JP2011237272A - Optical distance meter and distance measuring method - Google Patents

Optical distance meter and distance measuring method Download PDF

Info

Publication number
JP2011237272A
JP2011237272A JP2010108758A JP2010108758A JP2011237272A JP 2011237272 A JP2011237272 A JP 2011237272A JP 2010108758 A JP2010108758 A JP 2010108758A JP 2010108758 A JP2010108758 A JP 2010108758A JP 2011237272 A JP2011237272 A JP 2011237272A
Authority
JP
Japan
Prior art keywords
light
polarization direction
measured
direction components
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010108758A
Other languages
Japanese (ja)
Inventor
Akira Komatsu
朗 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010108758A priority Critical patent/JP2011237272A/en
Publication of JP2011237272A publication Critical patent/JP2011237272A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical distance meter and a distance measuring method with a confocal spectroscopic system, by which the position of a measurement object surface can be stably measured with high accuracy without being influenced by the reflectance thereof.SOLUTION: The optical distance meter 21 functions as follows. Illumination light from a white light source 22 is separated into an ordinary light component and an extraordinary light component by a birefringent plate 27 and projected to focus at different positions on the optical axis of the measurement object surface 34a. Reflected light from the object surface is multiplexed and dispersed with respect to wavelengths by a diffraction grating 29, and again separated into an ordinary light component and an extraordinary component by a birefringent plate 30 and guided into an imaging element 31. A signal processing unit 33 processes an electric signal outputted from the imaging element to detect intensities P1, P2 of the ordinary light component and the extraordinary light component, respectively, and calculates a difference ΔP=P1-P2. The position of the object surface is determined by detecting a wavelength λ0 where the difference ΔP reaches 0.

Description

本発明は、光学式に非接触で対象物までの距離、その位置や形状等を測定するための光距離計及び距離測定方法に関する。   The present invention relates to an optical distance meter and a distance measuring method for measuring a distance to an object, a position, a shape, and the like optically in a non-contact manner.

従来、対象物の表面に光を照射してその反射光を検出することによって、該表面までの距離やその位置、変位等を測定し、更に測定結果から対象物の2次元、3次元形状を計測するために様々な光学的手法が採用されている。このような光学的手法には、主に共焦点分光法、合焦検出法、光波干渉法、三角測量法がある。   Conventionally, by irradiating light on the surface of an object and detecting the reflected light, the distance to the surface, its position, displacement, etc. are measured, and the two-dimensional and three-dimensional shapes of the object are further determined from the measurement results. Various optical methods are employed for measurement. Such optical methods mainly include confocal spectroscopy, focus detection, light wave interferometry, and triangulation.

一般に共焦点分光方式の距離センサーは、光源と、該光源から光を測定対象物の表面に配向する色収差光学系と、測定対象物の表面から反射した光を検出する光検出器とを備える(例えば、特許文献1を参照)。光源からの光は、色収差レンズ系によりスペクトル成分毎に異なる焦点位置で集束するので、測定対象物表面からの反射光をスペクトル成分毎に検出し、その光強度から測定対象物表面までの距離を求めることができる。更にかかる共焦点分光方式において、光走査手段で光源から測定対象物に光を走査し、常に焦点が対象物表面に合った波長の光が検出されるようにして、波長ピーク位置の高速測定を可能にした計測機が知られている(例えば、特許文献2を参照)。   In general, a confocal spectral distance sensor includes a light source, a chromatic aberration optical system that directs light from the light source to the surface of the measurement object, and a photodetector that detects light reflected from the surface of the measurement object ( For example, see Patent Document 1). Since the light from the light source is focused at a different focal position for each spectral component by the chromatic aberration lens system, the reflected light from the surface of the measurement object is detected for each spectral component, and the distance from the light intensity to the surface of the measurement object is determined. Can be sought. Furthermore, in such a confocal spectroscopic method, light is scanned from a light source to a measurement object by an optical scanning means, and light having a wavelength whose focus is on the surface of the object is always detected, so that the wavelength peak position can be measured at high speed. A measuring instrument that enables this is known (for example, see Patent Document 2).

別の共焦点分光方式では、少なくとも2種類の波長の光を発生する光源と、光源の光の強度を検出する第1の光電検出器と、光源の光を被測定面の光軸上の異なる焦点位置に集束させる色収差レンズと、被測定面からの反射光の強度を検出する第2の光電検出器と、演算処理装置とからなる光学式変位検出装置が知られている(例えば、特許文献3を参照)。この装置は、両光電検出器から検出した光強度を波長毎に演算比較することによって、被測定面の変位を測定する。   In another confocal spectroscopic method, a light source that generates light of at least two types of wavelengths, a first photoelectric detector that detects the intensity of light from the light source, and light from the light source differ on the optical axis of the surface to be measured. There is known an optical displacement detection device including a chromatic aberration lens for focusing at a focal position, a second photoelectric detector for detecting the intensity of reflected light from a surface to be measured, and an arithmetic processing device (for example, Patent Documents). 3). This apparatus measures the displacement of the surface to be measured by calculating and comparing the light intensities detected from both photoelectric detectors for each wavelength.

また、合焦検出方式の位置検出装置は、点光源から光を被測定物に収束させ、該点光源の像が被測定物上で合焦するように装置側と被測定物との相対位置を調整し、合焦が得られた位置をスケール等の測定手段で計測して位置や距離を検出する。このような装置側と被測定物とを相対移動させる駆動手段や移動量の測定手段を省略してシステムを簡略化し、駆動手段や測定手段の精度の影響を排除するために、波長可変レーザ光源を用いたレーザ変位計が提案されている(例えば、特許文献4を参照)。   In addition, the position detection device of the focus detection method converges light from a point light source on the object to be measured, and the relative position between the apparatus side and the object to be measured so that the image of the point light source is focused on the object to be measured. The position where the focus is obtained is measured by a measuring means such as a scale, and the position and distance are detected. In order to simplify the system by eliminating the driving means for moving the apparatus side and the object to be measured and the measuring means for the movement amount, and to eliminate the influence of the accuracy of the driving means and the measuring means, the wavelength tunable laser light source Has been proposed (see, for example, Patent Document 4).

また、光波干渉方式では、光源からの光をビームスプリッターで分離し、その一方を測定対象物及びベースプレートからそれぞれ反射させ、かつ参照鏡で反射させた他方の光とそれぞれ干渉させ、得られた2つの干渉縞の端数値から測定対象物の寸法を測定する(例えば、特許文献5を参照)。別の光波干渉方式では、光源から出射されて、被測定物で反射された光と参照ミラーで反射された光とを干渉させ、その干渉光波を参照ミラーの位置を変えながら記録し、これを位相に変換して被測定物の面形状を測定する(例えば、特許文献6を参照)。   In the light wave interference method, the light 2 from the light source is separated by a beam splitter, one of which is reflected from the measurement object and the base plate, and the other light reflected by the reference mirror is interfered with each other. The dimensions of the measurement object are measured from the fractional values of the two interference fringes (see, for example, Patent Document 5). In another light wave interference method, the light emitted from the light source and reflected by the object to be measured interferes with the light reflected by the reference mirror, and the interference light wave is recorded while changing the position of the reference mirror. It converts into a phase and measures the surface shape of a to-be-measured object (for example, refer patent document 6).

