JP2020140896A - Electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Electrode for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP2020140896A
JP2020140896A JP2019036697A JP2019036697A JP2020140896A JP 2020140896 A JP2020140896 A JP 2020140896A JP 2019036697 A JP2019036697 A JP 2019036697A JP 2019036697 A JP2019036697 A JP 2019036697A JP 2020140896 A JP2020140896 A JP 2020140896A
Authority
JP
Japan
Prior art keywords
active material
electrode active
material layer
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019036697A
Other languages
Japanese (ja)
Inventor
利絵 寺西
Rie Teranishi
利絵 寺西
文 緑川
Fumi Midorikawa
文 緑川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2019036697A priority Critical patent/JP2020140896A/en
Priority to PCT/JP2020/008430 priority patent/WO2020175686A1/en
Publication of JP2020140896A publication Critical patent/JP2020140896A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

To provide an electrode for a lithium ion secondary battery, which is capable of increasing the capacity of a lithium ion secondary battery and also capable of imparting good charge/discharge cycle characteristics, and which includes a Si-based material, and a lithium ion secondary battery including the electrode for a lithium ion secondary battery.SOLUTION: An electrode for a lithium ion secondary battery of the present invention includes: a collector 10; an electrode active material layer 20 disposed on a surface of the collector 10; a porous insulating layer 30 disposed on a surface of the electrode active material layer 20; and an intermediate electrode active material layer 40 disposed between the electrode active material layer 20 and the collector 10. The electrode active material layer 20 contains a Si-based material and an electrode active material layer binder. The porous insulating layer 30 contains insulating microparticles and an insulating layer binder. The intermediate electrode active material layer 40 contains graphite and an intermediate electrode active material layer binder. The void ratio of the porous insulating layer 30 is 30-95% by volume. A lithium ion secondary battery of the present invention includes the electrode for a lithium ion secondary battery of the present invention as a negative electrode.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池用電極及びリチウムイオン二次電池に関する。 The present invention relates to an electrode for a lithium ion secondary battery and a lithium ion secondary battery.

リチウムイオン二次電池は、電力貯蔵用の大型定置用電源、電気自動車用等の電源として利用されており、近年では電池のさらなる高容量化のため、エネルギー密度がさらに高いリチウムイオン二次電池が望まれている。このようなエネルギー密度の高いリチウムイオン二次電池を得る方法として、例えば、負極材料にSi系材料を用いる方法が挙げられる。Siの理論容量密度は4200mAh/gであり、カーボン系材料の理論容量密度(例えば、黒鉛の場合、372mAh/g)に比べて10倍以上高い。このため、負極材料にSi系材料を用いることによって、容量の大きなリチウムイオン二次電池を得ることができる。
しかし、Si系材料には、Liイオンを吸収すると体積が最大約4倍に増えるという問題がある。このため、Si系材料をそのまま負極材料として使用するとリチウムイオン二次電池の充放電サイクル特性が悪くなる。そこで、Si系材料の膨張収縮の影響を小さくするために、Si系材料及びカーボン系材料を混合して得られた混合物を負極材料として用いたリチウム二次電池用負極が従来技術として知られている(例えば、特許文献1参照)。
Lithium-ion secondary batteries are used as large-scale stationary power sources for power storage, power sources for electric vehicles, etc. In recent years, lithium-ion secondary batteries with even higher energy densities have been used to further increase the capacity of batteries. It is desired. As a method of obtaining such a lithium ion secondary battery having a high energy density, for example, a method of using a Si-based material as a negative electrode material can be mentioned. The theoretical volume density of Si is 4200 mAh / g, which is more than 10 times higher than the theoretical volume density of carbon-based materials (for example, 372 mAh / g in the case of graphite). Therefore, by using a Si-based material as the negative electrode material, a lithium ion secondary battery having a large capacity can be obtained.
However, the Si-based material has a problem that the volume increases up to about 4 times when Li ions are absorbed. Therefore, if the Si-based material is used as it is as the negative electrode material, the charge / discharge cycle characteristics of the lithium ion secondary battery deteriorate. Therefore, in order to reduce the influence of expansion and contraction of the Si-based material, a negative electrode for a lithium secondary battery using a mixture obtained by mixing a Si-based material and a carbon-based material as a negative electrode material is known as a prior art. (See, for example, Patent Document 1).

特開2007−227239号公報JP-A-2007-227239

しかしながら、従来のSi系材料及びカーボン系材料の混合物を使用した負極材料は、Si系材料の膨張収縮の影響を小さくするために、カーボン系材料の割合を大きくしなければならなかった。例えば、特許文献1に記載のリチウム二次電池用負極における黒鉛の含有率は体積比率で70〜100%であった。このため、リチウム二次電池の容量を大きくする目的で、負極材料におけるSi系材料の混合割合を大きくすると、Si系材料の膨張収縮の影響が大きくなり、充放電サイクル特性が悪くなるという問題があった。
そこで、本発明は、リチウムイオン二次電池の容量を大きくし、かつ充放電サイクル特性を良好にできる、Si系材料を含むリチウムイオン二次電池用電極及びそのリチウムイオン二次電池用電極を備えるリチウムイオン二次電池を提供することを課題とする。
However, in the negative electrode material using a mixture of a conventional Si-based material and a carbon-based material, the proportion of the carbon-based material must be increased in order to reduce the influence of expansion and contraction of the Si-based material. For example, the graphite content in the negative electrode for a lithium secondary battery described in Patent Document 1 was 70 to 100% by volume. Therefore, if the mixing ratio of the Si-based material in the negative electrode material is increased for the purpose of increasing the capacity of the lithium secondary battery, the influence of expansion and contraction of the Si-based material becomes large, and the charge / discharge cycle characteristics deteriorate. there were.
Therefore, the present invention includes an electrode for a lithium ion secondary battery containing a Si-based material and an electrode for the lithium ion secondary battery, which can increase the capacity of the lithium ion secondary battery and improve the charge / discharge cycle characteristics. An object of the present invention is to provide a lithium ion secondary battery.

本発明者らは、鋭意検討の結果、Si系材料を含む電極活物質層の表面上に多孔質絶縁層を設け、Si系材料を含む電極活物質層と集電体との間に黒鉛を含む電極活物質層をさらに設けることによって、リチウムイオン二次電池の容量を大きくし、かつ充放電サイクル特性を良好にできることを見出し、以下の本発明を完成させた。本発明の要旨は、以下の[1]〜[12]である。
[1]集電体と、前記集電体の表面上に設けられる電極活物質層と、前記電極活物質層の表面上に設けられる多孔質絶縁層と、前記電極活物質層及び前記集電体の間に設けられる中間電極活物質層とを備え、前記電極活物質層はSi系材料及び電極活物質層用バインダーを含み、前記多孔質絶縁層は絶縁性微粒子及び絶縁層用バインダーを含み、前記中間電極活物質層は黒鉛及び中間電極活物質層用バインダーを含み、前記多孔質絶縁層の空隙率が30〜95体積%であるリチウムイオン二次電池用電極。
[2]前記絶縁性微粒子がアルミナである上記[1]に記載のリチウムイオン二次電池用電極。
[3]前記多孔質絶縁層の厚さが3〜15μmであり、前記電極活物質層の厚さが10〜70μmである上記[1]又は[2]に記載のリチウムイオン二次電池用電極。
[4]前記多孔質絶縁層における前記絶縁性微粒子の平均粒子径が0.1〜5.0μmであり、前記電極活物質層における前記Si系材料の平均粒子径が1〜30μmである上記[1]〜[3]のいずれか1つに記載のリチウムイオン二次電池用電極。
[5]前記多孔質絶縁層における前記絶縁性微粒子の含有量が50〜99.5体積%である上記[1]〜[4]のいずれか1つに記載のリチウムイオン二次電池用電極。
[6]前記電極活物質層における前記Si系材料の含有量が95〜99質量%である上記[1]〜[5]のいずれか1つに記載のリチウムイオン二次電池用電極。
[7]前記多孔質絶縁層における前記絶縁層用バインダーの含有量が0.5〜50体積%であり、前記電極活物質層における前記電極活物質層用バインダーの含有量が1〜5質量%である上記[1]〜[6]のいずれか1つに記載のリチウムイオン二次電池用電極。
[8]前記中間電極活物質層の厚さが5〜60μmである上記[1]〜[7]のいずれか1つに記載のリチウムイオン二次電池用電極。
[9]前記中間電極活物質層における前記黒鉛の平均粒子径が1〜30μmである上記[1]〜[8]のいずれか1つに記載のリチウムイオン二次電池用電極。
[10]前記中間電極活物質層における前記黒鉛の含有量は95〜99質量%である上記[1]〜[9]のいずれか1つに記載のリチウムイオン二次電池用電極。
[11]前記中間極活物質層における前記中間電極活物質層用バインダーの含有量が1〜5質量%である上記[1]〜[10]のいずれか1つに記載のリチウムイオン二次電池用電極。
[12]上記[1]〜[11]のいずれか1つに記載のリチウムイオン二次電池用電極を負極として備えるリチウムイオン二次電池。
As a result of diligent studies, the present inventors provided a porous insulating layer on the surface of the electrode active material layer containing the Si-based material, and provided graphite between the electrode active material layer containing the Si-based material and the current collector. It has been found that the capacity of the lithium ion secondary battery can be increased and the charge / discharge cycle characteristics can be improved by further providing the electrode active material layer containing the mixture, and the following invention has been completed. The gist of the present invention is the following [1] to [12].
[1] A current collector, an electrode active material layer provided on the surface of the current collector, a porous insulating layer provided on the surface of the electrode active material layer, the electrode active material layer, and the current collector. It is provided with an intermediate electrode active material layer provided between the bodies, the electrode active material layer contains a Si-based material and a binder for the electrode active material layer, and the porous insulating layer contains insulating fine particles and a binder for the insulating layer. An electrode for a lithium ion secondary battery, wherein the intermediate electrode active material layer contains graphite and a binder for the intermediate electrode active material layer, and the void ratio of the porous insulating layer is 30 to 95% by volume.
[2] The electrode for a lithium ion secondary battery according to the above [1], wherein the insulating fine particles are alumina.
[3] The electrode for a lithium ion secondary battery according to the above [1] or [2], wherein the thickness of the porous insulating layer is 3 to 15 μm and the thickness of the electrode active material layer is 10 to 70 μm. ..
[4] The average particle size of the insulating fine particles in the porous insulating layer is 0.1 to 5.0 μm, and the average particle size of the Si-based material in the electrode active material layer is 1 to 30 μm. The electrode for a lithium ion secondary battery according to any one of 1] to [3].
[5] The electrode for a lithium ion secondary battery according to any one of the above [1] to [4], wherein the content of the insulating fine particles in the porous insulating layer is 50 to 99.5% by volume.
[6] The electrode for a lithium ion secondary battery according to any one of the above [1] to [5], wherein the content of the Si-based material in the electrode active material layer is 95 to 99% by mass.
[7] The content of the binder for the insulating layer in the porous insulating layer is 0.5 to 50% by volume, and the content of the binder for the electrode active material layer in the electrode active material layer is 1 to 5% by mass. The electrode for a lithium ion secondary battery according to any one of the above [1] to [6].
[8] The electrode for a lithium ion secondary battery according to any one of the above [1] to [7], wherein the thickness of the intermediate electrode active material layer is 5 to 60 μm.
[9] The electrode for a lithium ion secondary battery according to any one of the above [1] to [8], wherein the average particle size of the graphite in the intermediate electrode active material layer is 1 to 30 μm.
[10] The electrode for a lithium ion secondary battery according to any one of the above [1] to [9], wherein the content of graphite in the intermediate electrode active material layer is 95 to 99% by mass.
[11] The lithium ion secondary battery according to any one of the above [1] to [10], wherein the content of the binder for the intermediate electrode active material layer in the intermediate polar active material layer is 1 to 5% by mass. Electrode for.
[12] A lithium ion secondary battery comprising the electrode for the lithium ion secondary battery according to any one of the above [1] to [11] as a negative electrode.

本発明によれば、リチウムイオン二次電池の容量を大きくし、かつ充放電サイクル特性を良好にできる、Si系材料を含むリチウムイオン二次電池用電極及びそのリチウムイオン二次電池用電極を備えるリチウムイオン二次電池を提供することができる。 According to the present invention, an electrode for a lithium ion secondary battery containing a Si-based material and an electrode for the lithium ion secondary battery thereof, which can increase the capacity of the lithium ion secondary battery and improve the charge / discharge cycle characteristics, are provided. A lithium ion secondary battery can be provided.

本発明のリチウムイオン二次電池用電極の一実施形態を示す概略断面図である。It is schematic cross-sectional view which shows one Embodiment of the electrode for a lithium ion secondary battery of this invention.

<リチウムイオン二次電池用電極>
以下、本発明のリチウムイオン二次電池用電極について詳細に説明する。
図1に示すように、リチウムイオン二次電池用電極1は、集電体10と、集電体10の表面上に設けられる電極活物質層20と、電極活物質層20の表面上に設けられる多孔質絶縁層30と、電極活物質層20及び集電体10の間に設けられる中間電極活物質層40とを備える。なお、電極活物質層20、中間電極活物質層40及び多孔質絶縁層30は、集電体10の両表面に積層されてもよい。
<Electrodes for lithium-ion secondary batteries>
Hereinafter, the electrode for a lithium ion secondary battery of the present invention will be described in detail.
As shown in FIG. 1, the electrode 1 for a lithium ion secondary battery is provided on the surface of the current collector 10, the electrode active material layer 20 provided on the surface of the current collector 10, and the electrode active material layer 20. The porous insulating layer 30 is provided, and an intermediate electrode active material layer 40 provided between the electrode active material layer 20 and the current collector 10 is provided. The electrode active material layer 20, the intermediate electrode active material layer 40, and the porous insulating layer 30 may be laminated on both surfaces of the current collector 10.

