CN103673888A - Optical displacement meter and optical displacement calculating method - Google Patents
Optical displacement meter and optical displacement calculating method Download PDFInfo
- Publication number
- CN103673888A CN103673888A CN201310375884.4A CN201310375884A CN103673888A CN 103673888 A CN103673888 A CN 103673888A CN 201310375884 A CN201310375884 A CN 201310375884A CN 103673888 A CN103673888 A CN 103673888A
- Authority
- CN
- China
- Prior art keywords
- light
- sample
- aforementioned
- optical
- optical displacement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Automatic Focus Adjustment (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种光学式位移计及光学式位移运算方法,详细地说,涉及实现小型化、低成本化、高速响应化的光学式位移计及光学式位移运算方法。The present invention relates to an optical displacement gauge and an optical displacement computing method, in particular, to an optical displacement gauge and an optical displacement computing method that realize miniaturization, low cost, and high-speed response.
背景技术Background technique
图6是作为现有技术的第1光学式位移计200a的结构图。具体地说,图6是日本特开平10-9827中记载的光学式位移计200a的结构图。FIG. 6 is a configuration diagram of a conventional first
在图6中,从Xe灯等白色光源201发出的、包含多个波长成分的光通过针孔206a后,通过分光器203由物镜204聚焦,照射在样品205上。In FIG. 6 , light emitted from a
在样品205上反射的光由分光器203反射,通过针孔206b入射至光检测器207中。光检测器207具有滤色器208a、208b和受光传感器209R、209G、209B。滤色器208a、208b是将入射光分解为三原色的分色镜。受光传感器209R、209G、209B是接收三原色的光的传感器。The light reflected on the
一般地,透镜的焦点距离f由下式(1)近似地表示。Generally, the focal length f of a lens is approximately represented by the following formula (1).
(1/f)=(n-1)×{(1/r1)-(1/r2)}…(1)(1/f)=(n-1)×{(1/r1)-(1/r2)}...(1)
在式(1)中,n是构成透镜的玻璃材质的折射率,r1、r2是透镜的曲率半径。In formula (1), n is the refractive index of the glass material constituting the lens, and r1 and r2 are the radii of curvature of the lens.
如上述式(1)所示,焦距f依赖于透镜的折射率n。透镜的折射率n依赖于通过的光的波长λ。由此,光的合焦位置与波长λ相对应,在光轴方向上不相同。As shown in the above formula (1), the focal length f depends on the refractive index n of the lens. The refractive index n of the lens depends on the wavelength λ of the passing light. Accordingly, the in-focus position of light corresponds to the wavelength λ, and differs in the direction of the optical axis.
在图6的说明中,对波长的长度为λ1<λ2<λ3的情况进行说明。In the description of FIG. 6 , the case where the length of the wavelength is λ1<λ2<λ3 will be described.
如图6所示,如果波长λ2的光在样品205的顶部合焦,则波长λ1的光,由于其焦距较短,因此在样品205的前方(图6的纸面上方)合焦。另外,波长λ3的光,由于其焦距较长,因此在样品205的后方(图6的纸面下方)合焦。As shown in FIG. 6 , if the light of wavelength λ2 is in focus on the top of the
例如,在波长λ1的光是B(蓝色)、波长λ2的光是G(绿色)、波长λ3的光是R(红色)的情况下,在样品205的顶部合焦的波长λ2的光最多地经由滤色器208a、208b入射至受光传感器209G中。处理部210a根据各受光传感器209B、209G、209R接收的各光量,检测出受光传感器209G的受光量最多,将从基准面R0起的样品205的高度确定为绿色光的合焦位置。For example, when the light of wavelength λ1 is B (blue), the light of wavelength λ2 is G (green), and the light of wavelength λ3 is R (red), the light of wavelength λ2 that is in focus on the top of the
图7是作为现有技术的第2光学式位移计200b的结构图。在图7中,在光检测器207中设置有线传感器214。FIG. 7 is a configuration diagram of a conventional second optical displacement gauge 200b. In FIG. 7 , a line sensor 214 is provided in the
在图7中,通过针孔206a后入射至光检测器207中的光,利用透镜211成为平行光。该平行光由作为光谱分光器的三棱镜212分光为各波长成分的光。分光后的光由透镜213聚焦。然后,会聚的光入射至由CCD(电荷结合元件)等构成的线传感器214中。In FIG. 7 , the light incident on the
在这种结构中,在样品205的顶部反射的光是波长λ2绿色光的情况下,在线传感器214上的与波长λ2相对应的位置上照射最多的光。In this structure, in the case where the light reflected from the top of the
因此,只要预先求出样品205的高度与线传感器214的受光位置的关系,处理部210b就可以从线传感器214的受光位置求出样品205的高度。Therefore, the processing unit 210 b can obtain the height of the
图8是作为现有技术的第3光学式位移计200c的结构图。具体地说,图8是在日本特开2011-39026中记载的光学式位移计200c的结构图。在图8中,在光轴上,对于色差较大的物镜204,焦距随着光波长(色)而不同。也就是说,蓝色光B0在距离物镜204较近的位置合焦,红色光R0在距离物镜204较远的位置合焦。绿色光G0在蓝色光B0的合焦位置与红色光R0的合焦位置之间的位置合焦。光学式位移计200c在测定范围M0中测定样品205。在日本特开2011-39026中,相对于物镜204,作为测定对象的样品205和相反侧的共焦点,不论颜色如何均视为相同。如果配置白色或者宽带域的点光源,则与样品205的高度相对应,在样品205上合焦的颜色以一一对应的关系变化。因此,如果在来自样品205的反射光返回时的共焦点位置上设置针孔等空间过滤器,并使反射光通过,则可以将在样品205上合焦的颜色的光提取出。在日本特开2011-39026中利用了该原理。FIG. 8 is a configuration diagram of a third optical displacement gauge 200c as a conventional technology. Specifically, FIG. 8 is a configuration diagram of an optical displacement gauge 200c described in JP 2011-39026. In FIG. 8 , on the optical axis, for the
并且,在日本特开2011-39026中,通过使用处理部210c内的衍射格栅等分光器226而指定颜色(光波长),从而测定与颜色成为一一对应的关系的样品205的高度(位移)。In addition, in Japanese Patent Application Laid-Open No. 2011-39026, a color (wavelength of light) is designated by using a spectrometer 226 such as a diffraction grating in the processing unit 210c, thereby measuring the height (displacement) of the
一般地,使用光纤230将白色光(宽带域光)引导至传感器头部215的共焦点处,将光纤端面230a的纤芯看作为针孔并作为共焦点,向校准透镜216施加发散光。Generally, optical fiber 230 is used to guide white light (broadband light) to the confocal point of sensor head 215 , and the core of fiber end face 230 a is considered as a pinhole and as confocal point, and divergent light is applied to collimating lens 216 .
