JP2011236613A - Shaft construction method - Google Patents

Shaft construction method Download PDF

Info

Publication number
JP2011236613A
JP2011236613A JP2010108235A JP2010108235A JP2011236613A JP 2011236613 A JP2011236613 A JP 2011236613A JP 2010108235 A JP2010108235 A JP 2010108235A JP 2010108235 A JP2010108235 A JP 2010108235A JP 2011236613 A JP2011236613 A JP 2011236613A
Authority
JP
Japan
Prior art keywords
continuous wall
bottom plate
recess
shaft
excavated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010108235A
Other languages
Japanese (ja)
Inventor
Tetsuya Yarita
哲也 鎗田
Yukihiro Nakatani
行博 中谷
Yutaka Kotaki
裕 小滝
Morihiro Numaguchi
守弘 沼口
Teru Yoshida
輝 吉田
Nobuo Itabashi
信男 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2010108235A priority Critical patent/JP2011236613A/en
Publication of JP2011236613A publication Critical patent/JP2011236613A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shaft construction method allowing support strength of bottom slab to increase.SOLUTION: In this shaft construction method, excavated material 5 is thrown into an excavated hole 4 to a position lower than the top face 3d of a planned bottom slab 3. Concrete is then placed in the excavated hole 4 to form a continuous wall 2 and the excavated material laid in the lower end 2a side of the continuous wall 2 is removed. Thereby, a recess 13 is formed under the continuous wall 2. A reinforcement basket 14 is afterward inserted into the recess 13 and underwater concrete is placed in the bottom of a space S surrounded by the continuous wall 2. Thus, the underwater concrete flows into the recess 13 to construct the bottom slab 3 having a flange part 3a on the bottom of a shaft 1. By this shaft construction method, the recess 13 is easily prepared for forming the flange under the continuous wall 2, and the flange part 3a reinforced with the reinforcement basket 14 is easily constructed on the bottom slab 3.

Description

本発明は、トンネル工事などに利用される立坑の施工方法に関するものである。   The present invention relates to a shaft construction method used for tunnel construction and the like.

従来、このような分野の技術として、特開昭63−289195号公報がある。この公報に記載された立坑において、地中連続壁(連壁)の下端には係止段部が形成され、連壁の係止段部には底版の端部が嵌り込んでいる。このような係止段部が設けられた連壁を築造する方法として、掘削中に掘削孔の幅を大小に変えることができる掘削幅可変型の掘削機が利用される。この掘削機によって、途中まで一定幅で掘削し、予定の深さに達したら、掘削幅を狭めて掘削孔を形成する。その後、掘削孔内に鉄筋カゴを建て込んで、掘削孔内にコンクリートを打設することで、連壁の下端に係止段部を形成することができる。   Conventionally, there is JP-A-63-289195 as a technique in such a field. In the shaft described in this publication, a locking step portion is formed at the lower end of the underground continuous wall (continuous wall), and the end portion of the bottom plate is fitted into the locking step portion of the continuous wall. As a method for constructing a continuous wall provided with such a locking step portion, a variable excavation width excavator capable of changing the width of an excavation hole during excavation is used. By this excavator, excavation with a constant width is performed halfway, and when the planned depth is reached, the excavation width is narrowed to form an excavation hole. Thereafter, a reinforcing bar is built in the excavation hole, and concrete is placed in the excavation hole, so that a locking step portion can be formed at the lower end of the continuous wall.

特開昭63−289195号公報JP 63-289195 A

しかしながら、連壁の下端に形成された係止段部によって底版が支持されているが、係止段部と底版との接触面積は、係止段部の段差の大きさに依存し、底版を押し上げる地下水の揚圧力が高い場合には、底版の支持強度不足が発生する虞がある。   However, although the bottom plate is supported by the locking step formed at the lower end of the continuous wall, the contact area between the locking step and the bottom plate depends on the step size of the locking step, and the bottom plate When the pumping pressure of the groundwater to be pushed up is high, there is a possibility that the supporting strength of the bottom plate is insufficient.

本発明は、底版の支持強度アップを可能にした立坑の施工方法を提供することを目的とする。   An object of this invention is to provide the construction method of the shaft which enabled the support strength improvement of the bottom slab.