本発明のリチウムイオン二次電池用電極は、負極としてリチウムイオン二次電池に使用される。 The electrode for a lithium ion secondary battery of the present invention is used as a negative electrode in a lithium ion secondary battery.

(電極活物質層)
電極活物質層は、Si系材料及び電極活物質層用バインダーを含む。上述したように、Si系材料は理論容量密度が高いので、電極活物質層の電極活物質としてSi系材料を用いることにより、リチウムイオン二次電池の容量を大きくすることができる。
(Electrode active material layer)
The electrode active material layer contains a Si-based material and a binder for the electrode active material layer. As described above, since the Si-based material has a high theoretical capacity density, the capacity of the lithium ion secondary battery can be increased by using the Si-based material as the electrode active material of the electrode active material layer.

Si系材料は、Liイオンを吸収すると膨張するものであれば特に限定されない。Si系材料には、例えば、Si、一般式SiOx(式中、xは0.5〜1.5の数)で表される化合物等が挙げられる。Si系材料の中でも比較的膨張収縮が小さいことから、これらの中で、一般式SiOx(式中、xは0.5〜1.5の数)で表される化合物が好ましい。ここで上記化合物を「SiO」単位で見た場合、このSiOは、アモルファス状のSiOであるか、又はSi:SiOのモル比が約1:1となるように、ナノクラスターのSiの周囲にSiOが存在する、Si及びSiOの複合物である。SiOは、充放電時におけるSiの膨張収縮に対して緩衝作用を有すると推測される。また、Si系材料は、一般式SiOx(式中、xは0.5〜1.5の数)で表される化合物の粒子をナノカーボン等のカーボンで被覆したものでもよい。 The Si-based material is not particularly limited as long as it expands when it absorbs Li ions. Examples of the Si-based material include Si, a compound represented by the general formula SiOx (where x is a number of 0.5 to 1.5), and the like. Among the Si-based materials, the compound represented by the general formula SiOx (x is a number of 0.5 to 1.5 in the formula) is preferable because the expansion and contraction is relatively small. Here, when the above compound is viewed in units of "SiO", this SiO is an amorphous SiO or is around the Si of the nanocluster so that the molar ratio of Si: SiO 2 is about 1: 1. It is a composite of Si and SiO 2 in which SiO 2 is present. It is presumed that SiO 2 has a buffering action against the expansion and contraction of Si during charging and discharging. Further, the Si-based material may be a material obtained by coating particles of a compound represented by the general formula SiOx (in the formula, x is a number of 0.5 to 1.5) with carbon such as nanocarbon.

Si系材料は、粒子状であることが好ましい。Si系材料の平均粒子径は、好ましくは1〜30μmである。Si系材料の平均粒子径が1μm以上であると、Si系材料粒子間の結着力が高まり、リチウムイオン二次電池の充放電サイクル特性を改善する。一方、Si系材料の平均粒子径が30μm以下であると、Si系材料の膨張収縮が抑制され、リチウムイオン二次電池の充放電サイクル特性を改善する。上述の観点から、Si系材料の平均粒子径は、より好ましくは2〜20μmであり、さらに好ましくは3〜10μmである。Si系材料の平均粒子径を所望の値に調節する方法として、ボールミル等を用いる公知の手法で粉砕する方法等が挙げられる。なお、平均粒子径は、レーザー回折散乱法によって求めたSi系材料の粒度分布において、体積積算が50%での粒径(D50)を意味する。 The Si-based material is preferably in the form of particles. The average particle size of the Si-based material is preferably 1 to 30 μm. When the average particle size of the Si-based material is 1 μm or more, the binding force between the Si-based material particles is increased, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. On the other hand, when the average particle size of the Si-based material is 30 μm or less, the expansion and contraction of the Si-based material is suppressed, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. From the above viewpoint, the average particle size of the Si-based material is more preferably 2 to 20 μm, still more preferably 3 to 10 μm. Examples of the method for adjusting the average particle size of the Si-based material to a desired value include a method of pulverizing by a known method using a ball mill or the like. The average particle size means the particle size (D50) when the volume integration is 50% in the particle size distribution of the Si-based material obtained by the laser diffraction / scattering method.

電極活物質層におけるSi系材料の含有量は、95〜99質量%であることが好ましい。電極活物質層におけるSi系材料の含有量が95質量%以上であると、リチウムイオン二次電池の容量を高めることができる。一方、電極活物質層におけるSi系材料の含有量が99質量%以下であると、バインダー量を一定以上にでき、それによりSi系材料粒子間の結着力が高まり、リチウムイオン二次電池の充放電サイクル特性を改善する。上述の観点から、電極活物質層におけるSi系材料の含有量は96〜98質量%であることがより好ましい。 The content of the Si-based material in the electrode active material layer is preferably 95 to 99% by mass. When the content of the Si-based material in the electrode active material layer is 95% by mass or more, the capacity of the lithium ion secondary battery can be increased. On the other hand, when the content of the Si-based material in the electrode active material layer is 99% by mass or less, the amount of the binder can be increased to a certain level or more, thereby increasing the binding force between the Si-based material particles and charging the lithium ion secondary battery. Improve discharge cycle characteristics. From the above viewpoint, the content of the Si-based material in the electrode active material layer is more preferably 96 to 98% by mass.

Si系材料の一部又は全部に、リチウム又はリチウムイオンを含ませるプレドープ処理を施していてもよい。プレドープ処理により、電極活物質層中の二酸化ケイ素とリチウムとが不可逆的に反応し、リチウムシリケート(LiSiO)が生成される。この結果、初期充電工程において電極活物質層にリチウムが吸蔵されたときにリチウムシリケートの生成が起こらないため、放電容量の低下が抑制される。 A part or all of the Si-based material may be pre-doped with lithium or lithium ions. By the pre-doping treatment, silicon dioxide in the electrode active material layer reacts irreversibly with lithium to produce lithium silicate (Li 4 SiO 4 ). As a result, when lithium is occluded in the electrode active material layer in the initial charging step, lithium silicate is not generated, so that the decrease in discharge capacity is suppressed.

電極活物質層に対するプレドープの方法は特に限定されず、従来のリチウムイオン二次電池に施されるプレドープ方法が適用可能である。例えば、スパッタリング法により電極活物質層の表面にリチウム層を形成してもよい。また、電極活物質層の表面にリチウム箔を設けてもよい。プレドープするリチウムの量は特に限定されず、例えば、電極活物質層中の酸化ケイ素に対して、1〜4倍モル量であることが好ましい。 The predoping method for the electrode active material layer is not particularly limited, and the predoping method applied to a conventional lithium ion secondary battery can be applied. For example, a lithium layer may be formed on the surface of the electrode active material layer by a sputtering method. Further, a lithium foil may be provided on the surface of the electrode active material layer. The amount of lithium to be pre-doped is not particularly limited, and is preferably 1 to 4 times the molar amount of silicon oxide in the electrode active material layer.

電極活物質層は、導電性付与及びSi系材料の膨張収縮に対する緩和の観点から、導電助剤を含有してもよい。導電助剤は、Si系材料よりも導電性が高い材料が使用される。具体的には、導電助剤には、例えば、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ、棒状カーボンなどの炭素材料などが挙げられる。これらの導電助剤は1種単独で使用してもよいし、2種以上を併用してもよい。
電極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、電極活物質層全量基準で、5質量%以下であることが好ましく、4質量%以下であることがより好ましく、3質量%以下であることがさらに好ましく、2質量%以下であることがとくに好ましい。
The electrode active material layer may contain a conductive auxiliary agent from the viewpoint of imparting conductivity and mitigating expansion and contraction of the Si-based material. As the conductive auxiliary agent, a material having higher conductivity than the Si-based material is used. Specifically, examples of the conductive auxiliary agent include carbon materials such as Ketjen black, acetylene black, carbon nanotubes, and rod-shaped carbon. These conductive auxiliaries may be used alone or in combination of two or more.
When the conductive auxiliary material is contained in the electrode active material layer, the content of the conductive auxiliary agent is preferably 5% by mass or less, more preferably 4% by mass or less, based on the total amount of the electrode active material layer. It is preferably 3% by mass or less, more preferably 2% by mass or less.

電極活物質層は、Si系材料が電極活物質層用バインダーによって結着されて構成される。
電極活物質層用バインダーは、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸リチウム、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVdF−HFP)、ポリテトラフルオロエチレン(PTFE)等のフッ素含有樹脂、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)などのアクリル系樹脂、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)、アクリロニトリル・ブタジエンゴム、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース、及びポリビニルアルコール等が挙げられる。これらバインダーは、1種単独で使用されてもよいし、2種以上が併用されてもよい。また、カルボキシメチルセルロース(CMC)などは、ナトリウム塩などの塩の態様にて使用されていてもよい。
電極活物質層における電極活物質層用バインダーの含有量は、電極活物質層全量基準で、1〜5質量%であることが好ましい。電極活物質層用バインダーの含有量が1質量%以上であると、Si系材料粒子間の結着力が高まり、リチウムイオン二次電池の充放電サイクル特性を改善する。一方、電極活物質層用バインダーの含有量が5質量%以下であると、電極活物質層中の抵抗の高い成分であるバインダーの量が減るのでリチウムイオン二次電池の出力特性が向上する。上述の観点から、電極活物質層における電極活物質層用バインダーの含有量は、電極活物質層全量基準で、2〜4質量%であることがより好ましい。
The electrode active material layer is formed by binding Si-based materials with a binder for the electrode active material layer.
Binders for the electrode active material layer include poly (meth) acrylic acid, lithium poly (meth) acrylate, polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), and polytetrafluoroethylene. Fluorine-containing resin such as (PTFE), acrylic resin such as polymethylacrylate (PMA) and polymethylmethacrylate (PMMA), polyvinylidene acetate, polyimide (PI), polyamide (PA), polyvinylidene chloride (PVC), poly Examples thereof include ether nitrile (PEN), polyethylene (PE), polypropylene (PP), polyacrylonitrile (PAN), acrylonitrile butadiene rubber, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), hydroxyethyl cellulose, polyvinyl alcohol and the like. .. These binders may be used alone or in combination of two or more. Further, carboxymethyl cellulose (CMC) and the like may be used in the form of a salt such as a sodium salt.
The content of the binder for the electrode active material layer in the electrode active material layer is preferably 1 to 5% by mass based on the total amount of the electrode active material layer. When the content of the binder for the electrode active material layer is 1% by mass or more, the binding force between the Si-based material particles is increased, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. On the other hand, when the content of the binder for the electrode active material layer is 5% by mass or less, the amount of the binder which is a component having high resistance in the electrode active material layer is reduced, so that the output characteristics of the lithium ion secondary battery are improved. From the above viewpoint, the content of the binder for the electrode active material layer in the electrode active material layer is more preferably 2 to 4% by mass based on the total amount of the electrode active material layer.

電極活物質層の厚さは、好ましくは集電体の片面当たり10〜70μmである。電極活物質層の厚さが集電体の片面当たり10μm以上であると、電極において高容量成分であるSi系材料が増え、リチウムイオン二次電池の容量が向上する。一方、電極活物質層の厚さが集電体の片面当たり70μm以下であると、リチウムイオン二次電池の充放電における電極の膨張量が減少し、リチウムイオン二次電池の充放電サイクル特性が向上する。上述の観点から、電極活物質層の厚さは、集電体の片面当たり、20〜40μmがより好ましく、20〜38μmがさらに好ましい。 The thickness of the electrode active material layer is preferably 10 to 70 μm per one side of the current collector. When the thickness of the electrode active material layer is 10 μm or more per one side of the current collector, the amount of Si-based material, which is a high-capacity component in the electrode, increases, and the capacity of the lithium ion secondary battery is improved. On the other hand, when the thickness of the electrode active material layer is 70 μm or less per one side of the current collector, the expansion amount of the electrode during charging / discharging of the lithium ion secondary battery is reduced, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. improves. From the above viewpoint, the thickness of the electrode active material layer is more preferably 20 to 40 μm and further preferably 20 to 38 μm per one side of the current collector.

電極活物質層は、本発明の効果を損なわない範囲内において、Si系材料、導電助剤、及び電極活物質層用バインダー以外の他の任意成分を含んでもよい。ただし、電極活物質層の総質量のうち、Si系材料、導電助剤、及び電極活物質層用バインダーの総含有量は、96質量%以上であることが好ましく、98質量%以上であることがより好ましい。 The electrode active material layer may contain any component other than the Si-based material, the conductive auxiliary agent, and the binder for the electrode active material layer as long as the effects of the present invention are not impaired. However, the total content of the Si-based material, the conductive auxiliary agent, and the binder for the electrode active material layer in the total mass of the electrode active material layer is preferably 96% by mass or more, preferably 98% by mass or more. Is more preferable.

