JP6207207B2 - Method for adjusting irreversible capacity of positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery - Google Patents

Method for adjusting irreversible capacity of positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6207207B2
JP6207207B2 JP2013082784A JP2013082784A JP6207207B2 JP 6207207 B2 JP6207207 B2 JP 6207207B2 JP 2013082784 A JP2013082784 A JP 2013082784A JP 2013082784 A JP2013082784 A JP 2013082784A JP 6207207 B2 JP6207207 B2 JP 6207207B2
Authority
JP
Japan
Prior art keywords
positive electrode
irreversible capacity
alloy
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013082784A
Other languages
Japanese (ja)
Other versions
JP2014207077A (en
Inventor
昌明 久保田
昌明 久保田
美優 根本
美優 根本
阿部 英俊
英俊 阿部
祐一 田中
祐一 田中
洋一 兒島
洋一 兒島
幸翁 本川
幸翁 本川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
UACJ Corp
Original Assignee
Furukawa Battery Co Ltd
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd, UACJ Corp filed Critical Furukawa Battery Co Ltd
Priority to JP2013082784A priority Critical patent/JP6207207B2/en
Publication of JP2014207077A publication Critical patent/JP2014207077A/en
Application granted granted Critical
Publication of JP6207207B2 publication Critical patent/JP6207207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、少なくともリチウムの吸蔵放出が可能な非水電解質二次電池用の正極、正極用合材および非水電解質二次電池に関する。   The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery capable of occluding and releasing lithium, a positive electrode composite, and a non-aqueous electrolyte secondary battery.

近年、非水電解質二次電池は、高エネルギー密度を有する等の理由から、広く普及している。このような非水電解質二次電池には、正極−負極間にリチウムイオンを移動させて充放電を行う原理が利用されている。
非水電解質二次電池に用いられる正極活物質として、コバルト酸リチウム(LiCoO2)およびニッケル酸リチウム(LiNiO2)などの層状岩塩構造を有する化合物や、マンガン酸リチウム(LiMn24)などのスピネル型構造を有する化合物などのリチウム遷移金属複合酸化物が知られている。また、これらの複合酸化物における遷移金属の一部を、他の金属で置換した化合物も提案されている。
In recent years, non-aqueous electrolyte secondary batteries have become widespread for reasons such as having a high energy density. Such a nonaqueous electrolyte secondary battery utilizes the principle of charging and discharging by moving lithium ions between the positive electrode and the negative electrode.
As a positive electrode active material used for a non-aqueous electrolyte secondary battery, a compound having a layered rock salt structure such as lithium cobaltate (LiCoO 2 ) and lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc. Lithium transition metal composite oxides such as compounds having a spinel structure are known. In addition, compounds in which part of the transition metal in these composite oxides is substituted with other metals have been proposed.

また、負極活物質として、グラファイトやハードカーボンなどの炭素材料が一般的に使用されている。また、最近では電池のエネルギー密度向上のために、ケイ素やスズなどの高容量を有する金属系材料が検討されている。
非水電解質二次電池は、一般的に正極と比べて負極の不可逆容量が大きい。そのため、初回の充電で正極から負極に挿入されたリチウムが、放電時に負極から放出されずに負極中に残存してしまうため、正極の容量低下、および、電池の容量低下が生じる。
不可逆容量を増加させて高エネルギー密度化を図る技術として、例えば、特許文献1〜4に記載の技術が提案されている。
Further, carbon materials such as graphite and hard carbon are generally used as the negative electrode active material. Recently, in order to improve the energy density of batteries, metal materials having a high capacity such as silicon and tin have been studied.
A nonaqueous electrolyte secondary battery generally has a larger irreversible capacity of a negative electrode than a positive electrode. Therefore, lithium inserted into the negative electrode from the positive electrode in the first charge remains in the negative electrode without being discharged from the negative electrode during discharge, resulting in a decrease in the capacity of the positive electrode and a decrease in the capacity of the battery.
For example, techniques described in Patent Documents 1 to 4 have been proposed as techniques for increasing the irreversible capacity to increase the energy density.

特許文献1には、正極層中に活物質とは別にLiyNi1-xTix2(式中、0<x<0.7であり、1≦y≦1.1である)で表される化合物を添加剤として適量含有する正極を形成し、この正極を備えた非水電解液二次電池のカットオフ電位を4.2〜5.0Vに設定することにより、正極の不可逆容量を増加させることが記載されている。 In Patent Document 1, Li y Ni 1-x Ti x O 2 (where 0 <x <0.7 and 1 ≦ y ≦ 1.1) is provided separately from the active material in the positive electrode layer. An irreversible capacity of the positive electrode is obtained by forming a positive electrode containing an appropriate amount of the represented compound as an additive and setting the cut-off potential of the non-aqueous electrolyte secondary battery equipped with the positive electrode to 4.2 to 5.0 V. Is described.

特許文献2には、負極と対向する正極表面上にリチウム金属膜を形成し、初回の充電で、負極の不可逆容量分のリチウムを負極に補填することが記載されている。特許文献3には、セパレータの表面に金属リチウムを設けて負極の不可逆容量分のリチウムを負極に補填することが記載されている。   Patent Document 2 describes that a lithium metal film is formed on the surface of the positive electrode facing the negative electrode, and lithium for the irreversible capacity of the negative electrode is filled in the negative electrode by the first charge. Patent Document 3 describes that metallic lithium is provided on the surface of a separator to supplement the negative electrode with lithium for the irreversible capacity of the negative electrode.

特許文献4には、リチウム付与源と、ケイ素やスズを活物質とした負極で少なくとも1サイクル充放電を行うことにより、負極の不可逆容量分のリチウムを負極に補填して、その後、不可逆容量分のリチウムを補填した負極と正極とでリチウムイオン二次電池を構築する方法が記載されている。   In Patent Document 4, at least one cycle of charge and discharge is performed with a lithium supply source and a negative electrode using silicon or tin as an active material, thereby supplementing the negative electrode with lithium for the irreversible capacity of the negative electrode. Describes a method of constructing a lithium ion secondary battery with a negative electrode and a positive electrode supplemented with lithium.