特開2004−101532号公報JP 2004-101532 A 特開2008−32668号公報JP 2008-32668 A 特開昭51−51957号公報JP 51-51957 A 特開2005−221451号公報Japanese Patent Laid-Open No. 2005-221451 特開平7−120210号公報JP-A-7-120210 特開平7−318308号公報JP 7-318308 A

しかしながら、上述した光波干渉方式は、高い精度が得られる反面、被測定物からの反射光が、明確な干渉縞を生成し得るように、好ましくは参照光と同程度の十分な光強度が必要である。そのため、被測定物はその表面が十分な鏡面状態でなければならないという制限がある。また、干渉縞は、光路中の空気のゆらぎや振動の影響を受け易く、高い安定性を得ることが困難である。   However, while the above-described light wave interference method can provide high accuracy, it is necessary that the light reflected from the object to be measured should have sufficient light intensity that is preferably equal to that of the reference light so that a clear interference fringe can be generated. It is. Therefore, there is a limitation that the surface of the object to be measured must have a sufficient mirror surface. In addition, the interference fringes are easily affected by air fluctuations and vibrations in the optical path, and it is difficult to obtain high stability.

また、合焦検出方式は、被測定物の表面が鏡面であることを必要とせず、光路中の空気のゆらぎや振動の影響を受けない点で有利である。しかしながら、被測定物と装置側とを光軸方向に相対移動させて合焦点を得るために、機械的な駆動手段が必要である。そのため、この駆動手段による移動量によって測定範囲が設定され、その分解能が測定精度を大きく左右する虞がある。   The focus detection method is advantageous in that it does not require the surface of the object to be measured to be a mirror surface and is not affected by air fluctuations or vibrations in the optical path. However, a mechanical drive means is necessary to obtain a focal point by relatively moving the object to be measured and the apparatus side in the optical axis direction. For this reason, the measurement range is set by the amount of movement by the driving means, and the resolution may greatly affect the measurement accuracy.

これに対し、共焦点分光方式は、合焦検出方式のような機械的駆動手段を必要とせず、その測定範囲が測定対象物に光を入射する光学系の色収差量により設定される点で有利である。しかしながら、従来の共焦点分光方式による測定装置には、以下のような問題点がある。   On the other hand, the confocal spectroscopy method is advantageous in that it does not require a mechanical drive means unlike the focus detection method, and its measurement range is set by the amount of chromatic aberration of the optical system that enters the measurement object. It is. However, the conventional confocal spectroscopic measuring device has the following problems.

図7は、従来の共焦点分光方式の光距離計の典型例を示している。この光距離計1において、白色光源2から出射した光は、コリメートレンズ3により平行光に変換され、ビームスプリッター4により反射され、集光レンズ5により集光されて、ピンホール6を通過する。前記ピンホールを出た光は、色収差レンズ7によって、異なる波長成分L1,L2毎に測定対象物8の被測定面8aの光軸上の異なる位置S1,S2に結像するように集光される。測定対象物8は、色収差レンズ7に関して光軸上を前後に変位させることができる。   FIG. 7 shows a typical example of a conventional confocal spectroscopic optical distance meter. In this optical distance meter 1, the light emitted from the white light source 2 is converted into parallel light by the collimator lens 3, reflected by the beam splitter 4, condensed by the condenser lens 5, and passes through the pinhole 6. The light exiting the pinhole is condensed by the chromatic aberration lens 7 so as to form an image at different positions S1 and S2 on the optical axis of the surface 8a to be measured for each of different wavelength components L1 and L2. The The measurement object 8 can be displaced back and forth on the optical axis with respect to the chromatic aberration lens 7.

前記被測定面で反射された各波長成分の光は、色収差レンズ7を介して合波され、再びピンホール6を通過した後、コリメートレンズである集光レンズ5により平行光に変換され、ビームスプリッター4を透過する。前記ビームスプリッターを透過した平行光は、回折格子9によって、異なる波長成分L1,L2毎に異なる回折角度に回折され、集光レンズ10によって測定光として撮像素子11の異なる位置に集光される。   The light of each wavelength component reflected by the surface to be measured is multiplexed through the chromatic aberration lens 7, passes through the pinhole 6 again, is converted into parallel light by the condensing lens 5 which is a collimating lens, and the beam It passes through the splitter 4. The parallel light that has passed through the beam splitter is diffracted by the diffraction grating 9 at different diffraction angles for the different wavelength components L1 and L2, and condensed by the condenser lens 10 at different positions on the image sensor 11 as measurement light.

集光された測定光は、撮像素子11の受光部に入射して検出され、電気信号として処理装置12に出力される。図8は、処理装置12により処理された測定光の分光スペクトルを示している。図中、実線P1は、測定対象物8の被測定面8aが光軸上の位置S1付近にある場合、破線P2は、該被測定面が位置S2付近にある場合をそれぞれ示す。波長成分L1,L2の光は、それぞれ被測定面8aが位置S1,S2にあるとき、該被測定面上で合焦する。従って、図8において曲線P1,P2から光強度が最大となるピーク波長λ1,λ2を検出することによって、被測定面8aの位置S1,S2が測定される。   The collected measurement light is incident on the light receiving portion of the image sensor 11 and detected, and is output to the processing device 12 as an electrical signal. FIG. 8 shows a spectral spectrum of the measurement light processed by the processing device 12. In the drawing, a solid line P1 indicates a case where the measured surface 8a of the measurement object 8 is near the position S1 on the optical axis, and a broken line P2 indicates a case where the measured surface is near the position S2. The light of the wavelength components L1 and L2 is focused on the measured surface when the measured surface 8a is at the positions S1 and S2, respectively. Therefore, the positions S1 and S2 of the measured surface 8a are measured by detecting peak wavelengths λ1 and λ2 at which the light intensity is maximum from the curves P1 and P2 in FIG.

しかしながら、図8に示すように、光強度曲線P1,P2は、ピーク付近が比較的緩やかである。更に、撮像素子11は、一般に多数の光電変換素子を一定間隔で配列したアレイで構成される。従って、図8の光強度曲線P1,P2は、実際には、前記各光電変換素子からの出力をプロットした多数の点を結んでできた近似曲線である。そのため、光強度曲線はノイズや光距離計自体の誤差でばらつきを生じ易く、ピーク波長λ1,λ2を正確に検出することが比較的困難なため、測定誤差を生じる虞がある。   However, as shown in FIG. 8, the light intensity curves P1 and P2 are relatively gentle around the peak. Furthermore, the image pickup device 11 is generally constituted by an array in which a large number of photoelectric conversion elements are arranged at regular intervals. Therefore, the light intensity curves P1 and P2 in FIG. 8 are actually approximate curves formed by connecting a large number of points plotting the outputs from the photoelectric conversion elements. For this reason, the light intensity curve is likely to vary due to noise and errors of the optical distance meter itself, and it is relatively difficult to accurately detect the peak wavelengths λ1 and λ2, which may cause measurement errors.

また、測定対象物8の被測定面8aが無色の鏡面でなく、着色されている場合、その色によって各波長の反射率が異なる。前記被測定面が反射率の低い色に着色されていると、撮像素子11から検出される光強度は、前記反射率に対応して低下する。   Further, when the measurement target surface 8a of the measurement object 8 is not a colorless mirror surface but colored, the reflectance of each wavelength differs depending on the color. When the surface to be measured is colored in a color having a low reflectance, the light intensity detected from the image sensor 11 decreases corresponding to the reflectance.