(多孔質絶縁層)
多孔質絶縁層は、絶縁性微粒子と、絶縁層用バインダーとを含む。多孔質絶縁層は、絶縁性微粒子が絶縁層用バインダーによって結着されて構成される層であり、多孔質構造を有する。電極活物質層の表面に多孔質絶縁層を設けることにより、電極活物質層が膨張により面方向に広がることを抑制することができる。なお、電極活物質層が膨張により面方向に広がると、リチウムイオン二次電池の充放電に寄与する電極活物質層の割合が減少し、リチウムイオン二次電池の充放電サイクル特性が悪くなる。また、電極活物質層が膨張により面方向に広がると、電極活物質層と集電体との間の歪みが大きくなり、電極活物質層が集電体から剥がれる場合がある。
(Porous insulating layer)
The porous insulating layer contains insulating fine particles and a binder for the insulating layer. The porous insulating layer is a layer formed by binding insulating fine particles with a binder for an insulating layer, and has a porous structure. By providing the porous insulating layer on the surface of the electrode active material layer, it is possible to prevent the electrode active material layer from expanding in the plane direction due to expansion. When the electrode active material layer expands in the plane direction due to expansion, the proportion of the electrode active material layer that contributes to the charge / discharge of the lithium ion secondary battery decreases, and the charge / discharge cycle characteristics of the lithium ion secondary battery deteriorate. Further, when the electrode active material layer expands in the plane direction due to expansion, the strain between the electrode active material layer and the current collector becomes large, and the electrode active material layer may be peeled off from the current collector.

多孔質絶縁層の空隙率は30〜95%である。多孔質絶縁層の空隙率が30%未満であると、多孔質絶縁層におけるリチウムイオンの伝導経路を確保することができなくなり、リチウムイオン二次電池の出力が低下する。一方、多孔質絶縁層の空隙率が95%よりも大きいと、多孔質絶縁層における絶縁成分の比率が低くなり、リチウムイオン二次電池の安全性が低下する。上述の観点から、多孔質絶縁層の空隙率は、30〜80%がより好ましく、40〜78%がさらに好ましく、50〜75%がとくに好ましい。なお、多孔質絶縁層の空隙率は、後述の実施例の記載の方法により測定することができる。 The porosity of the porous insulating layer is 30 to 95%. If the porosity of the porous insulating layer is less than 30%, it becomes impossible to secure the conduction path of lithium ions in the porous insulating layer, and the output of the lithium ion secondary battery decreases. On the other hand, if the porosity of the porous insulating layer is larger than 95%, the ratio of the insulating component in the porous insulating layer becomes low, and the safety of the lithium ion secondary battery is lowered. From the above viewpoint, the porosity of the porous insulating layer is more preferably 30 to 80%, further preferably 40 to 78%, and particularly preferably 50 to 75%. The porosity of the porous insulating layer can be measured by the method described in Examples described later.

多孔質絶縁層の厚さは3〜15μmが好ましい。多孔質絶縁層の厚さを3μm以上であると、多孔質絶縁層は電極の膨張収縮を緩和し、リチウムイオン二次電池の充放電サイクル特性が向上する。一方、多孔質絶縁層の厚さが15μm以下であると、正極と負極との間の距離が小さくなるのでリチウムイオン二次電池の出力が向上する。上述の観点から、多孔質絶縁層の厚さは、3〜13μmがより好ましく、3〜10μmがさらに好ましい。 The thickness of the porous insulating layer is preferably 3 to 15 μm. When the thickness of the porous insulating layer is 3 μm or more, the porous insulating layer relaxes the expansion and contraction of the electrode, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. On the other hand, when the thickness of the porous insulating layer is 15 μm or less, the distance between the positive electrode and the negative electrode becomes small, so that the output of the lithium ion secondary battery is improved. From the above viewpoint, the thickness of the porous insulating layer is more preferably 3 to 13 μm, further preferably 3 to 10 μm.

上述の多孔質絶縁層の厚さと同様の観点から、集電体片面当たりの多孔質絶縁層の厚さ(D2)に対する集電体片面当たりの電極活物質層の厚さ(D1)の比(D1/D2)は、好ましくは1〜15であり、より好ましくは2〜10であり、さらに好ましくは3〜6である。 From the same viewpoint as the thickness of the porous insulating layer described above, the ratio of the thickness (D1) of the electrode active material layer per one side of the current collector to the thickness (D2) of the porous insulating layer per one side of the current collector ( D1 / D2) is preferably 1 to 15, more preferably 2 to 10, and even more preferably 3 to 6.

絶縁性微粒子は、絶縁性であれば特に限定されず、有機粒子、無機粒子の何れであってもよい。具体的な有機粒子としては、例えば、架橋ポリメタクリル酸メチル、架橋スチレン−アクリル酸共重合体、架橋アクリロニトリル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸リチウム)、ポリアセタール樹脂、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、メラミン樹脂等の有機化合物から構成される粒子が挙げられる。無機粒子としては二酸化ケイ素、窒化ケイ素、アルミナ、ベーマイト、チタニア、ジルコニア、窒化ホウ素、酸化亜鉛、二酸化スズ、酸化ニオブ(Nb)、酸化タンタル(Ta)、フッ化カリウム、フッ化リチウム、クレイ、ゼオライト、炭酸カルシウム等の無機化合物から構成される粒子が挙げられる。また、無機粒子は、ニオブ−タンタル複合酸化物、マグネシウム−タンタル複合酸化物等の公知の複合酸化物から構成される粒子であってもよい。
絶縁性微粒子は、上記した各材料が1種単独で使用される粒子であってもよいし、2種以上が併用される粒子であってもよい。また、絶縁性微粒子は、無機化合物と有機化合物の両方を含む微粒子であってもよい。例えば、有機化合物からなる粒子の表面に無機酸化物をコーティングした無機有機複合粒子であってもよい。
これらの中では、リチウムイオン二次電池の充放電サイクル特性を改善するという観点から、無機粒子が好ましく、中でもアルミナ粒子が好ましい。
The insulating fine particles are not particularly limited as long as they are insulating, and may be either organic particles or inorganic particles. Specific organic particles include, for example, crosslinked polymethyl methacrylate, crosslinked styrene-acrylic acid copolymer, crosslinked acrylonitrile resin, polyamide resin, polyimide resin, poly (lithium 2-acrylamide-2-methylpropanesulfonate), and the like. Examples thereof include particles composed of organic compounds such as polyacetal resin, epoxy resin, polyester resin, phenol resin, and melamine resin. Inorganic particles include silicon dioxide, silicon nitride, alumina, boehmite, titania, zirconia, boron nitride, zinc oxide, tin dioxide, niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), potassium fluoride, and foot. Examples thereof include particles composed of inorganic compounds such as lithium pentoxide, clay, zeolite, and calcium carbonate. Further, the inorganic particles may be particles composed of known composite oxides such as niobium-tantalum composite oxide and magnesium-tantalum composite oxide.
The insulating fine particles may be particles in which one type of each of the above materials is used alone, or particles in which two or more types are used in combination. Further, the insulating fine particles may be fine particles containing both an inorganic compound and an organic compound. For example, it may be an inorganic-organic composite particle in which the surface of a particle made of an organic compound is coated with an inorganic oxide.
Among these, inorganic particles are preferable, and alumina particles are particularly preferable, from the viewpoint of improving the charge / discharge cycle characteristics of the lithium ion secondary battery.

絶縁性微粒子の平均粒子径は、好ましくは0.1〜5.0μmである。絶縁性微粒子の平均粒子径が0.1μm以上であると、絶縁性微粒子間の結着性が向上し、リチウムイオン二次電池の安全性が向上する。一方、絶縁性微粒子の平均粒子径が5.0μm以下であると、多孔質絶縁層の空隙率低減を抑制し、リチウムイオン二次電池の安全性が向上する。上述の観点から、絶縁性微粒子の平均粒子径は、より好ましくは0.2〜3.0μmであり、さらに好ましくは0.3〜1.0μmである。
なお、平均粒子径は、レーザー回折散乱法によって求めた絶縁性微粒子の粒度分布において、体積積算が50%での粒径(D50)を意味する。
また、絶縁性微粒子は、平均粒子径が上記範囲内の1種が単独で使用されてもよいし、平均粒子径の異なる2種の絶縁性微粒子が混合されて使用されてもよい。
The average particle size of the insulating fine particles is preferably 0.1 to 5.0 μm. When the average particle size of the insulating fine particles is 0.1 μm or more, the binding property between the insulating fine particles is improved, and the safety of the lithium ion secondary battery is improved. On the other hand, when the average particle size of the insulating fine particles is 5.0 μm or less, the reduction of the porosity of the porous insulating layer is suppressed, and the safety of the lithium ion secondary battery is improved. From the above viewpoint, the average particle size of the insulating fine particles is more preferably 0.2 to 3.0 μm, still more preferably 0.3 to 1.0 μm.
The average particle size means the particle size (D50) when the volume integration is 50% in the particle size distribution of the insulating fine particles obtained by the laser diffraction scattering method.
Further, as the insulating fine particles, one type having an average particle diameter within the above range may be used alone, or two types of insulating fine particles having different average particle diameters may be mixed and used.

多孔質絶縁層に含有される絶縁性微粒子の含有量は、絶縁性微粒子及び絶縁層用バインダーの合計100体積%に対して、好ましくは50〜99.5体積%である。絶縁性微粒子の含有量が50体積%以上であると、耐熱成分である絶縁性微粒子の多孔質絶縁層中の比率が高まり、リチウムイオン二次電池の安全性が向上する。一方、絶縁性微粒子の含有量が99.5体積%以下であると、結着成分である絶縁層用バインダーの比率が高まり、多孔質絶縁層の強度が高くなり、リチウムイオン二次電池の安全性が向上する。上述の観点から、絶縁層に含有される絶縁性微粒子の含有量は、絶縁性微粒子及び絶縁層用バインダーの合計100体積%に対して、より好ましくは50〜90体積%であり、さらに好ましくは70〜85体積%である。 The content of the insulating fine particles contained in the porous insulating layer is preferably 50 to 99.5% by volume with respect to 100% by volume of the total of the insulating fine particles and the binder for the insulating layer. When the content of the insulating fine particles is 50% by volume or more, the ratio of the insulating fine particles, which is a heat-resistant component, in the porous insulating layer increases, and the safety of the lithium ion secondary battery is improved. On the other hand, when the content of the insulating fine particles is 99.5% by volume or less, the ratio of the binder for the insulating layer, which is a binding component, is increased, the strength of the porous insulating layer is increased, and the safety of the lithium ion secondary battery is increased. Improves sex. From the above viewpoint, the content of the insulating fine particles contained in the insulating layer is more preferably 50 to 90% by volume, more preferably 50 to 90% by volume, based on 100% by volume of the total of the insulating fine particles and the binder for the insulating layer. It is 70 to 85% by volume.

絶縁層用バインダーは、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVdF−HFP)、ポリテトラフルオロエチレン(PTFE)等のフッ素含有樹脂、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)などのアクリル系樹脂、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリロニトリル(PAN)、アクリロニトリル・ブタジエンゴム、スチレンブタジエンゴム、ポリ(メタ)アクリル酸、カルボキシメチルセルロース、ヒドロキシエチルセルロース、及びポリビニルアルコール等が挙げられる。これらバインダーは、1種単独で使用されてもよいし、2種以上が併用されてもよい。また、カルボキシメチルセルロースなどは、ナトリウム塩などの塩の態様にて使用されていてもよい。 Binders for the insulating layer include polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), fluorine-containing resins such as polytetrafluoroethylene (PTFE), polymethylacrylate (PMA), and poly. Acrylic resin such as methyl methacrylate (PMMA), polyvinylidene acetate, polyimide (PI), polyamide (PA), polyvinylidene chloride (PVC), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP), poly Examples thereof include acrylonitrile (PAN), acrylonitrile-butadiene rubber, styrene butadiene rubber, poly (meth) acrylic acid, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol and the like. These binders may be used alone or in combination of two or more. Further, carboxymethyl cellulose and the like may be used in the form of a salt such as a sodium salt.

多孔質絶縁層に含有される絶縁層用バインダーの含有量は、絶縁性微粒子及び絶縁層用バインダーの合計100体積%に対して、好ましくは0.5〜50体積%である。絶縁層用バインダーの含有量が0.5体積%以上であると、結着成分である絶縁層用バインダーの比率が高まり、多孔質絶縁層の強度が高くなり、リチウムイオン二次電池の安全性が向上する。一方、絶縁層用バインダーの含有量が50体積%以下であると、耐熱成分である絶縁性微粒子の多孔質絶縁層中の比率が高まり、リチウムイオン二次電池の安全性が向上する。上述の観点から、多孔質絶縁層に含有される絶縁層用バインダーの含有量は、絶縁性微粒子及び絶縁層用バインダーの合計100体積%に対して、より好ましくは10〜50体積%であり、さらに好ましくは15〜30体積%である。 The content of the binder for the insulating layer contained in the porous insulating layer is preferably 0.5 to 50% by volume with respect to 100% by volume of the total of the insulating fine particles and the binder for the insulating layer. When the content of the binder for the insulating layer is 0.5% by volume or more, the ratio of the binder for the insulating layer, which is a binding component, is increased, the strength of the porous insulating layer is increased, and the safety of the lithium ion secondary battery is increased. Is improved. On the other hand, when the content of the binder for the insulating layer is 50% by volume or less, the ratio of the insulating fine particles, which are heat-resistant components, in the porous insulating layer increases, and the safety of the lithium ion secondary battery is improved. From the above viewpoint, the content of the binder for the insulating layer contained in the porous insulating layer is more preferably 10 to 50% by volume with respect to 100% by volume of the total of the insulating fine particles and the binder for the insulating layer. More preferably, it is 15 to 30% by volume.

(中間電極活物質層)
中間電極活物質層は、黒鉛及び中間電極活物質層用バインダーを含む。黒鉛がLiイオンを吸収しても、黒鉛には大きな膨張が起こらないので、中間電極活物質層は、膨張収縮を起こす電極活物質層に対して緩衝層としての機能を有する。
(Intermediate electrode active material layer)
The intermediate electrode active material layer contains graphite and a binder for the intermediate electrode active material layer. Even if graphite absorbs Li ions, the graphite does not expand significantly, so that the intermediate electrode active material layer has a function as a buffer layer with respect to the electrode active material layer that causes expansion and contraction.

黒鉛は、炭素の同素体の一つであり、常圧下での熱力学的安定相である。黒鉛はグラファイトとも呼ばれる。黒鉛には、例えば、天然黒鉛、人造黒鉛等が挙げられる。天然黒鉛は天然に産する黒鉛である。天然黒鉛には、例えば、鱗片状黒鉛、塊状黒鉛、土状黒鉛等が挙げられる。一方、人造黒鉛は、有機化合物の熱分解及び炭素化によって作られた炭素材を、さらに2500℃以上の高温に加熱処理することで黒鉛構造を発達させた材料である。 Graphite is one of the allotropes of carbon and is a thermodynamically stable phase under normal pressure. Graphite is also called graphite. Examples of graphite include natural graphite and artificial graphite. Natural graphite is naturally occurring graphite. Examples of natural graphite include scaly graphite, lump graphite, earth graphite and the like. On the other hand, artificial graphite is a material in which a graphite structure is developed by further heat-treating a carbon material produced by thermal decomposition and carbonization of an organic compound to a high temperature of 2500 ° C. or higher.

黒鉛の平均粒子径は、好ましくは1〜30μmである。黒鉛の平均粒子径が1μm以上であると、黒鉛粒子間の結着力が高まり、リチウムイオン二次電池の充放電サイクル特性を改善する。一方、黒鉛の平均粒子径が30μm以下であると、中間電極活物質層を厚すぎないようにすることができ、リチウムイオン二次電池の容量を向上させることができる。上述の観点から、黒鉛の平均粒子径は、より好ましくは2〜20μmであり、さらに好ましくは5〜15μmである。黒鉛の平均粒子径を所望の値に調節する方法として、ボールミル等を用いる公知の手法で粉砕する方法等が挙げられる。平均粒子径は、レーザー回折散乱法によって求めた黒鉛の粒度分布において、体積積算が50%での粒径(D50)を意味する。 The average particle size of graphite is preferably 1 to 30 μm. When the average particle size of graphite is 1 μm or more, the binding force between the graphite particles is increased, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. On the other hand, when the average particle size of graphite is 30 μm or less, the intermediate electrode active material layer can be prevented from being too thick, and the capacity of the lithium ion secondary battery can be improved. From the above viewpoint, the average particle size of graphite is more preferably 2 to 20 μm, still more preferably 5 to 15 μm. Examples of the method of adjusting the average particle size of graphite to a desired value include a method of pulverizing by a known method using a ball mill or the like. The average particle size means the particle size (D50) when the volume integration is 50% in the particle size distribution of graphite obtained by the laser diffraction / scattering method.

中間電極活物質層における黒鉛の含有量は、95〜99質量%であることが好ましい。中間電極活物質層における黒鉛の含有量が95質量%以上であると、リチウムイオン二次電池の容量を高めることができる。一方、中間電極活物質層における黒鉛の含有量が99質量%以下であると、バインダー量を一定量以上にでき、それにより黒鉛粒子間の結着力が高まり、リチウムイオン二次電池の充放電サイクル特性を改善する。上述の観点から、中間電極活物質層における黒鉛の含有量は、96〜98質量%であることがより好ましい。 The graphite content in the intermediate electrode active material layer is preferably 95 to 99% by mass. When the graphite content in the intermediate electrode active material layer is 95% by mass or more, the capacity of the lithium ion secondary battery can be increased. On the other hand, when the graphite content in the intermediate electrode active material layer is 99% by mass or less, the amount of the binder can be increased to a certain amount or more, thereby increasing the binding force between the graphite particles and charging / discharging cycle of the lithium ion secondary battery. Improve properties. From the above viewpoint, the graphite content in the intermediate electrode active material layer is more preferably 96 to 98% by mass.

中間電極活物質層は、導電助剤を含有してもよい。導電助剤には、例えば、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ、棒状カーボンなどの炭素材料などが挙げられる。これらの導電助剤は1種単独で使用してもよいし、2種以上を併用してもよい。
中間電極活物質層において、導電助剤が含有される場合、導電助剤の含有量は、電極活物質層全量基準で、5質量%以下であることが好ましく、4質量%以下であることがより好ましく、3質量%以下であることがさらに好ましく、2質量%以下であることがとくに好ましい。
The intermediate electrode active material layer may contain a conductive auxiliary agent. Examples of the conductive auxiliary agent include carbon materials such as Ketjen black, acetylene black, carbon nanotubes, and rod-shaped carbon. These conductive auxiliaries may be used alone or in combination of two or more.
When the conductive auxiliary agent is contained in the intermediate electrode active material layer, the content of the conductive auxiliary agent is preferably 5% by mass or less, preferably 4% by mass or less, based on the total amount of the electrode active material layer. More preferably, it is more preferably 3% by mass or less, and particularly preferably 2% by mass or less.

中間電極活物質層は、黒鉛が中間電極活物質層用バインダーによって結着されて構成される。
中間電極活物質層用バインダーには、電極活物質層用バインダーに挙げられた樹脂と同様のものを使用することができる。なお、中間電極活物質層用バインダーは、電極活物質用バインダーと同じものであってもよいし、異なるものであってもよい。しかし、電極活物質層と中間電極活物質層との間の接合を強くするために、中間電極活物質層用バインダーは、電極活物質用バインダーと同じものであることが好ましい。
中間電極活物質層における中間電極活物質層用バインダーの含有量は、電極活物質層全量基準で、1〜5質量%であることが好ましい。中間電極活物質層用バインダーの含有量が1質量%以上であると、黒鉛粒子間の結着力が高まり、リチウムイオン二次電池の充放電サイクル特性を改善する。一方、中間電極活物質層用バインダーの含有量が5質量%以下であると、中間電極活物質層中の抵抗の高い成分であるバインダーの量が減るのでリチウムイオン二次電池の出力特性が向上する。上述の観点から、中間電極活物質層における中間電極活物質層用バインダーの含有量は、電極活物質層全量基準で、2〜4質量%であることがより好ましい。
The intermediate electrode active material layer is formed by binding graphite with a binder for the intermediate electrode active material layer.
As the binder for the intermediate electrode active material layer, the same resin as those listed in the binder for the electrode active material layer can be used. The binder for the intermediate electrode active material layer may be the same as the binder for the electrode active material, or may be different. However, in order to strengthen the bond between the electrode active material layer and the intermediate electrode active material layer, the intermediate electrode active material layer binder is preferably the same as the electrode active material binder.
The content of the binder for the intermediate electrode active material layer in the intermediate electrode active material layer is preferably 1 to 5% by mass based on the total amount of the electrode active material layer. When the content of the binder for the intermediate electrode active material layer is 1% by mass or more, the binding force between the graphite particles is increased, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. On the other hand, when the content of the binder for the intermediate electrode active material layer is 5% by mass or less, the amount of the binder, which is a highly resistant component in the intermediate electrode active material layer, is reduced, so that the output characteristics of the lithium ion secondary battery are improved. To do. From the above viewpoint, the content of the binder for the intermediate electrode active material layer in the intermediate electrode active material layer is more preferably 2 to 4% by mass based on the total amount of the electrode active material layer.

中間電極活物質層の厚さは、特に限定されないが、集電体の片面当たり、5〜60μmであることが好ましい。中間電極活物質層の厚さが5μm以上であると、電極活物質層と中間電極活物質層との間の密着性が高まり、リチウムイオン二次電池の充放電サイクル特性が向上する。一方、中間電極活物質層の厚さが60μm以下であると、電極における電極活物質層の比率が増え、リチウムイオン二次電池の容量が向上する。上述の観点から、中間電極活物質層の厚さは、集電体の片面当たり、15〜25μmであることがより好ましい。 The thickness of the intermediate electrode active material layer is not particularly limited, but is preferably 5 to 60 μm per one side of the current collector. When the thickness of the intermediate electrode active material layer is 5 μm or more, the adhesion between the electrode active material layer and the intermediate electrode active material layer is enhanced, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. On the other hand, when the thickness of the intermediate electrode active material layer is 60 μm or less, the ratio of the electrode active material layer in the electrode increases, and the capacity of the lithium ion secondary battery is improved. From the above viewpoint, the thickness of the intermediate electrode active material layer is more preferably 15 to 25 μm per one side of the current collector.

集電体片面当たりの中間電極活物質層の厚さ(D3)に対する集電体片面当たりの電極活物質層の厚さ(D1)の比(D1/D3)は、好ましくは0.1〜10である。集電体片面当たりの中間電極活物質層の厚さ(D3)に対する集電体片面当たりの電極活物質層の厚さ(D1)の比(D1/D3)が0.1以上であると、電極におけるSi系材料の比率が高くなるのでリチウムイオン二次電池の容量が向上する。一方、集電体片面当たりの中間電極活物質層の厚さ(D3)に対する集電体片面当たりの電極活物質層の厚さ(D1)の比(D1/D3)が10以下であると、リチウムイオン二次電池の充放電における電極の膨張量が減り、リチウムイオン二次電池の充放電サイクル特性が向上する。上述の観点から、集電体片面当たりの中間電極活物質層の厚さ(D3)に対する集電体片面当たりの電極活物質層の厚さ(D1)の比(D1/D3)は、より好ましくは0.1〜5であり、さらに好ましくは1.2〜3である。 The ratio (D1 / D3) of the thickness (D1) of the electrode active material layer per one side of the current collector to the thickness (D3) of the intermediate electrode active material layer per one side of the current collector is preferably 0.1 to 10. Is. When the ratio (D1 / D3) of the thickness (D1) of the electrode active material layer per one side of the current collector to the thickness (D3) of the intermediate electrode active material layer per one side of the current collector is 0.1 or more, Since the ratio of the Si-based material in the electrode is high, the capacity of the lithium ion secondary battery is improved. On the other hand, when the ratio (D1 / D3) of the thickness (D1) of the electrode active material layer per one side of the current collector to the thickness (D3) of the intermediate electrode active material layer per one side of the current collector is 10 or less. The amount of expansion of the electrode during charge / discharge of the lithium ion secondary battery is reduced, and the charge / discharge cycle characteristics of the lithium ion secondary battery are improved. From the above viewpoint, the ratio (D1 / D3) of the thickness (D1) of the electrode active material layer per one side of the current collector to the thickness (D3) of the intermediate electrode active material layer per one side of the current collector is more preferable. Is 0.1 to 5, more preferably 1.2 to 3.

中間電極活物質層は、本発明の効果を損なわない範囲内において、黒鉛、導電助剤、及び中間電極活物質層用バインダー以外の他の任意成分を含んでもよい。ただし、電極活物質層の総質量のうち、黒鉛、導電助剤、及び中間電極活物質層用バインダーの総含有量は、96質量%以上であることが好ましく、98質量%以上であることがより好ましい。 The intermediate electrode active material layer may contain arbitrary components other than graphite, a conductive auxiliary agent, and a binder for the intermediate electrode active material layer as long as the effects of the present invention are not impaired. However, the total content of graphite, the conductive additive, and the binder for the intermediate electrode active material layer in the total mass of the electrode active material layer is preferably 96% by mass or more, and preferably 98% by mass or more. More preferred.

(集電体)
集電体(電極集電体)を構成する材料としては、例えば、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が挙げられ、これらの中ではアルミニウム又は銅が好ましく、銅がより好ましい。集電体は、一般的に金属箔からなり、その厚さは、特に限定されないが、1〜50μmが好ましい。
(Current collector)
Examples of the material constituting the current collector (electrode current collector) include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel. Among these, aluminum or copper is preferable, and copper is preferable. Is more preferable. The current collector is generally made of a metal foil, and its thickness is not particularly limited, but is preferably 1 to 50 μm.

<リチウムイオン二次電池用電極の製造方法>
次に、リチウムイオン二次電池用電極の製造方法の一実施形態について詳細に説明する。本発明のリチウムイオン二次電池用電極の製造方法では、まず、中間電極活物質層を形成し、中間電極活物質層の表面上に電極活物質層用組成物を塗布して電極活物質層を形成し、電極活物質層の表面上に絶縁層用組成物を塗布して多孔質絶縁層を形成する。
<Manufacturing method of electrodes for lithium-ion secondary batteries>
Next, an embodiment of a method for manufacturing an electrode for a lithium ion secondary battery will be described in detail. In the method for producing an electrode for a lithium ion secondary battery of the present invention, first, an intermediate electrode active material layer is formed, and a composition for an electrode active material layer is applied on the surface of the intermediate electrode active material layer to apply the electrode active material layer. Is formed, and the composition for an insulating layer is applied on the surface of the electrode active material layer to form a porous insulating layer.