特開2010−129481号公報JP 2010-129481 A 特開2004−87251号公報Japanese Patent Laid-Open No. 2004-87251 特開2007−220452号公報JP 2007-220552 A 特開2008−4466号公報JP 2008-4466 Gazette

しかしながら、本発明者等が鋭意検討した結果、従来先行技術には以下の問題点があった。
特許文献1には、LiyNi1-xTix2で表される化合物を添加剤として使用することが記載されているが、不可逆容量だけでなく、可逆容量も有するため、正極の不可逆容量を増加させるためには添加量が多くなり、電池のエネルギー密度の低下を招く。さらに、活物質としての機能も有することから、充放電を繰り返すことにより劣化が生じる場合がある。
However, as a result of intensive studies by the present inventors, the conventional prior art has the following problems.
Patent Document 1 describes that a compound represented by Li y Ni 1-x Ti x O 2 is used as an additive. However, since it has not only an irreversible capacity but also a reversible capacity, the irreversible of the positive electrode. In order to increase the capacity, the amount of addition increases, leading to a decrease in the energy density of the battery. Furthermore, since it also has a function as an active material, deterioration may occur due to repeated charge and discharge.

特許文献2には、正極表面上に形成したリチウム金属膜により負極の不可逆容量を補填すると記載され、また、特許文献3には、セパレータ表面上に形成したリチウム金属膜により負極の不可逆容量を補填すると記載されている。これらリチウム金属膜を正極やセパレータに形成する方法として蒸着が推奨されているが、耐熱性の低いバインダやポリオレフィンを正極やセパレータに使用しているため、劣化が生じる場合がある。さらに、リチウム金属膜形成のための製造設備の増加や、形成したリチウム金属と水分の反応を抑止するための設備が必要となる。   Patent Document 2 describes that the irreversible capacity of the negative electrode is compensated by the lithium metal film formed on the surface of the positive electrode, and Patent Document 3 describes that the irreversible capacity of the negative electrode is compensated by the lithium metal film formed on the surface of the separator. Then it is described. Vapor deposition is recommended as a method for forming these lithium metal films on the positive electrode and the separator, but deterioration may occur because a binder or polyolefin having low heat resistance is used for the positive electrode or the separator. Furthermore, an increase in manufacturing equipment for forming a lithium metal film and equipment for suppressing the reaction between the formed lithium metal and moisture are required.

特許文献4では、ケイ素やスズを活物質とした負極の不可逆容量を補填するための専用セルが必要であり、少なくとも1サイクルの充放電を行い、不可逆容量を補填した負極を専用セルから分離して電池を構築するとあるが、ケイ素やスズは充放電による体積変化が非常に大きいため、1サイクルでも充放電すると負極活物質の脱落が生じる場合がある。   In Patent Document 4, a dedicated cell for filling the irreversible capacity of the negative electrode using silicon or tin as an active material is necessary, and at least one cycle of charge / discharge is performed to separate the negative electrode supplemented with the irreversible capacity from the dedicated cell. However, since silicon and tin have a very large volume change due to charge / discharge, the negative electrode active material may fall off even if charge / discharge is performed even in one cycle.

本発明は、上述した事情を鑑みてなされたものであり、二次電池の高エネルギー密度化に好適な不可逆容量に容易に制御可能な非水電解質二次電池用の正極、非水電解質二次電池の正極用合材および非水電解質二次電池を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and a positive electrode for a non-aqueous electrolyte secondary battery that can be easily controlled to an irreversible capacity suitable for increasing the energy density of the secondary battery, and a non-aqueous electrolyte secondary An object of the present invention is to provide a positive electrode composite material and a non-aqueous electrolyte secondary battery.

上述した課題を解決するため、本発明は、少なくともリチウムの吸蔵放出が可能な活物質を含む正極に、Al−Si合金を含有させ、前記Al−Si合金の添加量を、前記正極と組み合わせられる負極の不可逆容量に応じて調整することによって、当該正極の不可逆容量は、前記負極の不可逆容量と同等であって、かつ、3.1mAh/g以上であることを特徴とする非水電解質二次電池用の正極の不可逆容量調整方法を提供する。 To solve the problems described above, the present invention is a positive electrode containing an active material capable of at least lithium storage and release, is contained A l-Si alloy, the amount of the Al-Si alloy, the positive electrode and the combination by adjusting in response to the irreversible capacity of the negative electrode to be the irreversible capacity of the positive electrode, a comparable irreversible capacity of the negative electrode, and a nonaqueous electrolyte, characterized in der Rukoto more 3.1mAh / g Provided is a method for adjusting the irreversible capacity of a positive electrode for a secondary battery.

の構成によれば、負極の不可逆容量による電池の容量低下を抑制し、二次電池の高エネルギー密度化に好適な不可逆容量を有する正極を容易に得ることができる。
また、上記構成において、前記Al−Si合金に、Al−Siの共晶組織の形成を促進する熱処理を行うことを特徴とする。
According to the construction of this, it is possible to suppress a decrease capacity of the battery by the irreversible capacity of the negative electrode, to obtain a positive electrode having a suitable irreversible capacity in the high energy density of the secondary battery easily.
In the above structure, the Al—Si alloy is heat-treated to promote the formation of an Al—Si eutectic structure.

また、上記構成において、前記Al−Si合金のSi含有量が、0.5質量%以上であることを特徴とする。この構成によれば、十分な正極不可逆容量を得ることができる。   In the above structure, the Al content of the Al—Si alloy is 0.5% by mass or more. According to this configuration, a sufficient positive electrode irreversible capacity can be obtained.

また、上記構成において、前記正極がさらに、導電材と結着剤を含むことを特徴とする。この構成によれば、電子の伝導性と活物質やAl−Si合金などの固着性を確保することができる   In the above structure, the positive electrode further includes a conductive material and a binder. According to this configuration, it is possible to ensure the conductivity of electrons and the adhesion of active materials, Al-Si alloys, and the like.

また、本発明の非水電解質二次電池は、少なくともリチウムの吸蔵放出が可能な活物質を含む正極と、リチウムの吸蔵放出が可能な負極と、これら正負極間に配置されたセパレータと、非水電解質とを備え、前記正極は、加熱処理によりAl−Siの共晶組織の形成が促進されたAl−Si合金を含有し、前記Al−Si合金の添加量は、当該正極と組み合わせられる前記負極の不可逆容量と同等の不可逆容量を得る量であって、かつ、3.1mAh/g以上の不可逆容量を得る量であることを特徴とする。この構成によれば、負極の不可逆容量と同等の不可逆容量の正極を有し、高エネルギー密度の二次電池を得ることができる。 Further, the nonaqueous electrolyte secondary battery of the present invention includes at least a positive electrode including an active material capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator disposed between these positive and negative electrodes, The positive electrode contains an Al-Si alloy whose formation of an eutectic structure of Al-Si is promoted by heat treatment, and the added amount of the Al-Si alloy is combined with the positive electrode It is an amount for obtaining an irreversible capacity equivalent to the irreversible capacity of the negative electrode, and an amount for obtaining an irreversible capacity of 3.1 mAh / g or more . According to this configuration, a secondary battery having an irreversible capacity equivalent to the irreversible capacity of the negative electrode and having a high energy density can be obtained.

本発明は、負極の不可逆容量による電池の容量低下を抑制し、二次電池の高エネルギー密度化に好適な不可逆容量を有する正極を容易に得ることができる。 The present invention can suppress a decrease in battery capacity due to the irreversible capacity of the negative electrode, and easily obtain a positive electrode having an irreversible capacity suitable for increasing the energy density of the secondary battery.

不可逆容量の異なる正極と負極との組み合わせを模式的に示した図である。It is the figure which showed typically the combination of the positive electrode and negative electrode from which irreversible capacity | capacitance differs. Al−Si合金の添加量を変化させたときの正極の充放電曲線を示した図である。It is the figure which showed the charging / discharging curve of the positive electrode when the addition amount of an Al-Si alloy is changed. Al−Si合金中のSi含有量を変化させたときの正極の充放電曲線を示した図である。It is the figure which showed the charging / discharging curve of the positive electrode when Si content in an Al-Si alloy was changed.

本発明者等は従来技術の問題点について鋭意検討した結果、正極活物質層中に、正極活物質と、該活物質とは別に添加剤としてアルミニウム(Al)とケイ素(Si)とを含む合金を含有した電極を、非水電解質二次電池用の正極(正極板とも言う)として用いることにより、正極の不可逆容量を容易に制御できることを見出した。   As a result of intensive studies on the problems of the prior art, the present inventors have found that a positive electrode active material layer and an alloy containing aluminum (Al) and silicon (Si) as additives separately from the active material. It has been found that the irreversible capacity of the positive electrode can be easily controlled by using an electrode containing a non-aqueous electrolyte secondary battery as a positive electrode (also referred to as a positive electrode plate).

本発明の実施形態に係る非水電解質二次電池用の正極について説明する。この正極は、正極活物質やアルミニウム(Al)、ケイ素(Si)などを含有する正極用合材を集電体に塗布した後、乾燥により溶媒を蒸発、飛散させることにより作製される。
以下、アルミニウム(Al)−ケイ素(Si)合金を用いた場合について説明する。
正極活物質は、非水電解質二次電池に使用できるものであれば特に制限されず、例えば、LiCoO2、LiNiO2、LiMn24、リン酸鉄リチウム(LiFePO4)などのリチウム金属酸化物を挙げることができる。特に、LiFePO4であることが好ましく、さらには粒子表面に数nmのカーボンがコーティングされていることが好ましい。
A positive electrode for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described. The positive electrode is produced by applying a positive electrode mixture containing a positive electrode active material, aluminum (Al), silicon (Si), etc. to a current collector, and then evaporating and scattering the solvent by drying.
Hereinafter, the case where an aluminum (Al) -silicon (Si) alloy is used will be described.
The positive electrode active material is not particularly limited as long as it can be used for a nonaqueous electrolyte secondary battery. For example, lithium metal oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , and lithium iron phosphate (LiFePO 4 ) Can be mentioned. In particular, LiFePO 4 is preferable, and it is preferable that carbon of several nm is coated on the particle surface.

なお、Al−Si合金は、例えば所定の組成の溶湯を用いたガスアトマイズや、所定割合のアルミニウム粉末およびケイ素粉末からなる混合粉末からのメカニカルアロイニングにより作製できる。また、市販のAl−Si合金粉末を利用することもできる。組成は、ケイ素が0.5質量%以上、残部がアルミニウムからなる組成であるが、本発明の効果に影響がない範囲でマグネシウム、チタン、バナジウム、クロム、マンガン、鉄、ニッケル、亜鉛、銅などの元素が含まれていても良い。   In addition, an Al-Si alloy can be produced by, for example, gas atomization using a molten metal having a predetermined composition or mechanical alloying from a mixed powder composed of a predetermined proportion of aluminum powder and silicon powder. Commercially available Al—Si alloy powder can also be used. The composition is 0.5% by mass or more of silicon and the balance is aluminum. Magnesium, titanium, vanadium, chromium, manganese, iron, nickel, zinc, copper, etc., as long as the effects of the present invention are not affected. These elements may be included.

活物質層には、正極活物質に加えて、Al−Si合金が含有されており,粉末状の形態で用いられる。Al−Si合金の粒子径は、0.1μm〜50μmが好ましく、0.1μm未満では取り扱いが困難であり、50μmを越えると均一に塗布することが難しい。
正極活物質層中のAl−Si合金の含有量は、正極と組み合わせられる負極(負極板とも言う)の不可逆容量によって適宜調整される。
The active material layer contains an Al—Si alloy in addition to the positive electrode active material, and is used in a powder form. The particle diameter of the Al—Si alloy is preferably 0.1 μm to 50 μm. If it is less than 0.1 μm, it is difficult to handle, and if it exceeds 50 μm, it is difficult to apply uniformly.
The content of the Al—Si alloy in the positive electrode active material layer is appropriately adjusted depending on the irreversible capacity of the negative electrode (also referred to as negative electrode plate) combined with the positive electrode.

ここで、図1には、不可逆容量の異なる正極と負極との組み合わせを模式的に示した図である。図1中、正極Aは、従来の一般的な正極、つまり、負極と比べて不可逆容量が格段に小さい正極を示している。
また、図1中、正極Bは、本実施形態で用いる正極を示している。なお、図1には、正極A、Bを、図1中の負極と各々組み合わせた場合の充放電の終了位置を模式的に示している。
図1に示すように、本実施形態では、正極Bを、負極の不可逆容量と同等の不可逆容量を有するようにAl−Si合金の添加量を調整することによって、正極Aと比べて、負極の不可逆容量による電池の容量低下を抑制することができ、充放電できる電池容量、つまり、二次電池の容量を増やすことができる。これによって、高エネルギー密度の非水電解質二次電池を得ることが可能になる。
Here, FIG. 1 is a diagram schematically showing a combination of a positive electrode and a negative electrode having different irreversible capacities. In FIG. 1, the positive electrode A indicates a conventional general positive electrode, that is, a positive electrode having a remarkably small irreversible capacity compared to the negative electrode.
Moreover, in FIG. 1, the positive electrode B has shown the positive electrode used by this embodiment. FIG. 1 schematically shows the end positions of charge and discharge when the positive electrodes A and B are combined with the negative electrode in FIG.
As shown in FIG. 1, in this embodiment, the positive electrode B has an irreversible capacity equivalent to the irreversible capacity of the negative electrode. The battery capacity reduction due to the irreversible capacity can be suppressed, and the battery capacity that can be charged and discharged, that is, the capacity of the secondary battery can be increased. This makes it possible to obtain a non-aqueous electrolyte secondary battery with a high energy density.

Al−Si合金のSi含有量(Al−Si合金中のSi濃度)は、0.5質量%(以下、単に「%」と記す)以上にすることが好ましい。Si含有量が0.5%未満の場合には、Al−Si合金の酸化反応に起因する電流応答が少なく十分な正極不可逆容量が得られず、負極の不可逆容量を相殺できない。
Al−Si合金は、Al−Si二元系の共晶温度である200℃以上に加熱することが好ましい。200℃以上で加熱することで、Al−Siの共晶組織の形成を促進することができるためである。
The Si content of the Al—Si alloy (Si concentration in the Al—Si alloy) is preferably 0.5% by mass (hereinafter simply referred to as “%”) or more. When the Si content is less than 0.5%, the current response due to the oxidation reaction of the Al—Si alloy is small and a sufficient positive electrode irreversible capacity cannot be obtained, and the irreversible capacity of the negative electrode cannot be offset.
The Al—Si alloy is preferably heated to 200 ° C. or higher, which is the eutectic temperature of the Al—Si binary system. This is because the formation of an Al—Si eutectic structure can be promoted by heating at 200 ° C. or higher.

正極用合材は、上述した活物質およびAl−Si合金に加え、導電材や結着剤を更に含有することが好ましい。また、正極用合材は、更に増粘剤や分散剤を含有していても良い。
導電材は、特に限定されるものではなく、公知または市販のものを使用することができる。例えば、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、カーボンナノチューブ、炭素繊維、活性炭、黒鉛などが挙げられる。
The positive electrode mixture preferably further contains a conductive material and a binder in addition to the above-described active material and Al—Si alloy. Moreover, the positive electrode mixture may further contain a thickener or a dispersant.
The conductive material is not particularly limited, and a known or commercially available material can be used. Examples thereof include carbon black such as acetylene black and ketjen black, carbon nanotubes, carbon fibers, activated carbon, and graphite.

結着剤は、特に限定されるものではなく、公知または市販のものを使用することができる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルピロリドン(PVP)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、アクリル樹脂などが挙げられる。   A binder is not specifically limited, A well-known or commercially available thing can be used. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinylpyrrolidone (PVP), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, styrene butadiene rubber (SBR), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), acrylic resin and the like.

溶媒は、特に限定されるものではなく、公知または市販のものを使用できる。例えば、N−メチル−2−ピロリドン、水などが挙げられる。結着剤としてポリフッ化ビニリデンを用いる場合には、N−メチル−2−ピロリドンを溶媒に用いるのが好ましく、結着剤としてポリビニルアルコール、カルボキシメチルセルロースなどを用いる場合は、水を溶媒に用いるのが好ましい。   The solvent is not particularly limited, and known or commercially available solvents can be used. For example, N-methyl-2-pyrrolidone, water and the like can be mentioned. When using polyvinylidene fluoride as a binder, it is preferable to use N-methyl-2-pyrrolidone as a solvent. When using polyvinyl alcohol, carboxymethyl cellulose, or the like as a binder, water is preferably used as a solvent. preferable.

負極は、非水電解質二次電池に使用できるものであれば特に制限されるものではなく、リチウムの吸蔵放出が可能なグラファイト負極や金属・酸化物・合金系の負極を広く適用可能である。
負極活物質は、特に制限されるものではなく、例えば、天然黒鉛や人造黒鉛、メソカーボンマイクロビーズ(MCMB)、ハードカーボンやソフトカーボンなどの炭素材料、Al、Si、Snなどのリチウムを吸蔵放出することができる金属材料や合金材料、SiO、SiO2、チタン酸リチウム(Li4Ti512)などの酸化物材料などを用いることができる。
The negative electrode is not particularly limited as long as it can be used for a non-aqueous electrolyte secondary battery, and a graphite negative electrode capable of occluding and releasing lithium and a metal / oxide / alloy negative electrode are widely applicable.
The negative electrode active material is not particularly limited. For example, natural graphite, artificial graphite, mesocarbon microbeads (MCMB), carbon materials such as hard carbon and soft carbon, and lithium such as Al, Si, and Sn are occluded and released. Metal materials and alloy materials that can be used, oxide materials such as SiO, SiO 2 , and lithium titanate (Li 4 Ti 5 0 12 ) can be used.

結着剤は、特に制限されるものではなく、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴム、コアシェルバインダー、ポリビニルアルコール、カルボキシメチルセルロース、ポリイミドやポリアミドイミドなどのイミド系樹脂などを用いることができる。   The binder is not particularly limited. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, styrene butadiene rubber, core shell binder, polyvinyl alcohol, carboxymethyl cellulose, polyimide, and polyamide. An imide resin such as imide can be used.

導電助材は、正極に用いるものと同様のもの、例えば、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、活性炭、黒鉛などが用いられる。
正極と負極のセパレータには、一般的に用いられているポリエチレン(PE)、ポリプロピレン(PP)などの高分子膜が用いられる。また、非水電解質には、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)などの有機溶媒に溶解させた六フッ化リン酸リチウム(LiPF6)、過塩素酸リチウム(LiClO4)が用いられる。
As the conductive additive, the same materials as those used for the positive electrode, for example, carbon black such as acetylene black and ketjen black, activated carbon, graphite and the like are used.
For the separator between the positive electrode and the negative electrode, generally used polymer films such as polyethylene (PE) and polypropylene (PP) are used. As the non-aqueous electrolyte, lithium hexafluorophosphate (LiPF 6 ) or lithium perchlorate (LiClO 4 ) dissolved in an organic solvent such as ethylene carbonate (EC) or diethyl carbonate (DEC) is used.

集電体は、特に限定するものではなく、例えば、アルミニウム箔や銅箔などの金属箔、多孔質アルミニウムなどの多孔質金属などを用いることができる。   The current collector is not particularly limited, and for example, a metal foil such as an aluminum foil or a copper foil, a porous metal such as porous aluminum, or the like can be used.

以下に、実施例および比較例を挙げて本発明をより一層詳述する。なお、本発明は、以下の実施例に限定されるものではない。   Below, an Example and a comparative example are given and this invention is explained in full detail. The present invention is not limited to the following examples.

<実施例1>
(Al−Si合金の調製)
A1−12.6%Si合金を真空中にて580℃で5分間加熱処理を行った。その後、25℃まで冷却した。
<Example 1>
(Preparation of Al-Si alloy)
The A1-12.6% Si alloy was heat-treated at 580 ° C. for 5 minutes in a vacuum. Then, it cooled to 25 degreeC.

(正極の作製)
正極活物質として、炭素被覆リン酸鉄リチウム100重量部、導電材としてアセチレンブラック6.8重量部、結着剤として水分散バインダである固形分濃度40wt.%のアクリル系共重合体3重量部(固形分として)、添加剤として、A1−12.6%Si合金を正極活物質に対して0.5質量%、ならびに、分散剤として、水溶液中の固形分濃度2wt.%のカルボキシメチルセルロース2重量部(固形分として)とを含有する正極用合材を用意し、この正極用合材を、溶媒であるイオン交換水20gに分散して、スラリーを調製した。
このスラリーを、集電体である厚み20μmのアルミニウム箔に塗布し(塗工量;70g/m2)、70℃で10分間乾燥させた後、所定の電極密度(1.80g/cc)になるまでプレス処理により加圧し、正極1を作製した。
(Preparation of positive electrode)
As the positive electrode active material, 100 parts by weight of carbon-coated lithium iron phosphate, 6.8 parts by weight of acetylene black as a conductive material, and a solid content concentration of 40 wt. % Acrylic copolymer 3 parts by weight (as solid content), as additive, A1-12.6% Si alloy is 0.5% by mass with respect to the positive electrode active material, and as a dispersant, Solid content concentration 2 wt. A positive electrode mixture containing 2 parts by weight of carboxymethyl cellulose (as solid content) was prepared, and the positive electrode mixture was dispersed in 20 g of ion-exchanged water as a solvent to prepare a slurry.
This slurry was applied to an aluminum foil having a thickness of 20 μm as a current collector (coating amount: 70 g / m 2 ), dried at 70 ° C. for 10 minutes, and then adjusted to a predetermined electrode density (1.80 g / cc). Pressurization was performed by pressing until the positive electrode 1 was produced.

(評価セルの作製)
正極1を作用極に用いた3極式評価セルを作製した。対極及び参照極にはリチウム金属を用いた。電解液には、エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートとの混合溶媒(体積比で2:5:3)にLiPF6を1.3mol/L溶解させた非水電解液を用い、セパレータには、微多孔質ポリエチレン膜を用いた。外装体には、ポリプロピレンブロックを加工した樹脂製容器を用い、作用極、対極及び参照極に設けた各端子の開放端部が外部露出するように電極群を収納封口した。
(Production of evaluation cell)
A tripolar evaluation cell using the positive electrode 1 as a working electrode was produced. Lithium metal was used for the counter electrode and the reference electrode. The electrolyte used was a non-aqueous electrolyte obtained by dissolving 1.3 mol / L of LiPF 6 in a mixed solvent (volume ratio 2: 5: 3) with ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate. A microporous polyethylene membrane was used. A resin container in which a polypropylene block was processed was used for the exterior body, and the electrode group was housed and sealed so that the open ends of the terminals provided on the working electrode, the counter electrode, and the reference electrode were exposed to the outside.

(電池試験)
上記電池を用いて、充放電特性の評価を行った。充放電試験は0.1Cで4.2Vまで充電し、0.1Cで2.0Vまで放電させた。このときの充電容量、放電容量、充電容量と放電容量の差である不可逆容量、充電容量に対する放電容量の割合である効率について調査した。
(Battery test)
The charge / discharge characteristics were evaluated using the battery. In the charge / discharge test, the battery was charged at 0.1 C to 4.2 V and discharged at 0.1 C to 2.0 V. The charging capacity, the discharging capacity, the irreversible capacity that is the difference between the charging capacity and the discharging capacity, and the efficiency that is the ratio of the discharging capacity to the charging capacity were investigated.

<実施例2>
添加剤としてA1−12.6%Si合金を正極活物質に対して1.5質量%とした以外は実施例1と同様に正極2を作製した。次いで、当該正極2を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Example 2>
A positive electrode 2 was produced in the same manner as in Example 1 except that an A1-12.6% Si alloy as an additive was changed to 1.5 mass% with respect to the positive electrode active material. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 2 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<実施例3>
添加剤としてA1−12.6%Si合金を正極活物質に対して3.0質量%とした以外は実施例1と同様に正極3を作製した。次いで、当該正極3を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Example 3>
A positive electrode 3 was produced in the same manner as in Example 1 except that an A1-12.6% Si alloy as an additive was changed to 3.0% by mass with respect to the positive electrode active material. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 3 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<実施例4>
添加剤としてA1−12.6%Si合金を正極活物質に対して10.0質量%とした以外は実施例1と同様に正極4を作製した。次いで、当該正極4を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Example 4>
A positive electrode 4 was produced in the same manner as in Example 1 except that A1-12.6% Si alloy as an additive was changed to 10.0% by mass with respect to the positive electrode active material. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 4 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<比較例1>
正極活物質として、炭素被覆リン酸鉄リチウム100重量部、導電材としてアセチレンブラック6.8重量部、結着剤として水分散バインダである固形分濃度40質量%のアクリル系共重合体3重量部(固形分として)、ならびに、分散剤として、水溶液中の固形分濃度2質量%のカルボキシメチルセルロース2重量部(固形分として)とを含有する正極用合材を用意し、この正極用合材を、溶媒であるイオン交換水20gに分散して、スラリーを調製した。
このスラリーを、集電体である厚み20μmのアルミニウム箔に塗布し(塗工量;70g/m2)、70℃で10分間乾燥させた後、所定の電極密度(1.80g/cc)になるまでプレス処理により加圧し、正極5を作製した。
正極5を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Comparative Example 1>
100 parts by weight of carbon-coated lithium iron phosphate as a positive electrode active material, 6.8 parts by weight of acetylene black as a conductive material, and 3 parts by weight of an acrylic copolymer having a solid content concentration of 40% by mass as a binder. (As solid content), and as a dispersant, a positive electrode mixture containing 2 parts by weight (as solid content) of carboxymethyl cellulose having a solid content concentration of 2% by mass in an aqueous solution is prepared. The slurry was dispersed in 20 g of ion-exchanged water as a solvent.
This slurry was applied to an aluminum foil having a thickness of 20 μm as a current collector (coating amount: 70 g / m 2 ), dried at 70 ° C. for 10 minutes, and then adjusted to a predetermined electrode density (1.80 g / cc). Pressurization was performed by press treatment until a positive electrode 5 was produced.
An evaluation cell similar to that in Example 1 was prepared except that the positive electrode 5 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

正極1〜正極5の初回充放電容量、正極不可逆容量、充電容量に対する放電容量の割合である効率を表1に示す。また、正極1〜正極5の充放電曲線を図2に示す。なお、図2中、「Potential」は電位を示し、「Capasity」は容量を示している。   Table 1 shows the initial charge / discharge capacity of the positive electrode 1 to the positive electrode 5, the irreversible capacity of the positive electrode, and the efficiency as the ratio of the discharge capacity to the charge capacity. Moreover, the charging / discharging curve of the positive electrode 1-the positive electrode 5 is shown in FIG. In FIG. 2, “Potential” indicates a potential, and “Capacity” indicates a capacity.

Figure 0006207207
Figure 0006207207

表1に示す結果から明らかなように、正極1〜正極4は、正極5に比べて、充電容量と不可逆容量が大きく、さらに、放電容量は同等であるため、低い効率(53.4%〜92.0%)である。このような性能が得られる要因は、図2に示すように、4V(対Li)付近に、A1−Si合金に由来する酸化反応が生じるためと考えられる。
また、表1に示すように、Al−Si合金の添加量が多いほど、初回充電容量と不可逆容量が大きくなり、効率を低くすることができる。
As is clear from the results shown in Table 1, the positive electrode 1 to the positive electrode 4 have a large charge capacity and irreversible capacity as compared with the positive electrode 5, and furthermore, the discharge capacity is equivalent, so that the low efficiency (53.4% to 92.0%). The reason why such performance is obtained is considered to be because an oxidation reaction derived from the A1-Si alloy occurs in the vicinity of 4 V (vs. Li) as shown in FIG.
Moreover, as shown in Table 1, the larger the amount of Al-Si alloy added, the larger the initial charge capacity and the irreversible capacity, and the lower the efficiency.

次に、Al−Si合金中のSi含有量による効果を確認するため、Si含有量(Si濃度)を夫々変化させて試験を行った。   Next, in order to confirm the effect of the Si content in the Al—Si alloy, the test was performed by changing the Si content (Si concentration).

<実施例5>
(Al−Si合金の調製)
A1−0.5%Si合金を真空中にて350℃で1時間加熱処理を行った。その後、25℃まで冷却した。
<Example 5>
(Preparation of Al-Si alloy)
The A1-0.5% Si alloy was heat-treated at 350 ° C. for 1 hour in a vacuum. Then, it cooled to 25 degreeC.

正極活物質として、炭素被覆リン酸鉄リチウム100重量部、導電材としてアセチレンブラック6.8重量部、結着剤として水分散バインダである固形分濃度40wt.%のアクリル系共重合体3重量部(固形分として)、添加剤として、A1−0.5%Si合金10質量%、ならびに、分散剤として、水溶液中の固形分濃度2wt.%のカルボキシメチルセルロース2重量部(固形分として)とを含有する正極用合材を用意し、この正極用合材を、溶媒であるイオン交換水20gに分散して、スラリーを調製した。
このスラリーを、集電体である厚み20μmのアルミニウム箔に塗布し(塗工量;70g/m2)、70℃で10分間乾燥させた後、所定の電極密度(1.80g/cc)になるまでプレス処理により加圧し、正極6を作製した。次いで、当該正極6を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
As the positive electrode active material, 100 parts by weight of carbon-coated lithium iron phosphate, 6.8 parts by weight of acetylene black as a conductive material, and a solid content concentration of 40 wt. % Acrylic copolymer 3 parts by weight (as solids), A1-0.5% Si alloy 10% by weight as additive, and solids concentration 2wt. A positive electrode mixture containing 2 parts by weight of carboxymethyl cellulose (as solid content) was prepared, and the positive electrode mixture was dispersed in 20 g of ion-exchanged water as a solvent to prepare a slurry.
This slurry was applied to an aluminum foil having a thickness of 20 μm as a current collector (coating amount: 70 g / m 2 ), dried at 70 ° C. for 10 minutes, and then adjusted to a predetermined electrode density (1.80 g / cc). The positive electrode 6 was manufactured by pressurizing until it became. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 6 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<実施例6>
Al−Si合金中のSi含有量をAl−2.4%Siとした以外は実施例1と同様に正極7を作製した。次いで、当該正極7を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Example 6>
A positive electrode 7 was produced in the same manner as in Example 1 except that the Si content in the Al—Si alloy was changed to Al-2.4% Si. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 7 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<実施例7>
Al−Si合金中のSi含有量をAl−4.8%Siとした以外は実施例1と同様に正極8を作製した。次いで、当該正極8を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Example 7>
A positive electrode 8 was produced in the same manner as in Example 1 except that the Si content in the Al—Si alloy was changed to Al-4.8% Si. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 8 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<実施例8>
Al−Si合金中のSi含有量をAl−8.0%Siとした以外は実施例1と同様に正極9を作製した。次いで、当該正極9を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Example 8>
A positive electrode 9 was produced in the same manner as in Example 1 except that the Si content in the Al—Si alloy was changed to Al-8.0% Si. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 9 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

<比較例2>
Al−Si合金中のSi含有量をAl−0.4%Siとした以外は実施例1と同様に正極10を作製した。次いで、当該正極10を試験極としたこと以外は実施例1と同様の評価セルを作製し、実施例1と同様の電池試験を実施した。
<Comparative example 2>
A positive electrode 10 was produced in the same manner as in Example 1 except that the Si content in the Al-Si alloy was changed to Al-0.4% Si. Next, an evaluation cell similar to that in Example 1 was prepared except that the positive electrode 10 was used as a test electrode, and a battery test similar to that in Example 1 was performed.

正極4、正極6〜正極10の充放電容量、正極不可逆容量、効率を表2に示す。また、正極4、正極6〜正極10の充放電曲線を図3に示す。なお、図3中、「Potential」は電位を示し、「Capasity」は容量を示している。   Table 2 shows the charge / discharge capacity, positive electrode irreversible capacity, and efficiency of the positive electrode 4 and the positive electrodes 6 to 10. Moreover, the charge / discharge curves of the positive electrode 4 and the positive electrode 6 to the positive electrode 10 are shown in FIG. In FIG. 3, “Potential” indicates a potential, and “Capacity” indicates a capacity.

Figure 0006207207
Figure 0006207207

表2に示す結果から明らかなように、正極4と正極6〜正極9は、正極10に比べて、初回充電容量と不可逆容量が大きく、さらに、初回放電容量は同等であるため、低い効率(53.4%〜98.1%)である。このような性能が得られる要因は、図3に示すように、4V(対Li)付近に、A1−Si合金に由来する不可逆な反応が生じるためと考えられる。   As is clear from the results shown in Table 2, the positive electrode 4 and the positive electrodes 6 to 9 have a larger initial charge capacity and irreversible capacity than the positive electrode 10, and furthermore, the initial discharge capacity is the same. 53.4% to 98.1%). It is considered that the reason why such performance is obtained is that an irreversible reaction derived from the A1-Si alloy occurs in the vicinity of 4 V (vs. Li) as shown in FIG.

このようにして、Al−Si合金の添加量やSi含有量を調整することにより、正極の不可逆容量を容易に制御することが可能になる。このため、グラファイト負極や、高容量ではあるが効率の低い金属・酸化物・合金系負極に対して、適正量のA1−Si合金を添加した正極を使用することにより、負極の不可逆容量と同等の不可逆容量を有する正極を容易に得ることができる。したがって、負極の不可逆容量による電池の容量低下を抑制し、高エネルギー密度の非水電解質二次電池を得ることができる。   Thus, the irreversible capacity of the positive electrode can be easily controlled by adjusting the addition amount of the Al—Si alloy and the Si content. For this reason, it is equivalent to the irreversible capacity of a negative electrode by using a positive electrode with an appropriate amount of A1-Si alloy added to a graphite negative electrode or a metal / oxide / alloy negative electrode with high capacity but low efficiency. A positive electrode having an irreversible capacity can be easily obtained. Therefore, it is possible to suppress a decrease in battery capacity due to the irreversible capacity of the negative electrode and obtain a non-aqueous electrolyte secondary battery with high energy density.

以上説明したように、本実施の形態によれば、少なくともリチウムの吸蔵放出が可能な活物質を含む正極が、添加剤として、Al−Si合金などの少なくともアルミニウム(Al)とケイ素(Si)とを含む合金を含有するようにしたため、正極の不可逆容量を容易に制御でき、その結果、非水電解質二次電池の高エネルギー密度化に好適な不可逆容量を有する正極を容易に得ることができる。
例えば、公知の方法により正極活物質をリン酸鉄リチウム、負極活物質を炭素とし10Ahの非水電解質二次電池を作製する場合、負極の不可逆容量は1.5Ahである。これに対し、本発明の正極7を用いた場合負極の不可逆容量は約1.5Ahである。つまり、本発明によれば正極と負極の不可逆容量は略同一であり、高容量の非水電解質二次電池を得ることが可能である。
この構成は、前述した特許文献1と比べて、高電圧充電を行う必要がないため、電解液の分解、ガス発生、活物質の劣化などを抑制することができ、また、特許文献2および3と比べて、正極表面上などにリチウム金属膜を蒸着する必要がないため、金属膜の劣化や金属膜形成のための設備追加などが不要である。また、特許文献4と比べて、専用セルが不要であるなどの効果も得られる。
As described above, according to the present embodiment, the positive electrode including at least an active material capable of occluding and releasing lithium has at least aluminum (Al) and silicon (Si) such as an Al—Si alloy as additives. Therefore, the irreversible capacity of the positive electrode can be easily controlled, and as a result, a positive electrode having an irreversible capacity suitable for increasing the energy density of the nonaqueous electrolyte secondary battery can be easily obtained.
For example, when a 10 Ah non-aqueous electrolyte secondary battery is manufactured using a known method in which the positive electrode active material is lithium iron phosphate and the negative electrode active material is carbon, the irreversible capacity of the negative electrode is 1.5 Ah. On the other hand, when the positive electrode 7 of the present invention is used, the irreversible capacity of the negative electrode is about 1.5 Ah. That is, according to the present invention, the irreversible capacities of the positive electrode and the negative electrode are substantially the same, and a high-capacity nonaqueous electrolyte secondary battery can be obtained.
Since this configuration does not require high-voltage charging as compared with Patent Document 1 described above, it is possible to suppress decomposition of the electrolytic solution, gas generation, deterioration of the active material, and the like. Compared to the above, since it is not necessary to deposit a lithium metal film on the surface of the positive electrode, it is not necessary to deteriorate the metal film or add equipment for forming the metal film. Further, as compared with Patent Document 4, there is an effect that a dedicated cell is unnecessary.

さらに、本構成では、Al−Si合金のSi含有量が0.5質量%以上であるため、十分な正極不可逆容量を得ることができる。
また、正極活物質層が、導電材と結着剤を含むため、電子の伝導性と活物質やAl−Si合金などの固着性を確保することができる。
また、本実施形態では、正極活物質中に正極活物質とは別にAl−Si合金を添加した例を示したが、アルミニウム(Al)とケイ素(Si)とを含む合金を添加しても同様の効果を得ることが可能である。
また、本実施例において正極活物質に炭素被覆リン酸鉄リチウムを用いた例を示したが、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)のリチウム金属化合物を用いても同様の効果を得ることが可能である。
Furthermore, in this configuration, since the Si content of the Al—Si alloy is 0.5 mass% or more, a sufficient positive electrode irreversible capacity can be obtained.
In addition, since the positive electrode active material layer includes a conductive material and a binder, it is possible to ensure electronic conductivity and adhesion of the active material, an Al—Si alloy, and the like.
In the present embodiment, an example in which an Al—Si alloy is added to the positive electrode active material separately from the positive electrode active material has been described, but the same may be true even when an alloy containing aluminum (Al) and silicon (Si) is added. It is possible to obtain the effect.
Although the positive electrode active material in the present embodiment shows an example using the carbon-coated lithium iron phosphate, lithium cobalt oxide (LiCoO 2), lithium nickelate (LiNiO 2), lithium manganate (LiMn 2 O 4) The same effect can be obtained even if a lithium metal compound is used.

Claims (5)

少なくともリチウムの吸蔵放出が可能な活物質を含む正極に、Al−Si合金を含有させ、
前記Al−Si合金の添加量を、前記正極と組み合わせられる負極の不可逆容量に応じて調整することによって、当該正極の不可逆容量は、前記負極の不可逆容量と同等であって、かつ、3.1mAh/g以上であることを特徴とする非水電解質二次電池用の正極の不可逆容量調整方法。
A positive electrode containing an active material capable of at least lithium storage and release, is contained A l-Si alloy,
The amount of the Al-Si alloy, wherein by adjusting according to the irreversible capacity of the negative electrode to be combined with the positive electrode, the irreversible capacity of the positive electrode, a comparable irreversible capacity of the negative electrode, and, 3.1MAh irreversible capacity adjustment method of a positive electrode for a non-aqueous electrolyte secondary battery according to / g or more der wherein Rukoto.
前記Al−Si合金に、Al−Siの共晶組織の形成を促進する熱処理を行うことを特徴とする請求項1に記載の非水電解質二次電池用の正極の不可逆容量調整方法。   The method for adjusting the irreversible capacity of a positive electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the Al—Si alloy is subjected to a heat treatment that promotes formation of an eutectic structure of Al—Si. 前記Al−Si合金のSi含有量が、0.5質量%以上であることを特徴とする請求項1又は2に記載の非水電解質二次電池用の正極の不可逆容量調整方法。   The method for adjusting the irreversible capacity of a positive electrode for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the Si content of the Al-Si alloy is 0.5 mass% or more. 前記正極がさらに、導電材と結着剤を含むことを特徴とする請求項1乃至3のいずれか一項に記載の非水電解質二次電池用の正極の不可逆容量調整方法。   The irreversible capacity adjustment method for a positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the positive electrode further contains a conductive material and a binder. 少なくともリチウムの吸蔵放出が可能な活物質を含む正極と、リチウムの吸蔵放出が可能な負極と、これら正負極間に配置されたセパレータと、非水電解質とを備え、
前記正極は、加熱処理によりAl−Siの共晶組織の形成が促進されたAl−Si合金を含有し、
前記Al−Si合金の添加量は、当該正極と組み合わせられる前記負極の不可逆容量と同等の不可逆容量を得る量であって、かつ、3.1mAh/g以上の不可逆容量を得る量であることを特徴とする非水電解質二次電池。
A positive electrode including at least an active material capable of occluding and releasing lithium; a negative electrode capable of occluding and releasing lithium; a separator disposed between the positive and negative electrodes; and a non-aqueous electrolyte.
The positive electrode contains Al-Si alloy formation of the eutectic structure of Al-Si is promoted by applying a heat treatment,
Said amount of Al-Si alloy, an amount obtained irreversible capacity equivalent to the irreversible capacity of the negative electrode to be combined with the positive electrode, and an amount to obtain the irreversible capacity of more 3.1mAh / g nonaqueous electrolyte secondary batteries characterized.
JP2013082784A 2013-04-11 2013-04-11 Method for adjusting irreversible capacity of positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Active JP6207207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013082784A JP6207207B2 (en) 2013-04-11 2013-04-11 Method for adjusting irreversible capacity of positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013082784A JP6207207B2 (en) 2013-04-11 2013-04-11 Method for adjusting irreversible capacity of positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2014207077A JP2014207077A (en) 2014-10-30
JP6207207B2 true JP6207207B2 (en) 2017-10-04

Family

ID=52120498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013082784A Active JP6207207B2 (en) 2013-04-11 2013-04-11 Method for adjusting irreversible capacity of positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6207207B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015064977A (en) * 2013-09-24 2015-04-09 古河電池株式会社 Positive electrode for nonaqueous electrolyte secondary batteries, mixture material for positive electrodes of nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3475530B2 (en) * 1994-11-29 2003-12-08 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP6071243B2 (en) * 2012-04-27 2017-02-01 株式会社Uacj Method for producing electrode for non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2014207077A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
WO2017169616A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries
JP7028164B2 (en) Lithium ion secondary battery
US9620767B2 (en) Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery including the same, and method for manufacturing the same
JP2015179565A (en) Electrode for nonaqueous electrolyte batteries, nonaqueous electrolyte secondary battery and battery pack
JP6466161B2 (en) Anode material for lithium ion batteries
JP2014053193A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP6051318B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
JP2015520921A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2013110105A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery including the negative electrode
JP2016119154A (en) Lithium secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP6447621B2 (en) Nonaqueous electrolyte secondary battery
WO2019044491A1 (en) Electrode for electricity storage devices and method for producing same
JP2012216285A (en) Nonaqueous electrolyte secondary battery
JP2011181357A (en) Nonaqueous electrolyte battery
US9312542B2 (en) Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery including the same, and method for manufacturing the same
JP6369970B2 (en) Composite positive electrode active material, electrode for lithium secondary battery including the same, and lithium secondary battery
JP2020140896A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP6208584B2 (en) Nonaqueous electrolyte secondary battery
JP5890715B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6207207B2 (en) Method for adjusting irreversible capacity of positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5625848B2 (en) Lithium ion secondary battery and manufacturing method thereof
WO2014007183A1 (en) Lithium ion secondary battery
JP6853616B2 (en) Electrodes for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, and battery packs
JP6413988B2 (en) All solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170905

R150 Certificate of patent or registration of utility model

Ref document number: 6207207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250