本発明は、連壁と底版とにより構築された立坑を施工する方法において、
連壁を形成するための環状の掘削孔を掘削する工程と、
予定された底版の上面よりも低い位置まで、掘削孔内に固形の被掘削物を投入する工程と、
掘削孔内にコンクリートを打設して連壁を形成する工程と、
連壁内の土砂を排出する工程と、
連壁の下端側に配置されている被掘削物を排除する工程と、
被掘削物が排除されて形成された凹部内に鉄筋ガゴを挿入する工程と、
連壁で囲まれた空間の底部に水中コンクリートを打設し、凹部内に水中コンクリートを流入させてなるフランジ部をもった底版を形成する工程と、を備えたことを特徴とする。
The present invention is a method for constructing a shaft constructed by a continuous wall and a bottom slab,
Drilling an annular excavation hole to form a continuous wall;
A step of introducing a solid work to be drilled into the drilling hole to a position lower than the upper surface of the planned bottom plate,
Forming concrete walls by placing concrete in the excavation hole;
A process of discharging earth and sand in the continuous walls;
Removing the excavated object disposed on the lower end side of the continuous wall;
Inserting the reinforcing bar gago into the recess formed by removing the excavated object;
A step of placing underwater concrete at the bottom of the space surrounded by the continuous walls and forming a bottom plate having a flange portion formed by flowing the underwater concrete into the recess.

この施工方法により形成された立坑の底版の支持強度アップを図るために、底版を連壁の下端面で支持し、これを達成させるために、底版には、下端面に当接させるためのフランジ部が設けられている。このような構成をもった立坑では、地下水圧(揚圧力)に対して、底版重量、連壁の重量、及び連壁の外周面と地盤との摩擦力が抵抗力となるので、地下水圧が高い場合であっても、底版を確実に支持させることができる。このような立坑を築造するにあたって、予定された底版の上面よりも低い位置まで、掘削孔内に固形の被掘削物を投入する。その後、掘削孔内にコンクリートを打設して連壁を形成し、連壁の下端側に配置されている被掘削物を排除する。これによって、連壁の下方に凹部が形成される。その後、この凹部内に鉄筋ガゴを挿入し、連壁で囲まれた空間の底部に水中コンクリートを打設する。これによって、凹部内に水中コンクリートが流入され、立坑の底にフランジ部をもった底版が構築される。このような施工方法を採用すると、連壁の下方にフランジ形成用の凹部を容易に造り出すことができ、しかも、鉄筋カゴによって補強されたフランジ部を底版に容易に構築することができる。   In order to increase the support strength of the bottom plate of the shaft formed by this construction method, the bottom plate is supported by the lower end surface of the continuous wall, and in order to achieve this, the bottom plate has a flange for contacting the lower end surface Is provided. In shafts with such a structure, the groundwater pressure (lifting pressure) is resisted by the bottom plate weight, the weight of the continuous wall, and the frictional force between the outer peripheral surface of the continuous wall and the ground. Even if it is expensive, the bottom plate can be reliably supported. In constructing such a vertical shaft, a solid excavation object is put into the excavation hole to a position lower than the planned upper surface of the bottom slab. Thereafter, concrete is placed in the excavation hole to form a continuous wall, and the work to be excavated arranged on the lower end side of the continuous wall is eliminated. As a result, a recess is formed below the continuous wall. Thereafter, a reinforcing bar gago is inserted into the recess, and underwater concrete is placed at the bottom of the space surrounded by the continuous walls. As a result, the underwater concrete flows into the recess, and a bottom plate having a flange portion at the bottom of the shaft is constructed. When such a construction method is employed, a flange-forming recess can be easily created below the continuous wall, and a flange portion reinforced by a reinforcing bar can be easily constructed on the bottom plate.

また、鉄筋カゴは、立坑の周方向で等分化され、各鉄筋カゴは、連壁で囲まれた空間内に鉛直方向に降ろされた後、水平方向に凹部内に挿入されると好適である。
このような方法を採用すると、鉄筋カゴを、連壁の下方に形成された凹部内に容易に配置させることができる。
Further, the reinforcing bars are equally divided in the circumferential direction of the shaft, and each reinforcing bar is preferably lowered in the vertical direction into the space surrounded by the continuous walls and then inserted into the recess in the horizontal direction. .
If such a method is employ | adopted, a reinforcing bar basket can be easily arrange | positioned in the recessed part formed under the continuous wall.

また、被掘削物の投入後、掘削孔内に、被掘削物に到達する水抜き管及びグラウト注入管を上方から挿入し、底版を形成するために水中コンクリートを打設した後に、凹部内で形成された底版のフランジ部と連壁の下端との間の空隙内に溜まった水を排出しながら、この空隙にグラウト材を充填すると好適である。
連壁で囲まれた空間の底部に水中コンクリートを打設すると、この水中コンクリートが凹部内に流入するが、このとき、凹部の上部に地下水が溜まり易く、水中コンクリートを凹部内に完全に充填させることが難しい。そこで、凹部内で形成された底版のフランジ部と連壁の下端との間の空隙内に溜まった水を排出しながら、この空隙にグラウト材を充填する。これによって、フランジ部と連壁の下端との間に空隙がなくなるので、フランジ部で発生している支持力を連壁の下端面に確実に伝達させることができ、底版の確実な支持が可能になる。
In addition, after the work to be excavated, the drainage pipe and the grout injection pipe reaching the excavation object are inserted into the excavation hole from above, and after placing underwater concrete to form the bottom plate, It is preferable to fill this gap with a grout material while discharging water accumulated in the gap between the flange portion of the formed bottom plate and the lower end of the continuous wall.
When underwater concrete is placed at the bottom of the space surrounded by the continuous walls, this underwater concrete flows into the recess. At this time, groundwater tends to accumulate in the upper part of the recess, and the underwater concrete is completely filled in the recess. It is difficult. Therefore, the grout material is filled into the gap while discharging the water accumulated in the gap between the flange portion of the bottom plate formed in the recess and the lower end of the continuous wall. As a result, there is no gap between the flange and the lower end of the continuous wall, so that the supporting force generated at the flange can be reliably transmitted to the lower end surface of the continuous wall, and the bottom plate can be supported securely. become.

また、被掘削物の投入後、掘削孔内に冷却管を上方から挿入し、底版のフランジ部と連壁の下端との境界部分を凍結させて、境界部分を止水すると好適である。
このような方法を採用すると、立坑内から水中ポンプなどで地下水を抜く、いわゆるドライアップ時に、境界部分から地下水が漏れ出す事態を確実に回避させることができる。
In addition, it is preferable to insert a cooling pipe into the excavation hole from above after inserting the work to be drilled, freeze the boundary portion between the flange portion of the bottom plate and the lower end of the continuous wall, and stop the boundary portion.
By adopting such a method, it is possible to reliably avoid a situation in which groundwater leaks out from the boundary portion at the time of so-called dry-up, in which groundwater is drained from the shaft with a submersible pump or the like.

本発明によれば、底版の支持強度アップを可能にした立坑を築造することができる。   According to the present invention, it is possible to build a shaft that enables the supporting strength of the bottom plate to be increased.

本発明に係る施工方法が適用される立坑の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the shaft to which the construction method which concerns on this invention is applied. 掘削孔の底部近傍を示す断面図である。It is sectional drawing which shows the bottom part vicinity of a digging hole. 砕石投入後の掘削孔を示す断面図である。It is sectional drawing which shows the excavation hole after crushed stone addition. 掘削孔内に鉄筋を敷設した状態を示す断面図である。It is sectional drawing which shows the state which laid the reinforcing bar in the excavation hole. 掘削孔内にコンクリートを打設した状態を示す断面図である。It is sectional drawing which shows the state which cast concrete in the excavation hole. 連壁で囲まれた空間を掘削した状態を示す断面図である。It is sectional drawing which shows the state which excavated the space enclosed by the continuous wall. 砕石を排除している状態を示す断面図である。It is sectional drawing which shows the state which has excluded the crushed stone. 立坑の水中に掘削機を沈めた状態を示す断面図である。It is sectional drawing which shows the state which sunk the excavator in the water of the shaft. 凹部内に鉄筋カゴを挿入する状態を示す断面図である。It is sectional drawing which shows the state which inserts a rebar basket in a recessed part. 周方向に等分割されてなる鉄筋カゴを示す平面図である。It is a top view which shows the reinforcing bar basket equally divided in the circumferential direction. 底版を示す断面図である。It is sectional drawing which shows a bottom plate. 底版と連壁との空隙にグラウト材を注入した状態を示す断面図である。It is sectional drawing which shows the state which injected the grout material in the space | gap of a bottom plate and a continuous wall. フランジ部と連壁との境界部分を凍結させた状態を示す断面図である。It is sectional drawing which shows the state which frozen the boundary part of a flange part and a continuous wall.

以下、図面を参照しつつ本発明に係る立坑の施工方法の好適な実施形態について詳細に説明する。   Hereinafter, a preferred embodiment of a shaft construction method according to the present invention will be described in detail with reference to the drawings.

図1に示すように、立坑1は、コンクリートからなる円筒状の地中連続壁(連壁)2によって囲まれ、立坑1の底部は、コンクリートからなる円板状の底版3によって地下水の侵入を防止している。   As shown in FIG. 1, a vertical shaft 1 is surrounded by a cylindrical underground continuous wall (continuous wall) 2 made of concrete, and the bottom of the vertical shaft 1 is invaded by groundwater by a disk-shaped bottom plate 3 made of concrete. It is preventing.

また、この底版3の外周端には、全周に渡ってフランジ部3aが設けられ、このフランジ部3aの上面3bは、連壁2の下端面2aに当接され、底版3の外周面3cは、連壁2の内周面2bに当接されている。このように、フランジ部3aによる張り出し構造をもった底版3を採用することによって、底版3の支持強度アップが図られている。このような構成の立坑1では、地下水圧(揚圧力)に対して、底版3の重量、連壁2の重量、及び連壁2の外周面2cと地盤との摩擦力が抵抗力となるので、地下水圧が高い場合であっても、底版3を確実に支持させることができ、これによって、底版3の薄型化や材料コストの削減、工期の短縮が可能になる。   Further, a flange portion 3 a is provided at the outer peripheral end of the bottom plate 3 over the entire circumference, and an upper surface 3 b of the flange portion 3 a is in contact with a lower end surface 2 a of the continuous wall 2, and an outer peripheral surface 3 c of the bottom plate 3. Is in contact with the inner peripheral surface 2 b of the continuous wall 2. Thus, the support strength of the bottom plate 3 is increased by adopting the bottom plate 3 having an overhang structure by the flange portion 3a. In the shaft 1 having such a configuration, the weight of the bottom plate 3, the weight of the continuous wall 2, and the frictional force between the outer peripheral surface 2 c of the continuous wall 2 and the ground become resistance to the groundwater pressure (lifting pressure). Even if the groundwater pressure is high, the bottom plate 3 can be reliably supported, which makes it possible to reduce the thickness of the bottom plate 3, reduce the material cost, and shorten the construction period.

次に、立坑1の施工方法について説明する。   Next, the construction method of the shaft 1 will be described.

図2に示すように、連壁2の厚みに相当する掘削孔4を地中に形成する。その後、図3に示すように、予定された底版3の上面3d(図1参照)よりも低い位置まで、掘削孔4内に固形の被掘削物5を投入する。この被掘削物5としては、砕石などがあり、砕石5は、そのまま掘削孔4の上方から投入してもよいが、袋詰めされた砕石5を掘削孔4の上から投入することで、作業性が良くなる。この砕石5は、フランジ部3a(図1参照)を形成するために利用されるので、フランジ部3aの厚さに相当する高さに達するまで、掘削孔4内に投入される。   As shown in FIG. 2, the excavation hole 4 corresponding to the thickness of the continuous wall 2 is formed in the ground. Thereafter, as shown in FIG. 3, the solid object 5 is put into the excavation hole 4 to a position lower than the planned upper surface 3 d (see FIG. 1) of the bottom plate 3. Examples of the excavated object 5 include crushed stones, and the crushed stones 5 may be input as they are from above the excavation hole 4. However, by inserting the packed crushed stones 5 from above the excavation hole 4, Sexuality is improved. Since the crushed stone 5 is used to form the flange portion 3a (see FIG. 1), the crushed stone 5 is introduced into the excavation hole 4 until reaching a height corresponding to the thickness of the flange portion 3a.