被样品205反射后,照射在样品205上的白色光中的、在样品205上合焦的颜色的光选择地集中在光纤端面230a的共焦点位置。集中在共焦点位置的光进入光纤纤芯内,经由光纤耦合器224向分光器226引导。另一方面,对于其他颜色的光,光纤端面230a的纤芯相当于针孔而限制入射的光。由此,除在样品205上合焦的颜色的光之外的光,被光纤纤芯的外周遮挡,不会入射至光纤230内。After being reflected by the
分光器226对返回光纤230内的光的波长进行检测。分光器226检测出的波长输入至电子电路228并处理。Beam splitter 226 detects the wavelength of light returning within optical fiber 230 . The wavelength detected by the spectrometer 226 is input to the electronic circuit 228 and processed.
利用上述图6所示的分色镜而使用3路径的光学式位移计200a,其装置大型化。另外,分色镜价格较高,在测定范围的精度上存在局限,成本升高。Using the three-path
另外,使用上述图7所示的三棱镜212和线传感器214的光学式位移计200b,其装置大型化。另外,线传感器214的价格较高,无法使读出速度高速化。In addition, the optical displacement gauge 200b using the above-mentioned prism 212 and line sensor 214 shown in FIG. 7 increases the size of the device. In addition, the line sensor 214 is expensive, and the reading speed cannot be increased.
另外,使用上述图8所示的分光器226的光学式位移计200c,分光器226及电子电路228的价格较高。In addition, in the optical displacement gauge 200c using the spectroscope 226 shown in FIG. 8, the spectroscope 226 and the electronic circuit 228 are expensive.
发明内容Contents of the invention
本发明提供一种光学式位移计及光学式位移运算方法,其使装置的制造成本减少,使读出速度高速化,使装置小型化。The present invention provides an optical displacement meter and an optical displacement calculation method, which reduce the manufacturing cost of the device, increase the readout speed, and miniaturize the device.
(1)本发明的第1方式是下述光学式位移计,其具有:光源,其照射包含多个波长的第1光;物镜,其将前述光源照射的前述第1光向样品照射,以使得前述多个波长中的每个,在光轴上的不同位置合焦;分离部,其对来自前述样品的反射光中通过前述物镜的第2光进行分离,而射出第3光;光学元件,其射出使前述分离部射出的前述第3光产生色差及像散而得到的第4光;多个检测部,其对前述光学元件射出的前述第4光进行检测;以及运算部,其基于前述多个检测部检测出的前述第4光,对从基准面起的前述样品的高度进行运算。(1) A first aspect of the present invention is an optical displacement meter that includes: a light source that irradiates first light including a plurality of wavelengths; an objective lens that irradiates the first light irradiated by the light source to a sample, and Each of the aforementioned plurality of wavelengths is brought into focus at a different position on the optical axis; a separation unit separates the second light that passes through the aforementioned objective lens from among the reflected light from the aforementioned sample, and emits a third light; an optical element , which emits fourth light obtained by causing chromatic aberration and astigmatism to the third light emitted by the separation unit; a plurality of detection units, which detect the fourth light emitted by the optical element; and a calculation unit, based on The said 4th light detected by the said some detection part calculates the height of the said sample from a reference plane.
(2)在本发明的第1方式中,前述分离部是光纤耦合器,其将前述第2光在空间上分离,作为前述第3光而射出。(2) In the first aspect of the present invention, the separating unit is a fiber coupler, and spatially separates the second light and emits it as the third light.
(3)本发明的第1方式中也可以具有:第1光纤,其使前述光源照射的前述第1光从一端入射,使前述第1光从另一端射出;以及第2光纤,其使利用前述分离部从前述第2光分离的前述第3光射出。(3) The first aspect of the present invention may include: a first optical fiber that allows the first light irradiated by the light source to enter from one end and emits the first light from the other end; and a second optical fiber that uses The separation unit emits the third light separated from the second light.
(4)在本发明的第1方式中,前述第1光纤的前述另一端配置为,相对于前述样品的表面而处于共焦点位置。(4) In the first aspect of the present invention, the other end of the first optical fiber is disposed at a confocal position with respect to the surface of the sample.
(5)在本发明的第1方式中,前述分离部是分光器,其将前述第2光分离为反射光和透过光,将分离的反射光作为前述第3光而射出。(5) In the first aspect of the present invention, the separating unit is a beam splitter that separates the second light into reflected light and transmitted light, and emits the separated reflected light as the third light.
(6)在本发明的第1方式中也可以具有:第1针孔,其使前述光源照射的前述第1光从一侧入射,使前述第1光从另一侧射出;以及第2针孔,其使前述第2光从一侧入射,将前述第2光作为前述第3光从另一侧射出。(6) The first aspect of the present invention may include: a first pinhole for allowing the first light irradiated by the light source to enter from one side and to emit the first light from the other side; and a second pinhole. The hole allows the second light to enter from one side and emits the second light as the third light from the other side.
(7)在本发明的第1方式中,前述第1针孔也可以配置为,相对于前述样品而处于共焦点位置。(7) In the first aspect of the present invention, the first pinhole may be disposed at a confocal position with respect to the sample.
(8)在本发明的第1方式中,前述第2针孔也可以配置为,相对于前述样品而处于共焦点位置。(8) In the first aspect of the present invention, the second pinhole may be disposed at a confocal position with respect to the sample.
(9)在本发明的第1方式中还具有框体,其还具有框体,该框体将前述物镜和前述第2针孔包含在其中,前述第1针孔设置在前述框体上。(9) The first aspect of the present invention further includes a housing including the objective lens and the second pinhole, and the first pinhole is provided on the housing.
(10)在本发明的第1方式中,前述光学元件也可以是色差透镜及圆柱透镜。(10) In the first aspect of the present invention, the optical element may be a chromatic aberration lens or a cylindrical lens.
(11)在本发明的第1方式中,前述光学元件也可以是平行平板玻璃,其配置在前述第4光的光轴上,相对于前述第4光的光轴倾斜。(11) In the first aspect of the present invention, the optical element may be parallel plate glass arranged on the optical axis of the fourth light and inclined with respect to the optical axis of the fourth light.
(12)在本发明的第1方式中,前述多个检测部也可以由第1~第4光电二极管构成。(12) In the first aspect of the present invention, the plurality of detection units may be composed of first to fourth photodiodes.
(13)在本发明的第1方式中,在前述第1~第4光电二极管检测的值分别为A1、B1、C1、D1的情况下,也可以利用((A1+B1)-(C1+D1)/(A1+B1+C1+D1))的关系,对从前述基准面起的前述样品的高度进行运算。(13) In the first aspect of the present invention, when the values detected by the first to fourth photodiodes are A1, B1, C1, and D1, respectively, ((A1+B1)-(C1+ The relationship of D1)/(A1+B1+C1+D1)) is calculated for the height of the sample from the reference plane.
(14)在本发明的第1方式中,前述第1~第4光电二极管也可以配置在与前述第4光的光轴垂直的正方形的顶点上。(14) In the first aspect of the present invention, the first to fourth photodiodes may be arranged at vertices of a square perpendicular to the optical axis of the fourth light.
(15)在本发明的第1方式中,前述多个检测部也可以由第1及第2光电二极管构成。(15) In the first aspect of the present invention, the plurality of detection units may be constituted by first and second photodiodes.
(16)在本发明的第1方式中也可以具有存储部,该存储部将从前述基准面起的前述样品的高度、和前述多个检测部的输出信号的运算结果相关联而进行存储,前述运算部基于前述多个检测部的输出信号的运算结果,从前述存储部中读出前述样品的高度。(16) In the first aspect of the present invention, a storage unit may be provided for storing the height of the sample from the reference plane in association with calculation results of the output signals of the plurality of detection units, The calculation unit reads the height of the sample from the storage unit based on calculation results of the output signals of the plurality of detection units.
(17)在本发明的第1方式中也可以具有移动部,该移动部使前述光学式位移计相对于前述基准面平行地移动,前述运算部在前述移动部使前述光学式位移计移动的过程中,对前述样品的高度进行运算。(17) In the first aspect of the present invention, a moving part that moves the optical displacement gauge parallel to the reference plane may be provided, and the calculating part moves the optical displacement gauge in the moving part. In the process, the height of the aforementioned samples is calculated.
(18)本发明的第2方式是下述光学式位移计,其具有:第1光源,其照射包含多个波长的第1光;第1物镜,其将前述第1光源照射的前述第1光向样品照射,以使得前述多个波长中的每个,在光轴上的不同位置合焦;第1分离部,其对来自前述样品的一个表面的反射光中通过前述第1物镜的第2光进行分离,而射出第3光;第1光学元件,其射出使前述第1分离部射出的前述第3光产生色差及像散而得到的第4光;多个第1检测部,其对前述第1光学元件射出的前述第4光进行检测;第2光源,其照射包含多个波长的第5光;第2物镜,其将前述第2光源照射的前述第5光向样品照射,以使得前述多个波长中的每个,在光轴上的不同位置合焦;第2分离部,其对来自前述样品的另一个表面的反射光中通过前述第2物镜的第6光进行分离,而射出第7光;第2光学元件,其射出使前述第2分离部射出的前述第7光产生色差及像散而得到的第8光;多个第2检测部,其对前述第2光学元件射出的前述第8光进行检测;以及运算部,其基于前述多个第1检测部检测出的前述第4光,对从基准面起的前述样品的前述一个表面侧的第1高度进行运算,并且基于前述多个第2检测部检测出的前述第8光,对从前述基准面起的前述样品的前述另一个表面侧的第2高度进行运算,然后基于前述第1高度及前述第2高度,对前述样品的厚度进行运算。(18) A second aspect of the present invention is an optical displacement meter including: a first light source that irradiates first light including a plurality of wavelengths; The light is irradiated to the sample so that each of the aforementioned plurality of wavelengths is focused at a different position on the optical axis; 2. The light is separated to emit the third light; the first optical element emits the fourth light obtained by causing chromatic aberration and astigmatism to the third light emitted by the first separation part; the plurality of first detection parts Detecting the aforementioned 4th light emitted by the aforementioned 1st optical element; the 2nd light source, which irradiates the 5th light including a plurality of wavelengths; the 2nd objective lens, which irradiates the aforementioned 5th light irradiated by the aforementioned 2nd light source to the sample, so that each of the aforementioned plurality of wavelengths is in focus at a different position on the optical axis; the second separation part separates the sixth light that passes through the aforementioned second objective lens among the reflected light from the other surface of the aforementioned sample , to emit the 7th light; the 2nd optical element, which emits the 8th light obtained by causing chromatic aberration and astigmatism to the aforementioned 7th light emitted by the aforementioned 2nd separation unit; The eighth light emitted by the optical element is detected; and the calculation unit is configured to perform a first height measurement on the first surface side of the sample from the reference plane based on the fourth light detected by the plurality of first detection units. calculation, and based on the aforementioned eighth light detected by the plurality of second detection parts, the second height of the other surface side of the aforementioned sample from the aforementioned reference plane is calculated, and then based on the aforementioned first height and the aforementioned first 2 Height, calculate the thickness of the aforementioned sample.
(19)本发明的第3方式是下述光学式位移运算方法,即,从光源照射包含多个波长的第1光,将前述光源照射的前述第1光从物镜向样品照射,以使得前述多个波长中的每个,在光轴上的不同位置合焦,利用分离部,对来自前述样品的反射光中通过前述物镜的第2光分离部进行分离,而射出第3光,从光学元件射出使前述分离部射出的前述第3光产生色差及像散而得到的第4光,利用多个检测部对前述光学元件射出的前述第4光进行检测,基于前述多个检测部检测出的前述第4光,利用运算部对从基准面起的前述样品的高度进行运算。(19) A third aspect of the present invention is an optical displacement calculation method, that is, the first light including a plurality of wavelengths is irradiated from the light source, and the first light irradiated by the light source is irradiated from the objective lens to the sample, so that the above-mentioned Each of the plurality of wavelengths is focused at a different position on the optical axis, and the reflected light from the sample is separated by the second light separation unit of the objective lens by the separation unit, and the third light is emitted. The element emits fourth light obtained by causing chromatic aberration and astigmatism to the third light emitted by the separation unit, and the fourth light emitted by the optical element is detected by a plurality of detection units. The height of the sample from the reference plane is calculated by the calculation unit for the fourth light.
(20)本发明的第4方式是下述光学式位移运算方法,即,从第1光源照射包含多个波长的第1光,将前述第1光源照射的前述第1光从第1物镜向样品照射,以使得前述多个波长中的每个,在光轴上的不同位置合焦,利用第1分离部对来自前述样品的一个表面的反射光中通过前述第1物镜的第2光进行分离,而射出第3光,从第1光学元件射出使前述第1分离部射出的前述第3光产生色差及像散而得到的第4光,利用多个第1检测部对前述第1光学元件射出的前述第4光进行检测,从第2光源照射包含多个波长的第5光,将前述第2光源照射的前述第5光从第2物镜向样品照射,以使得前述多个波长中的每个,在光轴上的不同位置合焦,利用第2分离部对来自前述样品的另一个表面的反射光中通过前述第2物镜的第6光进行分离,而射出第7光,从第2光学元件射出使前述第2分离部射出的前述第7光产生色差及像散而得到的第8光,利用多个第2检测部对前述第2光学元件射出的前述第8光进行检测,基于前述多个第1检测部检测出的前述第4光,利用运算部对从基准面起的前述样品的前述一个表面侧的第1高度进行运算,并且基于前述多个第2检测部检测出的前述第8光,利用前述运算部对从前述基准面起的前述样品的前述另一个表面侧的第2高度进行运算,然后基于前述第1高度及前述第2高度,利用前述运算部对前述样品的厚度进行运算。(20) The fourth aspect of the present invention is the following optical displacement calculation method, that is, the first light including a plurality of wavelengths is irradiated from the first light source, and the first light irradiated by the first light source is directed from the first objective lens to The sample is irradiated so that each of the plurality of wavelengths is in focus at a different position on the optical axis, and the second light that passes through the first objective lens among the reflected light from one surface of the sample is analyzed by the first separation part. The third light is separated to emit the third light, and the fourth light obtained by causing chromatic aberration and astigmatism to the aforementioned third light emitted by the first splitting part is emitted from the first optical element, and the aforementioned first optical light is detected by a plurality of first detection parts. The aforementioned fourth light emitted by the element is detected, and the fifth light including multiple wavelengths is irradiated from the second light source. Each of them is focused at a different position on the optical axis, and the sixth light that passes through the second objective lens is separated from the reflected light from the other surface of the sample by the second separation part, and the seventh light is emitted from the The second optical element emits eighth light obtained by causing chromatic aberration and astigmatism to the seventh light emitted from the second separation unit, and the plurality of second detection portions detects the eighth light emitted from the second optical element. , based on the above-mentioned fourth light detected by the plurality of first detection parts, the calculation part is used to calculate the first height of the first surface side of the aforementioned sample from the reference plane, and based on the detection of the plurality of second detection parts The above-mentioned 8th light emitted is calculated by the calculation unit on the second height of the other surface side of the sample from the reference plane, and then based on the first height and the second height, the calculation unit calculates The thickness of the aforementioned sample is calculated.
根据本发明,可以提供一种光学式位移计及光学式位移运算方法,其使装置的制造成本减少,使读出速度高速化,使装置小型化。According to the present invention, it is possible to provide an optical displacement meter and an optical displacement calculation method that reduce the manufacturing cost of the device, increase the readout speed, and reduce the size of the device.
附图说明Description of drawings
图1是根据本发明的第1实施方式的光学式位移计的要部结构图。FIG. 1 is a configuration diagram of main parts of an optical displacement gauge according to a first embodiment of the present invention.
图2是表示反射光在4分光电二极管的表面成为不同的椭圆率的状态的图。FIG. 2 is a diagram showing a state in which reflected light has different ellipticities on the surface of four photodiodes.
图3是根据本发明的第2实施方式的光学式位移计的要部结构图。Fig. 3 is a configuration diagram of main parts of an optical displacement gauge according to a second embodiment of the present invention.
图4是根据本发明的第3实施方式的光学式位移计的要部结构图。FIG. 4 is a configuration diagram of main parts of an optical displacement gauge according to a third embodiment of the present invention.
图5是根据本发明的第4实施方式的光学式位移计的要部结构图。Fig. 5 is a configuration diagram of main parts of an optical displacement gauge according to a fourth embodiment of the present invention.
图6是作为现有技术的第1光学位移计的结构图。Fig. 6 is a configuration diagram of a first optical displacement meter as a prior art.
图7是作为现有技术的第2光学位移计的结构图。Fig. 7 is a configuration diagram of a second conventional optical displacement meter.
图8是作为现有技术的第3光学位移计的结构图。Fig. 8 is a configuration diagram of a third conventional optical displacement meter.
具体实施方式Detailed ways
下面,参照附图对本发明的第1~第4实施方式进行说明。本发明的第1~第4实施方式涉及的下述说明,只是对在附加的权利要求中规定的发明及其等同物具体地进行说明,目的并不是对其进行限定,这对本领域技术人员来说基于本公开内容是可以理解的。Next, first to fourth embodiments of the present invention will be described with reference to the drawings. The following descriptions related to the first to fourth embodiments of the present invention are intended to specifically describe the inventions defined in the appended claims and their equivalents, and are not intended to limit them. It is understandable to say based on the present disclosure.
(第1实施方式)(first embodiment)
首先,对第1实施方式的光学式位移计100a进行说明。First, the
图1是本发明的第1实施方式的光学式位移计100a的要部结构图。Fig. 1 is a configuration diagram of main parts of an
在图1中,光源101是照射包含多个波长的光的白色光源。光源101照射的光入射至光纤130a内。入射至光纤130a内的光从光纤130a的射出口130c射出。成像光学系140a具有光纤耦合器124、物镜104。样品105隔着物镜104配置在与光纤耦合器124相反的一侧。物镜104是色差透镜。透过物镜104的光照射在样品105上。In FIG. 1 , a
在这里,从样品105产生例如波长λ1的光(蓝色)、波长λ2的光(绿色)、波长λ3的光(红色)作为反射光。此外,光纤130a的射出口130c可视为点光源。光纤130a的射出口130c配置为,相对于样品105的表面而处于共焦点位置。Here, light of wavelength λ1 (blue), light of wavelength λ2 (green), and light of wavelength λ3 (red) are generated from the
被样品105反射的反射光在与入射路径相同的路径上逆向行进,由设置在光纤130a上的光纤耦合器124在空间上进行分离,经由光纤130b入射至反射光成像光学系141a内。The reflected light reflected by the
反射光成像光学系141a具有色差透镜104a、圆柱透镜143及4分光电二极管144。The reflected light imaging
从光纤130b的射出口130d射出的反射光透过色差透镜104a,该色差透镜104a用于使该反射光向距离随波长而不同的焦点位置射出。透过色差透镜104a的光透过圆柱透镜(圆柱透镜)143。The reflected light emitted from the
圆柱透镜143使反射光产生像散,在4分光电二极管144的表面生成依赖于波长的成像形状。利用圆柱透镜143,在截面具有曲线的表面中包含的光会聚,而在截面不具有曲线的表面中包含的光不会聚。其结果,在与光轴垂直的表面上观察透过圆柱透镜143的光的情况下,一般具有椭圆形的强度分布。The
圆柱透镜143是为了产生像散而使用的。此外,只要是起到与圆柱透镜143相同的作用的元件即可,也可以使用其他元件。作为该元件的一个例子,可以使用相对于光轴不是旋转对称的光学系,可以使用在光轴上倾斜地配置的平行平板玻璃。The
图2是表示反射光在4分光电二极管144的表面成为不同的椭圆率的状态的图。具体地说,图2的窗口W1表示下述情形,即,从图1所示的光纤130b的射出口130d射出的反射光,透过色差透镜104a后透过圆柱透镜(圆柱透镜)143,到达4分光电二极管144。图2的窗口W2表示在4分光电二极管144的表面成为不同的椭圆率的状态。FIG. 2 is a diagram showing how the reflected light has different ellipticities on the surface of the four-divided
如图2所示,4分光电二极管144具有光电二极管144A、144B、144C、144D。在图2中,表示光电二极管144A、144B、144C、144D配置在与圆柱透镜143射出的光的光轴垂直的正方形的顶点上的情况。As shown in FIG. 2 , the four
来自4分光电二极管144的输出分别输入至运算部142,对4分光电二极管144的输出进行运算,得到关于检测面上的图像的形状的信息。例如,如果将图2的光电二极管144A、144B、144C、144D的输出作为A1、B1、C1、D1,则只要进行((A1+B1)-(C1+D1)/(A1+B1+C1+D1))的运算即可,在纵长形状时为正值,在横长形状时为负值。由于可以从该运算结果确定波长,因此最终可以求出样品105从基准面起的高度(样品105的厚度)。例如,运算部142具有存储部(省略图示),其预先对样品105的表面从基准面R1起的高度,以及光电二极管144A、144B、144C、144D的输出信号的运算结果相关联而进行存储。在获得光电二极管144A、144B、144C、144D的输出信号的运算结果的情况下,运算部142从存储部读出与该运算结果相对应的高度,确定样品105的表面从基准面R1起的高度。Outputs from the four-divided
此外,作为运算部142,可以使用电气电路或微型计算机、微型控制器等。In addition, as the
在第1实施方式中,作为圆柱透镜143射出的光的检测元件,使用了4分光电二极管144,但并不限于此。例如,也可以将多个检测元件的强度比随着成像形状的变化而变化的元件用作检测元件。例如,作为检测元件,也可以不使用4分光电二极管144,而使用2分光电二极管。In the first embodiment, the
(第2实施方式)(Second embodiment)
下面,对本发明的第2实施方式涉及的光学式位移计100b进行说明。此外,对于第2实施方式采用与第1实施方式相同的结构的部分,标注相同的标号,省略它们的说明。Next, an optical displacement gauge 100b according to a second embodiment of the present invention will be described. In addition, the same code|symbol is attached|subjected to the part which employ|adopted the same structure as 1st Embodiment in 2nd Embodiment, and the description of them is abbreviate|omitted.
图3是本发明的第2实施方式涉及的光学式位移计10b的要部结构图。在第2实施方式中,与第1实施方式的不同点在于:取代光纤130a、130b而使用针孔106a、106b;使用分光器103将来自样品105的反射光分离;使利用分光器103分离的反射光经由针孔106b入射至反射光成像光学系141b内。Fig. 3 is a configuration diagram of main parts of an optical displacement gauge 10b according to a second embodiment of the present invention. In the second embodiment, the difference from the first embodiment is that: instead of the
第2实施方式涉及的成像光学系140b具有针孔106a、针孔106b、色差透镜104。The imaging optical system 140 b according to the second embodiment has a pinhole 106 a , a pinhole 106 b , and a
在图3中,使光源101照射的光通过第1针孔106a而向成像光学系140b导入。针孔106a及106b配置为,相对于样品105的表面而处于共焦点位置。In FIG. 3 , the light irradiated by the
另外,在从针孔106a至样品105的表面之间配置分光器,作为将反射光在空间上进行路径分离的分离部,在由分光器103分离的反射光聚焦的位置上配置第2针孔106b。由于反射光成像光学系141b的其他结构和作用,与图1所示的第1实施方式涉及的反射光成像光学系141a相同,因此省略其说明。In addition, a beam splitter is arranged between the pinhole 106a and the surface of the
在图3所示结构的光学式位移计100b中,与图1所示的第1实施方式涉及的光学式位移计100a相同地起作用。The optical displacement gauge 100b configured as shown in FIG. 3 functions in the same manner as the
(第3实施方式)(third embodiment)
下面,对本发明的第3实施方式涉及的光学式位移计100c进行说明。此外,对于第3实施方式采用与第2实施方式相同的结构的部分,标注相同的标号,省略它们的说明。Next, an optical displacement gauge 100c according to a third embodiment of the present invention will be described. In addition, the same code|symbol is attached|subjected to the part which employ|adopts the same structure as 2nd Embodiment about 3rd Embodiment, and the description of them is abbreviate|omitted.
图4是本发明的第3实施方式涉及的光学式位移计10c的要部结构图。在第3实施方式中,与第1实施方式的不同点在于:取代光纤130a、130b而使用针孔106a、106b;使用分光器103将来自样品105的反射光分离;使利用分光器103分离的反射光经由针孔106b入射至反射光成像光学系141b内。Fig. 4 is a configuration diagram of main parts of an optical displacement gauge 10c according to a third embodiment of the present invention. In the third embodiment, the difference from the first embodiment is that: instead of the
另外,在第3实施方式中,与第2实施方式的不同点在于,并非如图3所示的第2实施方式这样,在成像光学系140b的内部设置针孔106a。具体地说,在第3实施方式中,成像光学系140c的立方体状的框体1400将物镜104及针孔106b包含在其中。并且,针孔106c设置在框体1400的上表面的中央。In addition, the third embodiment differs from the second embodiment in that the pinhole 106 a is not provided inside the imaging optical system 140 b as in the second embodiment shown in FIG. 3 . Specifically, in the third embodiment, the cubic housing 1400 of the imaging optical system 140c includes the
在第3实施方式中,由于无需另外设置支撑光源101的支撑部及针孔101b,因此与第2实施方式涉及的成像光学系140b相比,可以降低制造成本。In the third embodiment, since there is no need to separately provide a supporting portion for supporting the
此外,针孔106c配置为,相对于样品105的表面而处于共焦点位置。In addition, the pinhole 106c is arranged to be at a confocal position with respect to the surface of the
图4所示结构的光学式位移计100c,与图1所示的第1实施方式涉及的光学式位移计100a相同地起作用。The optical displacement gauge 100c configured as shown in FIG. 4 functions in the same manner as the
(第4实施方式)(fourth embodiment)
下面,对本发明的第4实施方式涉及的光学式位移计100d进行说明。此外,对于第4实施方式采用与第1实施方式相同的结构的部分,标注相同的标号,省略其说明。Next, an optical displacement gauge 100d according to a fourth embodiment of the present invention will be described. In addition, the same code|symbol is attached|subjected to the part which employ|adopts the same structure as 1st Embodiment in 4th Embodiment, and the description is abbreviate|omitted.
图5是本发明的第4实施方式涉及的光学式位移计100d的要部构结图。第4实施方式的光学位移计100d与第1实施方式相同地,具有成像光学系140a及反射光成像光学系141a。并且,第4实施方式的光学位移计100d还具有成像光学系140d及反射光成像光学系141d。Fig. 5 is a configuration diagram of main parts of an optical displacement gauge 100d according to a fourth embodiment of the present invention. The optical displacement meter 100d of the fourth embodiment has the imaging
成像光学系140d、反射光成像光学系141d与成像光学系140a、反射光成像光学系141a相同地起作用。也就是说,光源301、光纤330a、330b、光纤耦合器324、色差透镜304、304a、圆柱透镜343、4分光电二极管344,分别与在第1实施方式中说明的光源101、光纤130a、130b、光纤耦合器124、色差透镜104、104a、圆柱透镜143、4分光电二极管144相同地起作用。The imaging optical system 140d and the reflected light imaging optical system 141d function in the same manner as the imaging
在第4实施方式中,对于作为板状或薄板状的测定对象的样品105,通过利用一对成像光学系140a、140d隔着样品105配置在两侧而分别进行测定,从而可以计算样品105的厚度。In the fourth embodiment, for the
也就是说,第4实施方式的光学式位移计100d具有:光源101,其照射包含多个波长的第1光;物镜104,其使光源101照射的第1光向样品照射,以使得多个波长λ1、λ2、λ3中的每个,在光轴上的不同位置合焦;光纤耦合器124,其对来自样品105的一个表面的反射光中通过物镜104的第2光进行分离,而射出第3光;色差透镜104a,其射出使光纤耦合器124射出的第3光产生色差而得到的第4光;圆柱透镜143,其射出使色差透镜104a射出的第4光产生像散而得到的第5光;以及4分光电二极管144,其对圆柱透镜143射出的第5光进行检测。That is, the optical displacement gauge 100d of the fourth embodiment has: a
另外,第4实施方式的光学式位移计100d具有:光源301,其照射包含多个波长λ1、λ2、λ3的第6光;物镜304,其使光源301照射的第6光向样品105照射,以使得多个波长λ1、λ2、λ3中的每个,在光轴上的不同位置合焦;光纤耦合器324,其对来自样品105的另一个表面的反射光中通过物镜304的第7光进行分离,而射出第8光;色差透镜304a,其射出使光纤耦合器324射出的第8光产生色差而得到的第9光;圆柱透镜343,其射出使色差透镜304a射出的第9光产生像散而得到的第10光;以及4分光电二极管344,其对圆柱透镜343射出的第10光进行检测。In addition, the optical displacement gauge 100d of the fourth embodiment includes: a light source 301 that emits sixth light including a plurality of wavelengths λ1, λ2, and λ3; In order to make each of the multiple wavelengths λ1, λ2, and λ3 focus at different positions on the optical axis; the fiber coupler 324 is used for the seventh light passing through the objective lens 304 in the reflected light from the other surface of the
另外,第4实施方式的光学式位移计100d具有运算部142d,其基于4分光电二极管144检测出的第5光,对从基准面R1起的样品105的一个表面侧的第1高度H1进行运算,基于4分光电二极管344检测出的第10光,对从基准面R1起的样品105的另一个表面侧的第2高度H2进行运算,基于第1及第2高度H1及H2,对样品105的厚度(第1高度与第2高度的和)进行运算。In addition, the optical displacement gauge 100d of the fourth embodiment has a calculation unit 142d that calculates the first height H1 on the one surface side of the
此外,在配置于两侧的4分割光电极管144和4分光电二极管344可以在成像光学系140a、140b的光轴方向上相对地位移的情况下,通过另外设置对4分割光电极管144和4分光电二极管344的距离进行测定的器具,可以正确地计算测定对象的厚度。In addition, in the case where the 4-divided
根据第1~第4实施方式涉及的光学式位移计100a~100d的结构,作为构成反射光成像光学系141a、141b、141d的、产生色差及像散的光学元件,可以使用低成本的器具(色差透镜104a、圆柱透镜143)。由此,可以构成成本比市售分光器低的反射光成像光学系141a、141b、141d。According to the configurations of the
另外,4分光电二极管144与在分光器中使用的数百~数千的元件阵列相比,价格较低,且可以高速动作。In addition, the 4-splitting
并且,由于反射光成像光学系141a、141b、141d为单纯的光学系,因此光学系变得小型、轻量,可以作为插入用的传感器而应用。Furthermore, since the reflected light imaging
此外,在本发明的第1~第4实施方式涉及的光学式位移计100a~100d中也可以设置移动部(未图示),其使光学式位移计100a~100d在基准面R1上相对于板状或者薄板状的测定对象(样品105)平行地移动。通过将样品105固定,利用移动部使光学式位移计100a~100d在基准面R1上平行地移动,测定样品105从基准面起的高度,可以准确地测定在样品105的基准面上的测定对象的高度(厚度)。In addition, in the
此外,上述说明仅示出了以本发明的说明及示例为目的的特定最佳实施方式。例如,也可以在入射光路径或反射光路径的中途配置校准透镜而设置校准区间。In addition, the above description shows only the specific best mode for the purpose of description and illustration of this invention. For example, a calibration lens may be arranged in the middle of the incident light path or the reflected light path to set the calibration interval.
本发明并不限定于上述实施方式,在不脱离其本质的范围内可施加变更或变形。The present invention is not limited to the above-described embodiments, and changes and deformations can be added without departing from the essence.
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012187670A JP5674050B2 (en) | 2012-08-28 | 2012-08-28 | Optical displacement meter |
JP2012-187670 | 2012-08-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103673888A true CN103673888A (en) | 2014-03-26 |
CN103673888B CN103673888B (en) | 2016-09-07 |
Family
ID=50312171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310375884.4A Active CN103673888B (en) | 2012-08-28 | 2013-08-26 | Optical displacement meter and optical displacement operation method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5674050B2 (en) |
CN (1) | CN103673888B (en) |
MY (1) | MY167829A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107228635A (en) * | 2016-03-24 | 2017-10-03 | 欧姆龙株式会社 | Optical measuring device |
JP2018519524A (en) * | 2015-06-29 | 2018-07-19 | ケーエルエー−テンカー コーポレイション | Method and apparatus for measuring height on a semiconductor wafer |
CN108375349A (en) * | 2017-01-31 | 2018-08-07 | 欧姆龙株式会社 | Determination of tilt device |
CN108474645A (en) * | 2015-12-25 | 2018-08-31 | 株式会社基恩士 | Confocal displacement meter |
CN110308152A (en) * | 2019-07-26 | 2019-10-08 | 上海御微半导体技术有限公司 | Optical detection device and optical detection method |
CN113741019A (en) * | 2021-08-23 | 2021-12-03 | 余姚市朗森光学科技有限公司 | Chromatic aberration focusing module, system and method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109163662A (en) * | 2018-08-31 | 2019-01-08 | 天津大学 | Spectral Confocal displacement measurement method and device based on length scanning |
CN115077391A (en) * | 2022-03-25 | 2022-09-20 | 上海洛丁森工业自动化设备有限公司 | Micro-displacement sensor and displacement measuring method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH109827A (en) * | 1996-06-24 | 1998-01-16 | Omron Corp | Method and equipment for determining height |
CN1550754A (en) * | 2003-03-20 | 2004-12-01 | 株式会社其恩斯 | Displacement meter and displacement measuring method |
EP1577639A1 (en) * | 2004-03-18 | 2005-09-21 | Mitutoyo Corporation | Optical axial displacement sensor |
US20110013186A1 (en) * | 2009-07-16 | 2011-01-20 | Mitutoyo Corporation | Optical displacement meter |
JP2011237272A (en) * | 2010-05-10 | 2011-11-24 | Seiko Epson Corp | Optical distance meter and distance measuring method |
JP2012002670A (en) * | 2010-06-17 | 2012-01-05 | Toshiba Corp | Height detection device |
CN102313519A (en) * | 2010-06-17 | 2012-01-11 | 株式会社森精机制作所 | Displacement detecting device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63149513A (en) * | 1986-12-12 | 1988-06-22 | Sankyo Seiki Mfg Co Ltd | Optical displacement measuring method |
JP2005221451A (en) * | 2004-02-09 | 2005-08-18 | Mitsutoyo Corp | Laser displacement gauge |
JP2009236655A (en) * | 2008-03-27 | 2009-10-15 | Nikon Corp | Displacement detecting apparatus, exposure apparatus, and device manufacturing method |
US20110286006A1 (en) * | 2010-05-19 | 2011-11-24 | Mitutoyo Corporation | Chromatic confocal point sensor aperture configuration |
-
2012
- 2012-08-28 JP JP2012187670A patent/JP5674050B2/en active Active
-
2013
- 2013-08-26 CN CN201310375884.4A patent/CN103673888B/en active Active
- 2013-08-26 MY MYPI2013003139A patent/MY167829A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH109827A (en) * | 1996-06-24 | 1998-01-16 | Omron Corp | Method and equipment for determining height |
CN1550754A (en) * | 2003-03-20 | 2004-12-01 | 株式会社其恩斯 | Displacement meter and displacement measuring method |
EP1577639A1 (en) * | 2004-03-18 | 2005-09-21 | Mitutoyo Corporation | Optical axial displacement sensor |
US20110013186A1 (en) * | 2009-07-16 | 2011-01-20 | Mitutoyo Corporation | Optical displacement meter |
JP2011237272A (en) * | 2010-05-10 | 2011-11-24 | Seiko Epson Corp | Optical distance meter and distance measuring method |
JP2012002670A (en) * | 2010-06-17 | 2012-01-05 | Toshiba Corp | Height detection device |
CN102313519A (en) * | 2010-06-17 | 2012-01-11 | 株式会社森精机制作所 | Displacement detecting device |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018519524A (en) * | 2015-06-29 | 2018-07-19 | ケーエルエー−テンカー コーポレイション | Method and apparatus for measuring height on a semiconductor wafer |
CN108474645A (en) * | 2015-12-25 | 2018-08-31 | 株式会社基恩士 | Confocal displacement meter |
CN107228635A (en) * | 2016-03-24 | 2017-10-03 | 欧姆龙株式会社 | Optical measuring device |
CN107228635B (en) * | 2016-03-24 | 2019-11-08 | 欧姆龙株式会社 | Optical Measuring Device |
US10551171B2 (en) | 2016-03-24 | 2020-02-04 | Omron Corporation | Optical measurement device |
US11674794B2 (en) | 2016-03-24 | 2023-06-13 | Omron Corporation | Optical measurement device |
CN108375349A (en) * | 2017-01-31 | 2018-08-07 | 欧姆龙株式会社 | Determination of tilt device |
US10830587B2 (en) | 2017-01-31 | 2020-11-10 | Omron Corporation | Inclination measuring device |
CN110308152A (en) * | 2019-07-26 | 2019-10-08 | 上海御微半导体技术有限公司 | Optical detection device and optical detection method |
CN110308152B (en) * | 2019-07-26 | 2020-04-07 | 上海御微半导体技术有限公司 | Optical detection device and optical detection method |
CN113741019A (en) * | 2021-08-23 | 2021-12-03 | 余姚市朗森光学科技有限公司 | Chromatic aberration focusing module, system and method |
CN113741019B (en) * | 2021-08-23 | 2024-07-02 | 余姚市朗森光学科技有限公司 | Chromatic aberration focusing module, system and method |
Also Published As
Publication number | Publication date |
---|---|
JP5674050B2 (en) | 2015-02-18 |
CN103673888B (en) | 2016-09-07 |
JP2014044161A (en) | 2014-03-13 |
MY167829A (en) | 2018-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103673888B (en) | Optical displacement meter and optical displacement operation method | |
KR102567597B1 (en) | optical measuring device | |
KR101819006B1 (en) | Optical measuring apparatus | |
US8427644B2 (en) | Optical displacement meter | |
JP5060678B2 (en) | Optical displacement meter | |
US11788967B2 (en) | Apparatus for carrying out Raman spectroscopy | |
TWI670465B (en) | Confocal measurement device | |
JP5124424B2 (en) | Optical displacement meter | |
JP7410969B2 (en) | Spectral confocal measurement device and measurement method | |
CN107894208B (en) | Spectrum confocal distance sensor | |
US20140347660A1 (en) | Metrological apparatus | |
KR20180099673A (en) | Confocal displacement meter | |
TW201205114A (en) | Linear chromatic confocal microscope system | |
JP2011017552A (en) | Device for detecting multipoint displacement | |
JP7554600B2 (en) | Optical Measuring Device | |
CN114941998B (en) | Three-dimensional line spectrum confocal sensing method and device | |
JP2011237272A (en) | Optical distance meter and distance measuring method | |
JP2002005823A (en) | Thin-film measuring apparatus | |
CN111879239A (en) | Spectrum confocal measuring device and measuring method | |
WO2023185199A1 (en) | Spectral confocal measurement device | |
US8619252B2 (en) | Microscope including a light intensity measuring unit for measuring an intensity of light emitted from the microscope | |
CN110553820A (en) | Lens multi-wavelength refractive index detection device and method | |
JP5812735B2 (en) | Spectral imaging device | |
CN117629405B (en) | Spectrometer | |
JP2013083460A (en) | Spectroscopic measurement apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |