JP6208584B2 - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP6208584B2 JP6208584B2 JP2014002920A JP2014002920A JP6208584B2 JP 6208584 B2 JP6208584 B2 JP 6208584B2 JP 2014002920 A JP2014002920 A JP 2014002920A JP 2014002920 A JP2014002920 A JP 2014002920A JP 6208584 B2 JP6208584 B2 JP 6208584B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- negative electrode
- lithium
- graphite
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 83
- 239000000203 mixture Substances 0.000 claims description 106
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 98
- 229910002804 graphite Inorganic materials 0.000 claims description 77
- 239000010439 graphite Substances 0.000 claims description 77
- 229910052744 lithium Inorganic materials 0.000 claims description 75
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 66
- 229910044991 metal oxide Inorganic materials 0.000 claims description 66
- 150000004706 metal oxides Chemical class 0.000 claims description 66
- 239000007774 positive electrode material Substances 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 30
- 238000007600 charging Methods 0.000 claims description 29
- 239000011230 binding agent Substances 0.000 claims description 23
- 239000007773 negative electrode material Substances 0.000 claims description 23
- 239000006230 acetylene black Substances 0.000 claims description 17
- 239000002482 conductive additive Substances 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 47
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 29
- 229910001416 lithium ion Inorganic materials 0.000 description 29
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 20
- 238000000034 method Methods 0.000 description 20
- 238000003795 desorption Methods 0.000 description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 239000010936 titanium Substances 0.000 description 12
- 239000000843 powder Substances 0.000 description 11
- 238000010298 pulverizing process Methods 0.000 description 11
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 239000012752 auxiliary agent Substances 0.000 description 10
- 229920001940 conductive polymer Polymers 0.000 description 10
- 239000004570 mortar (masonry) Substances 0.000 description 10
- -1 cobalt sulfate) Chemical class 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 9
- 150000002641 lithium Chemical class 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000002033 PVDF binder Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000011888 foil Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 8
- 229910001415 sodium ion Inorganic materials 0.000 description 8
- 239000004698 Polyethylene Substances 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229920003048 styrene butadiene rubber Polymers 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 4
- 229910021382 natural graphite Inorganic materials 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 238000003490 calendering Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000010277 constant-current charging Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 210000001787 dendrite Anatomy 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- GUUVPOWQJOLRAS-UHFFFAOYSA-N Diphenyl disulfide Chemical compound C=1C=CC=CC=1SSC1=CC=CC=C1 GUUVPOWQJOLRAS-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000011269 tar Substances 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910011458 Li4/3 Ti5/3O4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 241000705939 Shortia uniflora Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- IDSMHEZTLOUMLM-UHFFFAOYSA-N [Li].[O].[Co] Chemical class [Li].[O].[Co] IDSMHEZTLOUMLM-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- BAPJBEWLBFYGME-UHFFFAOYSA-N acrylic acid methyl ester Natural products COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- ZOZLFBZFMZKVFW-UHFFFAOYSA-N aluminum;zinc Chemical compound [Al+3].[Zn+2] ZOZLFBZFMZKVFW-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- HEPLMSKRHVKCAQ-UHFFFAOYSA-N lead nickel Chemical compound [Ni].[Pb] HEPLMSKRHVKCAQ-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- QEXMICRJPVUPSN-UHFFFAOYSA-N lithium manganese(2+) oxygen(2-) Chemical class [O-2].[Mn+2].[Li+] QEXMICRJPVUPSN-UHFFFAOYSA-N 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical class [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Chemical group 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003459 sulfonic acid esters Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical class FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、優れた充放電サイクル特性を有する非水電解質二次電池に関するものである。 The present invention relates to a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics.
リチウムイオン二次電池などの非水電解質二次電池は、高電圧、高エネルギー密度であることから、携帯機器などの駆動電源などとして需要が増大傾向にある。現在、この非水電解質二次電池の正極活物質としては、容量が大きく、可逆性もよいコバルト酸リチウムが主に用いられている。 Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have a high voltage and high energy density, and therefore there is an increasing demand for driving power sources for portable devices and the like. Currently, lithium cobalt oxide having a large capacity and good reversibility is mainly used as a positive electrode active material of the non-aqueous electrolyte secondary battery.
現在、非水電解質二次電池には、適用される機器の改良に伴って、より高容量であることが要求されている。しかし、コバルト酸リチウムを使用した電池においては、その電池容量は、ほぼ限界に近いところまできている。 Currently, non-aqueous electrolyte secondary batteries are required to have higher capacities as the applied equipment is improved. However, the battery capacity using lithium cobalt oxide is almost close to the limit.
こうしたことから、例えば、電池の充電時の上限電圧を従来よりも高めることで、電池の高容量化への要請に対応しようとする検討がなされている。しかしながら、上限電圧を高く設定して電池の充放電を繰り返すと、容量が急激に低下するといった問題も生じ得る。 For this reason, for example, studies are being made to meet the demand for higher battery capacity by increasing the upper limit voltage during battery charging than before. However, if the upper limit voltage is set high and the battery is repeatedly charged and discharged, there may be a problem that the capacity rapidly decreases.
そこで、充電時の上限電圧を高めつつ、良好な充放電サイクル特性を確保するための技術開発もなされている。例えば、特許文献1には、正極活物質として、特定組成のコバルト酸リチウム系化合物と特定組成のニッケルコバルト酸リチウム系化合物とを、特定の組成比で使用すると共に、密度を特定値以上とした正極合剤層を有する正極を用いることで、充電時の上限電圧を4.3V以上としても良好な充放電サイクル特性を発揮し得るリチウムイオン二次電池が提案されている。 In view of this, technical development has been made to ensure good charge / discharge cycle characteristics while increasing the upper limit voltage during charging. For example, in Patent Document 1, as a positive electrode active material, a lithium cobaltate compound having a specific composition and a lithium nickel cobaltate compound having a specific composition are used at a specific composition ratio, and the density is set to a specific value or more. By using a positive electrode having a positive electrode mixture layer, a lithium ion secondary battery has been proposed that can exhibit good charge / discharge cycle characteristics even when the upper limit voltage during charging is 4.3 V or higher.
本発明は、特許文献1に開示の技術とは異なる手段によって、充電時の上限電圧を高めても、優れた充放電サイクル特性を発揮し得る非水電解質二次電池を提供することを目的とする。 An object of the present invention is to provide a nonaqueous electrolyte secondary battery that can exhibit excellent charge / discharge cycle characteristics even when the upper limit voltage during charging is increased by means different from the technique disclosed in Patent Document 1. To do.
前記目的を達成し得た本発明の非水電解質二次電池は、正極、負極、セパレータおよび非水電解質を有する非水電解質二次電池であって、前記正極は、正極活物質、導電助剤およびバインダを含有する正極合剤層を有しており、
前記正極合剤層は、前記正極活物質として、下記一般式(1)
LiaCo1−b−cM1 bM2 cO2 (1)
〔前記一般式(1)中、M1は、AlおよびMgよりなる群から選択される少なくとも1種の元素で、M2は、Zr、Ti、Ni、Mn、Na、Bi、Ca、F、P、Sr、W、Ba、Si、Fe、Mo、V、Sn、Sb、Ta、Nb、Ge、Cr、K、S、Cu、およびZnよりなる群から選択される少なくとも1種の元素であり、0.9≦a≦1.10、0.015≦b≦0.1、0≦c、b+c≦0.12である〕で表されるリチウム含有金属酸化物を含有しており、前記正極合剤層における前記導電助剤の含有量が0.5質量%を超え2.0質量%以下であり、前記負極は、負極活物質およびバインダを含有する負極合剤層を有しており、前記負極合剤層は、前記負極活物質として、平均粒子径が15μmを超え25μm以下の黒鉛Aと、平均粒子径が8μm以上15μm以下であり、かつ黒鉛粒子の表面が非晶質炭素で被覆されている黒鉛Bとを、少なくとも含有していることを特徴とするものである。
The non-aqueous electrolyte secondary battery of the present invention that has achieved the above object is a non-aqueous electrolyte secondary battery having a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the positive electrode is a positive electrode active material, a conductive additive. And a positive electrode mixture layer containing a binder,
The positive electrode mixture layer has the following general formula (1) as the positive electrode active material.
Li a Co 1-bc M 1 b M 2 c O 2 (1)
[In the general formula (1), M 1 is at least one element selected from the group consisting of Al and Mg, and M 2 is Zr, Ti, Ni, Mn, Na, Bi, Ca, F, It is at least one element selected from the group consisting of P, Sr, W, Ba, Si, Fe, Mo, V, Sn, Sb, Ta, Nb, Ge, Cr, K, S, Cu, and Zn 0.9 ≦ a ≦ 1.10, 0.015 ≦ b ≦ 0.1, 0 ≦ c, b + c ≦ 0.12], and the positive electrode The conductive auxiliary agent content in the mixture layer is more than 0.5% by mass and 2.0% by mass or less, and the negative electrode has a negative electrode mixture layer containing a negative electrode active material and a binder, The negative electrode mixture layer is a graphite having an average particle diameter of more than 15 μm and 25 μm or less as the negative electrode active material. When the average particle diameter is not less 8μm than 15μm or less, and the graphite B the surface of the graphite particles are coated with amorphous carbon, and is characterized in that it contains at least.
本発明によれば、充電時の上限電圧を高めても、優れた充放電サイクル特性を発揮し得る非水電解質二次電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, even if it raises the upper limit voltage at the time of charge, the nonaqueous electrolyte secondary battery which can exhibit the outstanding charging / discharging cycling characteristics can be provided.
非水電解質二次電池では、一般に、正極活物質にコバルト酸リチウムなどのリチウム含有複合酸化物が使用され、負極活物質には黒鉛などの炭素材料が使用されているが、こうした正極活物質と負極活物質の組み合わせの場合、充電時における負極でのリチウムイオンの受け入れスピードよりも、正極からのリチウムイオンの脱離スピードの方が速い。 In non-aqueous electrolyte secondary batteries, a lithium-containing composite oxide such as lithium cobaltate is generally used as the positive electrode active material, and a carbon material such as graphite is used as the negative electrode active material. In the case of a combination of negative electrode active materials, the lithium ion desorption speed from the positive electrode is faster than the lithium ion acceptance speed at the negative electrode during charging.
充電時に正極から放出されたリチウムイオンが、負極で十分に受け入れられずに負極表面近傍で停滞すると、例えばリチウムデンドライトが負極表面で析出して、電池の特性が損なわれる虞があり、これが、充放電を繰り返すことで早期に電池の容量が減少する原因、すなわち電池の充放電サイクル特性低下の原因の一つとなる。 If lithium ions released from the positive electrode during charging are not sufficiently received by the negative electrode and stagnate in the vicinity of the negative electrode surface, for example, lithium dendrite may precipitate on the negative electrode surface, which may impair the battery characteristics. Repeating the discharge is one of the causes of the battery capacity decreasing at an early stage, that is, the cause of the deterioration of the charge / discharge cycle characteristics of the battery.
現在の非水電解質二次電池では、通常採用されている4.2V程度を充電の上限電圧として充放電を繰り返した場合には、良好な充放電サイクル特性が発揮されるものが多いが、これは、現在採用されている正極と負極との組み合わせにおいて、正極からのリチウムイオンの脱離スピードと負極でのリチウムイオンの受け入れスピードとのバランスが良好に保たれており、前記の理由でのリチウムデンドライトの析出が比較的生じ難いためであると考えられる。 Many current non-aqueous electrolyte secondary batteries exhibit good charge / discharge cycle characteristics when charging / discharging is repeated with the normally used voltage of about 4.2 V being the upper limit voltage for charging. In the combination of the positive electrode and the negative electrode that are currently employed, the balance between the lithium ion desorption speed from the positive electrode and the lithium ion acceptance speed at the negative electrode is well maintained. This is probably because the precipitation of dendrites is relatively difficult to occur.
ところが、非水電解質二次電池の充電の上限電圧を高めると、正極からのリチウムイオンの脱離スピードが増大するため、負極でのリチウムイオンの受け入れスピードとのバランスが崩れることから、充放電サイクル特性が低下するものと推測される。 However, if the upper limit voltage for charging the nonaqueous electrolyte secondary battery is increased, the lithium ion desorption speed from the positive electrode increases, and the balance with the lithium ion acceptance speed at the negative electrode is lost. It is presumed that the characteristics deteriorate.
そこで、本発明の非水電解質二次電池では、正極からのリチウムイオンの脱離スピードを低下させると共に、負極でのリチウムイオンの受け入れスピードを向上させ、例えば、充電時の上限電圧を4.4V以上とすることで正極からのリチウムイオンの脱離スピードが増大したとしても、負極でのリチウムイオンの受け入れがスムーズに進むようにした。これにより本発明の非水電解質二次電池では、充電時の上限電圧を高めても、負極でのリチウムデンドライトの析出を抑えることが可能であることから、優れた充放電サイクル特性を発揮することができる。また、本発明の非水電解質二次電池では、充電時の上限電圧を高めても、充電時における正極からのリチウムイオンの脱離スピードと負極でのリチウムイオンの受け入れスピードとのバランスが良好に保たれることから、連続充電特性や熱安定性も良好となる。 Therefore, in the nonaqueous electrolyte secondary battery of the present invention, the lithium ion desorption speed from the positive electrode is reduced and the lithium ion acceptance speed at the negative electrode is improved. For example, the upper limit voltage during charging is 4.4 V. Even if the desorption speed of lithium ions from the positive electrode is increased as described above, the lithium ions are smoothly accepted by the negative electrode. As a result, in the nonaqueous electrolyte secondary battery of the present invention, it is possible to suppress the precipitation of lithium dendrite at the negative electrode even if the upper limit voltage during charging is increased, and thus exhibit excellent charge / discharge cycle characteristics. Can do. In the nonaqueous electrolyte secondary battery of the present invention, even when the upper limit voltage during charging is increased, the balance between the lithium ion desorption speed from the positive electrode during charging and the lithium ion acceptance speed during the negative electrode is good. Since it is maintained, continuous charge characteristics and thermal stability are also improved.
本発明の非水電解質二次電池に係る正極は、正極活物質、バインダおよび導電助剤などを含有する正極合剤層を有しており、例えば、この正極合剤層を集電体の片面または両面に有する構造のものである。 The positive electrode according to the nonaqueous electrolyte secondary battery of the present invention has a positive electrode mixture layer containing a positive electrode active material, a binder, a conductive auxiliary agent, and the like. For example, the positive electrode mixture layer is disposed on one side of a current collector. Or it has the structure which has on both surfaces.
正極活物質には、前記一般式(1)で表されるリチウム含有金属酸化物を使用する。 As the positive electrode active material, the lithium-containing metal oxide represented by the general formula (1) is used.
前記一般式(1)で表されるリチウム含有金属酸化物において、元素M1は、電池の充電時におけるリチウム含有金属酸化物のリチウムイオンの脱離スピードの抑制に寄与する成分である。また、元素M1は、前記一般式(1)で表されるリチウム含有金属酸化物の高電圧下での安定性や熱安定性の向上にも寄与する。前記一般式(1)で表されるリチウム含有金属酸化物は、元素M1として、AlおよびMgのうちの1種のみを含有していてもよく、2種以上を含有していてもよい。 In the lithium-containing metal oxide represented by the general formula (1), the element M 1 is a component that contributes to the suppression of the lithium ion desorption speed of the lithium-containing metal oxide during battery charging. Elemental M 1 also contributes to improvement of stability and thermal stability at high voltages of the lithium-containing metal oxide represented by the general formula (1). Lithium-containing metal oxide represented by the general formula (1) is, as the element M 1, may contain only one of Al and Mg, may contain two or more kinds.
前記一般式(1)において、元素M1の量を表すbは、前記一般式(1)で表されるリチウム含有金属酸化物が元素M1を含有することによるリチウムイオンの脱離スピードの抑制効果や高電圧下での安定性向上効果、熱安定性向上効果を良好に確保する観点から、0.015以上であり、0.023以上であることが好ましい。 In Formula (1), b representing the amount of the element M 1 is the suppression of desorption speed of the lithium ions by the lithium-containing metal oxide represented by the general formula (1) contains an element M 1 From the viewpoint of satisfactorily securing the effect, the effect of improving the stability under high voltage, and the effect of improving the thermal stability, it is 0.015 or more and preferably 0.023 or more.
また、前記一般式(1)は、Zr、Ti、Ni、Mn、Na、Bi、Ca、F、P、Sr、W、Ba、Si、Fe、Mo、V、Sn、Sb、Ta、Nb、Ge、Cr、K、S、Cu、およびZnよりなる群から選択される少なくとも1種の元素M2を含有していてもよく、含有していなくてもよい。すなわち、前記一般式(1)において、元素M2の量を表すcは、0以上である。 Moreover, the said General formula (1) is Zr, Ti, Ni, Mn, Na, Bi, Ca, F, P, Sr, W, Ba, Si, Fe, Mo, V, Sn, Sb, Ta, Nb, At least one element M 2 selected from the group consisting of Ge, Cr, K, S, Cu, and Zn may or may not be contained. That is, in the general formula (1), c representing the amount of the element M 2 is 0 or more.
ただし、前記一般式(1)で表されるリチウム含有金属酸化物において、元素M1および元素M2の量が多すぎると、例えば、リチウム含有金属酸化物の容量向上に寄与する成分であるCoの量が少なくなって、容量低下を引き起こす虞がある。よって、前記一般式(1)において、元素M1の量を表すbは、0.1以下であり、0.04以下であることが好ましく、また、元素M1の量bと元素M2の量cとの合計b+cは、0.12以下であり、0.04以下であることが好ましい。 However, in the lithium-containing metal oxide represented by the general formula (1), if the amount of the element M 1 and the element M 2 is too large, for example, Co that is a component that contributes to the capacity improvement of the lithium-containing metal oxide There is a risk that the amount of the battery will decrease and the capacity will decrease. Therefore, in the general formula (1), b representing the amount of the element M 1 is 0.1 or less, and preferably 0.04 or less, and the amount b of the element M 1 and the amount of the element M 2 The total b + c with the amount c is 0.12 or less, and preferably 0.04 or less.
前記一般式(1)で表されるリチウム含有金属酸化物は、特に化学量論比に近い組成にときに、その真密度が大きくなり、より高いエネルギー体積密度を有する材料となるが、具体的には、前記一般式(1)において、0.9≦a≦1.10であり、Liの量aの値をこのように調節することで、真密度および充放電時の可逆性を高めることができる。 The lithium-containing metal oxide represented by the general formula (1) has a higher true density and a higher energy volume density, particularly when the composition is close to the stoichiometric ratio. In the general formula (1), 0.9 ≦ a ≦ 1.10, and by adjusting the value of the Li amount a in this way, the true density and reversibility at the time of charge / discharge can be improved. Can do.
前記一般式(1)で表されるリチウム含有金属酸化物は、Li含有化合物(水酸化リチウムなど)、Co含有化合物(硫酸コバルトなど)、元素M1を含有する化合物(酸化物、水酸化物、硫酸塩など)、および必要に応じて元素M2を含有する化合物(酸化物、水酸化物、硫酸塩など)を混合し、この原料混合物を焼成するなどして合成することができる。なお、前記一般式(1)で表されるリチウム含有金属酸化物を、より高い純度で合成するには、Coおよび元素M1、更には必要に応じて元素M2を含む複合化合物(水酸化物、酸化物など)とLi含有化合物などとを混合し、この原料混合物を焼成することが好ましい。 Lithium-containing metal oxide represented by the general formula (1) may, Li-containing compound (lithium hydroxide, etc.), Co-containing compound (such as cobalt sulfate), compound containing an element M 1 (oxides, hydroxides , Sulfate, etc.) and, if necessary, a compound containing the element M 2 (oxide, hydroxide, sulfate, etc.) can be mixed, and this raw material mixture can be fired. In addition, in order to synthesize the lithium-containing metal oxide represented by the general formula (1) with higher purity, a composite compound (hydroxylation) containing Co and the element M 1 and, if necessary, the element M 2 is used. It is preferable to mix a material, an oxide, etc.) and a Li-containing compound, and to fire the raw material mixture.
前記一般式(1)で表されるリチウム含有金属酸化物を合成するための原料混合物の焼成条件は、例えば、800〜1050℃で1〜24時間とすることができるが、一旦焼成温度よりも低い温度(例えば、250〜850℃)まで加熱し、その温度で保持することにより予備加熱を行い、その後に焼成温度まで昇温して反応を進行させることが好ましい。予備加熱の時間については特に制限はないが、通常、0.5〜30時間程度とすればよい。また、焼成時の雰囲気は、酸素を含む雰囲気(すなわち、大気中)、不活性ガス(アルゴン、ヘリウム、窒素など)と酸素ガスとの混合雰囲気、酸素ガス雰囲気などとすることができるが、その際の酸素濃度(体積基準)は、15%以上であることが好ましく、18%以上であることが好ましい。 The firing condition of the raw material mixture for synthesizing the lithium-containing metal oxide represented by the general formula (1) can be, for example, 800 to 1050 ° C. for 1 to 24 hours, but once the firing temperature is exceeded. It is preferable to heat up to a low temperature (for example, 250 to 850 ° C.), hold it at that temperature, perform preheating, and then raise the temperature to the firing temperature to advance the reaction. Although there is no restriction | limiting in particular about the time of preheating, Usually, what is necessary is just to be about 0.5 to 30 hours. The atmosphere during firing can be an atmosphere containing oxygen (that is, in the air), a mixed atmosphere of an inert gas (such as argon, helium, or nitrogen) and oxygen gas, or an oxygen gas atmosphere. The oxygen concentration (volume basis) is preferably 15% or more, and more preferably 18% or more.
正極活物質には、前記一般式(1)で表されるリチウム含有金属酸化物のみを使用することができるが、前記一般式(1)で表されるリチウム含有金属酸化物と他の正極活物質とを併用することもできる。 As the positive electrode active material, only the lithium-containing metal oxide represented by the general formula (1) can be used, but the lithium-containing metal oxide represented by the general formula (1) and other positive electrode active materials can be used. A substance can be used in combination.
前記一般式(1)で表されるリチウム含有金属酸化物と併用し得る他の正極活物質としては、例えば、LiCoO2などのリチウムコバルト酸化物〔前記一般式(1)で表されるもの以外のリチウムコバルト酸化物〕;LiMnO2、Li2MnO3などのリチウムマンガン酸化物;LiNiO2などのリチウムニッケル酸化物;LiMn2O4、Li4/3Ti5/3O4などのスピネル構造のリチウム含有複合酸化物;LiFePO4などのオリビン構造のリチウム含有金属酸化物;前記の酸化物を基本組成とし各種元素で置換した酸化物;などが挙げられる。 Other positive electrode active materials that can be used in combination with the lithium-containing metal oxide represented by the general formula (1) include, for example, lithium cobalt oxides such as LiCoO 2 [other than those represented by the general formula (1) Lithium cobalt oxide]; lithium manganese oxides such as LiMnO 2 and Li 2 MnO 3 ; lithium nickel oxides such as LiNiO 2 ; spinel structures such as LiMn 2 O 4 and Li 4/3 Ti 5/3 O 4 Examples include lithium-containing composite oxides; lithium-containing metal oxides having an olivine structure such as LiFePO 4 ; oxides having the above-described oxide as a basic composition and substituted with various elements;
ただし、前記一般式(1)で表されるリチウム含有金属酸化物の使用による前記の効果をより良好に確保する観点からは、正極合剤層が含有する正極活物質全量中の、前記一般式(1)で表されるリチウム含有金属酸化物の含有量が、70質量%以上であることが好ましい〔すなわち、正極合剤層が含有する正極活物質全量中の、前記一般式(1)で表されるリチウム含有金属酸化物以外の正極活物質の含有量が、30質量%以下であることが好ましい〕。なお、正極活物質には前記一般式(1)で表されるリチウム含有金属酸化物のみを使用してもよいため、正極合剤層が含有する正極活物質全量中の、前記一般式(1)で表されるリチウム含有金属酸化物の含有量の好適上限値は、100質量%である。 However, from the viewpoint of better securing the above-described effect due to the use of the lithium-containing metal oxide represented by the general formula (1), the general formula in the total amount of the positive electrode active material contained in the positive electrode mixture layer It is preferable that the content of the lithium-containing metal oxide represented by (1) is 70% by mass or more [that is, in the total amount of the positive electrode active material contained in the positive electrode mixture layer, according to the general formula (1). It is preferable that the content of the positive electrode active material other than the lithium-containing metal oxide is 30% by mass or less. In addition, since only the lithium containing metal oxide represented by the said General formula (1) may be used for a positive electrode active material, the said General formula (1) in the positive electrode active material whole quantity which a positive mix layer contains. The preferred upper limit of the content of the lithium-containing metal oxide represented by) is 100% by mass.
正極合剤層における正極活物質の含有量は、94〜99質量%であることが好ましい。 The content of the positive electrode active material in the positive electrode mixture layer is preferably 94 to 99% by mass.
正極合剤層に係る導電助剤には、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ−ボンブラック類;炭素繊維;などの炭素材料を用いることが好ましく、また、金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛;チタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料;などを用いることもできる。導電助剤には、前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。これらの導電助剤の中でも、比較的少ない量で良好な導電性を確保し得ることから、アセチレンブラックが特に好ましい。 Examples of the conductive auxiliary agent related to the positive electrode mixture layer include graphites such as natural graphite (flaky graphite, etc.) and artificial graphite; acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, etc. It is preferable to use carbon materials such as carbon blacks; carbon fibers; and conductive fibers such as metal fibers; carbon fluorides; metal powders such as aluminum; zinc oxide; Conductive whiskers; conductive metal oxides such as titanium oxide; organic conductive materials such as polyphenylene derivatives; and the like can also be used. As the conductive assistant, those exemplified above may be used singly or in combination of two or more. Among these conductive auxiliaries, acetylene black is particularly preferable because good conductivity can be secured with a relatively small amount.
導電助剤としてアセチレンブラックを使用する場合には、導電助剤全量中のアセチレンブラックの含有量は、60質量%以上であることが好ましく、これによりアセチレンブラックの使用による導電性の向上効果がより良好に確保できる。なお、導電助剤には、アセチレンブラックのみを使用してもよいことから、導電助剤全量中のアセチレンブラックの含有量の好適上限値は100質量%である。 In the case of using acetylene black as a conductive additive, the content of acetylene black in the total amount of conductive additive is preferably 60% by mass or more, thereby improving the conductivity by using acetylene black. It can be secured well. In addition, since only acetylene black may be used for a conductive support agent, the suitable upper limit of content of acetylene black in the total amount of conductive support agents is 100 mass%.
正極合剤層における導電助剤の含有量は、充電時における正極でのリチウムイオンの脱離のスピードを抑制する観点から、2.0質量%以下であり、1.5質量%以下であることが好ましい。ただし、正極合剤層中の導電助剤の量が少なすぎると、正極合剤層中の導電性が不足して、容量低下などが生じる虞があることから、正極合剤層における導電助剤の含有量は、0.5質量%を超える量であり、1.0質量%以上であることが好ましい。 The content of the conductive additive in the positive electrode mixture layer is 2.0% by mass or less and 1.5% by mass or less from the viewpoint of suppressing the speed of lithium ion desorption at the positive electrode during charging. Is preferred. However, if the amount of the conductive auxiliary agent in the positive electrode mixture layer is too small, the electric conductivity in the positive electrode mixture layer is insufficient, and there is a possibility that the capacity is reduced. The content of is more than 0.5% by mass, and is preferably 1.0% by mass or more.
正極合剤層に係るバインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリビニルピロリドン(PVP)などが挙げられる。 Examples of the binder related to the positive electrode mixture layer include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), and polyvinylpyrrolidone (PVP).
正極合剤層におけるバインダの含有量は、0.4〜3.5質量%であることが好ましい。 The binder content in the positive electrode mixture layer is preferably 0.4 to 3.5% by mass.
正極は、例えば、正極活物質、導電助剤およびバインダなどを含有する正極合剤を、N−メチル−2−ピロリドン(NMP)や水などの溶剤に分散させてペースト状やスラリー状の正極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理などのプレス処理を施す工程を経て製造することができる。ただし、正極は、前記の方法で製造されたものに限定される訳ではなく、他の方法で製造したものであってもよい。 For example, the positive electrode mixture containing a positive electrode active material, a conductive additive, a binder, and the like is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) or water to form a paste-like or slurry-like positive electrode mixture. Prepare an agent-containing composition (however, the binder may be dissolved in a solvent), apply it to one or both sides of the current collector, dry it, and then apply a press treatment such as calendering if necessary. It can manufacture through the process to give. However, the positive electrode is not limited to those manufactured by the above method, and may be manufactured by other methods.
正極集電体には、アルミニウム製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、アルミニウム箔が用いられる。正極集電体の厚みは、10〜30μmであることが好ましい。 As the positive electrode current collector, an aluminum foil, a punching metal, a net, an expanded metal, or the like can be used, but an aluminum foil is usually used. The thickness of the positive electrode current collector is preferably 10 to 30 μm.
また、正極には、必要に応じて、非水電解質二次電池内の他の部材と電気的に接続するためのリード体を、常法に従って形成してもよい。 Moreover, you may form the lead body for electrically connecting with the other member in a nonaqueous electrolyte secondary battery according to a conventional method as needed.
正極合剤層の厚みは、集電体の片面あたり、40〜90μmであることが好ましい。 The thickness of the positive electrode mixture layer is preferably 40 to 90 μm per one side of the current collector.
本発明の非水電解質二次電池に係る負極は、負極活物質およびバインダ、更には必要に応じて導電助剤などを含有する負極合剤層を有しており、例えば、この負極合剤層を集電体の片面または両面に有する構造のものである。 The negative electrode according to the nonaqueous electrolyte secondary battery of the present invention has a negative electrode active material, a binder, and a negative electrode mixture layer containing a conductive auxiliary agent as necessary. For example, the negative electrode mixture layer Of the current collector on one or both sides.
負極活物質には、少なくとも、平均粒子径が15μmを超え25μm以下の黒鉛Aと、平均粒子径が8μm以上15μm以下であり、かつ黒鉛粒子の表面が非晶質炭素で被覆されている黒鉛Bとを使用する。 The negative electrode active material includes at least graphite A having an average particle diameter of more than 15 μm and 25 μm or less, and graphite B having an average particle diameter of 8 μm or more and 15 μm or less, and the surface of the graphite particles coated with amorphous carbon. And use.
黒鉛Aは、黒鉛B以外の黒鉛であり、例えば高結晶の天然黒鉛、人造黒鉛が挙げられる。また、前記天然黒鉛を用いる場合は、更に高温で熱処理を施したり、人造黒鉛の微粒子(粒状、扁平状など)を被覆させたり、樹脂などの有機物を被覆させて用いてもよい。更に、平均粒子径が前述の範囲にあれば、前記黒鉛Aには2種以上の黒鉛を用いても構わない。 Graphite A is graphite other than graphite B, and examples thereof include highly crystalline natural graphite and artificial graphite. Moreover, when using the said natural graphite, you may heat-process at high temperature, coat | cover the fine particle (granular shape, flat shape, etc.) of artificial graphite, or coat organic substances, such as resin, and use it. Furthermore, as long as the average particle diameter is in the above range, two or more kinds of graphite may be used for the graphite A.
黒鉛Bは、母粒子となる黒鉛粒子と、その表面を被覆する非晶質炭素とで構成されている。具体的には、アルゴンイオンレーザーラマンスペクトルにおける1580cm−1のピーク強度に対する1360cm−1のピーク強度比であるR値が0.1〜0.6となる黒鉛である。このような黒鉛Bは、例えばd002が0.338nm以下である天然黒鉛または人造黒鉛を球状に賦形した黒鉛を母材(母粒子)とし、その表面を有機化合物で被覆し、800〜1500℃で焼成した後、解砕し、篩を通して整粒することによって得ることができる。なお、前記母材を被覆する有機化合物としては、芳香族炭化水素;芳香族炭化水素を加熱加圧下で重縮合して得られるタールまたはピッチ類;芳香族炭化水素の混合物を主成分とするタール、ピッチまたはアスファルト類;などが挙げられる。前記母材を前記有機化合物で被覆するには、前記有機化合物に前記母材を含浸・混捏する方法が採用できる。また、プロパンやアセチレンなどの炭化水素ガスを熱分解により炭素化し、これをd002が0.338nm以下の黒鉛の表面に堆積させる気相法によっても、黒鉛Bを作製することができる。 Graphite B is composed of graphite particles serving as mother particles and amorphous carbon covering the surface. Specifically, R value is the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum is graphite as a 0.1 to 0.6. Such graphite B uses, for example, natural graphite having d 002 of 0.338 nm or less or graphite obtained by spherically shaping artificial graphite as a base material (base particle), and the surface thereof is coated with an organic compound. It can be obtained by calcining at 0 ° C., pulverizing, and sizing through a sieve. The organic compound covering the base material includes aromatic hydrocarbons; tars or pitches obtained by polycondensation of aromatic hydrocarbons under heat and pressure; tars mainly composed of a mixture of aromatic hydrocarbons. , Pitch or asphalt; In order to coat the base material with the organic compound, a method of impregnating and kneading the base material into the organic compound can be employed. Alternatively, graphite B can be produced by a vapor phase method in which a hydrocarbon gas such as propane or acetylene is carbonized by pyrolysis and deposited on the surface of graphite having d 002 of 0.338 nm or less.
黒鉛Aは平均粒子径が25μm以下であり、黒鉛Bは平均粒子径が15μm以下である。このようなサイズの黒鉛Aと黒鉛Bとを併用することで、充電時における負極でのリチウムイオンの受け入れスピードを高めることができる。 Graphite A has an average particle size of 25 μm or less, and Graphite B has an average particle size of 15 μm or less. By using the graphite A and the graphite B of such a size together, it is possible to increase the receiving speed of lithium ions at the negative electrode during charging.
なお、黒鉛Aは、粒径が小さすぎると、比表面積が過度に高まる(不可逆容量が増大する)ことから、その粒径が、あまり小さくないことが好ましい。よって、本発明では、黒鉛Aとして、平均粒子径が15μm超のものを使用する。また、黒鉛Bも、粒径が小さすぎると、表面を被覆する非晶質炭素の被覆量などがばらつき、黒鉛Bの特長が十分に発揮できなくなるなどの理由があることから、その粒径が、あまり小さくないことが好ましい。よって、本発明では、黒鉛Bとして、平均粒子径が8μm以上のものを使用する。 In addition, when the particle diameter of graphite A is too small, the specific surface area is excessively increased (the irreversible capacity is increased), so that the particle diameter is preferably not too small. Therefore, in the present invention, graphite A having an average particle diameter of more than 15 μm is used. In addition, if the particle size of graphite B is too small, the coating amount of amorphous carbon covering the surface varies, and there are reasons that the features of graphite B cannot be fully exhibited. It is preferable not to be too small. Therefore, in the present invention, graphite B having an average particle diameter of 8 μm or more is used.
本明細書でいう黒鉛(黒鉛A、黒鉛B、およびこれら以外の黒鉛)の平均粒子径は、例えば、レーザー散乱粒度分布計(例えば、日機装株式会社製マイクロトラック粒度分布測定装置「HRA9320」)を用い、黒鉛を溶解したり膨潤したりしない媒体に、黒鉛を分散させて測定した粒度分布の小さい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値(D50%)メディアン径である。 The average particle size of graphite (graphite A, graphite B, and graphite other than these) referred to in the present specification is, for example, a laser scattering particle size distribution meter (for example, Nikkiso Co., Ltd. Microtrac particle size distribution measuring device “HRA9320”). A 50% diameter median value (D50%) median in the volume-based integrated fraction when the integrated volume is determined from particles having a small particle size distribution measured by dispersing graphite in a medium that does not dissolve or swell graphite Is the diameter.
