same negative electrode active material forming composition prepared in Example 1, the coating process was performed in the same manner as in Example 1, and the drying process was performed at 100 ° C. for 15 minutes in the same manner as in Example 1.
After drying, the film was allowed to cool to room temperature, and the portion where the negative electrode active material coating film was formed was cut out together with the copper foil so as to have a width of 5 cm and a length of 5 cm.
The cut specimen was put into the oven again and heated at 115 ° C. for 60 minutes in the same manner as in Example 1.
The test piece taken out from the oven was immediately sandwiched between stainless plates, and maintained at a pressure of 80 kgf / cm 2 for 10 minutes with a pneumatic flat plate press. The temperature in the film immediately after the pressing step was 115 ° C. Thus, a laminate of Comparative Example 6 in which the negative electrode active material layer was laminated on the copper foil was obtained.

(実施例3)
実施例1で調整したものと同じ負極活物質形成用組成物を用い、実施例1と同様に塗工工程を行い、実施例1と同様に乾燥工程を100℃で15分行った。
乾燥後、膜内の温度が室温になるまで放冷し、負極活物質塗膜が形成されている部分を銅箔ごと幅5cmm、長さ5cmとなるように切り取った。
切り取った試験片を再びオーブンに入れて、115℃で5分間加熱した。
オーブンから取り出した試験片をすぐにステンレス板で挟みこみ、空気圧式平板プレス機で320kgf/cmの圧力を10分間保持した。プレス工程直後の膜内の温度は115℃であった。こうして、負極活物質層が銅箔上に積層された実施例3の積層体を得た。
(Example 3)
Using the same negative electrode active material forming composition prepared in Example 1, the coating process was performed in the same manner as in Example 1, and the drying process was performed at 100 ° C. for 15 minutes in the same manner as in Example 1.
After drying, the film was allowed to cool to room temperature, and the portion where the negative electrode active material coating film was formed was cut out together with the copper foil so as to have a width of 5 cm and a length of 5 cm.
The cut specimen was placed in the oven again and heated at 115 ° C. for 5 minutes.
The test piece taken out from the oven was immediately sandwiched between stainless plates, and a pressure of 320 kgf / cm 2 was maintained for 10 minutes with a pneumatic flat plate press. The temperature in the film immediately after the pressing step was 115 ° C. Thus, a laminate of Example 3 in which the negative electrode active material layer was laminated on the copper foil was obtained.

(密着性評価1)
実施例1〜3及び比較例1〜6にて作成した積層体を、平坦なステンレス板に粘着テープで貼り付けて4隅を固定した。負極活物質層に粘着テープ(住友スリーエム株式会社製Scotchメンディングテープ230−3−12、12mm幅)を貼り付け、手で180℃の方向に当該テープを剥離した(図4参照)。引き剥がされた粘着テープと負極活物質層の外観を観察することで、負極活物質層と銅箔との密着性を以下の基準により評価した。結果を表1(密着性評価1)欄に示す。
(Adhesion evaluation 1)
The laminates prepared in Examples 1 to 3 and Comparative Examples 1 to 6 were attached to a flat stainless steel plate with an adhesive tape to fix the four corners. An adhesive tape (Scotch Mending Tape 230-3-12, 12 mm width, manufactured by Sumitomo 3M Limited) was applied to the negative electrode active material layer, and the tape was peeled in the direction of 180 ° C. by hand (see FIG. 4). By observing the appearance of the peeled adhesive tape and the negative electrode active material layer, the adhesion between the negative electrode active material layer and the copper foil was evaluated according to the following criteria. The results are shown in Table 1 (Adhesion evaluation 1) column.

○:手で粘着テープの180°剥離を行ったときに、粘着テープの粘着面に負極活物質層の表面のみが付着し、積層体においては銅箔が露出しない状態。
×:手で粘着テープの180°剥離を行ったときに、粘着テープの粘着面に負極活物質層が付着し、積層体においては銅箔の露出が少しでも観察された状態。
◯: When the adhesive tape is peeled 180 ° by hand, only the surface of the negative electrode active material layer adheres to the adhesive surface of the adhesive tape, and the copper foil is not exposed in the laminate.
X: When the adhesive tape was peeled 180 ° by hand, the negative electrode active material layer adhered to the adhesive surface of the adhesive tape, and even a slight exposure of the copper foil was observed in the laminate.