図4に示すように、砕石5の投入後、連壁2の補強として利用される鉄筋カゴ6を掘削孔4内に建て込む。この鉄筋カゴ6は、掘削孔4の全周に渡って配置され、掘削孔4内に、砕石5に到達する水抜き管7及びグラウト注入管8が上方から挿入される。また、掘削孔4内に冷却管9も上方から挿入される。水抜き管7、グラウト注入管8及び冷却管9は、掘削孔4の全周に渡って多数本配置され、水抜き管7及びグラウト注入管8の下端は開放され、冷却管9は、全長に渡って保温材で保護され、冷却管9の下端のみ露出させられている。   As shown in FIG. 4, after the crushed stone 5 is introduced, a reinforcing steel cage 6 that is used to reinforce the continuous wall 2 is built in the excavation hole 4. The rebar cage 6 is arranged over the entire circumference of the excavation hole 4, and a drain pipe 7 and a grout injection pipe 8 that reach the crushed stone 5 are inserted into the excavation hole 4 from above. A cooling pipe 9 is also inserted into the excavation hole 4 from above. A large number of drainage pipes 7, grout injection pipes 8 and cooling pipes 9 are arranged over the entire circumference of the excavation hole 4, the lower ends of the drainage pipes 7 and grout injection pipes 8 are opened, and the cooling pipe 9 has a full length. It is protected by a heat insulating material over the top and only the lower end of the cooling pipe 9 is exposed.

鉄筋カゴ6等の設置完了後、図5に示すように、掘削孔4内にコンクリートを打設して、連壁2を形成する。その後、図6に示すように、予定された深さに達するまで、連壁2で囲まれた内側の土砂を排出する。このとき、連壁2の内周面2bで囲まれた空間S内には、地下水が溜まる。   After completing the installation of the reinforcing bar 6 or the like, the concrete wall 2 is formed by placing concrete in the excavation hole 4 as shown in FIG. Then, as shown in FIG. 6, the inner earth and sand enclosed by the continuous wall 2 is discharged | emitted until it reaches the planned depth. At this time, groundwater accumulates in the space S surrounded by the inner peripheral surface 2 b of the continuous wall 2.

図7及び図8に示すように、回転可能なドラムカッター部10aを有する掘削機10を空間S内の水中に上から沈める。この掘削機10は、ロッド11によって地上から降ろされ、ドラムカッター部10aは砕石5が埋められている場所に設置される。その後、ロッド11を連壁2に徐々に近づけながら、ドラムカッター部10aによって砕石5を奥に向かって徐々に排除する。このときに排出された砕石5は、掘削機10に固定された水中ポンプ12の吸水口12aで回収され、配管12bを通って地上に排出される。そして、ドラムカッター部10aの幅を1ピッチとすると、1ピッチずつ周方向に掘削機10を送りながら、全周に渡って砕石5を全て排除する。   As shown in FIGS. 7 and 8, the excavator 10 having the rotatable drum cutter 10a is submerged in the water in the space S from above. The excavator 10 is lowered from the ground by the rod 11, and the drum cutter 10a is installed at a place where the crushed stone 5 is buried. Thereafter, the crushed stone 5 is gradually removed toward the back by the drum cutter 10 a while the rod 11 is gradually brought closer to the continuous wall 2. The crushed stone 5 discharged at this time is collected at the water inlet 12a of the submersible pump 12 fixed to the excavator 10, and is discharged to the ground through the pipe 12b. And if the width | variety of the drum cutter part 10a shall be 1 pitch, all the crushed stone 5 will be excluded over the perimeter, sending the excavator 10 to the circumferential direction 1 pitch at a time.