(中間電極活物質層の形成)
中間電極活物質層の形成においては、まず、黒鉛と、中間電極活物質層用バインダーと、溶媒とを含む中間電極活物質層用組成物を用意する。中間電極活物質層用組成物は、必要に応じて配合される導電助剤などのその他成分を含んでもよい。黒鉛、中間電極活物質層用バインダー、導電助剤などは上記で説明したとおりである。中間電極活物質層用組成物は、スラリーとなる。
(Formation of intermediate electrode active material layer)
In the formation of the intermediate electrode active material layer, first, a composition for the intermediate electrode active material layer containing graphite, a binder for the intermediate electrode active material layer, and a solvent is prepared. The composition for the intermediate electrode active material layer may contain other components such as a conductive additive to be blended if necessary. Graphite, the binder for the intermediate electrode active material layer, the conductive auxiliary agent and the like are as described above. The composition for the intermediate electrode active material layer is a slurry.

中間電極活物質層用組成物における溶媒は、好ましくは水を使用する。水を使用することで、上記した中間電極活物質層用バインダーを中間電極活物質層用組成物中に容易に溶解できる。
中間電極活物質層用組成物の固形分濃度は、好ましくは5〜75質量%、より好ましくは20〜65質量%である。
Water is preferably used as the solvent in the composition for the intermediate electrode active material layer. By using water, the above-mentioned binder for the intermediate electrode active material layer can be easily dissolved in the composition for the intermediate electrode active material layer.
The solid content concentration of the composition for the intermediate electrode active material layer is preferably 5 to 75% by mass, more preferably 20 to 65% by mass.

中間電極活物質層は、中間電極活物質層用組成物を使用して公知の方法で形成すればよく、例えば、中間電極活物質層用組成物を集電体の上に塗布し、乾燥することによって形成することができる。
また、中間電極活物質層は、中間電極活物質層用組成物を、集電体以外の基材上に塗布し、乾燥することにより形成してもよい。集電体以外の基材としては、公知の剥離シートが挙げられる。基材の上に形成した中間電極活物質層は、基材から中間電極活物質層を剥がして集電体の上に転写すればよい。
集電体又は基材の上に形成した中間電極活物質層は、好ましくは加圧プレスする。加圧プレスすることで、電極密度を高めることが可能になる。加圧プレスは、ロールプレスなどにより行えばよい。
The intermediate electrode active material layer may be formed by a known method using a composition for an intermediate electrode active material layer. For example, the composition for an intermediate electrode active material layer is applied onto a current collector and dried. Can be formed by
Further, the intermediate electrode active material layer may be formed by applying the composition for the intermediate electrode active material layer on a base material other than the current collector and drying it. Examples of the base material other than the current collector include known release sheets. The intermediate electrode active material layer formed on the base material may be transferred onto the current collector by peeling the intermediate electrode active material layer from the base material.
The intermediate electrode active material layer formed on the current collector or the base material is preferably pressure-pressed. By pressurizing, it becomes possible to increase the electrode density. The pressure press may be performed by a roll press or the like.

(電極活物質層の形成)
電極活物質層の形成においては、まず、Si系材料と、電極活物質層用バインダーと、溶媒とを含む電極活物質層用組成物を用意する。電極活物質層用組成物は、必要に応じて配合される導電助剤等のその他成分を含んでもよい。Si系材料、電極活物質層用バインダー、導電助剤等は上記で説明したとおりである。電極活物質層用組成物は、スラリーとなる。
(Formation of electrode active material layer)
In the formation of the electrode active material layer, first, a composition for the electrode active material layer containing a Si-based material, a binder for the electrode active material layer, and a solvent is prepared. The composition for the electrode active material layer may contain other components such as a conductive additive to be blended if necessary. The Si-based material, the binder for the electrode active material layer, the conductive auxiliary agent, and the like are as described above. The composition for the electrode active material layer is a slurry.

電極活物質層用組成物における溶媒は、好ましくは水を使用する。水を使用することで、上記した電極活物質層用バインダーを電極活物質層用組成物中に容易に溶解できる。
電極活物質層用組成物の固形分濃度は、好ましくは5〜75質量%、より好ましくは20〜65質量%である。
Water is preferably used as the solvent in the composition for the electrode active material layer. By using water, the above-mentioned binder for the electrode active material layer can be easily dissolved in the composition for the electrode active material layer.
The solid content concentration of the composition for the electrode active material layer is preferably 5 to 75% by mass, more preferably 20 to 65% by mass.

電極活物質層は、電極活物質層用組成物を使用して公知の方法で形成すればよく、例えば、電極活物質層用組成物を中間電極活物質層の上に塗布し、乾燥することによって形成することができる。
また、電極活物質層は、電極活物質層用組成物を、中間電極活物質層及び集電体以外の基材上に塗布し、乾燥することにより形成してもよい。中間電極活物質層及び集電体集電体以外の基材としては、公知の剥離シートが挙げられる。基材の上に形成した電極活物質層は、基材から電極活物質層を剥がして中間電極活物質層の上に転写すればよい。
中間電極活物質層又は基材の上に形成した電極活物質層は、好ましくは加圧プレスする。加圧プレスすることで、電極密度を高めることが可能になる。加圧プレスは、ロールプレス等により行えばよい。
The electrode active material layer may be formed by a known method using a composition for an electrode active material layer. For example, the composition for an electrode active material layer may be applied onto an intermediate electrode active material layer and dried. Can be formed by.
Further, the electrode active material layer may be formed by applying the composition for the electrode active material layer on a base material other than the intermediate electrode active material layer and the current collector and drying the composition. Examples of the base material other than the intermediate electrode active material layer and the current collector current collector include known release sheets. The electrode active material layer formed on the base material may be transferred onto the intermediate electrode active material layer by peeling the electrode active material layer from the base material.
The intermediate electrode active material layer or the electrode active material layer formed on the base material is preferably pressure-pressed. By pressurizing, it becomes possible to increase the electrode density. The pressure press may be performed by a roll press or the like.

(多孔質絶縁層の形成)
多孔質絶縁層の形成に使用する絶縁層用組成物は、絶縁性微粒子と、絶縁層用バインダーと、溶媒とを含む。絶縁層用組成物は、必要に応じて配合されるその他の任意成分を含んでいてもよい。絶縁性微粒子、絶縁層用バインダーなどの詳細は上記で説明したとおりである。絶縁層用組成物はスラリーとなる。
(Formation of porous insulating layer)
The composition for an insulating layer used for forming the porous insulating layer contains insulating fine particles, a binder for the insulating layer, and a solvent. The composition for the insulating layer may contain other optional components to be blended as needed. Details of the insulating fine particles, the binder for the insulating layer, and the like are as described above. The composition for the insulating layer is a slurry.

絶縁層用組成物の固形分濃度は、好ましくは5〜75質量%、より好ましくは15〜50質量%である。また、絶縁層用組成物の粘度は、好ましくは1000〜3000mPa・s、より好ましくは1700〜2300mPa・sである。なお、粘度とは、B型粘度計で60rpm、25℃の条件で測定した粘度である。 The solid content concentration of the composition for the insulating layer is preferably 5 to 75% by mass, more preferably 15 to 50% by mass. The viscosity of the composition for the insulating layer is preferably 1000 to 3000 mPa · s, more preferably 1700 to 2300 mPa · s. The viscosity is a viscosity measured with a B-type viscometer under the conditions of 60 rpm and 25 ° C.

多孔質絶縁層は、絶縁層用組成物を、電極活物質層の上に塗布して乾燥することによって形成することができる。絶縁層用組成物を電極活物質層の表面に塗布する方法は特に限定されず、例えば、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、バーコート法、グラビアコート法、スクリーン印刷法等が挙げられる。これらの中では、絶縁層用組成物を均一に塗布して、多孔質絶縁層を薄くする観点から、バーコート法又はグラビアコート法が好ましい。
また、乾燥温度は、上記溶媒を除去できれば特に限定されないが、例えば40〜120℃、好ましくは50〜90℃である。また、乾燥時間は、特に限定されないが、例えば、30秒〜10分間である。
The porous insulating layer can be formed by applying the composition for an insulating layer on the electrode active material layer and drying it. The method of applying the composition for the insulating layer to the surface of the electrode active material layer is not particularly limited, and for example, the dip coating method, the spray coating method, the roll coating method, the doctor blade method, the bar coating method, the gravure coating method, and screen printing. Law etc. can be mentioned. Among these, the bar coating method or the gravure coating method is preferable from the viewpoint of uniformly applying the composition for the insulating layer to thin the porous insulating layer.
The drying temperature is not particularly limited as long as the solvent can be removed, but is, for example, 40 to 120 ° C, preferably 50 to 90 ° C. The drying time is not particularly limited, but is, for example, 30 seconds to 10 minutes.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、上記したリチウムイオン二次電池用電極を負極として備える。具体的には、本発明のリチウムイオン二次電池は、互いに対向するように配置された正極、及び負極を備え、負極が、上記した多孔質絶縁層、電極活物質層及び中間電極活物質層を有するリチウムイオン二次電池用電極となる。
<Lithium-ion secondary battery>
The lithium ion secondary battery of the present invention includes the above-mentioned electrode for a lithium ion secondary battery as a negative electrode. Specifically, the lithium ion secondary battery of the present invention includes a positive electrode and a negative electrode arranged so as to face each other, and the negative electrode is the above-mentioned porous insulating layer, electrode active material layer and intermediate electrode active material layer. It becomes an electrode for a lithium ion secondary battery having.

(正極)
なお、本発明のリチウムイオン二次電池の正極は、特に限定されない。正極は、例えば、正極活物質層と集電体とを含み、正極活物質層は、正極活物質と正極用バインダーとを含む。
正極活物質としては、金属酸リチウム化合物が挙げられる。金属酸リチウム化合物としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等が例示できる。また、オリビン型リン酸鉄リチウム(LiFePO)などであってもよい。さらに、リチウム以外の金属を複数使用したものでもよく、三元系と呼ばれるNCM(ニッケルコバルトマンガン)系酸化物、NCA(ニッケルコバルトアルミニウム系)系酸化物などを使用してもよい。
正極用バインダーとしては、上述の電極活物質層用バインダー若しくは中間電極活物質用バインダーと同様のものを使用できる。
また、集電体となる材料は、上記負極集電体に使用される化合物と同様であるが、好ましくはアルミニウム又は銅、より好ましくはアルミニウムが使用される。
(Positive electrode)
The positive electrode of the lithium ion secondary battery of the present invention is not particularly limited. The positive electrode includes, for example, a positive electrode active material layer and a current collector, and the positive electrode active material layer contains a positive electrode active material and a binder for a positive electrode.
Examples of the positive electrode active material include lithium metallic acid compounds. Examples of the lithium metal acid compound include lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and the like. Further, it may be olivine type lithium iron phosphate (LiFePO 4 ) or the like. Further, a plurality of metals other than lithium may be used, and an NCM (nickel cobalt manganese) oxide, an NCA (nickel cobalt aluminum) oxide, or the like, which is called a ternary system, may be used.
As the binder for the positive electrode, the same binder as the above-mentioned binder for the electrode active material layer or the binder for the intermediate electrode active material can be used.
The material used as the current collector is the same as that of the compound used for the negative electrode current collector, but aluminum or copper is preferably used, and aluminum is more preferable.

(セパレータ)
本発明のリチウムイオン二次電池は、好ましくは正極及び負極の間に配置されるセパレータをさらに備える。セパレータが設けられることで、正極及び負極の間の短絡がより一層効果的に防止される。また、セパレータは、後述する電解質を保持してもよい。正極又は負極に設けられる多孔質絶縁層は、セパレータに接触していてもよいし、接触していなくてもよいが、接触することが好ましい。
セパレータとしては、多孔性の高分子膜、不織布、ガラスファイバー等が挙げられ、これらの中では多孔性の高分子膜が好ましい。多孔性の高分子膜としては、オレフィン系多孔質フィルムが例示される。セパレータは、リチウムイオン二次電池駆動時の発熱により加熱されて熱収縮などすることがあるが、そのような熱収縮時でも、上記多孔質絶縁層が設けられることで短絡が抑制しやすくなる。
また、本発明のリチウムイオン二次電池では、セパレータが省略されてもよい。セパレータが省略されても、多孔質絶縁層により、負極と正極の間の絶縁性が確保される。
(Separator)
The lithium ion secondary battery of the present invention preferably further includes a separator arranged between the positive electrode and the negative electrode. By providing the separator, a short circuit between the positive electrode and the negative electrode is more effectively prevented. Further, the separator may retain an electrolyte described later. The porous insulating layer provided on the positive electrode or the negative electrode may or may not be in contact with the separator, but is preferably in contact with the separator.
Examples of the separator include a porous polymer film, a non-woven fabric, and glass fiber, and among these, a porous polymer film is preferable. Examples of the porous polymer film include an olefin-based porous film. The separator may be heated by heat generated when the lithium ion secondary battery is driven and may undergo heat shrinkage. Even during such heat shrinkage, the provision of the porous insulating layer makes it easier to suppress a short circuit.
Further, in the lithium ion secondary battery of the present invention, the separator may be omitted. Even if the separator is omitted, the porous insulating layer ensures the insulating property between the negative electrode and the positive electrode.

リチウムイオン二次電池は、負極、正極がそれぞれ複数積層された多層構造であってもよい。この場合、負極及び正極は、積層方向に沿って交互に設けられればよい。また、セパレータが使用される場合、セパレータは各負極と各正極の間に配置されればよい。
リチウムイオン二次電池において、上記した負極及び正極、又は負極、正極、及びセパレータは、バッテリーセル内に収納される。バッテリーセルは、角型、円筒型、ラミネート型などのいずれでもよい。
The lithium ion secondary battery may have a multilayer structure in which a plurality of negative electrodes and a plurality of positive electrodes are laminated. In this case, the negative electrode and the positive electrode may be provided alternately along the stacking direction. When a separator is used, the separator may be arranged between each negative electrode and each positive electrode.
In the lithium ion secondary battery, the negative electrode and the positive electrode, or the negative electrode, the positive electrode, and the separator described above are housed in the battery cell. The battery cell may be a square type, a cylindrical type, a laminated type, or the like.

(電解質)
リチウムイオン二次電池は、電解質を備える。電解質は特に限定されず、リチウムイオン二次電池で使用される公知の電解質を使用すればよい。電解質としては例えば電解液を使用する。
電解液としては、有機溶媒と、電解質塩を含む電解液が例示できる。有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトロヒドラフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテートなどの極性溶媒、又はこれら溶媒の2種類以上の混合物が挙げられる。電解質塩としては、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFCO、LiPFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF及びLiN(COCFCF、リチウムビスオキサレートボラート(LiB(C等のリチウムを含む塩が挙げられる。また、有機酸リチウム塩−三フッ化ホウ素錯体、LiBH等の錯体水素化物等の錯体が挙げられる。これらの塩又は錯体は、1種単独で使用してもよいが、2種以上の混合物であってもよい。
また、電解質は、上記電解液にさらに高分子化合物を含むゲル状電解質であってもよい。高分子化合物としては、例えば、ポリフッ化ビニリデン等のフッ素系ポリマー、ポリ(メタ)アクリル酸メチル等のポリアクリル系ポリマーが挙げられる。なお、ゲル状電解質は、セパレータとして使用されてもよい。
電解質は、負極及び正極間に配置されればよく、例えば、電解質は、上記した負極及び正極、又は負極、正極、及びセパレータが内部に収納されたバッテリーセル内に充填される。また、電解質は、例えば、負極又は正極上に塗布されて負極及び正極間に配置されてもよい。
(Electrolytes)
Lithium ion secondary batteries include an electrolyte. The electrolyte is not particularly limited, and a known electrolyte used in a lithium ion secondary battery may be used. As the electrolyte, for example, an electrolytic solution is used.
Examples of the electrolytic solution include an organic solvent and an electrolytic solution containing an electrolyte salt. Examples of the organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, and tetrohydra. Polar solvents such as furan, 2-methyltetraethane, dioxolane, and methylacetamide, or mixtures of two or more of these solvents can be mentioned. Electrolyte salts include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 CO 2 , LiPF 6 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , Examples thereof include lithium-containing salts such as LiN (COCF 3 ) 2, LiN (COCF 2 CF 3 ) 2 , and lithium bisoxalate boronate (LiB (C 2 O 4 ) 2 ). Also, lithium organic acid salt-3 foot. Examples thereof include a boron carbonate complex, a complex such as a complex hydride such as LiBH 4, and the like. These salts or complexes may be used alone or as a mixture of two or more.
Further, the electrolyte may be a gel-like electrolyte in which the above-mentioned electrolyte solution further contains a polymer compound. Examples of the polymer compound include a fluorine-based polymer such as polyvinylidene fluoride and a polyacrylic polymer such as methyl poly (meth) acrylate. The gel electrolyte may be used as a separator.
The electrolyte may be arranged between the negative electrode and the positive electrode. For example, the electrolyte is filled in the above-mentioned negative electrode and positive electrode, or in a battery cell in which the negative electrode, the positive electrode, and the separator are housed. Further, the electrolyte may be applied on the negative electrode or the positive electrode and arranged between the negative electrode and the positive electrode, for example.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

得られたリチウムイオン二次電池は、以下の評価方法により評価した。
(容量)
作製したリチウムイオン二次電池を20℃で充放電を一度行い、放電容量を測定した。
測定した放電容量を、負極の厚みで割り、厚み当たりの容量を算出した。
なお、測定した放電容量を、負極の厚みで割り算したのは以下の理由による。
一般的に電池の容量は正極及び負極のうちの容量の小さい電極(通常、正極)で決まる。このため、負極の総厚みを一定にして負極の厚みを変更しても、電池の容量は正極で決まるため、電池の容量は変わらない。そこで、正極の容量に見合うように負極の厚みを設計し直し、測定した放電容量を、負極の厚みで割り算することによって、負極に起因する電池の容量特性を評価できるようにした。
放充電は以下の条件で行った。
充電条件:CCCV充電。CC条件は、4.2V、1.0Cとした。CV条件は、4.2V、0.05C終止とした。
放電条件:CC放電。CC条件は、2.5V、1.0Cとした。
算出した厚み当たりの容量について以下のように評価した。
A:3.5Ah/g/μm以上
B:3.1Ah/g/μm以上、3.5Ah/g/μm未満
C:2.9Ah/g/μm以上、3.1Ah/g/μm未満
D:2.9Ah/g/μm未満
The obtained lithium ion secondary battery was evaluated by the following evaluation method.
(capacity)
The prepared lithium ion secondary battery was charged and discharged once at 20 ° C., and the discharge capacity was measured.
The measured discharge capacity was divided by the thickness of the negative electrode to calculate the capacity per thickness.
The measured discharge capacity was divided by the thickness of the negative electrode for the following reasons.
Generally, the capacity of a battery is determined by an electrode having a smaller capacity (usually a positive electrode) among a positive electrode and a negative electrode. Therefore, even if the total thickness of the negative electrode is kept constant and the thickness of the negative electrode is changed, the capacity of the battery is determined by the positive electrode, so that the capacity of the battery does not change. Therefore, the thickness of the negative electrode was redesigned to match the capacity of the positive electrode, and the measured discharge capacity was divided by the thickness of the negative electrode so that the capacity characteristics of the battery caused by the negative electrode could be evaluated.
Discharging and charging was performed under the following conditions.
Charging conditions: CCCV charging. The CC conditions were 4.2V and 1.0C. The CV conditions were 4.2 V and 0.05 C termination.
Discharge condition: CC discharge. The CC conditions were 2.5V and 1.0C.
The calculated capacity per thickness was evaluated as follows.
A: 3.5Ah / g / μm or more B: 3.1Ah / g / μm or more, less than 3.5Ah / g / μm C: 2.9Ah / g / μm or more, less than 3.1Ah / g / μm D: Less than 2.9 Ah / g / μm

(サイクル特性)
作製したリチウムイオン二次電池を40℃の温度の環境下、充電レートを2C、放電レートを1Cとして充放電サイクルを繰り返した。
500サイクル後の放電容量を10サイクル後の放電容量で割り算して、容量維持率を算出した。容量維持率からサイクル特性を以下のように評価した。
A:容量維持率が50%以上
B:容量維持率が45%以上50%未満
C:容量維持率が30%以上45%未満
D:容量維持率が20%以上30%未満
E:容量維持率が20%未満
(Cycle characteristics)
The prepared lithium ion secondary battery was subjected to a charge / discharge cycle under an environment of a temperature of 40 ° C. with a charge rate of 2C and a discharge rate of 1C.
The capacity retention rate was calculated by dividing the discharge capacity after 500 cycles by the discharge capacity after 10 cycles. The cycle characteristics were evaluated from the capacity retention rate as follows.
A: Capacity retention rate is 50% or more B: Capacity retention rate is 45% or more and less than 50% C: Capacity retention rate is 30% or more and less than 45% D: Capacity retention rate is 20% or more and less than 30% E: Capacity retention rate Is less than 20%

(出力特性評価)
以下のように放電容量を求めることで、作製したリチウムイオン二次電池の出力特性を評価した。
1Cの定電流充電を行い、電圧が4.2Vに到達次第、定電圧充電を行った。定電圧充電では、電流を減少させ、0.05CAとなった時点で充電を完了した。その後、1Cの定電流放電を行い、電圧が2.5Vとなった時点で放電を完了し、1Cの定電流放電容量を計算した。次に、上記と同様の定電流充電及び定電圧充電を行った後、10Cの定電流放電を行い、電圧が2.5Vとなった時点で放電を完了し、10Cの定電流放電容量を計算した。これらの放電容量に基づいて、以下の基準で出力特性を評価した。
A:1Cの定電流放電容量に比べて10Cの定電流放電容量が30%以上
B:1Cの定電流放電容量に比べて10Cの定電流放電容量が20%以上30%未満
C:1Cの定電流放電容量に比べて10Cの定電流放電容量が10%以上20%未満
D:1Cの定電流放電容量に比べて10Cの定電流放電容量が10%未満
(Evaluation of output characteristics)
The output characteristics of the manufactured lithium-ion secondary battery were evaluated by determining the discharge capacity as follows.
1C constant current charging was performed, and as soon as the voltage reached 4.2V, constant voltage charging was performed. In constant voltage charging, the current was reduced and charging was completed when the current reached 0.05 CA. After that, a constant current discharge of 1C was performed, the discharge was completed when the voltage reached 2.5V, and the constant current discharge capacity of 1C was calculated. Next, after performing constant current charging and constant voltage charging in the same manner as above, constant current discharge of 10C is performed, discharge is completed when the voltage reaches 2.5V, and the constant current discharge capacity of 10C is calculated. did. Based on these discharge capacities, the output characteristics were evaluated according to the following criteria.
A: The constant current discharge capacity of 10C is 30% or more compared to the constant current discharge capacity of 1C. The constant current discharge capacity of 10C is 20% or more and less than 30% of the constant current discharge capacity of B: 1C. C: 1C constant The constant current discharge capacity of 10C is 10% or more and less than 20% compared to the current discharge capacity. The constant current discharge capacity of 10C is less than 10% compared to the constant current discharge capacity of D: 1C.

(安全性評価)
40Aの定電流充電を行い、電圧が4.2Vに到達次第、電流を減少させて定電圧充電を行い、電流が2Aとなった時点で充電を完了した。その後、0.1mm/secの速度で、リチウムイオン二次電池の表面から1mmの深さになるまで、釘をリチウムイオン二次電池に差し込んだ。そして、釘を差し込んだリチウムイオン二次電池の電圧(Vn)を測定した。
充電完了時のリチウムイオン二次電池の電圧(4.2V)と釘を差し込んだときのリチウムイオン二次電池の電圧(Vn)との間の電圧差に基づき、以下の基準で、リチウムイオン二次電池の安全性を評価した。
A:電圧差、30mV未満
B:電圧差、30mV以上100mV未満
C:電圧差、100mV以上1000mV未満
D:電圧差、1000mV以上
(Safety evaluation)
A constant current charge of 40 A was performed, and as soon as the voltage reached 4.2 V, the current was reduced to perform a constant voltage charge, and the charge was completed when the current reached 2 A. Then, at a speed of 0.1 mm / sec, a nail was inserted into the lithium ion secondary battery until the depth was 1 mm from the surface of the lithium ion secondary battery. Then, the voltage (Vn) of the lithium ion secondary battery into which the nail was inserted was measured.
Based on the voltage difference between the voltage of the lithium-ion secondary battery (4.2V) when charging is completed and the voltage (Vn) of the lithium-ion secondary battery when the nail is inserted, the lithium-ion secondary is based on the following criteria. The safety of the next battery was evaluated.
A: Voltage difference, less than 30 mV B: Voltage difference, 30 mV or more and less than 100 mV C: Voltage difference, 100 mV or more and less than 1000 mV D: Voltage difference, 1000 mV or more

得られたリチウムイオン二次電池用電極の物性は、以下の測定方法により測定した。
(空隙率)
イオンミリング方式で、リチウムイオン二次電池用電極の断面を露出させた。次に、露出させたリチウムイオン二次電池用電極の断面を、FE−SEM(電界放出型走査型電子顕微鏡)を用いて、電極活物質層又は中間電極活物質層の全体が観察できる倍率で観察し、電極活物質層又は中間電極活物質層の画像を得た。なお、倍率は5000〜25000倍であった。次に、画像解析ソフト「Image J」を使用して、電極活物質層又は中間電極活物質層の実部分が黒く表示され、空隙部分が白く表示されるように、得られた画像を2値化処理した。そして、画像解析ソフト「Image J」を使用して、白部分の面積の割合を測定した。この白部分の面積の割合が空間率(%)となる。
The physical properties of the obtained electrode for the lithium ion secondary battery were measured by the following measuring method.
(Porosity)
The cross section of the electrode for the lithium ion secondary battery was exposed by the ion milling method. Next, the cross section of the exposed electrode for the lithium ion secondary battery can be observed at a magnification that allows the entire electrode active material layer or intermediate electrode active material layer to be observed using an FE-SEM (field emission scanning electron microscope). By observing, an image of the electrode active material layer or the intermediate electrode active material layer was obtained. The magnification was 5000 to 25000 times. Next, using the image analysis software "Image J", the obtained image is binarized so that the real part of the electrode active material layer or the intermediate electrode active material layer is displayed in black and the void part is displayed in white. Processed. Then, the ratio of the area of the white portion was measured using the image analysis software "Image J". The ratio of the area of this white part is the porosity (%).

(厚さ)
上述の空隙率の評価方法と同じ方法でリチウムイオン二次電池用電極の断面を露出させた。そして、上述のSEMを用いて電極活物質層の厚さを測定した。なお、厚さの測定には、上述のImageJを使用した。
(thickness)
The cross section of the electrode for the lithium ion secondary battery was exposed by the same method as the above-mentioned method for evaluating the porosity. Then, the thickness of the electrode active material layer was measured using the above-mentioned SEM. The above-mentioned ImageJ was used for measuring the thickness.