図9は、被測定面8aの反射率が、図中一点差線で示すように波長に関して変化すると仮定した場合に検出される分光スペクトルを示している。図中、比較のため、図8の全反射の場合の光強度曲線P1,P2をそれぞれ破線で示す。光強度曲線P1は、対応する波長域の反射率が低いので、ピーク位置が非常に低くかつ+側に大きくシフトし、全体として非常に緩やかな光強度曲線p1となっている。光強度曲線P2は、対応する波長域の反射率が比較的高いので、ピーク位置が少し低下しかつ+側にシフトし、全体として幾分緩やかな光強度曲線p2となっている。いずれの場合も、光強度曲線のピーク付近が全反射の場合よりも緩やかなだけでなく、ピーク波長がずれるので、被測定面8aの位置を正確に検出することは困難である。   FIG. 9 shows a spectrum detected when it is assumed that the reflectivity of the surface 8a to be measured changes with respect to the wavelength as shown by the one-dot difference line in the figure. For comparison, the light intensity curves P1 and P2 in the case of total reflection in FIG. Since the light intensity curve P1 has a low reflectance in the corresponding wavelength region, the peak position is very low and is greatly shifted to the + side, and the light intensity curve P1 is a very gentle light intensity curve p1 as a whole. The light intensity curve P2 has a relatively high reflectance in the corresponding wavelength region, so that the peak position is slightly lowered and shifted to the + side, and the light intensity curve P2 as a whole is somewhat gentle. In either case, not only is the vicinity of the peak of the light intensity curve more gradual than in the case of total reflection, but also the peak wavelength shifts, so it is difficult to accurately detect the position of the measured surface 8a.

そこで本発明は、上述した従来の問題点に鑑みてなされたものであり、その目的は、被測定面の反射率に拘わらず、その位置を高精度にかつ安定して測定し得る共焦点分光方式の光距離計及び距離測定方法を提供することにある。   Therefore, the present invention has been made in view of the above-described conventional problems, and an object thereof is confocal spectroscopy capable of measuring the position with high accuracy and stability regardless of the reflectance of the surface to be measured. An optical distance meter and a distance measuring method are provided.

本発明の光距離計は、上記目的を達成するために、光源と、該光源からの照明光を互いに直交する第1及び第2偏光方向成分に分離させかつ第1及び第2偏光方向成分を被測定面の光軸上の互いに異なる位置に結像するように投写する照明光学系と、光検出器と、被測定面から反射された第1及び第2偏光方向成分をそれぞれ光検出器の異なる位置に結像させる検出光学系とを備えることを特徴とする。   In order to achieve the above object, the optical distance meter of the present invention separates the light source and the illumination light from the light source into first and second polarization direction components orthogonal to each other, and the first and second polarization direction components are separated. The illumination optical system for projecting images at different positions on the optical axis of the surface to be measured, the photodetector, and the first and second polarization direction components reflected from the surface to be measured are And a detection optical system for forming an image at different positions.

このように構成することによって、光検出器は、被測定面から反射された第1及び第2偏光方向成分の光強度をそれぞれ検出することができる。検出された第1及び第2偏光方向成分は、被測定面の光軸上の結像位置が異なるので、それらの光強度は、互いに異なる位置にピーク波長を有する曲線となる。それら光強度の差分を算出すると、必ず0点を通過し、0点付近で比較的急峻にかつ直線的に変化する波形の光強度曲線が得られる。この差分が0値となる波長は、ピーク波長よりも高精度に検出できるから、これを用いることによって、被測定面の位置をより高精度に測定することができる。   By configuring in this way, the photodetector can detect the light intensities of the first and second polarization direction components reflected from the surface to be measured. Since the detected first and second polarization direction components have different imaging positions on the optical axis of the surface to be measured, their light intensities become curves having peak wavelengths at different positions. When the difference between the light intensities is calculated, a light intensity curve having a waveform that always passes through the zero point and changes relatively steeply and linearly near the zero point is obtained. Since the wavelength at which this difference is 0 can be detected with higher accuracy than the peak wavelength, the position of the surface to be measured can be measured with higher accuracy by using this.

しかも、被測定面の反射率が波長に関して一定でない場合、それが、検出される第1及び第2偏光方向成分の光強度に大きく作用して、ピーク波長の位置がずれてしまう。そのような場合でも、光強度の差分が0値となる波長は変化しないので、安定して被測定面の位置を測定することができる。   Moreover, when the reflectance of the surface to be measured is not constant with respect to the wavelength, it greatly affects the detected light intensity of the first and second polarization direction components, and the position of the peak wavelength is shifted. Even in such a case, the wavelength at which the difference in light intensity is zero does not change, so that the position of the surface to be measured can be measured stably.

或る実施例では、照明光学系が、光源からの照明光を互いに直交する第1及び第2偏光方向成分に分離させる複屈折板と、該複屈折板から出射した第1及び第2偏光方向成分を被測定面の光軸上の互いに異なる位置に結像するように投写する集光レンズとを有することによって、ノイズや誤差の少ない光距離計を構成することができる。   In one embodiment, the illumination optical system separates the illumination light from the light source into first and second polarization direction components orthogonal to each other, and the first and second polarization directions emitted from the birefringence plate. By having a condensing lens that projects the components to form images at different positions on the optical axis of the surface to be measured, an optical rangefinder with less noise and errors can be configured.

別の実施例では、照明光学系が、光源からの照明光を伝送して複屈折板に入射させる偏波保持ファイバーを有することにより、光距離計の本体部分から離れた位置にある測定対象物の被測定面を測定することができる。   In another embodiment, the illumination optical system has a polarization maintaining fiber that transmits the illumination light from the light source and makes it incident on the birefringent plate, so that the measurement object is located away from the main body portion of the optical distance meter. The surface to be measured can be measured.

また、別の実施例では、照明光学系が、光源からの照明光を集光し、拡散させて複屈折板に入射させるように、多数のピンホールを配列したピンホールアレイを有することにより、被測定面上の多数の点について同時に測定を行うことができる。これによって、測定対象物の2次元形状をより簡単に測定することができる。更に、被測定面を照明光によりスキャンすることによって、測定対象物の2次元形状を測定することもできる。   In another embodiment, the illumination optical system has a pinhole array in which a large number of pinholes are arranged so that the illumination light from the light source is condensed, diffused, and incident on the birefringent plate. A large number of points on the surface to be measured can be measured simultaneously. As a result, the two-dimensional shape of the measurement object can be measured more easily. Furthermore, the two-dimensional shape of the measurement object can be measured by scanning the surface to be measured with illumination light.

更に別の実施例によれば、照明光学系が、被測定面から反射された第1及び第2偏光方向成分を合波して検出光学系に出射し、検出光学系が、照明光学系からの入射光を第1及び第2偏光方向成分に分離させるように構成することによって、被測定面からの反射光の光路を偏光方向によって分けて設ける必要が無いので、より簡単な構成にすることができる。   According to yet another embodiment, the illumination optical system combines the first and second polarization direction components reflected from the surface to be measured and emits them to the detection optical system, and the detection optical system is from the illumination optical system. By separating the incident light into the first and second polarization direction components, it is not necessary to separately provide the optical path of the reflected light from the surface to be measured according to the polarization direction. Can do.

或る実施例では、光源が白色光源であることにより、広範な波長範囲について測定を行うことができる。この場合、検出光学系は、照明光学系からの入射光を異なる波長毎に分散させる分散素子を有する必要がある。   In some embodiments, the light source is a white light source, allowing measurements over a wide wavelength range. In this case, the detection optical system needs to have a dispersive element that disperses incident light from the illumination optical system for each different wavelength.

別の実施例では、光検出器に入射した第1及び第2偏光方向成分の光強度を検出し、第1偏光方向成分と第2偏光方向成分の光強度の差分を算出し、光強度の差分が0値となる波長を決定する信号処理部を更に備えることにより、外部の処理装置を要することなく、光距離計単体で被測定面の位置を測定することができる。   In another embodiment, the light intensity of the first and second polarization direction components incident on the photodetector is detected, the difference between the light intensity of the first polarization direction component and the second polarization direction component is calculated, and the light intensity By further including a signal processing unit that determines the wavelength at which the difference becomes zero, the position of the surface to be measured can be measured with a single optical distance meter without the need for an external processing device.

本発明の別の側面によれば、光源からの照明光を互いに直交する第1及び第2偏光方向成分に分離させ、第1及び第2偏光方向成分を被測定面の光軸上の互いに異なる位置に結像するように投射し、被測定面から反射された第1及び第2偏光方向成分の光強度をそれぞれ検出し、第1偏光方向成分と第2偏光方向成分の光強度の差分を算出し、該光強度の差分が0値となる波長を決定し、この波長に基づいて被測定面の位置を測定する距離測定方法が提供される。   According to another aspect of the present invention, illumination light from a light source is separated into first and second polarization direction components orthogonal to each other, and the first and second polarization direction components are different from each other on the optical axis of the surface to be measured. The light is projected to form an image at a position, the light intensities of the first and second polarization direction components reflected from the surface to be measured are detected, and the difference between the light intensities of the first and second polarization direction components is calculated. There is provided a distance measurement method for calculating, determining a wavelength at which the difference in light intensity is zero, and measuring the position of the surface to be measured based on this wavelength.

被測定面から反射された第1及び第2偏光方向成分の光強度の差分が0値となる波長は、ピーク波長よりも高精度に検出でき、かつ被測定面の反射率の影響を受けないから、被測定面の位置をより高精度に安定して測定することができる。   The wavelength at which the difference between the light intensities of the first and second polarization direction components reflected from the surface to be measured is zero can be detected with higher accuracy than the peak wavelength and is not affected by the reflectance of the surface to be measured. Thus, the position of the surface to be measured can be stably measured with higher accuracy.

或る実施例では、照明光が白色光であり、被測定面から反射された第1及び第2偏光方向成分を異なる波長毎に分散させた後、第1及び第2偏光方向成分の光強度を検出することにより、広範な波長範囲について測定を行うことができる。   In one embodiment, the illumination light is white light, and after the first and second polarization direction components reflected from the measurement surface are dispersed for different wavelengths, the light intensity of the first and second polarization direction components is obtained. Can be measured over a wide wavelength range.

本発明による光距離計の第1実施例の構成図。The block diagram of 1st Example of the optical distance meter by this invention. 第1実施例のヘッド部の詳細図。FIG. 3 is a detailed view of a head portion of the first embodiment. 第1実施例の光検出部の詳細図。FIG. 3 is a detailed view of a light detection unit according to the first embodiment. (A)図は第1実施例の分光スペクトルを示す線図、(B)図は被測定表面の反射率が波長に関して変化する場合の分光スペクトルを示す線図、(C)図は被測定表面の反射率が波長に関して一定の場合と変化する場合とを対比して示す線図。(A) is a diagram showing the spectrum of the first embodiment, (B) is a diagram showing the spectrum when the reflectance of the surface to be measured changes with respect to wavelength, and (C) is the surface to be measured. FIG. 5 is a diagram showing a comparison between a case where the reflectance of a light source is constant with respect to a wavelength and a case where the reflectance changes. (A)図は本発明による光距離計の第2実施例の構成図、(B)図は第2実施例のピンホール板の概略斜視図。(A) is a block diagram of a second embodiment of the optical distance meter according to the present invention, and (B) is a schematic perspective view of the pinhole plate of the second embodiment. 第2実施例の光検出器の概略斜視図。The schematic perspective view of the photodetector of 2nd Example. 従来技術の光距離計の典型例を示す構成図。The block diagram which shows the typical example of the optical distance meter of a prior art. 図7の光距離計の分光スペクトルを示す線図。The diagram which shows the spectrum of the optical distance meter of FIG. 図8の分光スペクトルにおいて被測定表面の反射率が波長に関して変化する場合を対比して示す線図。FIG. 9 is a diagram showing the case where the reflectance of the surface to be measured changes with respect to the wavelength in the spectral spectrum of FIG.

以下に、添付図面を参照しつつ、本発明の好適な実施例を詳細に説明する。尚、添付図面において、同一又は類似の構成要素は同一又は類似の参照符号を付して表示する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same or similar reference numerals.

図1は、本発明による光距離計の第1実施例の構成を示している。本実施例の光距離計21は、その本体部分から離れた位置にある測定対象物に照明光を投射しかつその反射光を受光するためのヘッド部21aを備える。   FIG. 1 shows the configuration of a first embodiment of an optical distance meter according to the present invention. The optical distance meter 21 of the present embodiment includes a head portion 21a for projecting illumination light on a measurement object located at a position away from the main body portion and receiving the reflected light.

光距離計21の本体部分は、白色光源22と、コリメートレンズ23と、ビームスプリッター24とが同一光軸上に配置され、それに直交する光軸上に集光レンズ25と、光ファイバー26の一方の端部26aとが配置されている。光ファイバー26は、その断面内で複屈折性を有する偏波保持ファイバーからなり、その他方の端部26bがヘッド部21aに接続されている。   The main part of the optical distance meter 21 includes a white light source 22, a collimating lens 23, and a beam splitter 24 arranged on the same optical axis, and a condensing lens 25 and one of the optical fibers 26 on an optical axis perpendicular to the optical axis. An end portion 26a is disposed. The optical fiber 26 is made of a polarization-maintaining fiber having birefringence in its cross section, and the other end 26b is connected to the head portion 21a.

ヘッド部21aは、図2に示すように、光ファイバー26の端部26bと同一光軸上に、複屈折板27と、色収差レンズ28とが配置されている。複屈折板27は、例えば水晶板等の複屈折材料で形成され、入射した直線偏光を互いに直交する偏光成分に、即ち常光成分と異常光成分とに分離させて出射する。色収差レンズ28は、例えばクラウンガラスとフリントガラスのように屈折率の異なる凹レンズ28aと凸レンズ28bとを貼り合わせた組合せレンズである。   As shown in FIG. 2, the head portion 21 a has a birefringent plate 27 and a chromatic aberration lens 28 disposed on the same optical axis as the end portion 26 b of the optical fiber 26. The birefringent plate 27 is made of, for example, a birefringent material such as a quartz plate, and emits the incident linearly polarized light into polarized components orthogonal to each other, that is, separated into an ordinary light component and an extraordinary light component. The chromatic aberration lens 28 is a combination lens in which a concave lens 28a and a convex lens 28b having different refractive indexes such as crown glass and flint glass are bonded together.

更に光距離計21の本体部分は、集光レンズ25と同一光軸上に、ビームスプリッター24を挟んで反対側に凹面型回折格子29が配置され、該回折格子の回折方向に複屈折板30と、撮像素子31とが配置されている。別の実施例では、凹面型回折格子29に代えて、平板型の回折格子を用いることもできる。その場合には、図7の従来例と同様に集光レンズを配置する必要がある。   Further, the main part of the optical distance meter 21 is provided with a concave diffraction grating 29 on the opposite side of the beam splitter 24 on the same optical axis as the condenser lens 25, and the birefringent plate 30 in the diffraction direction of the diffraction grating. And the image pick-up element 31 is arrange | positioned. In another embodiment, a flat plate diffraction grating can be used instead of the concave diffraction grating 29. In that case, it is necessary to dispose a condenser lens as in the conventional example of FIG.

複屈折板30は、同様に水晶板等の複屈折材料で形成され、入射した直線偏光を常光成分と異常光成分とに分離させて出射する。撮像素子31は、図3に示すように、受光部としてフォトダイオードのような光電変換素子を1列に配列したリニアイメージセンサー32a,32bを2列平行に配置したものである。撮像素子31には、前記リニアイメージセンサーからの出力信号を処理するための信号処理部33が接続されている。   Similarly, the birefringent plate 30 is formed of a birefringent material such as a quartz plate and separates the incident linearly polarized light into an ordinary light component and an extraordinary light component and emits them. As shown in FIG. 3, the image pickup device 31 has linear image sensors 32 a and 32 b in which photoelectric conversion elements such as photodiodes are arranged in one row as light receiving portions, which are arranged in two rows in parallel. The image sensor 31 is connected to a signal processing unit 33 for processing an output signal from the linear image sensor.

光距離計21において、光源22から出射した白色の照射光は、コリメートレンズ23により平行光に変換され、ビームスプリッター24により反射され、集光レンズ25により光ファイバー26の端部26aに集光される。光ファイバー26は、ピンホールと同様の開口絞りとして、照射光をその偏光状態を変化させることなくヘッド部21aまで伝送する。光ファイバー26の端部26bを出た照射光は拡散し、複屈折板27を通過する際に常光成分と異常光成分とに分離され、色収差レンズ28によって測定対象物34の被測定面34aの光軸上に結像するように集光される。   In the optical distance meter 21, the white irradiation light emitted from the light source 22 is converted into parallel light by the collimator lens 23, reflected by the beam splitter 24, and condensed on the end portion 26 a of the optical fiber 26 by the condenser lens 25. . The optical fiber 26 is an aperture stop similar to a pinhole, and transmits irradiation light to the head unit 21a without changing the polarization state. Irradiation light exiting from the end portion 26b of the optical fiber 26 is diffused and separated into an ordinary light component and an extraordinary light component when passing through the birefringent plate 27. It is condensed so as to form an image on the axis.

複屈折板27で分離された照射光の常光成分と異常光成分とは、同じ波長であっても、被測定面34aの光軸上の互いに異なる位置S1,S2で結像する。このとき、測定対象物34は、被測定面34aが光軸上の位置S1,S2間にあるように配置する。   Even if the ordinary light component and the extraordinary light component of the irradiation light separated by the birefringent plate 27 have the same wavelength, they are imaged at different positions S1 and S2 on the optical axis of the measured surface 34a. At this time, the measuring object 34 is arranged so that the measured surface 34a is between the positions S1 and S2 on the optical axis.

前記被測定面で反射された常光成分及び異常光成分は、色収差レンズ28により収束され、再び複屈折板27を通過する際に合波されて光ファイバー26の端部26bに集光され、その偏光状態を維持したまま前記光ファイバーの中を伝送される。光ファイバー26の端部26aを出た反射光は拡散し、コリメートレンズである集光レンズ25により平行光に変換され、ビームスプリッター24を透過する。   The ordinary light component and the extraordinary light component reflected by the surface to be measured are converged by the chromatic aberration lens 28, are combined again when passing through the birefringent plate 27, and are condensed on the end portion 26b of the optical fiber 26, and the polarization thereof. It is transmitted through the optical fiber while maintaining the state. The reflected light that exits the end portion 26 a of the optical fiber 26 is diffused, converted into parallel light by the condensing lens 25 that is a collimating lens, and then transmitted through the beam splitter 24.

前記ビームスプリッターを透過した平行光は、凹面型回折格子29によって、異なる波長成分L1,L2毎に異なる回折角度に回折され、測定光として撮像素子31に結像するように収束される。図3に示すように、測定光Lは、撮像素子31に入射する前に複屈折板30を通過して、常光成分Loと異常光成分Leとに分離される。常光成分Loは、複屈折板30を真直ぐに透過して一方のリニアイメージセンサー32aに入射し、異常光成分Leは、常光成分Loから所定の分離幅だけシフトして、他方のリニアイメージセンサー32bに入射する。   The parallel light transmitted through the beam splitter is diffracted by the concave diffraction grating 29 at different diffraction angles for the different wavelength components L1 and L2, and converged to form an image on the image sensor 31 as measurement light. As shown in FIG. 3, the measurement light L passes through the birefringent plate 30 before being incident on the image sensor 31 and is separated into an ordinary light component Lo and an extraordinary light component Le. The ordinary light component Lo passes straight through the birefringent plate 30 and enters one linear image sensor 32a. The extraordinary light component Le shifts from the ordinary light component Lo by a predetermined separation width, and the other linear image sensor 32b. Is incident on.

撮像素子31に入射した測定光は、それぞれ電気信号として信号処理部33に出力され、処理される。信号処理部33は次のような処理を行う。先ず、前記各リニアイメージセンサーからの出力信号に補正、増幅等の必要な処理を行って、常光成分Lo及び異常光成分Leの光強度P1,P2を検出する。次に、常光成分Loと異常光成分Leの光強度の差分ΔP=P1−P2を算出する。そして、差分ΔPが0となる波長λ0を検出し、この波長λ0に基づいて被測定面34aの位置を算出する。   The measurement light incident on the image sensor 31 is output to the signal processing unit 33 as an electric signal and processed. The signal processing unit 33 performs the following processing. First, necessary processing such as correction and amplification is performed on the output signals from the linear image sensors to detect the light intensities P1 and P2 of the ordinary light component Lo and the abnormal light component Le. Next, a difference ΔP = P1−P2 between the light intensities of the ordinary light component Lo and the extraordinary light component Le is calculated. Then, the wavelength λ0 at which the difference ΔP is 0 is detected, and the position of the measured surface 34a is calculated based on the wavelength λ0.

図4(A)は、被測定面34aの反射率を一定と仮定した場合に、信号処理部33により処理された測定光の分光スペクトルを示している。上述したように、照射光が複屈折板27を介して被測定面34aに投射されるので、常光成分と異常光成分とは、同じ波長で光軸上の異なる位置に結像する。そのため、光強度P1,P2は、互いにピーク波長の位置が異なる曲線となり、差分ΔPの光強度曲線は、必ず光強度の0点を通過する。しかも、この曲線の0点付近における変化は、ピーク付近の変化に比して急峻でありかつ直線的である。従って、差分ΔP=0となる波長λ0をより高精度に検出することができる。   FIG. 4A shows a spectral spectrum of measurement light processed by the signal processing unit 33 when the reflectance of the measurement target surface 34a is assumed to be constant. As described above, since the irradiation light is projected onto the measurement surface 34a via the birefringent plate 27, the ordinary light component and the extraordinary light component are imaged at different positions on the optical axis at the same wavelength. Therefore, the light intensities P1 and P2 are curves having different peak wavelength positions, and the light intensity curve with the difference ΔP always passes through the zero point of the light intensity. Moreover, the change in the vicinity of the zero point of this curve is steep and linear compared to the change in the vicinity of the peak. Therefore, the wavelength λ0 where the difference ΔP = 0 can be detected with higher accuracy.

図4(B)は、被測定面34aの反射率が波長に関して変化すると仮定した場合に、処理装置33により処理された測定光の分光スペクトルを示している。同図において、反射率は一点差線で示すように変化する。この影響で、常光成分Lo及び異常光成分Leの光強度p1,p2は、図9の従来技術に関連して上述したように、図4(A)の光強度P1,P2に対して波形が大きく変形し、ピーク波長もずれている。これに対応して、光強度p1,p2の差分Δp=p1−p2も、図4(A)の波形から大きく変形している。この場合も、差分Δpの光強度曲線は必ず光強度の0点を通過する。   FIG. 4B shows a spectral spectrum of the measurement light processed by the processing device 33 when it is assumed that the reflectance of the measurement target surface 34a changes with respect to the wavelength. In the figure, the reflectivity changes as indicated by a one-point difference line. Due to this influence, the light intensities p1 and p2 of the ordinary light component Lo and the extraordinary light component Le have waveforms with respect to the light intensities P1 and P2 in FIG. 4A as described above with reference to the prior art in FIG. It is greatly deformed and the peak wavelength is also shifted. Correspondingly, the difference Δp = p1−p2 between the light intensities p1 and p2 is also greatly deformed from the waveform of FIG. Also in this case, the light intensity curve of the difference Δp always passes the zero point of the light intensity.

図4(C)は、図4(B)における差分Δpの光強度曲線を、図4(A)における差分ΔPの光強度曲線と対比して示している。同図から分かるように、差分Δpの光強度曲線が0点を通る波長は、差分ΔPの光強度曲線が0点を通る波長λ0と全く同じである。このように本発明によれば、測定光の常光成分及び異常光成分についてそれぞれ検出した信号の差分を用いることによって、被測定面34aの反射率やノイズ等の影響を受けることなく、該被測定面の位置を高精度に検出することができる。   FIG. 4C shows the light intensity curve of the difference Δp in FIG. 4B in comparison with the light intensity curve of the difference ΔP in FIG. As can be seen from the figure, the wavelength at which the light intensity curve of the difference Δp passes through the zero point is exactly the same as the wavelength λ0 through which the light intensity curve of the difference ΔP passes through the zero point. As described above, according to the present invention, by using the difference between the detected signals for the ordinary light component and the abnormal light component of the measurement light, the measurement target is not affected by the reflectance or noise of the measurement target surface 34a. The position of the surface can be detected with high accuracy.

図5(A)は、本発明による光距離計の第2実施例の構成を示している。本実施例の光距離計41は、白色光源42と、集光レンズ43と、ビームスプリッター44とが同一光軸上に配置され、それに直交する光軸上にピンホール板45と、複屈折板46と、テレセントリック色収差レンズ47とが配置されている。ピンホール板45と同一光軸上にビームスプリッター44を挟んで反対側には、凹面型回折格子48が配置され、該回折格子の回折方向に複屈折板49と、撮像素子50とが配置されている。   FIG. 5A shows the configuration of a second embodiment of the optical distance meter according to the present invention. In the optical distance meter 41 of the present embodiment, a white light source 42, a condenser lens 43, and a beam splitter 44 are arranged on the same optical axis, and a pinhole plate 45, a birefringent plate on an optical axis perpendicular thereto. 46 and a telecentric chromatic aberration lens 47 are arranged. On the opposite side of the beam splitter 44 on the same optical axis as the pinhole plate 45, a concave diffraction grating 48 is disposed, and a birefringent plate 49 and an image sensor 50 are disposed in the diffraction direction of the diffraction grating. ing.

ピンホール板45は、図5(B)に示すように、多数のピンホール45aを一定間隔で横1列に配置したピンホールアレイからなる。複屈折板46,49は、第1実施例と同様に、例えば水晶板等の複屈折材料で形成され、入射した直線偏光を互いに直交する偏光成分に、即ち常光成分と異常光成分とに分離させて出射する。別の実施例では、凹面型回折格子48に代えて、平板型の回折格子を用いることもできるが、その場合は図7の従来例と同様に集光レンズが必要である。   As shown in FIG. 5B, the pinhole plate 45 is composed of a pinhole array in which a large number of pinholes 45a are arranged in a horizontal row at regular intervals. The birefringent plates 46 and 49 are formed of a birefringent material such as a quartz plate, for example, as in the first embodiment, and separate the incident linearly polarized light into mutually orthogonal polarized components, that is, an ordinary light component and an extraordinary light component. Then exit. In another embodiment, a flat type diffraction grating can be used in place of the concave type diffraction grating 48. In this case, a condensing lens is required as in the conventional example of FIG.

撮像素子50は、受光部としてフォトダイオードのような多数の光電変換素子を、例えば格子状に平面配置したエリアイメージセンサーである。本実施例では、図6に示すように、多数のフォトダイオード51a,52aを1列に配列したフォトダイオードアレイ51,52を多数列平行に配置したものを使用する。撮像素子50には、前記フォトダイオードアレイからの出力信号を処理するための信号処理部53が接続されている。   The image sensor 50 is an area image sensor in which a large number of photoelectric conversion elements such as photodiodes are arranged in a plane, for example, in a lattice shape as a light receiving unit. In this embodiment, as shown in FIG. 6, a photodiode array 51, 52 in which a large number of photodiodes 51a, 52a are arranged in one row is arranged in parallel. A signal processing unit 53 for processing an output signal from the photodiode array is connected to the image sensor 50.

光距離計41において、光源42から出射した白色の照射光は、集光レンズ43により収束され、ビームスプリッター44により反射されて、前記ピンホールアレイの各ピンホール45aに集光される。各ピンホール45aを出た照射光は拡散し、それぞれ複屈折板46を通過する際に常光成分と異常光成分とに分離され、テレセントリック色収差レンズ47によって互いに平行に、かつ前記各ピンホールの位置に対応する測定対象物54の被測定面54a上の各点において、その光軸上に結像するように集光される。   In the optical distance meter 41, the white irradiation light emitted from the light source 42 is converged by the condensing lens 43, reflected by the beam splitter 44, and condensed on each pinhole 45a of the pinhole array. Irradiation light exiting each pinhole 45a diffuses and is separated into an ordinary light component and an extraordinary light component when passing through the birefringent plate 46, and is parallel to each other by the telecentric chromatic aberration lens 47 and the position of each pinhole. Are focused so as to form an image on the optical axis at each point on the measurement surface 54a of the measurement object 54 corresponding to.

複屈折板46で分離された各照射光の常光成分と異常光成分とは、それぞれ同じ波長であっても、被測定面54aの光軸上の互いに異なる位置S1,S2で結像する。測定対象物54は、被測定面54aが光軸上の位置S1,S2間にあるように配置する。   Even if the ordinary light component and the extraordinary light component of each irradiation light separated by the birefringent plate 46 have the same wavelength, they are imaged at different positions S1 and S2 on the optical axis of the measured surface 54a. The measurement object 54 is arranged so that the measured surface 54a is between the positions S1 and S2 on the optical axis.

前記被測定面の各点で反射された常光成分及び異常光成分は、それぞれテレセントリック色収差レンズ47により収束され、再び複屈折板46を通過する際に合波され、それぞれ元のピンホール45aに集光される。前記各ピンホールを出た反射光は、拡散してビームスプリッター44を透過し、凹面型回折格子48に入射して、それぞれ異なる波長成分L1,L2毎に異なる回折角度に回折され、測定光として撮像素子50に結像するように収束される。   The ordinary light component and the extraordinary light component reflected at each point on the surface to be measured are converged by the telecentric chromatic aberration lens 47, and are combined when passing through the birefringent plate 46 again, and collected in the original pinhole 45a. Lighted. The reflected light exiting each pinhole diffuses and passes through the beam splitter 44, enters the concave diffraction grating 48, is diffracted at different diffraction angles for different wavelength components L1 and L2, and is used as measurement light. Focusing is performed so as to form an image on the image sensor 50.

測定光は、撮像素子50に入射する前に複屈折板49を透過して、常光成分Loと異常光成分Leとに分離される。図6に示すように、常光成分Loは、複屈折板49を真直ぐに透過して一方のフォトダイオードアレイ51に入射し、異常光成分Leは、常光成分Loから所定の分離幅だけシフトして、他方のフォトダイオードアレイ52に入射する。本実施例では、被測定面54aの各点からの測定光を、それぞれ前記各フォトダイオードアレイの対応するフォトダイオード51a,52aに同時に入射させることができる。   The measurement light is transmitted through the birefringent plate 49 before being incident on the image sensor 50, and is separated into an ordinary light component Lo and an extraordinary light component Le. As shown in FIG. 6, the ordinary light component Lo passes straight through the birefringent plate 49 and enters one photodiode array 51, and the extraordinary light component Le is shifted from the ordinary light component Lo by a predetermined separation width. , And enters the other photodiode array 52. In the present embodiment, measurement light from each point on the measurement target surface 54a can be simultaneously incident on the corresponding photodiodes 51a and 52a of the respective photodiode arrays.

撮像素子50に入射した測定光は、第1実施例と同様にそれぞれ電気信号として信号処理部53に出力され、処理される。即ち、信号処理部53は、前記各フォトダイオードアレイからの出力信号に補正、増幅等の必要な処理を行い、常光成分Lo及び異常光成分Leの光強度P1,P2を検出し、それら光強度の差分ΔP=P1−P2を算出する。そして、被測定面54a上の前記各点について、それぞれ差分ΔPが0となる波長λ0を検出し、これらの波長λ0に基づいて前記各点の位置を同時に算出する。   The measurement light incident on the image sensor 50 is output to the signal processing unit 53 as an electrical signal and processed, as in the first embodiment. That is, the signal processing unit 53 performs necessary processes such as correction and amplification on the output signals from the respective photodiode arrays, detects the light intensities P1 and P2 of the ordinary light component Lo and the abnormal light component Le, and these light intensities. The difference ΔP = P1−P2 is calculated. Then, the wavelength λ0 at which the difference ΔP is 0 is detected for each point on the measured surface 54a, and the position of each point is calculated simultaneously based on these wavelengths λ0.

このように本実施例によれば、被測定面54aにおける反射率の変化やノイズ等の影響を受けることなく、多数の点の位置を一度に高精度に検出し、該被測定面の2次元形状を測定することができる。更に、被測定面54aをスキャンして照明光を投射すれば、測定対象物54の3次元形状を測定することもできる。   As described above, according to the present embodiment, the position of a large number of points can be detected at a high accuracy at a time without being affected by the change in reflectance or noise on the surface to be measured 54a, and the two-dimensional measurement of the surface to be measured. The shape can be measured. Furthermore, if the surface to be measured 54a is scanned and illumination light is projected, the three-dimensional shape of the measurement object 54 can be measured.

別の実施例では、ピンホール板45のピンホールアレイをスリット状の開口絞りに変更することができる。この場合、被測定面54a上の位置を連続的な線として測定することができる。   In another embodiment, the pinhole array of the pinhole plate 45 can be changed to a slit-shaped aperture stop. In this case, the position on the measured surface 54a can be measured as a continuous line.

本発明は、上記実施例に限定されるものでなく、その技術的範囲内で様々な変形又は変更を加えて実施することができる。例えば、第1実施例における光ファイバーは、ピンホールに置き換えることができる。また、各実施例における複屈折板は、平行平板構造や2焦点レンズ等、他の公知の様々な構造のものを使用することができる。更に、白色光源に代えて、波長可変光源を用いることもできる。この場合、測定面からの反射光は、撮像素子に入射させる前に単に偏光方向によって分離できればよいから、回折格子のような分散素子を省略することができる。   The present invention is not limited to the above embodiments, and can be implemented with various modifications or changes within the technical scope thereof. For example, the optical fiber in the first embodiment can be replaced with a pinhole. In addition, the birefringent plate in each embodiment can be used in various other known structures such as a parallel plate structure and a bifocal lens. Further, a wavelength tunable light source can be used instead of the white light source. In this case, the reflected light from the measurement surface only needs to be separated by the polarization direction before being incident on the image sensor, so that a dispersive element such as a diffraction grating can be omitted.

1,21,41…光距離計、2,22,42…白色光源、3,23…コリメートレンズ、4,24,44…ビームスプリッター、5,10,25,43…集光レンズ、6,45a…ピンホール、7,28…色収差レンズ、8,34,54…測定対象物、8a,34a,54a…被測定面、9…回折格子、11,31,50…撮像素子、12…処理装置、21a…ヘッド部、26…光ファイバー、26a,26b…端部、27,30,46,49…複屈折板、28a…凹レンズ、28b…凸レンズ、29,48…凹面型回折格子、32a,32b…リニアイメージセンサー、33,53…信号処理部、45…ピンホール板、47…テレセントリック色収差レンズ、51,52…フォトダイオードアレイ、51a,52a…フォトダイオード。 1, 2, 41 ... optical distance meter, 2, 22, 42 ... white light source, 3, 23 ... collimating lens, 4, 24, 44 ... beam splitter, 5, 10, 25, 43 ... condensing lens, 6, 45a ... pinhole, 7, 28 ... chromatic aberration lens, 8, 34, 54 ... measurement object, 8a, 34a, 54a ... measurement surface, 9 ... diffraction grating, 11, 31, 50 ... imaging device, 12 ... processing device, 21a ... Head part, 26 ... Optical fiber, 26a, 26b ... End, 27, 30, 46, 49 ... Birefringent plate, 28a ... Concave lens, 28b ... Convex lens, 29, 48 ... Concave diffraction grating, 32a, 32b ... Linear Image sensor, 33, 53 ... signal processing unit, 45 ... pinhole plate, 47 ... telecentric chromatic aberration lens, 51, 52 ... photodiode array, 51a, 52a ... photodiode.

Claims (10)

光源と、前記光源からの照明光を互いに直交する第1及び第2偏光方向成分に分離させかつ前記第1及び第2偏光方向成分を被測定面の光軸上の互いに異なる位置に結像するように投写する照明光学系と、光検出器と、前記被測定面から反射された前記第1及び第2偏光方向成分をそれぞれ前記光検出器の異なる位置に結像させる検出光学系とを備えることを特徴とする光距離計。   A light source and illumination light from the light source are separated into first and second polarization direction components orthogonal to each other, and the first and second polarization direction components are imaged at different positions on the optical axis of the surface to be measured. An illumination optical system for projecting, a photodetector, and a detection optical system for imaging the first and second polarization direction components reflected from the surface to be measured at different positions of the photodetector, respectively. An optical distance meter characterized by that. 前記照明光学系が、前記光源からの照明光を互いに直交する第1及び第2偏光方向成分に分離させる複屈折板と、前記複屈折板から出射した前記第1及び第2偏光方向成分を前記被測定面の光軸上の互いに異なる位置に結像するように投写する集光レンズとを有することを特徴とする請求項1記載の光距離計。   The illumination optical system separates the illumination light from the light source into first and second polarization direction components orthogonal to each other, and the first and second polarization direction components emitted from the birefringence plate The optical distance meter according to claim 1, further comprising a condensing lens that projects so as to form images at different positions on the optical axis of the surface to be measured. 前記照明光学系が、前記光源からの照明光を伝送して前記複屈折板に入射させる偏波保持ファイバーを有することを特徴とする請求項2記載の光距離計。   The optical distance meter according to claim 2, wherein the illumination optical system includes a polarization maintaining fiber that transmits illumination light from the light source and causes the illumination light to enter the birefringent plate. 前記照明光学系が、前記光源からの照明光を集光し、拡散して前記複屈折板に入射させるように、多数のピンホールを配列したピンホールアレイを有することを特徴とする請求項2記載の光距離計。   The said illumination optical system has a pinhole array which arranged many pinholes so that the illumination light from the said light source may be condensed, diffused and made to inject into the birefringent plate. Optical distance meter as described. 前記照明光学系が、前記被測定面から反射された前記第1及び第2偏光方向成分を合波して前記検出光学系に出射し、前記検出光学系が、前記照明光学系からの入射光を第1及び第2偏光方向成分に分離させることを特徴とする請求項1乃至4のいずれか記載の光距離計。   The illumination optical system combines the first and second polarization direction components reflected from the surface to be measured and outputs the combined light to the detection optical system, and the detection optical system receives incident light from the illumination optical system. The optical rangefinder according to claim 1, wherein the first and second polarization direction components are separated. 前記光源が白色光源であることを特徴とする請求項1乃至5のいずれか記載の光距離計。   The optical distance meter according to claim 1, wherein the light source is a white light source. 前記検出光学系が、前記照明光学系からの入射光を異なる波長毎に分散させる分散素子を有することを特徴とする請求項6記載の光距離計。   The optical distance meter according to claim 6, wherein the detection optical system includes a dispersive element that disperses incident light from the illumination optical system at different wavelengths. 前記光検出器に入射した前記第1及び第2偏光方向成分の光強度を検出し、前記第1偏光方向成分と第2偏光方向成分の光強度の差分を算出し、前記光強度の差分が0値となる波長を決定する信号処理部を更に備えることを特徴とする請求項1乃至7のいずれか記載の光距離計。   The light intensity of the first and second polarization direction components incident on the photodetector is detected, the difference of the light intensity of the first polarization direction component and the second polarization direction component is calculated, and the difference of the light intensity is The optical distance meter according to claim 1, further comprising a signal processing unit that determines a wavelength to be a zero value. 光源からの照明光を互いに直交する第1及び第2偏光方向成分に分離させ、前記第1及び第2偏光方向成分を被測定面の光軸上の互いに異なる位置に結像するように投射し、前記被測定面から反射された前記第1及び第2偏光方向成分の光強度をそれぞれ検出し、前記第1偏光方向成分と第2偏光方向成分の光強度の差分を算出し、前記光強度の差分が0値となる波長を決定し、前記波長に基づいて前記被測定面の位置を測定することを特徴とする距離測定方法。   The illumination light from the light source is separated into first and second polarization direction components orthogonal to each other, and the first and second polarization direction components are projected to form images at different positions on the optical axis of the surface to be measured. Detecting the light intensities of the first and second polarization direction components reflected from the surface to be measured, calculating a difference between the light intensities of the first and second polarization direction components, and calculating the light intensity. A distance measurement method characterized by determining a wavelength at which the difference between the two values becomes 0 and measuring the position of the surface to be measured based on the wavelength. 前記照明光が白色光であり、前記被測定面から反射された前記第1及び第2偏光方向成分を異なる波長毎に分散させた後、前記第1及び第2偏光方向成分の光強度を検出することを特徴とする請求項9記載の距離測定方法。   The illumination light is white light, and after the first and second polarization direction components reflected from the measurement surface are dispersed for different wavelengths, the light intensity of the first and second polarization direction components is detected. The distance measuring method according to claim 9, wherein:
JP2010108758A 2010-05-10 2010-05-10 Optical distance meter and distance measuring method Withdrawn JP2011237272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010108758A JP2011237272A (en) 2010-05-10 2010-05-10 Optical distance meter and distance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010108758A JP2011237272A (en) 2010-05-10 2010-05-10 Optical distance meter and distance measuring method

Publications (1)

Publication Number Publication Date
JP2011237272A true JP2011237272A (en) 2011-11-24

Family

ID=45325420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010108758A Withdrawn JP2011237272A (en) 2010-05-10 2010-05-10 Optical distance meter and distance measuring method

Country Status (1)

Country Link
JP (1) JP2011237272A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130581A (en) * 2011-12-21 2013-07-04 Mitsutoyo Corp Chromatic point sensor system
JP2014044161A (en) * 2012-08-28 2014-03-13 Yokogawa Electric Corp Optical displacement meter
JP2015200537A (en) * 2014-04-07 2015-11-12 株式会社ディスコ Unevenness detection device
JP2018004512A (en) * 2016-07-05 2018-01-11 富士ゼロックス株式会社 Measurement device
JP2019066343A (en) * 2017-10-02 2019-04-25 オムロン株式会社 Confocal measuring device
EP3730897A1 (en) * 2019-04-25 2020-10-28 Nokia Technologies Oy Apparatus, systems and methods for detecting light
JP2021529941A (en) * 2018-06-20 2021-11-04 プレシテク オプトロニク ゲゼルシャフト ミット ベシュレンクテル ハフツング A device and method for optically measuring an object to be measured with chromatic confocal and forming an image with confocal.
CN114001645A (en) * 2021-10-28 2022-02-01 山西大学 Three-wavelength optical fiber point differential confocal microscopic detection method and device
JP2023524908A (en) * 2020-06-12 2023-06-13 アワーズ テクノロジー リミテッド ライアビリティー カンパニー LIDAR beam work-off correction

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130581A (en) * 2011-12-21 2013-07-04 Mitsutoyo Corp Chromatic point sensor system
JP2014044161A (en) * 2012-08-28 2014-03-13 Yokogawa Electric Corp Optical displacement meter
CN103673888A (en) * 2012-08-28 2014-03-26 横河电机株式会社 Optical displacement meter and optical displacement calculating method
JP2015200537A (en) * 2014-04-07 2015-11-12 株式会社ディスコ Unevenness detection device
JP2018004512A (en) * 2016-07-05 2018-01-11 富士ゼロックス株式会社 Measurement device
JP2019066343A (en) * 2017-10-02 2019-04-25 オムロン株式会社 Confocal measuring device
JP7393364B2 (en) 2018-06-20 2023-12-06 プレシテク オプトロニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for optically measuring a measurement target using a chromatic confocal method and forming an image using a confocal method
JP2021529941A (en) * 2018-06-20 2021-11-04 プレシテク オプトロニク ゲゼルシャフト ミット ベシュレンクテル ハフツング A device and method for optically measuring an object to be measured with chromatic confocal and forming an image with confocal.
EP3730897A1 (en) * 2019-04-25 2020-10-28 Nokia Technologies Oy Apparatus, systems and methods for detecting light
US12072188B2 (en) 2019-04-25 2024-08-27 Pantech Corporation Apparatus, systems and methods for detecting light
JP2023524908A (en) * 2020-06-12 2023-06-13 アワーズ テクノロジー リミテッド ライアビリティー カンパニー LIDAR beam work-off correction
JP7303949B2 (en) 2020-06-12 2023-07-05 アワーズ テクノロジー リミテッド ライアビリティー カンパニー LIDAR beam work-off correction
CN114001645A (en) * 2021-10-28 2022-02-01 山西大学 Three-wavelength optical fiber point differential confocal microscopic detection method and device
CN114001645B (en) * 2021-10-28 2024-04-12 山西大学 Three-wavelength optical fiber point differential confocal microscopic detection method and device

Similar Documents

Publication Publication Date Title
JP2011237272A (en) Optical distance meter and distance measuring method
KR102567597B1 (en) optical measuring device
US5790242A (en) Chromatic optical ranging sensor
KR101534912B1 (en) Confocal measurement apparatus
CN109791040B (en) Method and device for optical surface measurement by means of a chromatic confocal sensor
JP2010510529A (en) Partial coherence interferometer eliminating measurement ambiguity
TWI670465B (en) Confocal measurement device
JP2020535433A (en) Non-contact methods and devices for measuring the distance to a surface or the distance between two surfaces
JPH07229720A (en) Device for measuring three-dimensional shape
US20190277621A1 (en) Optical measuring device
JP4888807B2 (en) Scanning shape measuring machine
WO2012170275A1 (en) Coupled multi-wavelength confocal systems for distance measurements
US7649621B2 (en) Optical inclinometer
JP2010237183A (en) Low coherence interferometer and optical microscope
JPS62201301A (en) Laser interference length measuring machine
JP2017116509A (en) Confocal displacement meter
JP2017116508A (en) Confocal displacement meter
US11262238B2 (en) Wavelength detection device and confocal measurement device
TWI579525B (en) An optical system and measuring methods for simultanuous absolute positioning distance and tilting angular measurements of a moving object
KR101620594B1 (en) spectroscopy apparatus
US20120316830A1 (en) Coupled multi-wavelength confocal systems for distance measurements
JP6367041B2 (en) External dimension measuring apparatus and external dimension measuring method
TWI755690B (en) Optical measurement device, optical measurement method, and optical measurement program
JP2000186912A (en) Method and device for measuring minute displacements
JPH064611U (en) Optical distance measuring device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120726

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806