図9及び図10に示すように、砕石5の排除によって、連壁2の下方には環状の凹部13が形成され、この凹部13内に鉄筋カゴ14が挿入される。鉄筋カゴ14は、周方向で等分割され、各鉄筋カゴ14は、ロッド16によって地上から鉛直方向に降ろされ、鉄筋カゴ14は凹部13に対応する位置に吊された状態で、ロッド16を連壁2に対して水平方向に徐々に近づけながら鉄筋カゴ14を凹部13の奥に挿入させる。この作業は、凹部13の全周を鉄筋カゴ14で埋めるように順次行われる。鉄筋カゴ14をユニットとして凹部13内に挿入させることで、鉄筋カゴ14を、連壁2の下方に形成された凹部13の全周に渡って容易に配置させることができる。   As shown in FIG. 9 and FIG. 10, by removing the crushed stone 5, an annular recess 13 is formed below the continuous wall 2, and a reinforcing bar 14 is inserted into the recess 13. The reinforcing bar cage 14 is equally divided in the circumferential direction, and each reinforcing bar cage 14 is lowered vertically from the ground by the rod 16, and the reinforcing rod cage 14 is suspended at a position corresponding to the recess 13, and the rod 16 is connected. The steel bar 14 is inserted into the back of the recess 13 while gradually approaching the wall 2 in the horizontal direction. This operation is sequentially performed so that the entire circumference of the recess 13 is filled with the reinforcing bar cage 14. By inserting the reinforcing bar 14 as a unit into the recess 13, the reinforcing bar 14 can be easily disposed over the entire circumference of the recess 13 formed below the continuous wall 2.

このような施工方法を採用することで、連壁2の下方にフランジ形成用の凹部13を容易に造り出すことができ、しかも、鉄筋カゴ14によって補強されたフランジ部3aを底版3に容易に構築することができる。   By adopting such a construction method, it is possible to easily create the flange forming recess 13 below the continuous wall 2 and to easily construct the flange portion 3a reinforced by the reinforcing bar 14 in the bottom plate 3. can do.

図11に示すように、ロッド16で鉄筋カゴ14を吊した状態で、連壁2で囲まれた空間Sの底部に水中コンクリート17を打設し、凹部13内に水中コンクリート17が流入され、フランジ部3aをもった底版3が立坑1の底部に形成される。   As shown in FIG. 11, underwater steel basket 14 is hung with rod 16, underwater concrete 17 is placed at the bottom of space S surrounded by continuous wall 2, and underwater concrete 17 is poured into recess 13. A bottom plate 3 having a flange portion 3 a is formed at the bottom of the shaft 1.

連壁2で囲まれた空間Sの底部に水中コンクリート17を打設すると、水中コンクリート17が凹部13内に流入するが、このとき、凹部13の上部にできた空隙Pに地下水が溜まり易く、水中コンクリート17を凹部13内に完全に充填させることが難しい。   When the underwater concrete 17 is placed at the bottom of the space S surrounded by the continuous wall 2, the underwater concrete 17 flows into the recess 13, but at this time, groundwater tends to accumulate in the gap P formed at the top of the recess 13, It is difficult to completely fill the concave portion 13 with the underwater concrete 17.

そこで、水中コンクリート17の硬化後、凹部13内で形成された底版3のフランジ部3aと連壁2の下端との間の空隙P内に溜まった水を水抜き管7によって排出しながら、この空隙Pにグラウト注入管8によってグラウト材20を充填する。その結果、グラウト材20がフランジ部3aの一部になり、フランジ部3aと連壁2の下端との間に空隙Pがなくなるので、地下水圧(揚圧力)によりフランジ部3aで発生している支持力を連壁2の下端面2aに確実に伝達させることができ、底版3の確実な支持が可能になる。   Therefore, after the underwater concrete 17 is hardened, the water accumulated in the gap P between the flange portion 3a of the bottom plate 3 formed in the recess 13 and the lower end of the continuous wall 2 is discharged by the drain pipe 7 while discharging the water. The gap P is filled with the grout material 20 by the grout injection pipe 8. As a result, the grout material 20 becomes a part of the flange portion 3a, and there is no gap P between the flange portion 3a and the lower end of the continuous wall 2, so that the ground material pressure (lifting pressure) is generated in the flange portion 3a. The supporting force can be reliably transmitted to the lower end surface 2a of the continuous wall 2, and the bottom plate 3 can be reliably supported.