[実施例1]
(中間負極活物質層の作製)
負極活物質として黒鉛(平均粒子径10μm)97質量部と、バインダーとしてスチレンブタジエンゴム(SBR)1.5質量部、カルボキシメチルセルロース(CMC)のナトリウム塩を1.5質量部と、溶媒として水とを混合して、固形分50質量%に調整し、中間負極活物質層用組成物を得た。この組成物を、負極集電体としての厚さ8μmの銅箔の両面に塗布して100℃で真空乾燥した。その後、両面に中間負極活物質層用組成物を塗布した負極集電体を、線圧400kN/mで加圧プレスして、中間負極活物質層を有する負極1層目電極とした。中間負極活物質層の密度は1.21g/ccであった。また、中間負極活物質層の厚さは片面当たり23μmであった。
[Example 1]
(Preparation of intermediate negative electrode active material layer)
97 parts by mass of graphite (average particle diameter 10 μm) as a negative electrode active material, 1.5 parts by mass of styrene-butadiene rubber (SBR) as a binder, 1.5 parts by mass of a sodium salt of carboxymethyl cellulose (CMC), and water as a solvent. Was mixed to adjust the solid content to 50% by mass to obtain a composition for an intermediate negative electrode active material layer. This composition was applied to both sides of a copper foil having a thickness of 8 μm as a negative electrode current collector and vacuum dried at 100 ° C. Then, the negative electrode current collector coated with the composition for the intermediate negative electrode active material layer on both surfaces was pressure-pressed at a linear pressure of 400 kN / m to obtain a negative electrode first layer electrode having an intermediate negative electrode active material layer. The density of the intermediate negative electrode active material layer was 1.21 g / cc. The thickness of the intermediate negative electrode active material layer was 23 μm per side.

(負極活物質層の作製)
負極活物質として一酸化ケイ素(SiO)(平均粒子径5μm)97質量部と、バインダーとしてスチレンブタジエンゴム(SBR)1.5質量部、カルボキシメチルセルロース(CMC)のナトリウム塩を1.5質量部と、溶媒として水とを混合して固形分50質量%に調整し、負極活物質層用組成物を得た。この組成物を、負極1層目電極の両面に塗布して100℃で真空乾燥した。その後、両面に負極活物質層用組成物を塗布した負極集電体を、線圧500kN/mで加圧プレスし負極電極とした。
中間負極活物質層の厚さは23μmから18μmに変わった。中間負極活物質層の密度は1.21g/ccから1.55g/ccに変わった。負極活物質層の厚さは片面当たり35μmであった。負極活物質層の密度は1.21g/ccであった。
(Preparation of negative electrode active material layer)
97 parts by mass of silicon monoxide (SiO) (average particle size 5 μm) as the negative electrode active material, 1.5 parts by mass of styrene butadiene rubber (SBR) as the binder, and 1.5 parts by mass of the sodium salt of carboxymethyl cellulose (CMC). , Water was mixed as a solvent to adjust the solid content to 50% by mass to obtain a composition for a negative electrode active material layer. This composition was applied to both surfaces of the negative electrode first layer electrode and vacuum dried at 100 ° C. Then, the negative electrode current collector coated with the composition for the negative electrode active material layer on both sides was pressure-pressed at a linear pressure of 500 kN / m to obtain a negative electrode.
The thickness of the intermediate negative electrode active material layer changed from 23 μm to 18 μm. The density of the intermediate negative electrode active material layer changed from 1.21 g / cc to 1.55 g / cc. The thickness of the negative electrode active material layer was 35 μm per side. The density of the negative electrode active material layer was 1.21 g / cc.

(多孔質絶縁層の形成)
平均粒子径500nmのアルミナを固形分当たり80体積%と、アクリル系樹脂20体積%とを含み、溶剤N―メチルー2−ピロリドンで希釈した、固形分濃度が40質量%である塗工液を用意した。塗工液の25℃における粘度は1500mPa・sであった。そして、バーコ−ター式塗工装置を用いて、塗工液の負極電極に対する塗工を実施した。塗工液を負極電極の両面に塗工した後、60℃で1時間乾燥し、多孔質絶縁層形成負極とした。乾燥後の多孔質絶縁層の厚みは、片面当たり8μmであった。多孔質絶縁層の空隙率は70%であった。
(Formation of porous insulating layer)
Prepare a coating solution containing 80% by volume of alumina having an average particle diameter of 500 nm per solid content and 20% by volume of an acrylic resin, diluted with a solvent N-methyl-2-pyrrolidone, and having a solid content concentration of 40% by mass. did. The viscosity of the coating liquid at 25 ° C. was 1500 mPa · s. Then, the negative electrode of the coating liquid was coated using a bar coater type coating device. After applying the coating liquid to both surfaces of the negative electrode, it was dried at 60 ° C. for 1 hour to obtain a porous insulating layer-forming negative electrode. The thickness of the porous insulating layer after drying was 8 μm per side. The porosity of the porous insulating layer was 70%.

(正極の作製)
正極活物質として平均粒子径10μmのLi(Ni−Co−Al)O(NCA系酸化物)を100質量部と、導電助剤としてアセチレンブラックを4質量部と、電極用バインダーとしてポリフッ化ビニリデン(PVdF)4質量部と、溶媒としてのN−メチルピロリドン(NMP)とを混合し、固形分濃度60質量%に調整した正極活物質層用組成物を得た。この正極活物質層用組成物を、正極集電体としての厚さ15μmのアルミニウム箔の両面に塗布し、予備乾燥後、120℃で真空乾燥した。その後、両面に正極活物質層用組成物を塗布した正極集電体を、400kN/mで加圧プレスし、正極を作製した。正極活物質層の厚さは、片面あたり50μmであった。
(Preparation of positive electrode)
100 parts by mass of Li (Ni-Co-Al) O 2 (NCA-based oxide) having an average particle diameter of 10 μm as a positive electrode active material, 4 parts by mass of acetylene black as a conductive auxiliary agent, and polyvinylidene fluoride as an electrode binder. 4 parts by mass of (PVdF) and N-methylpyrrolidone (NMP) as a solvent were mixed to obtain a composition for a positive electrode active material layer adjusted to a solid content concentration of 60% by mass. This composition for a positive electrode active material layer was applied to both sides of an aluminum foil having a thickness of 15 μm as a positive electrode current collector, pre-dried, and then vacuum dried at 120 ° C. Then, a positive electrode current collector coated with the composition for a positive electrode active material layer on both sides was pressure-pressed at 400 kN / m to prepare a positive electrode. The thickness of the positive electrode active material layer was 50 μm per side.

(電解液の調製)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)を3:7の体積比(EC:DEC)で混合した溶媒に、電解質塩としてLiPFを1モル/リットルとなるように溶解して、電解液を調製した。
(Preparation of electrolyte)
LiPF 6 as an electrolyte salt was dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 (EC: DEC) so as to be 1 mol / liter, and the electrolytic solution was prepared. Prepared.

(電池の製造)
上記で得た負極21枚と、PE製の微多孔膜セパレータ38枚、及び正極19枚を積層し仮積層体を得た。ここで、2枚の負極の間に1枚の正極を配置し、負極及び正極の間に1枚の微多孔膜セパレータを配置した。
各正極の正極集電体の露出部の端部を纏めて超音波融着で接合するとともに、外部に突出する端子用タブを接合した。同様に、各負極の負極集電体の露出部の端部を纏めて超音波融着で接合するとともに、外部に突出する端子用タブを接合した。
次いで、アルミラミネートフィルムで上記積層体を挟み、端子用タブを外部に突出させ、三辺をラミネート加工によって封止した。封止せずに残した一辺から、上記で得た電解液を注入し、真空封止することによってラミネート型のセルを製造した。
この際、正極の面積は95mm×300mm、負極の面積は100mm×310mmとなるようにした。
(Battery manufacturing)
The 21 negative electrodes obtained above, 38 microporous membrane separators made of PE, and 19 positive electrodes were laminated to obtain a temporary laminate. Here, one positive electrode was placed between the two negative electrodes, and one microporous membrane separator was placed between the negative electrode and the positive electrode.
The exposed ends of the positive electrode current collectors of each positive electrode were joined together by ultrasonic fusion, and the terminal tabs protruding to the outside were joined. Similarly, the exposed ends of the negative electrode current collectors of each negative electrode were joined together by ultrasonic fusion, and the terminal tabs protruding to the outside were joined.
Next, the laminate was sandwiched between aluminum laminate films, the terminal tabs were projected to the outside, and the three sides were sealed by laminating. A laminated cell was manufactured by injecting the electrolytic solution obtained above from one side left unsealed and vacuum-sealing.
At this time, the area of the positive electrode was 95 mm × 300 mm, and the area of the negative electrode was 100 mm × 310 mm.

[実施例2]
スラリーにおけるアルミナ粒子及びポリフッ化ビニリデンの配合量の合計100体積%に対するアルミナ粒子の配合量を80体積%から85体積%に変更し、ポリフッ化ビニリデンの配合量を20体積%から15体積%に変更した以外は、実施例1と同様に実施した。
[Example 2]
Changed the blending amount of alumina particles from 80% by volume to 85% by volume with respect to the total blending amount of alumina particles and polyvinylidene fluoride in the slurry, and changed the blending amount of vinylidene fluoride from 20% by volume to 15% by volume. Except for the above, the same procedure as in Example 1 was carried out.

[実施例3]
スラリーにおけるアルミナ粒子及びポリフッ化ビニリデンの配合量の合計100体積%に対するアルミナ粒子の配合量を80体積%から60体積%に変更し、ポリフッ化ビニリデンの配合量を20体積%から40体積%に変更した以外は、実施例1と同様に実施した。
[Example 3]
Changed the blending amount of alumina particles from 80% by volume to 60% by volume with respect to the total blending amount of alumina particles and polyvinylidene fluoride in the slurry, and changed the blending amount of vinylidene fluoride from 20% by volume to 40% by volume. Except for the above, the same procedure as in Example 1 was carried out.

[実施例4]
絶縁層用スラリーを塗布するときの塗工条件を変更して多孔質絶縁層の厚さを8μmから11μmに変更した以外は、実施例1と同様に実施した。
[Example 4]
The same procedure as in Example 1 was carried out except that the coating conditions for applying the slurry for the insulating layer were changed and the thickness of the porous insulating layer was changed from 8 μm to 11 μm.

[実施例5]
絶縁層用スラリーを塗布するときの塗工条件を変更して多孔質絶縁層の厚さを8μmから4μmに変更した以外は、実施例1と同様に実施した。
[Example 5]
The same procedure as in Example 1 was carried out except that the coating conditions for applying the slurry for the insulating layer were changed and the thickness of the porous insulating layer was changed from 8 μm to 4 μm.

[実施例6]
多孔質絶縁層の形成で、アクリル系樹脂の代わりにポリフッ化ビニリデン溶液(株式会社クレハ製、製品名:L#9305、5質量%溶液、粘度:2100Pa・s)を使用した。さらに、多孔質絶縁層の形成で、スラリーにおけるアルミナ粒子及びポリフッ化ビニリデンの配合量の合計100体積%に対するアルミナ粒子の配合量を80体積%から99体積%に変更し、ポリフッ化ビニリデンの配合量を20体積%から1体積%に変更した。それ以外は、実施例1と同様に実施した。
[Example 6]
In forming the porous insulating layer, a polyvinylidene fluoride solution (manufactured by Kureha Corporation, product name: L # 9305, 5% by mass solution, viscosity: 2100 Pa · s) was used instead of the acrylic resin. Further, in the formation of the porous insulating layer, the blending amount of the alumina particles was changed from 80% by volume to 99% by volume with respect to the total blending amount of alumina particles and polyvinylidene fluoride in the slurry, and the blending amount of polyvinylidene fluoride was changed. Was changed from 20% by volume to 1% by volume. Other than that, it was carried out in the same manner as in Example 1.

[比較例1]
負極活物質層用組成物を塗布しなかった点、及び中間負極活物質層用組成物を塗布するときの塗工条件を変更して中間電極活物質層の厚さを18μmから70μmに変更した点以外は、実施例1と同様に実施した。
[Comparative Example 1]
The thickness of the intermediate electrode active material layer was changed from 18 μm to 70 μm by changing the point that the composition for the negative electrode active material layer was not applied and the coating conditions when applying the composition for the intermediate negative electrode active material layer. Except for the points, the same procedure as in Example 1 was carried out.