乾燥工程に加えて再加熱工程を経てプレス工程を行った実施例1と実施例2の積層体は、(密着性評価1)の結果、銅箔が露出することなく、負極活物質層と銅箔との密着強度が高いことが確認できた。   The laminated body of Example 1 and Example 2 which performed the press process through the reheating process in addition to the drying process resulted in the negative electrode active material layer and the copper without exposing the copper foil as a result of (Adhesion Evaluation 1). It was confirmed that the adhesion strength with the foil was high.

(密着性評価2)
実施例1〜3及び比較例1〜6にて作成した積層体を、クロスカットガイド(コーテック株式会社製、1mm幅)を使用し、剃刀で、銅箔を傷つけないように1mm×1mmの100個の升目となるように負極活物質層に切り込みを入れ、平坦なステンレス板に粘着テープで貼り付け、4隅を固定した。
切り込みの入った負極活物質層に粘着テープ(住友スリーエム株式会社製Scotchメンディングテープ230−3−12、12mm幅)を貼り付け、手で180℃の方向(水平方向)に当該テープを剥離した。このとき、銅箔から引き剥がされた負極活物質層の升目の個数を調査し密着性評価を数値化した。結果を表1(密着性評価2)欄に示す。表1に記載された(密着性評価2)個数は同じ条件で作成された4枚のサンプルについての平均値である。
(Adhesion evaluation 2)
Using the cross-cut guide (Cortech Co., Ltd., 1 mm width), the laminated body created in Examples 1-3 and Comparative Examples 1-6 is 100 mm of 1 mm x 1 mm so that copper foil may not be damaged with a razor. The negative electrode active material layer was cut so as to form individual grids, and adhered to a flat stainless steel plate with an adhesive tape, and the four corners were fixed.
An adhesive tape (Scotch Mending Tape 230-3-12, 12 mm width, manufactured by Sumitomo 3M Limited) was applied to the cut-out negative electrode active material layer, and the tape was peeled in the direction of 180 ° C. (horizontal direction) by hand. . At this time, the number of cells of the negative electrode active material layer peeled off from the copper foil was investigated, and the adhesion evaluation was quantified. The results are shown in Table 1 (Adhesion evaluation 2) column. The number of (adhesion evaluation 2) described in Table 1 is an average value for four samples prepared under the same conditions.

乾燥工程に加えて再加熱工程を経てプレス工程を行った実施例1から実施例3の積層体は、(密着性評価2)の結果、剥がれた升目の個数が非常に少なく、負極活物質層と銅箔との密着強度が高いことが確認でき、(密着性評価1)の結果を裏付けることとなった。
これら(密着性評価1)及び(密着性評価2)の結果から、乾燥工程後一旦放冷し、再加熱工程を経て、プレス工程直後の膜内の温度を65℃以上に保った状態で320kgf/cmでのプレス工程を行うことで、負極活物質層と銅箔との密着強度が高い積層体が得られたことがわかる。
特に、再加熱工程時間に60分をかけた実施例1及び実施例2については、非常に良好な密着性を示していることが示された。
As a result of (Adhesiveness Evaluation 2), the laminates of Example 1 to Example 3 in which the pressing process was performed through the reheating process in addition to the drying process had a very small number of peeled cells, and the negative electrode active material layer It was confirmed that the adhesion strength between the copper foil and the copper foil was high, and the result of (Adhesion Evaluation 1) was confirmed.
From the results of (Adhesiveness Evaluation 1) and (Adhesiveness Evaluation 2), the film was allowed to cool once after the drying step, passed through a reheating step, and the temperature in the film immediately after the pressing step was maintained at 65 ° C. or higher in the state of 320 kgf. It can be seen that a laminate having high adhesion strength between the negative electrode active material layer and the copper foil was obtained by performing the pressing step at / cm 2 .
In particular, Example 1 and Example 2 in which the reheating process time was 60 minutes were shown to exhibit very good adhesion.

(嵩密度測定)
実施例1〜3及び比較例1〜6にて作成した積層体の負極活物質層について、JIS R1628に従って嵩密度測定を行った。結果を表1に示す。表1に記載された嵩密度は同じ条件で作成された4枚のサンプルについての平均値である。
(Bulk density measurement)
About the negative electrode active material layer of the laminated body produced in Examples 1-3 and Comparative Examples 1-6, the bulk density measurement was performed according to JISR1628. The results are shown in Table 1. The bulk density described in Table 1 is an average value for four samples prepared under the same conditions.

(プレス温度測定)
実施例1〜3及び比較例1〜6にて作成した積層体のプレス工程直後の膜内の温度を温度センサーによって確認した。結果を表1に示す。
(Press temperature measurement)
The temperature in the film immediately after the pressing step of the laminates prepared in Examples 1 to 3 and Comparative Examples 1 to 6 was confirmed by a temperature sensor. The results are shown in Table 1.

実施例1〜3の負極活物質層の嵩密度は、再加熱工程後に320kgf/cmでのプレス工程を経ることにより、再加熱もプレスも行っていない比較例1及び2、再加熱工程は行ったがプレス工程を行っていない比較例3及び4の負極活物質層と比較して嵩密度が約1.5倍となり、大幅に上がっていることがわかる。
また、再加熱工程を経ないでプレスのみを行った比較例5は、比較例1及び2に比べると嵩密度が高いものの、十分とはいえず、再加熱工程を経ているがプレス工程での加圧圧力が少ない比較例6の嵩密度も低いことがわかる。
再加熱工程及びプレス工程は経たものの、再加熱時間が短い実施例3は、十分な再加熱時間を経た実施例1及び2と比較するとやや嵩密度が低い。
そして、十分な再加熱時間を経た実施例1と実施例2とを比較すると、再加熱温度が低く、プレス時に結着剤の融点より低い温度となっていた実施例2は、実施例1に比べてやや嵩密度が低いことがわかる。
The bulk densities of the negative electrode active material layers of Examples 1 to 3 are comparative examples 1 and 2 in which neither reheating nor pressing is performed by performing a pressing process at 320 kgf / cm 2 after the reheating process. It can be seen that the bulk density is about 1.5 times that of the negative electrode active material layers of Comparative Examples 3 and 4 that were performed but not subjected to the pressing step, and the density was significantly increased.
Moreover, although the comparative example 5 which performed only the press without passing through a reheating process has high bulk density compared with the comparative examples 1 and 2, it cannot be said enough, but has passed the reheating process, but in a press process. It turns out that the bulk density of the comparative example 6 with little pressurization pressure is also low.
Although the reheating process and the pressing process have passed, Example 3 with a short reheating time has a slightly lower bulk density than Examples 1 and 2 that have passed a sufficient reheating time.
And when Example 1 and Example 2 which passed sufficient reheating time are compared, Example 2 in which reheating temperature was low and became temperature lower than melting | fusing point of a binder at the time of a press is described in Example 1. It can be seen that the bulk density is slightly lower than that.

以上のことから、結着剤の融点以上の温度を1時間という長時間保ったまま320kgf/cmでのプレス工程を一定時間行うことで、負極活物質塗膜(負極活物質層)中に存在した空隙に結着剤が充填されたことによると考えられる。嵩密度が大きくなることによって負極活物質同士が負極活物質層でより近接した状態となっているため、このような積層体を非水電解質二次電池の負極電極層として用いた場合、放電容量の増加や、サイクル特性の向上など、好ましい結果をもたらすことになる。 From the above, by performing a pressing process at 320 kgf / cm 2 for a certain time while maintaining a temperature equal to or higher than the melting point of the binder for a long time of 1 hour, the negative electrode active material coating film (negative electrode active material layer) is formed. This is probably because the voids that were present were filled with the binder. Since the negative electrode active materials are closer to each other in the negative electrode active material layer due to the increase in bulk density, when such a laminate is used as the negative electrode layer of a non-aqueous electrolyte secondary battery, the discharge capacity As a result, favorable results such as an increase in cycle characteristics and an improvement in cycle characteristics are brought about.

(断面観察)
実施例1〜3及び比較例1〜6にて作成した積層体について、その負極活物質層の断面をSEMにて観察し、以下の基準により評価した。結果を表1に示す。
(Cross section observation)
About the laminated body created in Examples 1-3 and Comparative Examples 1-6, the cross section of the negative electrode active material layer was observed in SEM, and the following references | standards evaluated. The results are shown in Table 1.

○:空隙が観察されない(負極活物質層内の空隙に結着剤が充填され、負極活物質同士が近接している状態)
×:空隙が観察される(負極活物質同士の間隔が比較的離れている)
○: No voids are observed (the voids in the negative electrode active material layer are filled with a binder, and the negative electrode active materials are close to each other)
X: A space | gap is observed (the space | interval of negative electrode active materials is comparatively separated)

図5(a)は実施例1の積層体の断面のSEM画像である。実施例1〜3の負極活物質層の断面は空隙が観察されなかった。320kgf/cmでのプレス工程を経ることにより、負極活物質層に存在した空隙に結着剤が充填されることが裏付けられた。
図5(b)は比較例3の積層体のSEM画像である。比較例1から4、6の負極活物質層の断面は図5(b)の画像のように空隙が観察された。そのため、嵩密度が低く、また負極活物質同士または負極活物質と銅箔とが十分に結着剤で接続されていないので密着性が低い。
FIG. 5A is an SEM image of a cross section of the laminate of Example 1. FIG. No voids were observed in the cross sections of the negative electrode active material layers of Examples 1 to 3. By passing through a pressing process at 320 kgf / cm 2 , it was confirmed that the voids present in the negative electrode active material layer were filled with the binder.
FIG. 5B is an SEM image of the laminate of Comparative Example 3. Gaps were observed in the cross sections of the negative electrode active material layers of Comparative Examples 1 to 4, 6 as shown in the image of FIG. For this reason, the bulk density is low, and the negative electrode active materials or the negative electrode active material and the copper foil are not sufficiently connected by the binder, so that the adhesion is low.

以上、本発明の積層体の製造方法によれば、結着剤の融点付近の温度を保ったまま320kgf/cmでのプレス工程を一定時間行うことで、負極活物質塗膜(負極活物質層)中に存在した空隙に結着剤が充填され、負極活物質層の嵩密度が増大するとともに、負極活物質層と集電基材との密着性が向上することが示された。
また、嵩密度が1.2g/cm以上であり、このような積層体を非水電解質二次電池の負極電極層として用いることで、放電容量が大きく、サイクル特性の良い非水電解質二次電池を得ることができる。
As mentioned above, according to the manufacturing method of the laminated body of this invention, a negative electrode active material coating film (negative electrode active material) is performed by performing the press process by 320 kgf / cm < 2 > for a fixed time, keeping the temperature near melting | fusing point of a binder. It was shown that the voids present in the layer) were filled with the binder, the bulk density of the negative electrode active material layer was increased, and the adhesion between the negative electrode active material layer and the current collecting substrate was improved.
Further, the bulk density is 1.2 g / cm 3 or more, and by using such a laminate as a negative electrode layer of a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary has a large discharge capacity and good cycle characteristics. A battery can be obtained.

100 積層体
110 活物質層
111 活物質
112 導電剤
113 結着剤
114 増粘剤
115 空隙
116 活物質の集合
120 集電基材
200 負極電極層
210 負極活物質層
211 負極活物質
213 結着剤
216 密着層
217 第2ポリマー
220 銅箔
300 空気圧平板プレス機
301 下板
302 上板
303 支柱
304 圧縮空気送気管
305 圧力計
306 ステンレス板
307 プレス機の稼働方向
308 加圧方向
401 粘着テープ
402 剥離方向
DESCRIPTION OF SYMBOLS 100 Laminate 110 Active material layer 111 Active material 112 Conductive agent 113 Binder 114 Thickener 115 Void 116 Aggregation of active material 120 Current collecting base material 200 Negative electrode layer 210 Negative electrode active material layer 211 Negative electrode active material 213 Binder 216 Adhesion layer 217 Second polymer 220 Copper foil 300 Pneumatic flat plate press 301 Lower plate 302 Upper plate 303 Strut 304 Compressed air supply pipe 305 Pressure gauge 306 Stainless steel plate 307 Press machine operating direction 308 Pressing direction 401 Adhesive tape 402 Peeling direction

Claims (6)

活物質層が集電基材上に積層された積層体であって、
前記活物質層は、少なくとも活物質と、導電剤と、結着剤と、増粘剤を含み、
当該活物質層の嵩密度は1.2g/cm以上であることを特徴とする積層体。
A laminate in which an active material layer is laminated on a current collecting substrate,
The active material layer includes at least an active material, a conductive agent, a binder, and a thickener,
The active material layer has a bulk density of 1.2 g / cm 3 or more.
前記活物質は負極活物質であり、前記集電基材は銅箔であることを特徴とする請求項1記載の積層体。   The laminate according to claim 1, wherein the active material is a negative electrode active material, and the current collecting base material is a copper foil. 請求項1または2記載の積層体を非水電解質二次電池の負極電極層として用いたことを特徴とする非水電解質二次電池。   A non-aqueous electrolyte secondary battery comprising the laminate according to claim 1 or 2 as a negative electrode layer of a non-aqueous electrolyte secondary battery. 活物質層が集電基材上に積層された積層体の製造方法であって、
前記活物質層は、
1.少なくとも活物質と、導電剤と、結着材と、増粘剤と、溶媒を含む活物質層形成用組成物を前記集電基材上に塗工し、活物質塗膜を形成する工程、
2.前記活物質塗膜を100℃以上150℃以下の温度で乾燥する工程、
3.前記活物質塗膜を65℃以上115℃以下の温度で再度加熱する工程、
4.前記活物質塗膜に単位面積あたり320kgf/cm以上の圧力を加える工程、
を1から4の順で行うことを特徴とする積層体の製造方法。
A method for producing a laminate in which an active material layer is laminated on a current collecting substrate,
The active material layer is
1. A step of applying an active material layer forming composition containing at least an active material, a conductive agent, a binder, a thickener, and a solvent on the current collecting base material to form an active material coating film;
2. Drying the active material coating film at a temperature of 100 ° C. or higher and 150 ° C. or lower;
3. Heating the active material coating film again at a temperature of 65 ° C. or higher and 115 ° C. or lower;
4). Applying a pressure of 320 kgf / cm 2 or more per unit area to the active material coating;
Is performed in the order of 1 to 4, a method for manufacturing a laminate.
前記工程2と前記工程3との間に、前記活物質塗膜を室温まで冷ます工程を備え、前記工程2は10分以上15分以下、前記工程3は60分以上行われることを特徴とする請求項4記載の積層体の製造方法。   A step of cooling the active material coating film to room temperature is provided between the step 2 and the step 3, wherein the step 2 is performed for 10 minutes to 15 minutes and the step 3 is performed for 60 minutes or more. The manufacturing method of the laminated body of Claim 4. 前記工程4は、前記工程3において加えた熱を前記結着剤の融点以上に保ちながら行うことを特徴とする請求項4記載の積層体の製造方法。   5. The method for manufacturing a laminate according to claim 4, wherein the step 4 is performed while maintaining the heat applied in the step 3 at or above the melting point of the binder.
JP2010109214A 2010-05-11 2010-05-11 Laminate, nonaqueous electrolyte secondary battery and laminate manufacturing method Pending JP2011238476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109214A JP2011238476A (en) 2010-05-11 2010-05-11 Laminate, nonaqueous electrolyte secondary battery and laminate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109214A JP2011238476A (en) 2010-05-11 2010-05-11 Laminate, nonaqueous electrolyte secondary battery and laminate manufacturing method

Publications (1)

Publication Number Publication Date
JP2011238476A true JP2011238476A (en) 2011-11-24

Family

ID=45326239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109214A Pending JP2011238476A (en) 2010-05-11 2010-05-11 Laminate, nonaqueous electrolyte secondary battery and laminate manufacturing method

Country Status (1)

Country Link
JP (1) JP2011238476A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014063934A1 (en) * 2012-10-23 2014-05-01 Basf Se Method for producing cathodes
KR20140134541A (en) * 2013-05-14 2014-11-24 주식회사 엘지화학 Electrode of Improved Electrode Conductivity and Method For Manufacturing The Same
JP2016100205A (en) * 2014-11-21 2016-05-30 株式会社豊田自動織機 Electrode and manufacturing method thereof, and power storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260782A (en) * 2005-03-15 2006-09-28 Jsr Corp Binder composition for secondary battery electrode, slurry for secondary battery electrode and secondary battery electrode
JP2007035472A (en) * 2005-07-28 2007-02-08 Matsushita Electric Ind Co Ltd Lithium secondary battery, negative electrode material and negative electrode for lithium secondary battery, and manufacturing method thereof
JP2009209035A (en) * 2008-02-04 2009-09-17 Mitsubishi Chemicals Corp Carbonaceous material having multilayer structure, method for producing the carbonaceous material, and nonaqueous rechargeable battery using the carbonaceous material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260782A (en) * 2005-03-15 2006-09-28 Jsr Corp Binder composition for secondary battery electrode, slurry for secondary battery electrode and secondary battery electrode
JP2007035472A (en) * 2005-07-28 2007-02-08 Matsushita Electric Ind Co Ltd Lithium secondary battery, negative electrode material and negative electrode for lithium secondary battery, and manufacturing method thereof
JP2009209035A (en) * 2008-02-04 2009-09-17 Mitsubishi Chemicals Corp Carbonaceous material having multilayer structure, method for producing the carbonaceous material, and nonaqueous rechargeable battery using the carbonaceous material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014063934A1 (en) * 2012-10-23 2014-05-01 Basf Se Method for producing cathodes
JP2015536539A (en) * 2012-10-23 2015-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing positive electrode
US9865865B2 (en) 2012-10-23 2018-01-09 Basf Se Method for producing cathodes
KR20140134541A (en) * 2013-05-14 2014-11-24 주식회사 엘지화학 Electrode of Improved Electrode Conductivity and Method For Manufacturing The Same
KR101588624B1 (en) * 2013-05-14 2016-01-26 주식회사 엘지화학 Electrode of Improved Electrode Conductivity and Method For Manufacturing The Same
JP2016100205A (en) * 2014-11-21 2016-05-30 株式会社豊田自動織機 Electrode and manufacturing method thereof, and power storage device

Similar Documents

Publication Publication Date Title
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
US20160204427A1 (en) Solid-State Batteries and Methods for Fabrication
CN110495024B (en) Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
JP7269571B2 (en) Method for manufacturing all-solid-state battery
JP2022191483A (en) Production method of negative electrode for secondary battery, and production method of secondary battery
JP7309032B2 (en) Method for manufacturing lithium metal negative electrode, lithium metal negative electrode manufactured by the same, and lithium-sulfur battery including the same
CN111213260A (en) Anode, anode preparation method and lithium ion battery
JP2019175657A (en) Lithium ion secondary battery
CN111386616A (en) Method of manufacturing electrode for secondary battery and method of manufacturing secondary battery
WO2020184340A1 (en) Method for producing all-solid-state battery
JP5800196B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2011238476A (en) Laminate, nonaqueous electrolyte secondary battery and laminate manufacturing method
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6083289B2 (en) Lithium ion secondary battery
JP2020140896A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
US20160056475A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
EP4030504A1 (en) Method for manufacturing lithium-ion battery recyclable electrode active material, method for manufacturing solution containing metal ion, and lithium-ion battery
US20230378424A1 (en) Method for manufacturing negative electrode
WO2015151145A1 (en) All-solid lithium secondary cell
JP5998428B2 (en) Non-aqueous electrolyte secondary battery positive electrode, non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery positive electrode manufacturing method, non-aqueous electrolyte secondary battery positive ink, non-aqueous electrolyte secondary battery For manufacturing positive electrode for automobile
JP6128228B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP7311059B2 (en) Negative electrode binder composition, negative electrode, and secondary battery
RU2771614C2 (en) Method for producing fully solid-state battery
JP2017183046A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507