グラウト材20の硬化後、冷却管9内に冷媒を流動させて、グラウト材20によって補修された底版3のフランジ部3aと連壁2の下端面2aとの境界部分Lを凍結させ、境界部分Lを止水する。このとき、土壌側も、境界部分Lの端部を塞ぐような凍結部Rが形成される。この凍結部Rによっても、境界部分Lへの水の流入を確実に阻止することができる。   After hardening the grout material 20, the coolant is caused to flow into the cooling pipe 9 to freeze the boundary portion L between the flange portion 3 a of the bottom plate 3 repaired by the grout material 20 and the lower end surface 2 a of the continuous wall 2. Stop L. At this time, the frozen part R which closes the edge part of the boundary part L is formed also on the soil side. This freezing portion R can also reliably prevent the water from flowing into the boundary portion L.

この止水状態で、立坑1内から水中ポンプで地下水を抜く、いわゆるドライアップを行う。このとき、境界部分Lが凍結されているので、境界部分Lから地下水が漏れ出す事態が確実に回避され、ドライアップの長期化を回避させることができる。   In this water stop state, so-called dry-up is performed by extracting groundwater from the shaft 1 with a submersible pump. At this time, since the boundary portion L is frozen, a situation in which groundwater leaks from the boundary portion L can be reliably avoided, and prolonged dry-up can be avoided.

そして、ドライアップ完了後、鉄筋で補強されたコンクリート製の本底版(図示せず)が底版3の上に打設される。   Then, after the completion of the dry-up, a concrete bottom plate (not shown) reinforced with reinforcing bars is placed on the bottom plate 3.

本発明は、前述した実施形態に限定されないことは言うまでもない。本発明に係る立坑の施工方法において、立坑1の平面形状としては円形に限らず、小判形、矩形などが適用可能である。   It goes without saying that the present invention is not limited to the embodiment described above. In the shaft construction method according to the present invention, the planar shape of the shaft 1 is not limited to a circle, but an oval shape, a rectangle, or the like is applicable.

1…立坑、2…連壁、3…底版、3a…フランジ部、4…掘削孔、5…砕石(被掘削物)、7…水抜き管、8…グラウト注入管、9…冷却管、13…凹部、14…鉄筋カゴ、17…水中コンクリート、P…空隙、L…境界部分。   DESCRIPTION OF SYMBOLS 1 ... Vertical shaft, 2 ... Connection wall, 3 ... Bottom plate, 3a ... Flange part, 4 ... Drilling hole, 5 ... Crushed stone (drilling object), 7 ... Drain pipe, 8 ... Grout injection pipe, 9 ... Cooling pipe, 13 ... concave part, 14 ... reinforcing bar cage, 17 ... underwater concrete, P ... gap, L ... boundary part.

Claims (4)

連壁と底版とにより構築された立坑を施工する方法において、
前記連壁を形成するための環状の掘削孔を掘削する工程と、
予定された前記底版の上面よりも低い位置まで、前記掘削孔内に固形の被掘削物を投入する工程と、
前記掘削孔内にコンクリートを打設して前記連壁を形成する工程と、
前記連壁内の土砂を排出する工程と、
前記連壁の下端側に配置されている前記被掘削物を排除する工程と、
前記被掘削物が排除されて形成された凹部内に鉄筋ガゴを挿入する工程と、
前記連壁で囲まれた空間の底部に水中コンクリートを打設し、前記凹部内に前記水中コンクリートを流入させてなるフランジ部をもった前記底版を形成する工程と、を備えたことを特徴とする立坑の施工方法。
In the method of constructing a shaft constructed by a continuous wall and a bottom plate,
Excavating an annular excavation hole for forming the continuous wall;
Charging a solid work piece into the excavation hole to a position lower than the planned upper surface of the bottom slab;
Placing concrete in the excavation hole to form the continuous wall;
Discharging the earth and sand in the continuous wall;
Removing the work to be excavated disposed on the lower end side of the continuous wall;
Inserting a reinforcing bar gago into the recess formed by removing the excavated object;
Forming underwater concrete at the bottom of the space surrounded by the continuous wall, and forming the bottom plate having a flange portion into which the underwater concrete flows into the recess. How to construct a vertical shaft.
前記鉄筋カゴは、前記立坑の周方向で等分化され、各鉄筋カゴは、前記連壁で囲まれた空間内に前記鉛直方向に降ろされた後、水平方向に前記凹部内に挿入されることを特徴とする請求項1の立坑の施工方法。   The reinforcing bar is equally divided in the circumferential direction of the shaft, and each reinforcing bar is lowered in the vertical direction into a space surrounded by the continuous wall and then inserted in the recess in the horizontal direction. The construction method of the shaft of Claim 1 characterized by these. 前記被掘削物の投入後、前記掘削孔内に、前記被掘削物に到達する水抜き管及びグラウト注入管を上方から挿入し、
前記底版を形成するために前記水中コンクリートを打設した後に、前記凹部内で形成された前記底版の前記フランジ部と前記連壁の下端との間の空隙内に溜まった水を排出しながら、この空隙にグラウト材を充填することを特徴とする請求項1又は2記載の立坑の施工方法。
After inserting the excavated material, a drain pipe and a grout injection pipe reaching the excavated material are inserted into the excavated hole from above,
After draining the underwater concrete to form the bottom plate, while discharging the water accumulated in the gap between the flange portion of the bottom plate formed in the recess and the lower end of the continuous wall, The shaft construction method according to claim 1 or 2, wherein the gap is filled with a grout material.
前記被掘削物の投入後、前記掘削孔内に冷却管を上方から挿入し、
前記底版の前記フランジ部と前記連壁の下端との境界部分を凍結させて、前記境界部分を止水することを特徴とする請求項1〜3の何れか一項に記載の立坑の施工方法。
After the work to be excavated, a cooling pipe is inserted into the excavation hole from above,
The construction method of the shaft according to any one of claims 1 to 3, wherein the boundary portion between the flange portion of the bottom plate and the lower end of the continuous wall is frozen to stop the boundary portion. .
JP2010108235A 2010-05-10 2010-05-10 Shaft construction method Pending JP2011236613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010108235A JP2011236613A (en) 2010-05-10 2010-05-10 Shaft construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010108235A JP2011236613A (en) 2010-05-10 2010-05-10 Shaft construction method

Publications (1)

Publication Number Publication Date
JP2011236613A true JP2011236613A (en) 2011-11-24

Family

ID=45324882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010108235A Pending JP2011236613A (en) 2010-05-10 2010-05-10 Shaft construction method

Country Status (1)

Country Link
JP (1) JP2011236613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027226A (en) * 2014-06-25 2016-02-18 前田建設工業株式会社 Underground continuous wall water-stop structure and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027226A (en) * 2014-06-25 2016-02-18 前田建設工業株式会社 Underground continuous wall water-stop structure and method

Similar Documents

Publication Publication Date Title
CN110805053A (en) Construction method of deep foundation pit open caisson self-sinking supporting system
KR100722665B1 (en) Steel guide wall for construction of underground diaphragm wall and construction method of underground diaphragm wall using the same
CN110258582B (en) Inclined support foundation pit supporting structure based on steel pipe pile and Lassen steel plate and construction method
KR101039554B1 (en) Combination pile having a cast in place concrete pile combined with a phc or steel pile and the construction method using the same
JP5937488B2 (en) Temporary support method for foundation
CN113737780A (en) Underwater rock-socketed concrete pile and construction method thereof
JP6674868B2 (en) Construction method of underground structure
JP3752560B2 (en) Basic structure for constructing a new building in an existing basement and its construction method
JP6806465B2 (en) Construction method of foundation structure
JP5443200B2 (en) Construction method of shaft
JP5681827B2 (en) Vertical shaft construction method
JP2011236613A (en) Shaft construction method
JP6316674B2 (en) Water stop structure and method for underground continuous wall
RU2492294C1 (en) Pipe concrete pile with reinforced base and method of its erection
CN206368375U (en) A kind of electric power pylon basis
CN206591535U (en) Combined type cofferdam
JP4809728B2 (en) manhole
JP2726621B2 (en) Caisson laying method and caisson blade structure
CN114293564A (en) Construction method for foundation pit slope pile foundation of building engineering on site
JP2012002053A (en) Construction method for burying tank and the like
JP2010281038A (en) Earth retaining method
JP2016204848A (en) Vertical shaft construction method and underground storage tank construction method
JP5670595B2 (en) Vertical shaft construction method
JP6402056B2 (en) Vertical shaft, underground storage tank, vertical shaft construction method and underground storage tank construction method
JP6976192B2 (en) Caisson subsidence method