黒鉛Aおよび黒鉛Bの比表面積(BET法による。装置例は日本ベル社製「ベルソープミニ」など。)は、1.0m2/g以上であることが好ましく、また、5.0m2/g以下であることが好ましい。 The specific surface area of the graphite A and graphite B (according to the BET method. Device example like manufactured by Nippon Bell "Bell soap mini".) Is preferably 1.0 m 2 / g or more,, 5.0 m 2 / g or less is preferable.
また、負極活物質には、黒鉛Aおよび黒鉛B以外の負極活物質(例えば、黒鉛Aと同種のもので、平均粒子径が15μm未満であるか、または25μmを超える黒鉛のように、黒鉛Aおよび黒鉛Bに該当しない黒鉛など)を、黒鉛Aおよび黒鉛Bと共に使用することもできる。 In addition, the negative electrode active material includes a negative electrode active material other than graphite A and graphite B (for example, graphite A, which is the same type as graphite A and has an average particle diameter of less than 15 μm or more than 25 μm. And graphite not corresponding to graphite B) can also be used together with graphite A and graphite B.
充電時における負極でのリチウムイオンの受け入れスピードをより良好に高める観点からは、負極が含有する全負極活物質中における黒鉛Bの含有量が、20質量%以上であることが好ましく、30質量%以上であることがより好ましい。また、黒鉛の表面に非晶質炭素を被覆した黒鉛Bは、表面が比較的硬いので、過度に添加してプレス処理をすると、黒鉛Aの粒子を破壊してしまうなどの問題が生じる虞がある。よって、負極が含有する全負極活物質中における黒鉛Bの含有量は、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。 From the viewpoint of improving the lithium ion acceptance speed at the negative electrode during charging, the content of graphite B in the total negative electrode active material contained in the negative electrode is preferably 20% by mass or more, and 30% by mass. More preferably. Moreover, since the surface of the graphite B coated with amorphous carbon is relatively hard, there is a possibility that problems such as destruction of the particles of the graphite A may occur if excessively added and pressed. is there. Therefore, the content of graphite B in all negative electrode active materials contained in the negative electrode is preferably 60% by mass or less, and more preferably 50% by mass or less.
また、負極活物質に、黒鉛Aおよび黒鉛B以外の負極活物質を使用する場合には、黒鉛Aおよび黒鉛Bを使用することによる前記の効果を良好に確保する観点から、負極が含有する全負極活物質中における黒鉛Aおよび黒鉛Bの合計含有量は、80質量%以上であることが好ましい(すなわち、負極が含有する全負極活物質中における黒鉛Aおよび黒鉛B以外の負極活物質の含有量は、20質量%以下であることが好ましい)。 Further, when a negative electrode active material other than graphite A and graphite B is used as the negative electrode active material, from the viewpoint of favorably securing the above-described effect by using graphite A and graphite B, all of the negative electrode contains The total content of graphite A and graphite B in the negative electrode active material is preferably 80% by mass or more (that is, the content of negative electrode active materials other than graphite A and graphite B in all negative electrode active materials contained in the negative electrode) The amount is preferably 20% by mass or less).
負極合剤層における負極活物質の含有量は、例えば、90〜99質量%であることが好ましい。 The content of the negative electrode active material in the negative electrode mixture layer is preferably 90 to 99% by mass, for example.
負極合剤層に係るバインダとしては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。具体的には、例えば、正極合剤層に係るバインダとして先に例示したものと同じ材料や、スチレンブタジエンゴム(SBR)、エチレン−アクリル酸共重合体または該共重合体のNa+イオン架橋体、エチレン−メタクリル酸共重合体または該共重合体のNa+イオン架橋体、エチレン−アクリル酸メチル共重合体または該共重合体のNa+イオン架橋体、エチレン−メタクリル酸メチル共重合体または該共重合体のNa+イオン架橋体などが使用でき、それらの材料を1種単独で用いてもよく、2種以上を併用しても構わない。 The binder related to the negative electrode mixture layer may be either a thermoplastic resin or a thermosetting resin. Specifically, for example, the same materials as those exemplified above as the binder relating to the positive electrode mixture layer, styrene butadiene rubber (SBR), ethylene-acrylic acid copolymer, or Na + ion crosslinked body of the copolymer , Ethylene-methacrylic acid copolymer or Na + ion crosslinked product of the copolymer, ethylene-methyl acrylate copolymer or Na + ion crosslinked product of the copolymer, ethylene-methyl methacrylate copolymer or the copolymer Copolymer Na + ion cross-linked bodies can be used, and these materials may be used alone or in combination of two or more.
これらのバインダの中でも、PVDF、SBR、エチレン−アクリル酸共重合体または該共重合体のNa+イオン架橋体、エチレン−メタクリル酸共重合体または該共重合体のNa+イオン架橋体、エチレン−アクリル酸メチル共重合体または該共重合体のNa+イオン架橋体、エチレン−メタクリル酸メチル共重合体または該共重合体のNa+イオン架橋体が特に好ましい。負極合剤層におけるバインダの含有量は、例えば、1〜10質量%であることが好ましい。 Among these binders, PVDF, SBR, ethylene-acrylic acid copolymer or Na + ion cross-linked product of the copolymer, ethylene-methacrylic acid copolymer or Na + ion cross-linked product of the copolymer, ethylene- A methyl acrylate copolymer or a Na + ion crosslinked product of the copolymer, an ethylene-methyl methacrylate copolymer or a Na + ion crosslinked product of the copolymer is particularly preferable. The binder content in the negative electrode mixture layer is preferably, for example, 1 to 10% by mass.
負極合剤層に導電助剤を含有させる場合、その導電助剤としては、正極合剤層に係る導電助剤として先に例示した各種の材料と同じものを使用することができる。ただし、負極に導電助剤を使用する場合には、高容量化のために、負極合剤層における導電助剤の含有量は、10質量%以下であることが好ましい。 When the conductive additive is contained in the negative electrode mixture layer, as the conductive assistant, the same materials as those exemplified above as the conductive auxiliary agent related to the positive electrode mixture layer can be used. However, when a conductive additive is used for the negative electrode, the content of the conductive additive in the negative electrode mixture layer is preferably 10% by mass or less in order to increase the capacity.
負極は、例えば、負極活物質およびバインダ、更には必要に応じて導電助剤などを含有する負極合剤を、NMPや水などの溶剤に分散させてペースト状やスラリー状の負極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理を施す工程を経て製造することができる。ただし、負極は、前記の方法で製造されたものに限定される訳ではなく、他の方法で製造したものであってもよい。 The negative electrode includes, for example, a negative electrode active material, a binder, and a negative electrode mixture containing a conductive auxiliary agent, if necessary, in a solvent such as NMP or water, and a paste-like or slurry-like negative electrode mixture-containing composition (However, the binder may be dissolved in a solvent), and this is applied to one or both sides of the current collector, dried, and then subjected to a calendaring process as necessary. Can do. However, the negative electrode is not limited to those manufactured by the above method, and may be manufactured by other methods.
負極の集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するために下限は5μmであることが望ましい。 As the current collector for the negative electrode, a foil made of copper or nickel, a punching metal, a net, an expanded metal, or the like can be used, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is 5 μm in order to ensure mechanical strength. Is desirable.
また、負極には、必要に応じて、非水電解質二次電池電池内の他の部材と電気的に接続するためのリード体を、常法に従って形成してもよい。 Moreover, you may form in the negative electrode the lead body for electrically connecting with the other member in a nonaqueous electrolyte secondary battery battery according to a conventional method as needed.
負極合剤層の厚みは、集電体の片面あたり、50〜150μmであることが好ましい。 The thickness of the negative electrode mixture layer is preferably 50 to 150 μm per one side of the current collector.
前記の正極と前記の負極とは、セパレータを介在させて重ねた積層電極体や、更にこれを渦巻状に巻回した巻回電極体の形態で本発明の非水電解質二次電池に使用することができる。 The positive electrode and the negative electrode are used in the non-aqueous electrolyte secondary battery of the present invention in the form of a laminated electrode body with a separator interposed therebetween or a wound electrode body obtained by winding the separator in a spiral shape. be able to.
本発明の非水電解質二次電池に係るセパレータは、80℃以上(より好ましくは100℃以上)170℃以下(より好ましくは150℃以下)において、その孔が閉塞する性質(すなわちシャットダウン機能)を有していることが好ましく、通常のリチウムイオン二次電池などの非水電解質二次電池で使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。セパレータの厚みは、例えば、10〜30μmであることが好ましい。 The separator according to the non-aqueous electrolyte secondary battery of the present invention has a property that the pores are blocked at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower) (ie, shutdown function). It is preferable to have a separator used in a nonaqueous electrolyte secondary battery such as a normal lithium ion secondary battery, for example, a microporous membrane made of polyolefin such as polyethylene (PE) or polypropylene (PP) Can be used. The microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be. The thickness of the separator is preferably 10 to 30 μm, for example.
また、前記の微多孔膜の表面に、耐熱性の無機フィラーを含有する耐熱性の多孔質層を形成した積層型のセパレータを用いてもよい。このような積層型のセパレータを用いた場合には、電池内の温度が上昇してもセパレータの収縮が抑制されて、正極と負極との接触による短絡を抑えることができるため、より安全性の高い非水電解質二次電池とすることができる。 Moreover, you may use the laminated separator which formed the heat resistant porous layer containing a heat resistant inorganic filler on the surface of the said microporous film. When such a stacked separator is used, the shrinkage of the separator is suppressed even when the temperature in the battery rises, and a short circuit due to contact between the positive electrode and the negative electrode can be suppressed. A high nonaqueous electrolyte secondary battery can be obtained.
耐熱性の多孔質層に含有させる無機フィラーとしては、ベーマイト、アルミナ、シリカなどが好ましく、これらのうちの1種または2種以上を使用することができる。 As the inorganic filler to be contained in the heat-resistant porous layer, boehmite, alumina, silica and the like are preferable, and one or more of them can be used.
また、耐熱性の多孔質層には、前記の無機フィラー同士を結着したり、耐熱性の多孔質層と微多孔膜とを接着したりするためのバインダを含有させることが好ましい。バインダには、エチレン−酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20〜35モル%のもの)、エチレン−エチルアクリレート共重合体などのエチレン−アクリル酸共重合体、フッ素系ゴム、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などを用いることが好ましく、これらのうちの1種または2種以上を使用することができる。 The heat-resistant porous layer preferably contains a binder for binding the inorganic fillers or bonding the heat-resistant porous layer and the microporous film. The binder includes an ethylene-vinyl acetate copolymer (EVA, having a structural unit derived from vinyl acetate of 20 to 35 mol%), an ethylene-acrylic acid copolymer such as an ethylene-ethyl acrylate copolymer, and a fluorine-based rubber. Styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), cross-linked acrylic resin, polyurethane, epoxy resin, etc. Are preferred, and one or more of these can be used.
セパレータ(ポリオレフィン製の微多孔膜からなるセパレータや、前記積層型のセパレータ)の厚みは、例えば、10〜30μmであることが好ましい。また、前記積層型のセパレータの場合、耐熱性の多孔質層の厚みは、例えば、3〜8μmであることが好ましい。 The thickness of the separator (a separator made of a microporous membrane made of polyolefin, or the laminated separator) is preferably 10 to 30 μm, for example. In the case of the laminated separator, the heat-resistant porous layer preferably has a thickness of 3 to 8 μm, for example.
本発明の非水電解質二次電池に係る非水電解質には、例えば、下記の非水系溶媒中に、リチウム塩を溶解させることで調製した溶液(非水電解液)が使用できる。 For the non-aqueous electrolyte according to the non-aqueous electrolyte secondary battery of the present invention, for example, a solution (non-aqueous electrolyte) prepared by dissolving a lithium salt in the following non-aqueous solvent can be used.
溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ−ブチロラクトン(γ-
BL)、1,2−ジメトキシエタン(DME)、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン、ジメチルスルフォキシド(DMSO)、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド(DMF)、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒を1種単独で、または2種以上を混合した混合溶媒として用いることができる。
Examples of the solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), γ-butyrolactone (γ-
BL), 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran, dimethyl sulfoxide (DMSO), 1,3-dioxolane, formamide, dimethylformamide (DMF), dioxolane, acetonitrile, nitromethane , Aprotic such as methyl formate, methyl acetate, phosphate triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, 1,3-propane sultone The organic solvent can be used alone or as a mixed solvent in which two or more are mixed.
非水電解液に係るリチウム塩としては、例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiCF3CO2、Li2C2F4(SO3)2、LiN(CF3SO2)2、LiC(CF3SO2)3、LiCnF2n+1SO3(n≧2)、LiN(RfOSO2)2〔ここでRfはフルオロアルキル基〕などから選ばれる少なくとも1種が挙げられる。これらのリチウム塩の非水電解液中の濃度としては、0.6〜1.8mol/lとすることが好ましく、0.9〜1.6mol/lとすることがより好ましい。 The lithium salt according to the non-aqueous electrolyte solution, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, At least 1 selected from LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] Species are mentioned. The concentration of these lithium salts in the non-aqueous electrolyte is preferably 0.6 to 1.8 mol / l, and more preferably 0.9 to 1.6 mol / l.
非水電解質二次電池に使用する非水電解質には、充放電サイクル特性の更なる改善や、高温貯蔵性や過充電防止などの安全性を向上させる目的で、ビニレンカーボネート、ビニルエチレンカーボネート、無水酸、スルホン酸エステル、ジニトリル、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤(これらの誘導体も含む)を適宜加えることもできる。 Non-aqueous electrolytes used in non-aqueous electrolyte secondary batteries include vinylene carbonate, vinyl ethylene carbonate, anhydrous water for the purpose of further improving charge / discharge cycle characteristics and improving safety such as high-temperature storage and prevention of overcharge. Additives (including these derivatives) such as acid, sulfonic acid ester, dinitrile, 1,3-propane sultone, diphenyl disulfide, cyclohexyl benzene, biphenyl, fluorobenzene, and t-butyl benzene may be added as appropriate.
更に、非水電解質二次電池の非水電解質には、前記の非水電解液に、ポリマーなどの公知のゲル化剤を添加してゲル化したもの(ゲル状電解質)を用いることもできる。 Further, as the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery, a gel (gel electrolyte) obtained by adding a known gelling agent such as a polymer to the non-aqueous electrolyte can be used.
本発明の非水電解質二次電池の形態としては、スチール缶やアルミニウム缶などを外装体として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。 Examples of the form of the non-aqueous electrolyte secondary battery of the present invention include a tubular shape (such as a square tubular shape or a cylindrical shape) using a steel can or an aluminum can as an exterior body. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
本発明の非水電解質二次電池は、従来の非水電解質二次電池と同様に充電の上限電圧を4.2V程度として使用することもできるが、充電の上限電圧を、これよりも高い4.4V以上に設定して使用することも可能であり、これにより高容量化を図りつつ、長期にわたって繰り返し使用しても、安定して優れた特性を発揮することが可能である。なお、非水電解質二次電池の充電の上限電圧は、4.7V以下であることが好ましい。 The non-aqueous electrolyte secondary battery of the present invention can be used with the upper limit voltage of charging being about 4.2 V as in the case of the conventional non-aqueous electrolyte secondary battery, but the upper limit voltage of charging is higher than this. It is also possible to use it by setting it to 4 V or higher. With this, it is possible to stably exhibit excellent characteristics even when repeatedly used over a long period of time while increasing the capacity. In addition, it is preferable that the upper limit voltage of charge of a nonaqueous electrolyte secondary battery is 4.7V or less.
本発明の非水電解質二次電池は、従来から知られている非水電解質二次電池と同様の用途に適用することができる。 The non-aqueous electrolyte secondary battery of the present invention can be applied to the same applications as conventionally known non-aqueous electrolyte secondary batteries.
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.
実施例1
<リチウム含有金属酸化物の合成>
Li2CO3、Co3O4、Al(OH)3、Mg(OH)2、TiOSO4・H2O、およびZrO2を、モル比で1:0.651:0.022:0.022:0.002:0.002になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
Example 1
<Synthesis of lithium-containing metal oxide>
Li 2 CO 3 , Co 3 O 4 , Al (OH) 3 , Mg (OH) 2 , TiOSO 4 .H 2 O, and ZrO 2 in a molar ratio of 1: 0.651: 0.022: 0.022 : 0.002: 0.002 was mixed, and the mixture was heat-treated at 950 ° C. for 12 hours in the atmosphere (oxygen concentration: about 20 vol%), and then pulverized in a mortar to obtain a powder. The lithium-containing metal oxide after pulverization was stored in a desiccator.
前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.976Al0.011Mg0.011Ti0.001Zr0.001O2で表される組成であることが判明した。 The composition analysis of the lithium-containing metal oxide was performed using an ICP method. As a result, the lithium-containing metal oxide was represented by Li 1.0 Co 0.976 Al 0.011 Mg 0.011 Ti 0.001 Zr 0.001 O 2. The composition was found to be
<正極の作製>
前記リチウム含有金属酸化物(正極活物質):96.5質量部と、結着剤であるPVDFを10質量%の濃度で含むN−メチル−2−ピロリドン(NMP)溶液:20質量部と、導電助剤であるアセチレンブラック:1.5質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
<Preparation of positive electrode>
Lithium-containing metal oxide (positive electrode active material): 96.5 parts by mass; N-methyl-2-pyrrolidone (NMP) solution containing PVDF as a binder at a concentration of 10% by mass: 20 parts by mass; A positive electrode mixture-containing paste was prepared by kneading 1.5 parts by mass of acetylene black, which is a conductive additive, using a biaxial kneader and further adding NMP to adjust the viscosity.
前記正極合剤含有ペーストを、厚みが15μmのアルミニウム箔(正極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。その後、プレス処理を行って、正極合剤層の厚さおよび密度を調節し、アルミニウム箔の露出部にニッケル製のリード体を溶接して、長さ375mm、幅43mmの帯状の正極を作製した。得られた正極における正極合剤層は、片面あたりの厚みが55μmであった。 After coating the positive electrode mixture-containing paste on both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 15 μm, vacuum drying is performed at 120 ° C. for 12 hours to form a positive electrode mixture layer on both surfaces of the aluminum foil. did. Thereafter, press treatment was performed to adjust the thickness and density of the positive electrode mixture layer, and a nickel lead body was welded to the exposed portion of the aluminum foil to produce a strip-like positive electrode having a length of 375 mm and a width of 43 mm. . The positive electrode mixture layer in the obtained positive electrode had a thickness of 55 μm per one side.
<負極の作製>
平均粒子径D50%が22μm、d002が0.338nmで、BET法による比表面積が3.8m2/gである黒鉛A(表面を非晶質炭素で被覆していない黒鉛)と、平均粒子径D50%が10μm、d002が0.336nmで、BET法による比表面積が3.9m2/gである黒鉛B(黒鉛からなる母粒子の表面を非晶質炭素で被覆した黒鉛)とを、50:50の質量比で混合した混合物:98質量部、CMC:1.0質量部、およびSBR:1.0質量部を、イオン交換水と混合して、水系の負極合剤含有ペーストを調製した。
<Production of negative electrode>
The average particle diameter D50% is 22 .mu.m, with d 002 is 0.338 nm, the graphite BET specific surface area is 3.8m 2 / g A (graphite no surface coating with amorphous carbon), the average particle diameter D50% is 10 [mu] m, with d 002 is 0.336 nm, the graphite BET specific surface area is 3.9m 2 / g B (graphite covering the surface of the mother particle made of graphite with amorphous carbon) A mixture of 98:50 parts by mass, CMC: 1.0 parts by mass, and SBR: 1.0 parts by mass with ion-exchanged water was mixed with a water-based negative electrode mixture-containing paste. Prepared.
前記の負極合剤含有ペーストを、銅箔からなる厚さ6μmの集電体の両面に間欠塗布し、乾燥した後、カレンダー処理を行って、合剤層の塗膜密度が1.58g/cm3となるように負極合剤層の厚みを調整して負極を得た。また、前記負極を幅53mmになるように切断し、更に銅箔の露出部にタブを溶接してリード部を形成した。 The negative electrode mixture-containing paste is intermittently applied to both sides of a 6 μm-thick current collector made of copper foil, dried, and calendered to give a coating layer density of 1.58 g / cm. The negative electrode mixture layer was adjusted to have a thickness of 3 to obtain a negative electrode. The negative electrode was cut to a width of 53 mm, and a tab was welded to the exposed portion of the copper foil to form a lead portion.
<非水電解質の調製>
エチレンカーボネート(EC)とジエチルカーボネート(DEC)との容積比3:7にビニレンカーボネートを3質量%溶解させた溶液を溶媒に、LiPF6を1mol/Lの濃度で溶解させ非水電解質を調製した。
<Preparation of non-aqueous electrolyte>
A nonaqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent in which 3% by mass of vinylene carbonate was dissolved in a volume ratio of 3: 7 between ethylene carbonate (EC) and diethyl carbonate (DEC). .
<セパレータの作製>
非水電解質二次電池用PE製微多孔質セパレータ〔多孔質層(I):厚み8μm、空孔率40%、平均孔径0.02μm、PEの融点135℃〕の片面にコロナ放電処理(放電量40W・min/m2)を施し、この処理面に多孔質層(II)形成用スラリーaをマイクログラビアコーターによって塗布し、乾燥して多孔質層(II)を形成してセパレータを得た。なお、多孔質層(II)の厚みは、4μmに調整した。また、多孔質層(II)の構成成分の全体積中におけるベーマイトの含有量は、88体積%であった。
<Preparation of separator>
PE microporous separator for non-aqueous electrolyte secondary battery [porous layer (I): thickness 8 μm, porosity 40%, average pore diameter 0.02 μm, PE melting point 135 ° C.] the amount 40W · min / m 2) and subjected, porous layer (II) forming slurry a was coated by a micro gravure coater to the treated surface, to obtain a separator to form a porous layer (II) and dried . The thickness of the porous layer (II) was adjusted to 4 μm. The boehmite content in the total volume of the constituent components of the porous layer (II) was 88% by volume.
<電池の組み立て>
前記帯状の正極を、前記のセパレータを介して前記帯状の負極に重ね、渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の電極巻回体とし、この電極巻回体をポリプロピレン製の絶縁テープで固定した。次に、外寸が厚さ4.0mm、幅34mm、高さ50mmのアルミニウム合金製の角形の電池ケースに前記電極巻回体を挿入し、リード体の溶接を行うとともに、アルミニウム合金製の蓋板を電池ケースの開口端部に溶接した。その後、蓋板に設けた注入口から前記非水電解質を注入し、1時間静置した後注入口を封止して、図1に示す構造で、図2に示す外観の非水電解質二次電池を得た。
<Battery assembly>
The belt-like positive electrode is overlapped with the belt-like negative electrode via the separator, wound in a spiral shape, and then pressed so as to be flattened to form an electrode winding body having a flat winding structure. The wound body was fixed with an insulating tape made of polypropylene. Next, the electrode winding body is inserted into a rectangular battery case made of aluminum alloy having an outer dimension of 4.0 mm in thickness, 34 mm in width, and 50 mm in height to weld the lead body, and a lid made of aluminum alloy The plate was welded to the open end of the battery case. Thereafter, the nonaqueous electrolyte is injected from the inlet provided on the cover plate, and left for 1 hour, and then the inlet is sealed. The nonaqueous electrolyte secondary having the structure shown in FIG. A battery was obtained.
ここで図1および図2に示す電池について説明すると、図1は部分断面図であって、この図1に示すように、正極1と負極2とはセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状の巻回電極体6として、角形(角筒形)の電池ケース4に非水電解液と共に収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や、セパレータの各層、非水電解液などは図示していない。 Here, the battery shown in FIGS. 1 and 2 will be described. FIG. 1 is a partial cross-sectional view. As shown in FIG. 1, the positive electrode 1 and the negative electrode 2 are spirally wound via a separator 3. Thereafter, the flat wound electrode body 6 is pressurized so as to be flat, and is accommodated in a rectangular (square tube) battery case 4 together with a non-aqueous electrolyte. However, in FIG. 1, in order to avoid complication, the metal foil, the separator layers, the non-aqueous electrolyte, and the like used as the current collector used in the production of the positive electrode 1 and the negative electrode 2 are not illustrated.