[比較例2]
スラリーにおけるアルミナ粒子及びアクリル系樹脂の配合量の合計100体積%に対するアルミナ粒子の配合量を80体積%から0体積%に変更し、アクリル系樹脂の配合量を20体積%から100体積%に変更した以外は、実施例1と同様に実施した。
なお、比較例2の多孔質絶縁層は、アルミナ粒子を含有していないので、FE−SEMでは多孔質絶縁層の空隙を観察できず、上述の方法では多孔質絶縁層の空隙率を測定することができなかった。そこで、以下のようにして、比較例2の多孔質絶縁層の空隙率を評価した。
実施例で使用しているセパレータ(ポリエチレン製)の上に絶縁層用スラリーを塗布し、多孔質絶縁層付きセパレータを作製した。そして、ガーレ式デンソーメータ(株式会社東洋精機製作所製)を使用して多孔質絶縁層付きのセパレータの透気度を測定した。しかし、多孔質縁層付きセパレータは空気を通さなかったため、測定できなかった。このように、セパレータは空気を通すにもかかわらず、多孔質絶縁層付きセパレータは空気を通さなかったことから、多孔質絶縁層には空隙がないことがわかった。この結果から、比較例2の多孔質絶縁層の空隙率を0%とした。
[Comparative Example 2]
The blending amount of alumina particles was changed from 80% by volume to 0% by volume with respect to the total blending amount of alumina particles and acrylic resin in the slurry of 100% by volume, and the blending amount of acrylic resin was changed from 20% by volume to 100% by volume. Except for the above, the same procedure as in Example 1 was carried out.
Since the porous insulating layer of Comparative Example 2 does not contain alumina particles, the voids of the porous insulating layer cannot be observed by FE-SEM, and the porosity of the porous insulating layer is measured by the above method. I couldn't. Therefore, the porosity of the porous insulating layer of Comparative Example 2 was evaluated as follows.
A slurry for an insulating layer was applied onto the separator (made of polyethylene) used in the examples to prepare a separator with a porous insulating layer. Then, the air permeability of the separator with the porous insulating layer was measured using a Gale type denso meter (manufactured by Toyo Seiki Seisakusho Co., Ltd.). However, the separator with a porous rim layer did not allow air to pass through, so it could not be measured. As described above, although the separator allows air to pass through, the separator with the porous insulating layer does not allow air to pass through, indicating that the porous insulating layer has no voids. From this result, the porosity of the porous insulating layer of Comparative Example 2 was set to 0%.

[比較例3]
負極活物質層用組成物を塗布するときの塗工条件を変更して負極活物質層の厚さを35μmから53μmに変更した点、及び中間負極活物質層用組成物を塗布しなかった点以外は、実施例1と同様に実施した。
[Comparative Example 3]
The point that the coating condition when applying the composition for the negative electrode active material layer was changed to change the thickness of the negative electrode active material layer from 35 μm to 53 μm, and the point that the composition for the intermediate negative electrode active material layer was not applied. Except for the above, the same procedure as in Example 1 was carried out.

[比較例4]
多孔質絶縁層を設けなかった点以外は、比較例3と同様に実施した。
[Comparative Example 4]
The procedure was carried out in the same manner as in Comparative Example 3 except that the porous insulating layer was not provided.

実施例1〜6で製造した電池の評価結果を表1に、比較例1〜4で製造した電池の評価結果を表2にそれぞれ示す。 Table 1 shows the evaluation results of the batteries manufactured in Examples 1 to 6, and Table 2 shows the evaluation results of the batteries manufactured in Comparative Examples 1 to 4, respectively.

以上の実施例1〜6に示すように、Si系材料を含む負極活物質層の表面上に多孔質絶縁層を設け、Si系材料を含む負極活物質層と負極集電体との間に中間負極活物質層を設けることにより、リチウムイオン二次電池の容量を大きくし、かつ充放電サイクル特性を良好にできることがわかった。さらに、リチウムイオン二次電池の安全性及び出力特性も改善されることがわかった。
比較例1より、Si系材料を含む負極活物質層を設けないと、リチウムイオン二次電池の容量を大きくできないことがわかった。
比較例2より、Si系材料を含む負極活物質層の表面上に多孔質絶縁層を設けても、多孔質絶縁層の空隙率を30〜95%の範囲内にしないと、リチウムイオン二次電池の容量が小さくなり、リチウムイオン二次電池の充放電サイクル特性が悪くなることがわかった。また、リチウムイオン二次電池の安全性及び出力特性が著しく低下することがわかった。
比較例3及び4より、Si系材料を含む負極活物質層と負極集電体との間に中間負極活物質層を設けないと、リチウムイオン二次電池の充放電サイクル特性が悪くなることがわかった。
比較例3と比較例4とを比較することにより、多孔質絶縁層を設けないと、リチウムイオン二次電池の充放電サイクル特性及び安全性が低減することがわかった。
As shown in Examples 1 to 6 above, a porous insulating layer is provided on the surface of the negative electrode active material layer containing the Si-based material, and between the negative electrode active material layer containing the Si-based material and the negative electrode current collector. It was found that the capacity of the lithium ion secondary battery can be increased and the charge / discharge cycle characteristics can be improved by providing the intermediate negative electrode active material layer. Furthermore, it was found that the safety and output characteristics of the lithium ion secondary battery were also improved.
From Comparative Example 1, it was found that the capacity of the lithium ion secondary battery could not be increased unless the negative electrode active material layer containing the Si-based material was provided.
According to Comparative Example 2, even if the porous insulating layer is provided on the surface of the negative electrode active material layer containing the Si-based material, the lithium ion secondary must be kept within the range of 30 to 95% of the void ratio of the porous insulating layer. It was found that the capacity of the battery became smaller and the charge / discharge cycle characteristics of the lithium ion secondary battery deteriorated. It was also found that the safety and output characteristics of the lithium ion secondary battery were significantly reduced.
From Comparative Examples 3 and 4, if the intermediate negative electrode active material layer is not provided between the negative electrode active material layer containing the Si-based material and the negative electrode current collector, the charge / discharge cycle characteristics of the lithium ion secondary battery may deteriorate. all right.
By comparing Comparative Example 3 and Comparative Example 4, it was found that the charge / discharge cycle characteristics and safety of the lithium ion secondary battery were reduced if the porous insulating layer was not provided.

1 リチウムイオン二次電池用電極
10 集電体
20 電極活物質層
30 多孔質絶縁層
40 中間電極活物質層
1 Electrode for lithium ion secondary battery 10 Current collector 20 Electrode active material layer 30 Porous insulating layer 40 Intermediate electrode active material layer

Claims (12)

集電体と、前記集電体の表面上に設けられる電極活物質層と、前記電極活物質層の表面上に設けられる多孔質絶縁層と、前記電極活物質層及び前記集電体の間に設けられる中間電極活物質層とを備え、
前記電極活物質層はSi系材料及び電極活物質層用バインダーを含み、
前記多孔質絶縁層は絶縁性微粒子及び絶縁層用バインダーを含み、
前記中間電極活物質層は黒鉛及び中間電極活物質層用バインダーを含み、
前記多孔質絶縁層の空隙率が30〜95体積%であるリチウムイオン二次電池用電極。
Between the current collector, the electrode active material layer provided on the surface of the current collector, the porous insulating layer provided on the surface of the electrode active material layer, the electrode active material layer and the current collector. With an intermediate electrode active material layer provided in
The electrode active material layer contains a Si-based material and a binder for the electrode active material layer.
The porous insulating layer contains insulating fine particles and a binder for the insulating layer.
The intermediate electrode active material layer contains graphite and a binder for the intermediate electrode active material layer.
An electrode for a lithium ion secondary battery in which the porosity of the porous insulating layer is 30 to 95% by volume.
前記絶縁性微粒子がアルミナである請求項1に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to claim 1, wherein the insulating fine particles are alumina. 前記多孔質絶縁層の厚さが3〜15μmであり、前記電極活物質層の厚さが10〜70μmである請求項1又は2に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to claim 1 or 2, wherein the thickness of the porous insulating layer is 3 to 15 μm, and the thickness of the electrode active material layer is 10 to 70 μm. 前記多孔質絶縁層における前記絶縁性微粒子の平均粒子径が0.1〜5.0μmであり、前記電極活物質層における前記Si系材料の平均粒子径が1〜30μmである請求項1〜3のいずれか1項に記載のリチウムイオン二次電池用電極。 Claims 1 to 3 that the average particle size of the insulating fine particles in the porous insulating layer is 0.1 to 5.0 μm, and the average particle size of the Si-based material in the electrode active material layer is 1 to 30 μm. The electrode for a lithium ion secondary battery according to any one of the above items. 前記多孔質絶縁層における前記絶縁性微粒子の含有量が50〜99.5体積%である請求項1〜4のいずれか1項に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the content of the insulating fine particles in the porous insulating layer is 50 to 99.5% by volume. 前記電極活物質層における前記Si系材料の含有量が95〜99質量%である請求項1〜5のいずれか1項に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to any one of claims 1 to 5, wherein the content of the Si-based material in the electrode active material layer is 95 to 99% by mass. 前記多孔質絶縁層における前記絶縁層用バインダーの含有量が0.5〜50体積%であり、前記電極活物質層における前記電極活物質層用バインダーの含有量が1〜5質量%である請求項1〜6のいずれか1項に記載のリチウムイオン二次電池用電極。 A claim that the content of the binder for the insulating layer in the porous insulating layer is 0.5 to 50% by volume, and the content of the binder for the electrode active material layer in the electrode active material layer is 1 to 5% by mass. Item 2. The electrode for a lithium ion secondary battery according to any one of Items 1 to 6. 前記中間電極活物質層の厚さが5〜60μmである請求項1〜7のいずれか1項に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to any one of claims 1 to 7, wherein the thickness of the intermediate electrode active material layer is 5 to 60 μm. 前記中間電極活物質層における前記黒鉛の平均粒子径が1〜30μmである請求項1〜8のいずれか1項に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to any one of claims 1 to 8, wherein the average particle size of the graphite in the intermediate electrode active material layer is 1 to 30 μm. 前記中間電極活物質層における前記黒鉛の含有量は95〜99質量%である請求項1〜9のいずれか1項に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to any one of claims 1 to 9, wherein the graphite content in the intermediate electrode active material layer is 95 to 99% by mass. 前記中間極活物質層における前記中間電極活物質層用バインダーの含有量が1〜5質量%である請求項1〜10のいずれか1項に記載のリチウムイオン二次電池用電極。 The electrode for a lithium ion secondary battery according to any one of claims 1 to 10, wherein the content of the binder for the intermediate electrode active material layer in the intermediate polar active material layer is 1 to 5% by mass. 請求項1〜11のいずれか1項に記載のリチウムイオン二次電池用電極を負極として備えるリチウムイオン二次電池。 A lithium ion secondary battery comprising the electrode for a lithium ion secondary battery according to any one of claims 1 to 11 as a negative electrode.
JP2019036697A 2019-02-28 2019-02-28 Electrode for lithium ion secondary battery and lithium ion secondary battery Pending JP2020140896A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019036697A JP2020140896A (en) 2019-02-28 2019-02-28 Electrode for lithium ion secondary battery and lithium ion secondary battery
PCT/JP2020/008430 WO2020175686A1 (en) 2019-02-28 2020-02-28 Electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019036697A JP2020140896A (en) 2019-02-28 2019-02-28 Electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2020140896A true JP2020140896A (en) 2020-09-03

Family

ID=72238550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019036697A Pending JP2020140896A (en) 2019-02-28 2019-02-28 Electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP2020140896A (en)
WO (1) WO2020175686A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021861A1 (en) * 2021-08-16 2023-02-23 信越化学工業株式会社 Negative electrode and method for producing negative electrode
JP7452548B2 (en) 2019-09-30 2024-03-19 株式会社村田製作所 Negative electrode for secondary batteries and secondary batteries

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766348B2 (en) * 2008-10-10 2011-09-07 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
JP2012099385A (en) * 2010-11-04 2012-05-24 Konica Minolta Holdings Inc Electrode with heat-resistant porous layer, manufacturing method thereof, and secondary battery
JP2015179575A (en) * 2014-03-18 2015-10-08 凸版印刷株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2015072758A (en) * 2013-10-02 2015-04-16 日立マクセル株式会社 Electrode for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery
JP6327011B2 (en) * 2014-06-26 2018-05-23 株式会社豊田自動織機 Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
JP6809108B2 (en) * 2016-10-07 2021-01-06 トヨタ自動車株式会社 Lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452548B2 (en) 2019-09-30 2024-03-19 株式会社村田製作所 Negative electrode for secondary batteries and secondary batteries
WO2023021861A1 (en) * 2021-08-16 2023-02-23 信越化学工業株式会社 Negative electrode and method for producing negative electrode

Also Published As

Publication number Publication date
WO2020175686A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
JP6871342B2 (en) Electrodes, electrode manufacturing methods, and secondary batteries and their manufacturing methods
JP6545663B2 (en) Graphite-based negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6903260B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6841971B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
JP6995738B2 (en) Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP2015088465A (en) Nonaqueous electrolyte secondary battery
JP6849863B2 (en) Lithium-ion secondary battery, its manufacturing method, and positive electrode for lithium-ion secondary battery
JP2019175657A (en) Lithium ion secondary battery
JP2019153557A (en) Lithium ion secondary battery electrode, manufacturing method thereof, and lithium ion secondary battery
JP6567289B2 (en) Lithium ion secondary battery
JP2020140896A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
WO2020184713A1 (en) Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2020050285A1 (en) Lithium ion secondary battery, method for producing same, and electrode for lithium ion secondary batteries
JP2020126733A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2020140895A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP7160573B2 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017162693A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JP2020155378A (en) Electrolyte for lithium ion secondary battery, and lithium ion secondary battery
JP2019220356A (en) Positive electrode material for lithium ion secondary battery, method for manufacturing the same and positive electrode active substance layer containing the same, and lithium ion secondary battery arranged by use thereof
JP6876879B2 (en) Method for manufacturing electrodes for lithium ion secondary batteries, lithium ion secondary batteries and electrodes for lithium ion secondary batteries
JP2020053282A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6832474B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
JP6207207B2 (en) Method for adjusting irreversible capacity of positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2015046393A1 (en) Negative-electrode active material, negative electrode using same, and lithium-ion secondary battery