電池ケース4はアルミニウム合金製で電池の外装体を構成するものであり、この電池ケース4は正極端子を兼ねている。そして、電池ケース4の底部にはPEシートからなる絶縁体5が配置され、正極1、負極2およびセパレータ3からなる扁平状巻回電極体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム合金製の封口用蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。 The battery case 4 is made of an aluminum alloy and constitutes an outer package of the battery. The battery case 4 also serves as a positive electrode terminal. And the insulator 5 which consists of PE sheets is arrange | positioned at the bottom part of the battery case 4, and it connects to each one end of the positive electrode 1 and the negative electrode 2 from the flat wound electrode body 6 which consists of the positive electrode 1, the negative electrode 2, and the separator 3. The positive electrode lead body 7 and the negative electrode lead body 8 thus drawn are drawn out. A stainless steel terminal 11 is attached to a sealing lid plate 9 made of aluminum alloy for sealing the opening of the battery case 4 via a polypropylene insulating packing 10, and an insulator 12 is attached to the terminal 11. A stainless steel lead plate 13 is attached.
そして、この蓋板9は電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。また、図1の電池では、蓋板9に非水電解液注入口14が設けられており、この非水電解液注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている。更に、蓋板9には、電池の温度が上昇した際に内部のガスを外部に排出する機構として、開裂ベント15が設けられている。 And this cover plate 9 is inserted in the opening part of the battery case 4, and the opening part of the battery case 4 is sealed by welding the joint part of both, and the inside of the battery is sealed. Further, in the battery of FIG. 1, a non-aqueous electrolyte inlet 14 is provided in the cover plate 9, and a sealing member is inserted into the non-aqueous electrolyte inlet 14, for example, laser welding or the like. As a result, the battery is sealed by welding. Further, the lid plate 9 is provided with a cleavage vent 15 as a mechanism for discharging the internal gas to the outside when the temperature of the battery rises.
この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。 In the battery of Example 1, the battery case 4 and the cover plate 9 function as positive terminals by directly welding the positive electrode lead body 7 to the cover plate 9, and the negative electrode lead body 8 is welded to the lead plate 13, The terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the lead plate 13, but depending on the material of the battery case 4, the sign may be reversed. There is also.
図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図2では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極体の内周側の部分は断面にしていない。 FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1. FIG. 2 is shown for the purpose of showing that the battery is a square battery. FIG. 1 schematically shows a battery, and only specific members of the battery are shown. Also in FIG. 1, the inner peripheral portion of the electrode body is not cross-sectional.
実施例2
Li2CO3、Co3O4、Al(OH)3、Mg(OH)2、TiOSO4・H2O、およびZrO2を、モル比で1:0.642:0.048:0.022:0.002:0.002になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
Example 2
Li 2 CO 3 , Co 3 O 4 , Al (OH) 3 , Mg (OH) 2 , TiOSO 4 .H 2 O, and ZrO 2 in a molar ratio of 1: 0.642: 0.048: 0.022 : 0.002: 0.002 was mixed, and the mixture was heat-treated at 950 ° C. for 12 hours in the atmosphere (oxygen concentration: about 20 vol%), and then pulverized in a mortar to obtain a powder. The lithium-containing metal oxide after pulverization was stored in a desiccator.
前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.963Al0.024Mg0.011Ti0.001Zr0.001O2で表される組成であることが判明した。 The composition analysis of the lithium-containing metal oxide was performed using an ICP method. The lithium-containing metal oxide was represented by Li 1.0 Co 0.963 Al 0.024 Mg 0.011 Ti 0.001 Zr 0.001 O 2. The composition was found to be
このリチウム含有金属酸化物を正極活物質に使用した以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。 A positive electrode was produced in the same manner as in Example 1 except that this lithium-containing metal oxide was used as the positive electrode active material, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used. .
実施例3
Li2CO3、Co3O4、Al(OH)3、Mg(OH)2、TiOSO4・H2O、およびZrO2を、モル比で1:0.645:0.022:0.040:0.002:0.002になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
Example 3
Li 2 CO 3 , Co 3 O 4 , Al (OH) 3 , Mg (OH) 2 , TiOSO 4 .H 2 O, and ZrO 2 in a molar ratio of 1: 0.645: 0.022: 0.040 : 0.002: 0.002 was mixed, and the mixture was heat-treated at 950 ° C. for 12 hours in the atmosphere (oxygen concentration: about 20 vol%), and then pulverized in a mortar to obtain a powder. The lithium-containing metal oxide after pulverization was stored in a desiccator.
前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.967Al0.011Mg0.020Ti0.001Zr0.001O2で表される組成であることが判明した。 The composition analysis of the lithium-containing metal oxide was performed using an ICP method. As a result, the lithium-containing metal oxide was represented by Li 1.0 Co 0.967 Al 0.011 Mg 0.020 Ti 0.001 Zr 0.001 O 2. The composition was found to be
このリチウム含有金属酸化物を正極活物質に使用した以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。 A positive electrode was produced in the same manner as in Example 1 except that this lithium-containing metal oxide was used as the positive electrode active material, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used. .
実施例4
Li2CO3、Co3O4、Al(OH)3、Mg(OH)2、TiOSO4・H2O、およびZrO2を、モル比で1:0.649:0.022:0.022:0.008:0.002になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
Example 4
Li 2 CO 3 , Co 3 O 4 , Al (OH) 3 , Mg (OH) 2 , TiOSO 4 .H 2 O, and ZrO 2 in a molar ratio of 1: 0.649: 0.022: 0.022 : 0.008: 0.002 was mixed, and this mixture was heat-treated at 950 ° C. for 12 hours in the atmosphere (oxygen concentration: about 20 vol%), and then pulverized in a mortar to obtain a powder. The lithium-containing metal oxide after pulverization was stored in a desiccator.
前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.973Al0.011Mg0.011Ti0.004Zr0.001O2で表される組成であることが判明した。 The composition analysis of the lithium-containing metal oxide was performed using an ICP method. As a result, the lithium-containing metal oxide was represented by Li 1.0 Co 0.973 Al 0.011 Mg 0.011 Ti 0.004 Zr 0.001 O 2. The composition was found to be
このリチウム含有金属酸化物を正極活物質に使用した以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。 A positive electrode was produced in the same manner as in Example 1 except that this lithium-containing metal oxide was used as the positive electrode active material, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used. .
実施例5
Li2CO3、Co3O4、Al(OH)3、Mg(OH)2、TiOSO4・H2O、およびZrO2を、モル比で1:0.649:0.022:0.022:0.002:0.006になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
Example 5
Li 2 CO 3 , Co 3 O 4 , Al (OH) 3 , Mg (OH) 2 , TiOSO 4 .H 2 O, and ZrO 2 in a molar ratio of 1: 0.649: 0.022: 0.022 : 0.002: 0.006, and the mixture was heat-treated at 950 ° C. for 12 hours in the air (oxygen concentration: about 20 vol%), and then pulverized in a mortar to obtain a powder. The lithium-containing metal oxide after pulverization was stored in a desiccator.
前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.974Al0.011Mg0.011Ti0.001Zr0.003O2で表される組成であることが判明した。 The composition analysis of the lithium-containing metal oxide was performed using an ICP method. As a result, the lithium-containing metal oxide was represented by Li 1.0 Co 0.974 Al 0.011 Mg 0.011 Ti 0.001 Zr 0.003 O 2. The composition was found to be
このリチウム含有金属酸化物を正極活物質に使用した以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。 A positive electrode was produced in the same manner as in Example 1 except that this lithium-containing metal oxide was used as the positive electrode active material, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used. .
実施例6
Li2CO3、Co3O4、Al(OH)3、Mg(OH)2、TiOSO4・H2O、ZrO2、およびNa2CO3・H2Oをモル比で1:0.650:0.022:0.022:0.002:0.002:0.001になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
Example 6
Li 2 CO 3 , Co 3 O 4 , Al (OH) 3 , Mg (OH) 2 , TiOSO 4 .H 2 O, ZrO 2 , and Na 2 CO 3 .H 2 O in a molar ratio of 1: 0.650 : 0.022: 0.022: 0.002: 0.002: 0.001 and the mixture was heat-treated at 950 ° C. for 12 hours in the atmosphere (oxygen concentration is about 20 vol%). The powder was pulverized in a mortar. The lithium-containing metal oxide after pulverization was stored in a desiccator.
前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.975Al0.011Mg0.011Ti0.001Zr0.001Na0.001O2で表される組成であることが判明した。 The composition analysis of the lithium-containing metal oxide was performed using an ICP method. Li 1.0 Co 0.975 Al 0.011 Mg 0.011 Ti 0.001 Zr 0.001 Na 0.001 O It was found that the composition represented by 2 .
このリチウム含有金属酸化物を正極活物質に使用した以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。 A positive electrode was produced in the same manner as in Example 1 except that this lithium-containing metal oxide was used as the positive electrode active material, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used. .
実施例7
Li2CO3、Co3O4、Al(OH)3、Mg(OH)2、TiOSO4・H2O、ZrO2、およびNi(OH)2をモル比で1:0.650:0.022:0.022:0.002:0.002:0.002になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
Example 7
Li 2 CO 3 , Co 3 O 4 , Al (OH) 3 , Mg (OH) 2 , TiOSO 4 .H 2 O, ZrO 2 , and Ni (OH) 2 in a molar ratio of 1: 0.650: 0. 022: 0.022: 0.002: 0.002: 0.002 was mixed, and this mixture was heat-treated at 950 ° C. for 12 hours in the atmosphere (oxygen concentration is about 20 vol%), and then pulverized in a mortar To obtain a powder. The lithium-containing metal oxide after pulverization was stored in a desiccator.
前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.975Al0.011Mg0.011Ti0.001Zr0.001Ni0.001O2で表される組成であることが判明した。 The composition analysis of the lithium-containing metal oxide was performed using an ICP method. As a result, Li 1.0 Co 0.975 Al 0.011 Mg 0.011 Ti 0.001 Zr 0.001 Ni 0.001 O It was found that the composition represented by 2 .
このリチウム含有金属酸化物を正極活物質に使用した以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。 A positive electrode was produced in the same manner as in Example 1 except that this lithium-containing metal oxide was used as the positive electrode active material, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used. .
実施例8
実施例1で用いたものと同じリチウム含有金属酸化物(正極活物質):96.0質量部と、結着剤であるPVDFを10質量%の濃度で含むNMP溶液:20質量部と、導電助剤であるアセチレンブラック:2.0質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
Example 8
The same lithium-containing metal oxide (positive electrode active material) used in Example 1: 96.0 parts by mass, NMP solution containing PVDF as a binder at a concentration of 10% by mass: 20 parts by mass, and conductivity Acetylene black as an auxiliary agent: 2.0 parts by mass was kneaded using a biaxial kneader, and NMP was added to adjust the viscosity to prepare a positive electrode mixture-containing paste.
そして、この正極合剤ペーストを用いた以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。 Then, a positive electrode was produced in the same manner as in Example 1 except that this positive electrode mixture paste was used, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
実施例9
実施例1で用いたものと同じリチウム含有金属酸化物(正極活物質):97質量部と、結着剤であるPVDFを10質量%の濃度で含むNMP溶液:20質量部と、導電助剤であるアセチレンブラック:1.0質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
Example 9
The same lithium-containing metal oxide (positive electrode active material) as used in Example 1: 97 parts by mass, NMP solution containing PVDF as a binder at a concentration of 10% by mass: 20 parts by mass, and conductive additive Acetylene black: 1.0 part by mass was kneaded using a biaxial kneader, and NMP was added to adjust the viscosity to prepare a positive electrode mixture-containing paste.
そして、この正極合剤ペーストを用いた以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。 Then, a positive electrode was produced in the same manner as in Example 1 except that this positive electrode mixture paste was used, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
比較例1
LI2CO3、Co3O4、Al(OH)3、Mg(OH)2、TiOSO4・H2O、およびZrO2をモル比で1:0.657:0.002:0.022:0.002:0.002になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
Comparative Example 1
LI 2 CO 3 , Co 3 O 4 , Al (OH) 3 , Mg (OH) 2 , TiOSO 4 .H 2 O, and ZrO 2 in a molar ratio of 1: 0.657: 0.002: 0.022: 0.002: 0.002 was mixed, and this mixture was heat-treated at 950 ° C. for 12 hours in the air (oxygen concentration of about 20 vol%), and then pulverized in a mortar to obtain a powder. The lithium-containing metal oxide after pulverization was stored in a desiccator.
前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.986Al0.001Mg0.011Ti0.001Zr0.001O2で表される組成であることが判明した。 The composition analysis of the lithium-containing metal oxide was performed using an ICP method. As a result, Li 1.0 Co 0.986 Al 0.001 Mg 0.011 Ti 0.001 Zr 0.001 O 2 was expressed. The composition was found to be
このリチウム含有金属酸化物を正極活物質に使用した以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。 A positive electrode was produced in the same manner as in Example 1 except that this lithium-containing metal oxide was used as the positive electrode active material, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used. .
比較例2
Li2CO3、Co3O4、Al(OH)3、Mg(OH)2、TiOSO4・H2O、およびZrO2をモル比で1:0.657:0.022:0.002:0.002:0.002になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
Comparative Example 2
Li 2 CO 3 , Co 3 O 4 , Al (OH) 3 , Mg (OH) 2 , TiOSO 4 .H 2 O, and ZrO 2 in a molar ratio of 1: 0.657: 0.022: 0.002: 0.002: 0.002 was mixed, and this mixture was heat-treated at 950 ° C. for 12 hours in the air (oxygen concentration of about 20 vol%), and then pulverized in a mortar to obtain a powder. The lithium-containing metal oxide after pulverization was stored in a desiccator.
前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.986Al0.011Mg0.001Ti0.001Zr0.001O2で表される組成であることが判明した。 The composition analysis of the lithium-containing metal oxide was performed using an ICP method. As a result, Li 1.0 Co 0.986 Al 0.011 Mg 0.001 Ti 0.001 Zr 0.001 O 2 was expressed. The composition was found to be
このリチウム含有金属酸化物を正極活物質に使用した以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。 A positive electrode was produced in the same manner as in Example 1 except that this lithium-containing metal oxide was used as the positive electrode active material, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used. .
比較例3
Li2CO3、Co3O4、Al(OH)3、Mg(OH)2、TiOSO4・H2O、およびZrO2をモル比で1:0.664:0.002:0.002:0.002:0.002になるように混合し、この混合物を大気中(酸素濃度が約20vol%)、950℃で12時間熱処理し、その後乳鉢で粉砕して粉体とした。粉砕後のリチウム含有金属酸化物は、デシケーター中で保存した。
Comparative Example 3
Li 2 CO 3 , Co 3 O 4 , Al (OH) 3 , Mg (OH) 2 , TiOSO 4 .H 2 O, and ZrO 2 in a molar ratio of 1: 0.664: 0.002: 0.002: 0.002: 0.002 was mixed, and this mixture was heat-treated at 950 ° C. for 12 hours in the air (oxygen concentration of about 20 vol%), and then pulverized in a mortar to obtain a powder. The lithium-containing metal oxide after pulverization was stored in a desiccator.
前記リチウム含有金属酸化物について、ICP法を用いてその組成分析を行ったところ、Li1.0Co0.996Al0.001Mg0.001Ti0.001Zr0.001O2で表される組成であることが判明した。 The composition analysis of the lithium-containing metal oxide was performed using an ICP method. As a result, Li 1.0 Co 0.996 Al 0.001 Mg 0.001 Ti 0.001 Zr 0.001 O 2 was expressed. The composition was found to be
このリチウム含有金属酸化物を正極活物質に使用した以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。 A positive electrode was produced in the same manner as in Example 1 except that this lithium-containing metal oxide was used as the positive electrode active material, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used. .
比較例4
実施例1で用いたものと同じリチウム含有金属酸化物(正極活物質):95.5質量部と、結着剤であるPVDFを10質量%の濃度で含むNMP溶液:20質量部と、導電助剤であるアセチレンブラック:2.5質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
Comparative Example 4
The same lithium-containing metal oxide (positive electrode active material) used in Example 1: 95.5 parts by mass, NMP solution containing PVDF as a binder at a concentration of 10% by mass: 20 parts by mass, and conductive The auxiliary agent acetylene black: 2.5 parts by mass was kneaded using a biaxial kneader, and NMP was added to adjust the viscosity to prepare a positive electrode mixture-containing paste.
そして、この正極合剤ペーストを用いた以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。 Then, a positive electrode was produced in the same manner as in Example 1 except that this positive electrode mixture paste was used, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
比較例5
実施例1で用いたものと同じリチウム含有金属酸化物(正極活物質):97.5質量部と、結着剤であるPVDFを10質量%の濃度で含むNMP溶液:20質量部と、導電助剤であるアセチレンブラック:0.5質量部とを、二軸混練機を用いて混練し、更にNMPを加えて粘度を調節して、正極合剤含有ペーストを調製した。
Comparative Example 5
The same lithium-containing metal oxide (positive electrode active material) as used in Example 1: 97.5 parts by mass, NMP solution containing PVDF as a binder at a concentration of 10% by mass: 20 parts by mass, and conductivity The auxiliary agent acetylene black: 0.5 parts by mass was kneaded using a biaxial kneader, and NMP was added to adjust the viscosity to prepare a positive electrode mixture-containing paste.
そして、この正極合剤ペーストを用いた以外は実施例1と同様にして正極を作製し、この正極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。 Then, a positive electrode was produced in the same manner as in Example 1 except that this positive electrode mixture paste was used, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
比較例6
黒鉛Aと黒鉛Bとの混合物に代えて黒鉛Aのみを用いた以外は、実施例1と同様にして水系の負極合剤含有ペーストを調製した。そして、この負極合剤含有ペーストを用いた以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。
Comparative Example 6
A water-based negative electrode mixture-containing paste was prepared in the same manner as in Example 1 except that only graphite A was used instead of the mixture of graphite A and graphite B. Then, a negative electrode was produced in the same manner as in Example 1 except that this negative electrode mixture-containing paste was used, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used.
比較例7
黒鉛Aと黒鉛Bとの混合物に代えて黒鉛Bのみを用いた以外は、実施例1と同様にして水系の負極合剤含有ペーストを調製した。そして、この負極合剤含有ペーストを用いた以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にして非水電解質二次電池を作製した。
Comparative Example 7
A water-based negative electrode mixture-containing paste was prepared in the same manner as in Example 1 except that only graphite B was used instead of the mixture of graphite A and graphite B. Then, a negative electrode was produced in the same manner as in Example 1 except that this negative electrode mixture-containing paste was used, and a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used.
実施例および比較例の各非水電解質二次電池に用いたものと同じ電極(正極および負極)について、下記の負荷特性評価を行うと共に、実施例および比較例の各非水電解質二次電池について、下記の電池特性評価を行った。 For the same electrodes (positive electrode and negative electrode) used for the non-aqueous electrolyte secondary batteries of the examples and comparative examples, the following load characteristic evaluation is performed, and for the non-aqueous electrolyte secondary batteries of the examples and comparative examples The following battery characteristics were evaluated.
<電極の負荷特性評価>
実施例および比較例の非水電解質二次電池に使用した各電極について、対極をリチウム箔としてモデルセルを作製し、23℃で、0.1Cの電流値でリチウムの電位に対して4.5Vまで定電流充電を行った後、電流値が0.01Cになるまでリチウムの電位に対して4.5Vで定電圧充電して、充電容量(0.1C充電容量)を測定した。その後、充電後の各電池について、0.1Cの電流値でリチウムの電位に対して3.1Vになるまで定電流で放電して、0.1C放電容量を測定した。
<Evaluation of electrode load characteristics>
About each electrode used for the nonaqueous electrolyte secondary battery of an Example and a comparative example, a model cell was produced by making a counter electrode into lithium foil, and it was 4.5V with respect to the electric potential of lithium with the electric current value of 0.1 C at 23 degreeC. Then, the battery was charged at a constant voltage of 4.5 V with respect to the lithium potential until the current value reached 0.01 C, and the charge capacity (0.1 C charge capacity) was measured. Thereafter, each battery after charging was discharged at a constant current until the voltage became 3.1 V with respect to the potential of lithium at a current value of 0.1 C, and the 0.1 C discharge capacity was measured.
また、前記の各モデルセルを用い、定電流充電時および定電流充電時の電流値を0.5Cに変更した以外は、0.1C充放電容量測定と同じ条件で定電流−定電圧充電および定電流放電を行って、0.5C充電容量および0.5C放電容量を測定した。 Further, constant current-constant voltage charging and constant current charging under the same conditions as the 0.1 C charging / discharging capacity measurement, except that each model cell was used and the current value during constant current charging and constant current charging was changed to 0.5 C. Constant current discharge was performed, and 0.5C charge capacity and 0.5C discharge capacity were measured.
そして、各電極について、0.5C放電容量を0.1C放電容量で除した値を百分率で表して、容量維持率を求めた。なお、正極の負荷特性は、正極からのリチウムイオンの脱離スピードの指標となり、正極の前記容量維持率が高い(すなわち、負荷特性が優れている)ほど、正極からのリチウムイオンの脱離スピードが速いことを意味している。また、負極の負荷特性は、負極でのリチウムイオンの受け入れスピードの指標となり、負極の前記容量維持率が高い(すなわち、負荷特性が優れている)ほど、負極でのリチウムイオンの受け入れスピードが速いことを意味している。 And about each electrode, the value which remove | divided 0.5C discharge capacity by 0.1C discharge capacity was represented by the percentage, and the capacity | capacitance maintenance factor was calculated | required. The load characteristic of the positive electrode serves as an index of the lithium ion desorption speed from the positive electrode, and the higher the capacity retention rate of the positive electrode (that is, the better the load characteristic), the lithium ion desorption speed from the positive electrode. Means fast. The load characteristics of the negative electrode serve as an index of the lithium ion acceptance speed at the negative electrode. The higher the capacity retention rate of the negative electrode (that is, the better the load characteristics), the faster the lithium ion acceptance speed at the negative electrode. It means that.
<45℃での充放電サイクル特性評価>
実施例および比較例の非水電解質二次電池を45℃の恒温槽内に5時間静置し、その後、各電池について、4.4Vまで1.0Cの定電流で充電を行い、4.4Vに達した後は、電流が0.05Cに到達するまで4.4Vで定電圧充電を行った。その後の各電池について、1.0Cの定電流で、電圧が3.0Vに到達するまで放電を行った。これらの充電および放電の一連の操作を1サイクルとして、500回サイクルの充放電を繰り返した。そして、各電池について、500サイクル目の放電容量を1サイクル目の放電容量で除した値を百分率で表して、容量維持率を求めた。
<Charge / discharge cycle characteristics evaluation at 45 ° C.>
The nonaqueous electrolyte secondary batteries of Examples and Comparative Examples were left in a constant temperature bath at 45 ° C. for 5 hours, and then each battery was charged with a constant current of 1.0 C up to 4.4 V. Then, constant voltage charging was performed at 4.4 V until the current reached 0.05C. Each of the batteries thereafter was discharged at a constant current of 1.0 C until the voltage reached 3.0V. A series of these charging and discharging operations was taken as one cycle, and 500 cycles of charging and discharging were repeated. And about each battery, the value which remove | divided the discharge capacity of the 500th cycle by the discharge capacity of the 1st cycle was represented by percentage, and the capacity | capacitance maintenance factor was calculated | required.
<加熱試験>
実施例および比較例の非水電解質二次電池各5個を恒温槽内に静置し、2℃/minで恒温槽を150℃まで昇温し、150℃で60分間の保持を行った。加熱保持中の各電池の表面温度を熱電対で測定し、その表面温度が180℃以下で維持された電池の個数を調べた。
<Heating test>
Five nonaqueous electrolyte secondary batteries of Examples and Comparative Examples were each placed in a thermostat, the thermostat was heated to 150 ° C. at 2 ° C./min, and held at 150 ° C. for 60 minutes. The surface temperature of each battery during heating and holding was measured with a thermocouple, and the number of batteries whose surface temperature was maintained at 180 ° C. or lower was examined.
実施例の非水電解質二次電池に用いた正極並びに負極の構成および特性を表1および表2に、比較例の非水電解質二次電池に用いた正極並びに負極の構成および特性を表3および表4に、これらの非水電解質二次電池の電池特性を表5に、それぞれ示す。 Tables 1 and 2 show the configurations and characteristics of the positive electrode and the negative electrode used in the nonaqueous electrolyte secondary battery of the example, and Tables 3 and 2 show the configurations and characteristics of the positive electrode and the negative electrode used in the nonaqueous electrolyte secondary battery of the comparative example. Table 4 shows the battery characteristics of these nonaqueous electrolyte secondary batteries, respectively.
表1から表5に示す通り、適正な組成のリチウム含有金属酸化物を正極活物質として使用し、正極合剤層におけるアセチレンブラックの含有量を適正な値とした正極と、負極活物質として黒鉛Aと黒鉛Bとを併用した負極とを有する実施例1〜9の非水電解質二次電池は、45℃での充放電サイクル特性評価時の容量維持率が高く、充電時の上限電圧を高くしても優れた充放電サイクル特性を発揮できていた。 As shown in Table 1 to Table 5, a positive electrode using a lithium-containing metal oxide having an appropriate composition as a positive electrode active material and an appropriate value for the content of acetylene black in the positive electrode mixture layer, and graphite as a negative electrode active material The nonaqueous electrolyte secondary batteries of Examples 1 to 9 having a negative electrode using both A and graphite B have a high capacity retention rate at the time of charge / discharge cycle characteristics evaluation at 45 ° C., and a high upper limit voltage during charging. Even so, excellent charge / discharge cycle characteristics could be exhibited.
なお、実施例1〜9の非水電解質二次電池に使用した正極は、例えば、元素M1の量が少ないリチウム含有金属酸化物を用いた比較例1〜3の電池に係る正極に比べて負荷特性評価時の容量維持率が低く、リチウムイオンの脱離スピードが低減されていた。そして、実施例1〜9の非水電解質二次電池に使用した負極は、負極活物質に黒鉛Aのみや黒鉛Bのみを使用した比較例6、7の電池に係る負極に比べて負荷特性評価時の容量維持率が高く、リチウムイオンの受け入れスピードが増大していた。そのため、実施例1〜9の非水電解質二次電池では、充電時の終止電圧を高めた際の正極からのリチウムイオンの脱離スピードと負極でのリチウムイオンの受け入れスピードとのバランスが良好になったことから、前記のような優れた充放電サイクル特性を確保し得たものといえる。 Incidentally, the positive electrode used for the nonaqueous electrolyte secondary batteries of Examples 1 to 9, for example, as compared to the positive electrode of the battery of Comparative Example 1-3 using the amount of the element M 1 is small lithium-containing metal oxide The capacity retention rate at the time of load characteristic evaluation was low, and the lithium ion desorption speed was reduced. And the negative electrode used for the nonaqueous electrolyte secondary battery of Examples 1-9 is compared with the negative electrode which concerns on the battery of the comparative examples 6 and 7 which used only the graphite A or only the graphite B for the negative electrode active material. The capacity maintenance rate at the time was high, and the receiving speed of lithium ions was increasing. Therefore, in the nonaqueous electrolyte secondary batteries of Examples 1 to 9, the balance between the lithium ion desorption speed from the positive electrode and the lithium ion acceptance speed at the negative electrode when the end voltage during charging is increased is good. Therefore, it can be said that the excellent charge / discharge cycle characteristics as described above could be secured.
また、実施例1〜9の非水電解質二次電池は、加熱試験時において、熱暴走して表面温度が高くなったものが認められず、熱安定性も優れていた。 In addition, in the nonaqueous electrolyte secondary batteries of Examples 1 to 9, no thermal runaway and high surface temperature were observed during the heating test, and the thermal stability was excellent.
一方、元素M1の量が少ないリチウム含有金属酸化物を用いた比較例1〜3の電池は、45℃での充放電サイクル特性評価時の容量維持率が低く、充電時の上限電圧を高くした場合の充放電サイクル特性が劣っており、また、加熱試験時において、熱暴走して表面温度が高くなったものが認められ、熱安定性も劣っていた。更に、正極合剤層中のアセチレンブラックの含有量が多すぎる正極を使用した比較例4の電池、正極合剤層中のアセチレンブラックの含有量が少なすぎる正極を使用した比較例5の電池、負極活物質に黒鉛Aのみを使用した比較例6の電池、および負極活物質に黒鉛Bのみを使用した比較例7の電池は、45℃での充放電サイクル特性評価時の容量維持率が低く、充電時の上限電圧を高くした場合の充放電サイクル特性が劣っていた。 On the other hand, the battery of Comparative Example 1-3 where the amount of the element M 1 is using less lithium-containing metal oxide has a low charge-discharge cycle characteristics at the time of evaluation capacity retention rate at 45 ° C., high maximum voltage during charging In this case, the charge / discharge cycle characteristics were inferior, and in the heating test, thermal runaway was observed and the surface temperature was increased, and the thermal stability was also inferior. Furthermore, the battery of Comparative Example 4 using a positive electrode with too much content of acetylene black in the positive electrode mixture layer, the battery of Comparative Example 5 using a positive electrode with too little content of acetylene black in the positive electrode mixture layer, The battery of Comparative Example 6 that uses only graphite A as the negative electrode active material and the battery of Comparative Example 7 that uses only graphite B as the negative electrode active material have a low capacity retention rate when evaluating charge / discharge cycle characteristics at 45 ° C. The charge / discharge cycle characteristics when the upper limit voltage during charging was increased were inferior.
1 正極
2 負極
3 セパレータ
1 Positive electrode 2 Negative electrode 3 Separator
Claims (3)
前記正極は、正極活物質、導電助剤およびバインダを含有する正極合剤層を有しており、
前記正極合剤層は、前記正極活物質として、下記一般式(1)
LiaCo1−b−cM1 bM2 cO2 (1)
〔前記一般式(1)中、M1は、AlおよびMgよりなる群から選択される少なくとも1種の元素で、M2は、Zr、Ti、Ni、Mn、Na、Bi、Ca、F、P、Sr、W、Ba、Si、Fe、Mo、V、Sn、Sb、Ta、Nb、Ge、Cr、K、S、Cu、およびZnよりなる群から選択される少なくとも1種の元素であり、0.9≦a≦1.10、0.015≦b≦0.1、0≦c、b+c≦0.12である〕で表されるリチウム含有金属酸化物を含有しており、
前記正極合剤層における前記導電助剤の含有量が0.5質量%を超え2.0質量%以下であり、
前記負極は、負極活物質およびバインダを含有する負極合剤層を有しており、
前記負極合剤層は、前記負極活物質として、平均粒子径が15μmを超え25μm以下であり、かつ表面が非晶質炭素で被覆されていない黒鉛Aと、平均粒子径が8μm以上15μm以下であり、かつ黒鉛粒子の表面が非晶質炭素で被覆されている黒鉛Bとを、少なくとも含有していることを特徴とする非水電解質二次電池。 A non-aqueous electrolyte secondary battery having a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte,
The positive electrode has a positive electrode mixture layer containing a positive electrode active material, a conductive additive and a binder,
The positive electrode mixture layer has the following general formula (1) as the positive electrode active material.
Li a Co 1-bc M 1 b M 2 c O 2 (1)
[In the general formula (1), M 1 is at least one element selected from the group consisting of Al and Mg, and M 2 is Zr, Ti, Ni, Mn, Na, Bi, Ca, F, It is at least one element selected from the group consisting of P, Sr, W, Ba, Si, Fe, Mo, V, Sn, Sb, Ta, Nb, Ge, Cr, K, S, Cu, and Zn 0.9 ≦ a ≦ 1.10, 0.015 ≦ b ≦ 0.1, 0 ≦ c, b + c ≦ 0.12, and a lithium-containing metal oxide represented by
The content of the conductive auxiliary in the positive electrode mixture layer is more than 0.5% by mass and 2.0% by mass or less,
The negative electrode has a negative electrode mixture layer containing a negative electrode active material and a binder,
The negative electrode mixture layer has, as the negative electrode active material, an average particle diameter of more than 15 μm and 25 μm or less , and graphite A whose surface is not coated with amorphous carbon, and an average particle diameter of 8 μm or more and 15 μm or less. A non-aqueous electrolyte secondary battery comprising at least graphite B having a graphite particle surface coated with amorphous carbon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014002920A JP6208584B2 (en) | 2014-01-10 | 2014-01-10 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014002920A JP6208584B2 (en) | 2014-01-10 | 2014-01-10 | Nonaqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015133193A JP2015133193A (en) | 2015-07-23 |
JP6208584B2 true JP6208584B2 (en) | 2017-10-04 |
Family
ID=53900258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014002920A Active JP6208584B2 (en) | 2014-01-10 | 2014-01-10 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6208584B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102398690B1 (en) | 2019-01-24 | 2022-05-17 | 주식회사 엘지에너지솔루션 | Lithium secondary battery |
DE102020114893A1 (en) | 2020-06-04 | 2021-12-09 | Tdk Electronics Ag | Electrochemical cell and electrochemical system |
ES2973532T3 (en) * | 2021-03-26 | 2024-06-20 | Ningde Amperex Technology Ltd | Positive electrode plate, electrochemical device comprising the same and electronic device |
JP7193671B1 (en) * | 2022-06-21 | 2022-12-20 | 積水化学工業株式会社 | Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module, and battery system using the same, method for manufacturing positive electrode for non-aqueous electrolyte secondary battery |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3654592B2 (en) * | 2001-10-29 | 2005-06-02 | 松下電器産業株式会社 | Lithium ion secondary battery |
JP4604460B2 (en) * | 2003-05-16 | 2011-01-05 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery and battery charge / discharge system |
-
2014
- 2014-01-10 JP JP2014002920A patent/JP6208584B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015133193A (en) | 2015-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4868556B2 (en) | Lithium secondary battery | |
JP6253411B2 (en) | Lithium secondary battery | |
KR102419885B1 (en) | Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof | |
WO2015111710A1 (en) | Non-aqueous secondary battery | |
JP2011243558A (en) | Lithium secondary battery positive electrode and lithium secondary battery | |
JP5341280B2 (en) | Lithium secondary battery pack, electronic device using the same, charging system and charging method | |
JP6059019B2 (en) | Nonaqueous electrolyte secondary battery | |
JP6448462B2 (en) | Anode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing anode active material for nonaqueous electrolyte secondary battery | |
JP2014007088A (en) | Nonaqueous electrolytic secondary battery and method for manufacturing the same | |
JP6208584B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2009212021A (en) | Electrode for electrochemical element, nonaqueous secondary battery, and battery system | |
JP6628482B2 (en) | Non-aqueous secondary battery | |
JP5566825B2 (en) | Lithium secondary battery | |
JP6345659B2 (en) | Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JP2014022245A (en) | Lithium ion secondary battery and manufacturing method thereof | |
JP5978024B2 (en) | Non-aqueous secondary battery | |
JP2017021941A (en) | Nonaqueous electrolyte secondary battery | |
JP6601951B2 (en) | Non-aqueous secondary battery | |
JP2008016316A (en) | Nonaqueous electrolyte secondary battery | |
JP4868381B2 (en) | Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
WO2015037522A1 (en) | Nonaqueous secondary battery | |
JP7187156B2 (en) | Negative electrodes for electrochemical devices and lithium ion secondary batteries | |
JP5658122B2 (en) | Lithium secondary battery | |
JP2005243448A (en) | Nonaqueous electrolyte secondary battery | |
WO2018084046A1 (en) | Lithium ion secondary battery, manufacturing method for same, and precursor for lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170907 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6208584 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |