JP2011233670A - Manufacturing method of super junction semiconductor device - Google Patents

Manufacturing method of super junction semiconductor device Download PDF

Info

Publication number
JP2011233670A
JP2011233670A JP2010101944A JP2010101944A JP2011233670A JP 2011233670 A JP2011233670 A JP 2011233670A JP 2010101944 A JP2010101944 A JP 2010101944A JP 2010101944 A JP2010101944 A JP 2010101944A JP 2011233670 A JP2011233670 A JP 2011233670A
Authority
JP
Japan
Prior art keywords
layer
semiconductor device
boron
manufacturing
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010101944A
Other languages
Japanese (ja)
Other versions
JP5556335B2 (en
Inventor
Mitsuaki Kirisawa
光明 桐沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010101944A priority Critical patent/JP5556335B2/en
Publication of JP2011233670A publication Critical patent/JP2011233670A/en
Application granted granted Critical
Publication of JP5556335B2 publication Critical patent/JP5556335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a super junction semiconductor device having a super junction structure including parallel pn layers, that can be manufactured at low cost with improved production efficiency by reducing thermal diffusion time and the number of steps needed for making the parallel pn layers serving as drift layers successive impurity diffusion regions.SOLUTION: A manufacturing method of a super junction semiconductor device comprises a first step of growing an epitaxial layer 3 on a high-concentration semiconductor substrate 1 with a first conductivity type, a second step of implanting ions of an impurity element with the first conductivity type whose diffusion coefficient is higher than that of boron and implanting boron ions twice or more at different acceleration voltages, a third step of increasing the thickness of the epitaxial layer to a predetermined layer thickness by repeating the first and second steps, and a fourth step of forming parallel pn layers 10 in which impurities are successive in a direction perpendicular to a main plane of the substrate and which are mutually adjacent in a direction parallel to the main plane.

Description

本発明は電力用半導体装置に関する。さらに詳しくは超接合(スーパージャンクション:SJと略記することがある)半導体装置の製造方法に関する。なお、以下の説明においてはドリフト層に並列pn層を含む超接合構造を有する半導体装置を超接合半導体装置としている。   The present invention relates to a power semiconductor device. More particularly, the present invention relates to a method of manufacturing a super junction (sometimes abbreviated as super junction: SJ) semiconductor device. In the following description, a semiconductor device having a superjunction structure including a parallel pn layer in the drift layer is referred to as a superjunction semiconductor device.

前記超接合構造を利用して従来の特性限界を破るような半導体装置、具体的には図3、4の断面図に示すようなSJ−MOSFETが開発されている。ドリフト層に前記並列pn層を形成する方法として、nSi−Substrate(図3、4ではnSi−Sub Waferと表記)上にエピタキシャル層を何回かに分けて成長させ、各成長段階の前にパターニングおよびイオン注入によってp型イオン注入領域およびn型イオン注入領域(以降、p型領域およびn型領域と略記)を形成する。この工程を一ステップとして、パターンアライメントしながら前記工程を繰り返して前記p型領域およびn型領域を含むエピタキシャル層を基板の主面に垂直方向に積み重ねる。前記p型領域およびn型領域を含むエピタキシャル層の厚さが設計耐圧に必要な厚さに達した後、未だステップ毎に相互に分離されている前記p型領域およびn型領域を、高温熱拡散処理によって連続する不純物拡散領域にした並列pn層をドリフト層として形成するという製造方法が一般的である。この製造方法を以降、多段エピ方式ということにする。 A semiconductor device that breaks the conventional characteristic limit using the super junction structure, specifically, an SJ-MOSFET as shown in the cross-sectional views of FIGS. As a method of forming the parallel pn layer in the drift layer, an epitaxial layer is grown in several times on n + Si-Substrate (indicated as n + Si-Sub Wafer in FIGS. 3 and 4), and each growth stage Before the step, a p-type ion implantation region and an n-type ion implantation region (hereinafter abbreviated as p-type region and n-type region) are formed by patterning and ion implantation. With this process as one step, the above process is repeated while pattern alignment, and the epitaxial layer including the p-type region and the n-type region is stacked in the direction perpendicular to the main surface of the substrate. After the thickness of the epitaxial layer including the p-type region and the n-type region reaches the thickness required for the design withstand voltage, the p-type region and the n-type region that are still separated from each other at each step are subjected to high-temperature heat treatment. In general, a manufacturing method in which a parallel pn layer formed into a continuous impurity diffusion region by a diffusion process is formed as a drift layer. This manufacturing method is hereinafter referred to as a multi-stage epi method.

図2は、この多段エピ方式によるSJ−MOSFETを製造するためのSJ−半導体基板(ウエハと記すこともある)の主要な製造工程を示す断面図である。n型Subウエハ(nSi−Substrateと同義)51上に(図2(a))、バッファ層と呼ばれる中濃度(1×1015〜1×1016cm−3程度)のn型エピタキシャル層52を厚さ20μm程度成長させる(図2(b))。ついで、全面に矢印で示すリンイオン(P)注入を行ってn型イオン注入領域54aを形成し(図2(c))、続いてレジストでイオン注入マスク56となるパターンを形成し、選択的に矢印で示すボロンイオン(B)注入を行ってp型イオン注入領域55aを形成する(図2(d))。レジストマスク56を取り除いた後、7μm厚さのノンドープエピタキシャル層53を成長させる(図2(e))。600VクラスSJ−MOSFET用ウエハの場合、前記全面リンイオン注入からノンドープエピタキシャル層53の7μm成長までの工程を一ステップとして、この工程の繰り返しを6回程度実施すると、ドリフト層として耐圧に必要な厚さになる(図2(f))。ついで、数μmの厚さのキャップ層(図示せず)のエピタキシャル成長と1100℃程度の熱拡散処理を行うと、分離していたリンとボロンの各イオン注入領域54a、55aが基板の主面に垂直方向に連続し、平行方向には隣接する不純物拡散領域である並列pn層57となる。リンの不純物拡散領域をnカラム54、ボロンの不純物拡散領域をpカラム55と言うこともあるので、並列pn層57をSJカラムと言うこともある(図2(g))。 FIG. 2 is a cross-sectional view showing a main manufacturing process of an SJ-semiconductor substrate (also referred to as a wafer) for manufacturing this SJ-MOSFET by the multi-stage epi method. On an n-type Sub wafer (synonymous with n + Si-Substrate) 51 (FIG. 2A), an n + -type epitaxial having a medium concentration (about 1 × 10 15 to 1 × 10 16 cm −3 ) called a buffer layer. The layer 52 is grown to a thickness of about 20 μm (FIG. 2B). Next, phosphorus ion (P + ) implantation indicated by an arrow is performed on the entire surface to form an n-type ion implantation region 54a (FIG. 2 (c)), and then a pattern to be an ion implantation mask 56 is formed with a resist. Then, boron ions (B + ) indicated by arrows are implanted to form a p-type ion implantation region 55a (FIG. 2D). After removing the resist mask 56, a 7 μm thick non-doped epitaxial layer 53 is grown (FIG. 2E). In the case of a 600V class SJ-MOSFET wafer, if the process from the entire surface phosphorus ion implantation to the 7 μm growth of the non-doped epitaxial layer 53 is taken as one step and this process is repeated about 6 times, the thickness required for the breakdown voltage as a drift layer (FIG. 2 (f)). Then, when epitaxial growth of a cap layer (not shown) having a thickness of several μm and thermal diffusion treatment at about 1100 ° C. are performed, the separated phosphorus and boron ion implantation regions 54a and 55a are formed on the main surface of the substrate. The parallel pn layer 57 is an impurity diffusion region which is continuous in the vertical direction and adjacent to the parallel direction. Since the impurity diffusion region of phosphorus is sometimes referred to as an n column 54 and the impurity diffusion region of boron is sometimes referred to as a p column 55, the parallel pn layer 57 is sometimes referred to as an SJ column (FIG. 2 (g)).

従来は前述のように、n型不純物にリンを用い、p型不純物にはボロンを用いていた。熱拡散処理温度が1100℃の場合、Si結晶へのリンの拡散係数は1.07×10−13cm/secであるので、エピタキシャル層厚7μmの半分相当の3.5μmの深さで上下方向にそれぞれイオン注入したリンを熱拡散させることにより、7μmのエピタキシャル層53厚さ全体にリンが拡がる。そのために要する時間は約5.5時間となる。一方、ボロンの1100℃の拡散係数は2.5×10−13cm/secであるので、同様にしてボロンを前記エピタキシャル層53厚さ全体に拡げるために要する時間は2.4時間となる。リンとボロンは工程を短縮して効率化するために同時熱拡散処理をする関係から、リンに必要な拡散時間が熱拡散処理工程の時間を決めていた。 Conventionally, as described above, phosphorus is used as an n-type impurity and boron is used as a p-type impurity. When the thermal diffusion treatment temperature is 1100 ° C., the diffusion coefficient of phosphorus into the Si crystal is 1.07 × 10 −13 cm 2 / sec, so that the depth is 3.5 μm corresponding to half of the epitaxial layer thickness of 7 μm. By thermally diffusing phosphorus ion-implanted in each direction, phosphorus spreads over the entire thickness of the epitaxial layer 53 of 7 μm. The time required for this is about 5.5 hours. On the other hand, since the diffusion coefficient of boron at 1100 ° C. is 2.5 × 10 −13 cm 2 / sec, similarly, the time required to expand boron to the entire thickness of the epitaxial layer 53 is 2.4 hours. . Since phosphorus and boron are subjected to simultaneous thermal diffusion treatment in order to shorten the process and improve efficiency, the diffusion time required for phosphorus has determined the time of the thermal diffusion treatment process.

このような技術に係わる公知文献として、高耐圧半導体素子の周縁端部にn型ドーパントとして、シリコン単結晶に対する拡散係数の大きいセレンを打ち込むことに関する記述が見られるものがある(特許文献1)。   As a publicly known document relating to such a technique, there is a description relating to implanting selenium having a large diffusion coefficient with respect to a silicon single crystal as an n-type dopant at the peripheral edge of a high voltage semiconductor element (Patent Document 1).

特許第3942893号公報Japanese Patent No. 3842893

しかしながら、前述のように、多段エピ方式によるSJ−MOSFETの製造では、ドリフト層となる並列pn層として、所要の耐圧に必要な厚さを確保するためにエピタキシャル成長とパターニングおよびイオン注入を一ステップとする工程を多数回繰り返す必要がある。その結果、製造コストが高くならざるを得ないことが解決すべき課題である。また、相互に分離して配置されている各pnイオン注入領域を、連続する不純物拡散領域である並列pn層とするための熱拡散に長時間を要するので、生産効率を落としているという問題もある。   However, as described above, in the manufacture of the SJ-MOSFET by the multi-stage epi method, as a parallel pn layer serving as a drift layer, epitaxial growth, patterning, and ion implantation are performed in one step in order to ensure a necessary thickness for a required breakdown voltage. This process needs to be repeated many times. As a result, it is a problem to be solved that the manufacturing cost must be increased. In addition, since it takes a long time for thermal diffusion to make each pn ion implantation region arranged separately from each other into a parallel pn layer which is a continuous impurity diffusion region, there is a problem that production efficiency is lowered. is there.

本発明は以上説明した点に鑑みてなされたものであり、ドリフト層となる並列pn層を連続する不純物拡散領域とするために必要な工程回数および熱拡散時間を削減して生産効率を改善し、低コストで製造できる並列pn層を含む超接合構造を有する超接合半導体装置の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described points, and improves the production efficiency by reducing the number of processes and the thermal diffusion time necessary for making the parallel pn layer serving as the drift layer a continuous impurity diffusion region. Another object of the present invention is to provide a method of manufacturing a superjunction semiconductor device having a superjunction structure including a parallel pn layer that can be manufactured at low cost.

前記本発明の目的を達成するために、本発明では、高濃度第一導電型半導体基板上に、エピタキシャル層を成長させる第一工程と、該エピタキシャル層に、シリコン結晶への拡散係数が第二導電型不純物元素より大きい第一導電型不純物元素のイオン注入層の形成と、異なる加速電圧による2回以上の前記第二導電型不純物元素のイオン注入による第二導電型イオン注入層を選択的に形成する第二工程と、前記第一および第二工程を1回以上繰り返して前記エピタキシャル層を所定の積層厚さにする第三工程と、イオン注入された不純物を熱拡散温度による不純物拡散によって、前記半導体基板の主面に垂直な方向では前記不純物が前記エピタキシャル層内にそれぞれ連続し、前記主面に平行な方向では相互に隣接する第一導電型領域と第二導電型領域からなる並列pn層を形成してドリフト層とする第四工程を有する超接合半導体装置の製造方法とする。   In order to achieve the object of the present invention, in the present invention, a first step of growing an epitaxial layer on a high-concentration first conductivity type semiconductor substrate, and a diffusion coefficient into a silicon crystal in the epitaxial layer is a second step. A second conductivity type ion implantation layer is selectively formed by forming an ion implantation layer of a first conductivity type impurity element larger than the conductivity type impurity element and ion implantation of the second conductivity type impurity element at least twice by different acceleration voltages. A second step of forming, a third step of repeating the first and second steps one or more times to make the epitaxial layer have a predetermined lamination thickness, and ion-implanted impurities by impurity diffusion at a thermal diffusion temperature, In the direction perpendicular to the main surface of the semiconductor substrate, the impurity continues in the epitaxial layer, and in the direction parallel to the main surface, the first conductivity type region and the second adjacent to each other. A method for manufacturing a superjunction semiconductor device having a fourth step of the drift layer to form a parallel pn layer made of conductive type region.

前記第二工程において、前記第二導電型不純物元素がボロンであり、シリコン結晶への拡散係数がボロンより大きい第一導電型不純物元素がセレンまたは硫黄であることが好ましい。また、前記第二工程において、異なる加速電圧とともに複数のドーズ量を組み合わせてボロンをイオン注入することにより、第二導電型領域に不純物濃度勾配を設けることも好ましい。さらに、前記第二工程において、異なる加速電圧によるボロンのイオン注入が7回行われることも好ましい。さらにまた、超接合半導体装置が超接合MOSFETであることも好ましい。   In the second step, it is preferable that the second conductivity type impurity element is boron and the first conductivity type impurity element having a diffusion coefficient into the silicon crystal larger than boron is selenium or sulfur. In the second step, it is also preferable to provide an impurity concentration gradient in the second conductivity type region by ion-implanting boron by combining a plurality of doses together with different acceleration voltages. Furthermore, in the second step, it is also preferable that boron ion implantation is performed seven times with different acceleration voltages. It is also preferable that the superjunction semiconductor device is a superjunction MOSFET.

本発明によれば、ドリフト層となる並列pn層を連続する不純物拡散領域とするために必要な工程回数および熱拡散時間を削減して生産効率を改善し、低コストで製造できる並列pn層を含む超接合構造を有する超接合半導体装置の製造方法を提供することができる。   According to the present invention, a parallel pn layer that can be manufactured at a low cost by improving the production efficiency by reducing the number of processes and the thermal diffusion time required to make the parallel pn layer serving as the drift layer into a continuous impurity diffusion region. A method for manufacturing a superjunction semiconductor device having a superjunction structure can be provided.

本発明にかかる、セレンをn型不純物とするSJ−ウエハの主要な製造工程を示すウエハの断面図である。It is sectional drawing of the wafer which shows the main manufacturing processes of the SJ-wafer which uses selenium as an n-type impurity concerning this invention. 従来のSJ−ウエハの主要な製造工程を示すウエハの断面図である。It is sectional drawing of the wafer which shows the main manufacturing processes of the conventional SJ-wafer. SJ−MOSFETの周縁耐圧構造部の模式的断面図である。It is typical sectional drawing of the peripheral pressure | voltage resistant structure part of SJ-MOSFET. SJ−MOSFETの素子活性部の模式的断面図である。It is a typical sectional view of an element active part of SJ-MOSFET. 加速電圧を変えて複数回ボロンイオン注入後の不純物深さと濃度プロファイル(その1)図である。It is the impurity depth and density | concentration profile (the 1) figure after boron ion implantation in multiple times by changing acceleration voltage. 加速電圧とドーズ量を変えて複数回ボロンイオン注入後の不純物深さと濃度プロファイル(その2)図である。It is the impurity depth and density | concentration profile (the 2) figure after boron ion implantation in multiple times by changing acceleration voltage and dose amount. ボロンイオン注入の加速電圧と飛程(Rp)の関係図である。It is a relationship diagram of the acceleration voltage of boron ion implantation and the range (Rp).

以下、本発明にかかる超接合半導体装置の製造方法の実施例について、図面を参照して詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。   Embodiments of a method for manufacturing a superjunction semiconductor device according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.

従来は図2で説明したように、n型不純物にリンイオン(P)を用い、p型不純物にはボロンイオン(B)を用いていた。熱拡散処理温度が1100℃の場合、Si結晶へのリンの拡散係数は1.07×10−13cm/secであり、ボロンの拡散係数は2.5×10−13cm/secであるので、リンとボロンの工程を短縮して効率化するために同時熱拡散処理をする関係から、リンに必要な拡散時間で熱拡散処理工程の時間を決めていた。 Conventionally, as described with reference to FIG. 2, phosphorus ions (P + ) are used as n-type impurities, and boron ions (B + ) are used as p-type impurities. When the thermal diffusion treatment temperature is 1100 ° C., the diffusion coefficient of phosphorus into the Si crystal is 1.07 × 10 −13 cm 2 / sec, and the diffusion coefficient of boron is 2.5 × 10 −13 cm 2 / sec. Therefore, the time of the thermal diffusion treatment process is determined by the diffusion time required for phosphorus because the simultaneous thermal diffusion treatment is performed in order to shorten and improve the efficiency of the phosphorus and boron processes.

本発明で特徴とする、n型不純物としてセレンイオン(Se)を適用した場合のSJ−ウエハの主要な半導体工程を図1に示す。前述の図2と同様に、図1(a)に示すn型Subウエハ1上に、バッファ層と呼ばれる中濃度(1×1015cm−3〜1×1016cm−3程度)のn型エピタキシャル層2を20μm程度成長させる(図1(b))。エピタキシャル成長後にn型不純物としてセレンの全面イオン注入を行い(図1(c))、p型不純物としてボロンをレジストマスクによる選択イオン注入を行い、それぞれn型、p型イオン注入領域4a、5aを形成し(図1(d))、さらに不純物を拡散させるための熱拡散処理を実施する。しかし、この場合、そのまま熱拡散処理をすると、セレンはリンやボロンより3桁拡散係数が高いため、1100℃では10μm程度の厚さのエピタキシャル層3では層内に数分で拡散し拡がる。さらに1100℃で数十分の熱拡散処理を加えると、ボロンでは1μm程度しか拡散が進まないが、セレンは横方向にも拡散が進み、選択的なボロンのイオン注入領域の下までセレンが拡散するので、ボロンの不純物領域であるpカラム5が形成できないという問題が生じる。 FIG. 1 shows a main semiconductor process of an SJ-wafer when selenium ions (Se + ) are applied as n-type impurities, which is a feature of the present invention. Similar to FIG. 2 described above, n + having a medium concentration (about 1 × 10 15 cm −3 to 1 × 10 16 cm −3 ) called a buffer layer is formed on the n-type Sub wafer 1 shown in FIG. The type epitaxial layer 2 is grown by about 20 μm (FIG. 1B). After epitaxial growth, ion implantation of the entire surface of selenium is performed as an n-type impurity (FIG. 1C), and boron as a p-type impurity is selectively ion-implanted using a resist mask to form n-type and p-type ion implantation regions 4a and 5a, respectively. (FIG. 1D), and thermal diffusion treatment for further diffusing impurities is performed. However, in this case, if the thermal diffusion treatment is performed as it is, selenium has a three-digit diffusion coefficient higher than that of phosphorus or boron, so that the epitaxial layer 3 having a thickness of about 10 μm at 1100 ° C. diffuses and spreads within a few minutes. Further, when several tens of minutes of thermal diffusion treatment is applied at 1100 ° C., diffusion of boron is only about 1 μm, but diffusion of selenium also proceeds in the lateral direction, and selenium diffuses under the selective ion implantation region of boron. Therefore, there arises a problem that the p column 5 which is an impurity region of boron cannot be formed.

そこで、本発明では、n型不純物としてセレンを適用する場合、1回のセレンのイオン注入に対して、ボロンは加速電圧を変えて複数回のそれぞれ深さの異なるイオン注入を連続実施する技術を合わせて適用するところに特徴がある。たとえば、図5のように、エピタキシャル層3厚さが10μmの場合、1回目(飛程Rp1)のボロンイオン注入時の加速電圧は8MeV、2回目(飛程Rp2)は6.5MeV、3回目(飛程Rp3)は5MeV、4回目(飛程Rp4)は3.5MeV、5回目(飛程Rp5)は2MeV、6回目(飛程Rp6)は800KeV、7回目(飛程Rp7)は200KeVと7回のボロンイオン注入を連続で行い、それぞれ深さの異なるp型イオン注入領域5aを形成する。このようにしてイオン注入されたボロンは、各段階のpカラム5の全域に熱拡散させることなく既に入っているので、ボロンをさらに熱拡散させることは不要となり、1100℃で数分程度の活性化処理のみで、有効なpカラム5を形成することができる。一方、nカラム4はボロンより拡散係数の高いセレンを用いるので、たとえば10μm程度のエピタキシャル層厚さであれば1100℃で数分の熱拡散処理でnカラム4内すべてに拡散される。さらに熱処理を追加することで、セレンは不純物導入したエピタキシャル層の界面付近と中心部の濃度が均一となり、濃度勾配の無いフラットなnカラム4を形成することができる。このように一ステップのエピタキシャル層3に対し、n型不純物にセレンを用い、ボロンは複数回によるイオン注入技術を適用することにより、一層当たりの、ドリフト層のエピタキシャル層3厚が10μmの場合、4回のエピタキシャル成長とイオン注入の繰り返しにより、前述の従来方法で6回のエピタキシャル成長をさせる場合と同等の40μm厚さの並列pn層10を形成することができる(図1(e)、(f))。前述の説明では、pカラム5を複数回のボロンイオン注入によって形成する方法として、200KeV〜8MeVまでの加速電圧を順に7回選んでイオン注入することにより、熱拡散をしなくても充分な深さを得るようにしたが、7回に限られる方法とするものではなく、少ない回数とすることができる。たとえば、耐圧などの特性に応じては2回以上の加速電圧の異なるイオン注入であれば、本発明の効果を得ることができる。   Therefore, in the present invention, when selenium is applied as an n-type impurity, for a single selenium ion implantation, boron continuously changes the acceleration voltage and performs multiple times of ion implantation with different depths. There is a feature in applying together. For example, as shown in FIG. 5, when the thickness of the epitaxial layer 3 is 10 μm, the acceleration voltage at the time of boron ion implantation for the first time (range Rp1) is 8 MeV, the second time (range Rp2) is 6.5 MeV, and the third time. (Range Rp3) is 5 MeV, 4th (Range Rp4) is 3.5 MeV, 5th (Range Rp5) is 2 MeV, 6th (Range Rp6) is 800 KeV, 7th (Range Rp7) is 200 KeV Seven boron ion implantations are continuously performed to form p-type ion implantation regions 5a having different depths. Since the boron ion-implanted in this way has already entered the entire region of the p column 5 at each stage without thermal diffusion, it is not necessary to further diffuse the boron further, and an activity of several minutes at 1100 ° C. An effective p column 5 can be formed only by the conversion process. On the other hand, since selenium having a diffusion coefficient higher than that of boron is used for the n column 4, if the epitaxial layer thickness is, for example, about 10 μm, the n column 4 is diffused all over the n column 4 by thermal diffusion treatment at 1100 ° C. for several minutes. Further, by adding heat treatment, the concentration of selenium in the vicinity of the interface and the center of the epitaxial layer into which impurities are introduced becomes uniform, and a flat n column 4 having no concentration gradient can be formed. In this way, by using selenium as the n-type impurity for the one-step epitaxial layer 3 and boron by applying an ion implantation technique by a plurality of times, when the epitaxial layer 3 thickness of the drift layer per layer is 10 μm, By repeating the epitaxial growth four times and the ion implantation, it is possible to form the parallel pn layer 10 having a thickness of 40 μm equivalent to the case where the epitaxial growth is performed six times by the above-described conventional method (FIGS. 1E and 1F). ). In the above description, as a method of forming the p column 5 by multiple times of boron ion implantation, the ion implantation is performed by selecting the acceleration voltage from 200 KeV to 8 MeV in order seven times, so that a sufficient depth can be obtained without thermal diffusion. However, the method is not limited to seven times, and the number of times can be reduced. For example, the effects of the present invention can be obtained by ion implantation with different acceleration voltages two or more times depending on characteristics such as withstand voltage.

これに対して、従来方法では、リンを用いて40μmの並列pn層57厚を得る場合には、図2のように6回のエピタキシャル成長とイオン注入の繰り返しを要するので、エピタキシャル成長の回数は2回、イオン注入の回数は6回、パターニングの回数は3回低減できることになる。また、各カラム54、55を形成するための熱拡散処理は従来の1100℃、5.5時間から1100℃数十分となるので、約5時間の大幅短縮が可能となる。   On the other hand, in the conventional method, when a parallel pn layer 57 thickness of 40 μm is obtained using phosphorus, it is necessary to repeat the epitaxial growth and ion implantation six times as shown in FIG. The number of times of ion implantation can be reduced by 6, and the number of times of patterning can be reduced by 3. Further, since the thermal diffusion treatment for forming the columns 54 and 55 is 1100 ° C. several tens of minutes from the conventional 1100 ° C. and 5.5 hours, it is possible to greatly shorten the time by about 5 hours.

さらに、SJ−MOSFETのアバランシェ耐量を向上させるためにも本発明は有効である。特許第4304433号公報の記載では、n型不純物濃度を深さ方向に対し一定にして、p型不純物濃度を深さ方向に対して不純物濃度勾配を有する並列pn層にすると、アバランシェ耐量が向上するとある。従来の製造方法では、p型不純物濃度は1回のエピタキシャル層の形成ごとにイオン注入ドーズ量を変えることで、pカラムに濃度勾配を設けることは可能であるが、nカラム、pカラムとも1回のエピタキシャル層内の不純物濃度は中心部が薄く、エピタキシャル層界面付近の不純物濃度が濃くなっている。n型不純物濃度の理想である1回のエピタキシャル層内の不純物濃度をフラットにするためには、不純物の拡散時間をさらに長くすれば良さそうだが、前述のとおり拡散時間を長くすることにはいくつかの問題がある。また、前述の本発明の実施例で説明した並列pn層10のpカラム5の形成方法のように、1回のエピタキシャル層3内の深さ方向に対し、イオン注入深さを変えてリニアな不純物濃度勾配を可能にする方法は、1回のエピタキシャル層3ごとに同条件のイオン注入によって不純物導入をしなければならない従来方法では不可能であった。従来方法でリニアな任意の不純物濃度勾配を得ようとするには、1回のエピタキシャル層厚さをさらにいっそう薄くし、イオン注入回数を大幅に増やす必要があるが、大幅にSJ−ウエハの製造コストが増加する課題がある。   Furthermore, the present invention is also effective for improving the avalanche resistance of the SJ-MOSFET. In the description of Japanese Patent No. 4304433, if the n-type impurity concentration is constant in the depth direction and the p-type impurity concentration is a parallel pn layer having an impurity concentration gradient in the depth direction, the avalanche resistance is improved. is there. In the conventional manufacturing method, it is possible to provide a concentration gradient in the p column by changing the ion implantation dose every time the epitaxial layer is formed. The impurity concentration in the epitaxial layer is thin at the center, and the impurity concentration near the epitaxial layer interface is high. In order to flatten the impurity concentration in one epitaxial layer, which is the ideal n-type impurity concentration, it seems better to make the impurity diffusion time longer, but as mentioned above, there are several ways to increase the diffusion time. There is a problem. Further, as in the method for forming the p column 5 of the parallel pn layer 10 described in the above-described embodiment of the present invention, the ion implantation depth is changed linearly with respect to the depth direction in the single epitaxial layer 3. The method of enabling the impurity concentration gradient is not possible with the conventional method in which impurities must be introduced by ion implantation under the same conditions for each epitaxial layer 3. In order to obtain an arbitrary linear impurity concentration gradient by the conventional method, it is necessary to further reduce the thickness of one epitaxial layer and greatly increase the number of ion implantations. There is a problem that costs increase.

本発明の場合、たとえば、図6のようにpカラム形成時の最初のボロンイオン注入(Rp1)は、加速電圧8MeVでドーズ量は1×1011cm−2、次のRp2は6.5MeVで1.5×1011cm−2、次のRp3は5MeVで2×1011cm−2、次のRp4は3.5MeVで2.5×1011cm−2、次のRp5は2MeVで3×1011cm−2、次のRp6は800KeVで3.5×1011cm−2、次のRp7は200KeVで4×1011cm−2のように、表面側のドーズ量を順々に多くする。導入されたボロンは形成したいpカラム5の全般に入っているので、ボロンを熱拡散させることは不要となり、1100℃数分程度の活性化処理のみでリニアな濃度勾配がついたpカラム5が形成できる。また、前記ドーズ量を変えることにより不純物濃度勾配を任意にコントロールできる。 In the case of the present invention, for example, as shown in FIG. 6, the first boron ion implantation (Rp1) at the time of forming the p column is an acceleration voltage of 8 MeV, a dose amount of 1 × 10 11 cm −2 , and a subsequent Rp2 of 6.5 MeV. 1.5 × 10 11 cm −2 , the next Rp3 is 2 × 10 11 cm −2 at 5 MeV, the next Rp4 is 2.5 × 10 11 cm −2 at 3.5 MeV, and the next Rp5 is 3 × at 2 MeV. 10 11 cm −2 , the next Rp6 is 3.5 × 10 11 cm −2 at 800 KeV, the next Rp7 is 200 KeV and 4 × 10 11 cm −2 , and the dose on the surface side is increased in order. . Since the introduced boron is in the whole of the p-column 5 to be formed, it is not necessary to thermally diffuse boron, and the p-column 5 having a linear concentration gradient only by an activation process at about 1100 ° C. for several minutes can be obtained. Can be formed. Further, the impurity concentration gradient can be arbitrarily controlled by changing the dose amount.

一方、nカラム4は拡散係数の高いセレンを用いるので、たとえば10μm程度のエピタキシャル層3厚さであれば1100℃で数分の熱拡散処理で十分に厚さ分拡散される。さらに熱処理を追加することで、セレンは不純物導入したエピタキシャル層3界面付近と中心部の濃度が均一となり、濃度勾配の無いフラットなnカラム4の形成ができる。当然ながら、1回のエピタキシャル層3内に実施する複数回のボロンイオン注入の加速電圧、ドーズ量および熱拡散処理条件はシミュレーションによって計算され、所望する濃度勾配を得るために最適な条件を適用する。図7に、そのようなボロンイオン注入の際に利用される加速電圧と飛程(Rp)の関係図を示す。   On the other hand, since the n column 4 uses selenium having a high diffusion coefficient, for example, if the thickness of the epitaxial layer 3 is about 10 μm, the n column 4 is sufficiently diffused by a thermal diffusion treatment at 1100 ° C. for several minutes. Further, by adding heat treatment, the concentration of selenium becomes uniform in the vicinity of the interface of the epitaxial layer 3 into which impurities are introduced and in the central portion, and a flat n column 4 having no concentration gradient can be formed. Of course, the acceleration voltage, the dose amount, and the thermal diffusion treatment conditions for a plurality of times of boron ion implantation performed in one epitaxial layer 3 are calculated by simulation, and optimum conditions are applied to obtain a desired concentration gradient. . FIG. 7 shows a relationship diagram between the acceleration voltage and the range (Rp) used in such boron ion implantation.

その後、通常のMOSFETの製造プロセスと同様に、図3、4などに示すように、素子活性部100内には、pベース領域13、nエミッタ領域14、ゲート絶縁膜15、ゲート電極16、エミッタ電極17、周縁耐圧構造部200内に、ガードリング7、フィールド絶縁膜8、n領域9などを形成すれば、超接合MOSFETができる。 After that, as shown in FIGS. 3 and 4 and the like, as shown in FIGS. If the guard ring 7, the field insulating film 8, the n region 9, etc. are formed in the electrode 17 and the peripheral breakdown voltage structure 200, a super junction MOSFET can be formed.

本発明によれば、前述したように従来のリン不純物を用いてnカラムを形成する方法より、工程回数を大幅に低減して同一仕様、性能のSJ−MOSFET用ウエハを製造することができ、低コストでのSJ−MOSFETを提供することが可能になる。また、SJ−MOSFETはSJ−カラムのピッチを2μm程度に微細化していくと損失が低減するが、本発明によれば、従来のSJ−カラム形成時の熱拡散処理時間を大幅に短縮することが可能で不純物の横方向拡散を抑えることができるため、前述の2μm程度のパターンの微細化が容易に実現でき性能向上が図れる。   According to the present invention, as described above, it is possible to manufacture SJ-MOSFET wafers having the same specifications and performance by greatly reducing the number of steps compared to the conventional method of forming an n column using phosphorus impurities. It becomes possible to provide an SJ-MOSFET at a low cost. In addition, the loss of SJ-MOSFET decreases as the pitch of the SJ-column is reduced to about 2 μm. However, according to the present invention, the heat diffusion processing time for forming the conventional SJ-column can be greatly shortened. Since the lateral diffusion of impurities can be suppressed, the above-mentioned pattern of about 2 μm can be easily miniaturized and the performance can be improved.

多段エピ方式の1回で成長させるエピタキシャル層3厚さは、p型不純物を選択的に導入するためのパターニングによる開口寸法と、導入する不純物の拡散係数と熱拡散処理時間によって決まる。SJ−MOSFETの特性上の観点から、SJ−カラムのピッチ寸法を10μm程度とした場合、pカラム5及びnカラム4のでき上がりの基板表面での幅はそれぞれ5μm程度となる。たとえばpカラム5用のパターニングによる開口寸法を1μmとした場合、この開口には直接ボロンがイオン注入され、幅5μmにするために熱拡散処理によって片側2μmづつ不純物拡散領域が拡大される。一般的に基板の主面に平行な横方向の熱拡散により拡がる距離は、基板の主面に垂直な縦方向の拡散深さの2/3程度である。よって横方向に2μm熱拡散させた場合、不純物は縦方向に3μm熱拡散する。多段エピ方式の場合、不純物は上下両方のエピタキシャル層3に拡散されるため、縦方向の拡散深さは倍の6μmとなり、この6μmが1層エピタキシャル層厚さの最大値となる。同様に、pカラム5用のパターニングによる開口寸法を0.1μmとした場合、横方向へ必要な拡散の長さ(幅)は約2.5μmとなり、縦方向の拡散深さは3.8μmとなる。よって、最大の1回のエピタキシャル層3厚さは7.6μm程度となる。このように開口幅が狭いほうが1回のエピタキシャル層3厚さを大きくすることができる。   The thickness of the epitaxial layer 3 grown at one time in the multi-stage epi method is determined by the opening size by patterning for selectively introducing the p-type impurity, the diffusion coefficient of the impurity to be introduced, and the thermal diffusion processing time. From the viewpoint of the characteristics of the SJ-MOSFET, when the pitch dimension of the SJ-column is about 10 μm, the widths of the finished substrate surfaces of the p column 5 and the n column 4 are each about 5 μm. For example, if the opening size by patterning for the p column 5 is 1 μm, boron is directly ion-implanted into this opening, and the impurity diffusion region is expanded by 2 μm on one side by thermal diffusion treatment to make the width 5 μm. In general, the distance spread by thermal diffusion in the horizontal direction parallel to the main surface of the substrate is about 2/3 of the vertical diffusion depth perpendicular to the main surface of the substrate. Therefore, when the thermal diffusion is performed by 2 μm in the horizontal direction, the impurities are thermally diffused by 3 μm in the vertical direction. In the case of the multi-stage epi method, since the impurities are diffused in both the upper and lower epitaxial layers 3, the vertical diffusion depth is 6 μm, which is the maximum value of the thickness of one epitaxial layer. Similarly, when the opening dimension by patterning for the p column 5 is 0.1 μm, the diffusion length (width) required in the horizontal direction is about 2.5 μm, and the vertical diffusion depth is 3.8 μm. Become. Therefore, the maximum one-time epitaxial layer 3 thickness is about 7.6 μm. Thus, the one where the opening width is narrower can increase the thickness of the epitaxial layer 3 once.

1回のエピタキシャル層3厚さが拡散深さに対して大き過ぎて、縦方向にp型不純物拡散層同志が連結されないと、p型不純物拡散層は電気的に浮遊状態となり、繰り返しスイッチング時の電荷残存による過渡オン抵抗上昇などの不具合が発生する。また同じく縦方向に隣り合うn型不純物拡散層同志が連結されないと、部分的に高抵抗領域ができるためにオン抵抗が上昇するといった問題がある。これらの問題を防ぐために拡散時間をさらに長くすれば良さそうだが、実際はp型不純物拡散層が横に広がりすぎてn型不純物拡散層幅が狭くなりオン抵抗が上昇する。またpカラム5とnカラム4のドーパントが交じり合ってしまい、実効的なドーピング濃度が低下してオン抵抗が上昇する。従って、1回のエピタキシャル層3厚さをむやみに大きくすることはできない。次にエピタキシャル層3に導入するn型不純物とp型不純物の導入する不純物の拡散係数について、n型不純物であるリンの拡散係数は、p不純物であるボロンの約半分程度であり、リンの拡散深さによってエピタキシャル層3厚さが律速されていた。つまり、縦方向に分離して隣り合うリンの不純物拡散層同志を連結してリンの連続層とするために、1回のエピタキシャル層3厚さを薄くする必要があった。このため、少なくともボロン以上の拡散係数を持つ、n型不純物元素を適用することにより、同じ熱拡散処理条件であっても縦方向に隣り合うn型不純物拡散層同志が容易に連結されることができる。その結果、1回でのエピタキシャル層3を厚くして繰り返しステップ回数を減らすことができるので、生産効率が向上する。さらに、各pイオン注入領域5aとnイオン注入領域4aとをそれぞれ連続する不純物拡散領域(pカラム5、nカラム4)とするための熱拡散時間を大幅に短縮することが可能となる。以上、説明した実施例では、ボロン以上の拡散係数を持つn型不純物元素として、セレンを採用して説明したが、セレンに限らず、硫黄などを用いたイオン注入とすることもできる。   If the thickness of one epitaxial layer 3 is too large with respect to the diffusion depth and the p-type impurity diffusion layers are not connected in the vertical direction, the p-type impurity diffusion layer will be in an electrically floating state. Problems such as transient on-resistance increase due to residual charge occur. Similarly, if the n-type impurity diffusion layers adjacent in the vertical direction are not connected to each other, there is a problem that the on-resistance is increased because a high resistance region is partially formed. In order to prevent these problems, it would be better to further increase the diffusion time. However, in actuality, the p-type impurity diffusion layer is excessively spread laterally, the width of the n-type impurity diffusion layer is narrowed, and the on-resistance is increased. Further, the dopants of the p column 5 and the n column 4 are mixed with each other, and the effective doping concentration is lowered and the on-resistance is raised. Therefore, the thickness of one epitaxial layer 3 cannot be increased unnecessarily. Next, regarding the diffusion coefficient of the n-type impurity introduced into the epitaxial layer 3 and the impurity introduced by the p-type impurity, the diffusion coefficient of phosphorus, which is an n-type impurity, is about half of that of boron, which is a p-impurity. The thickness of the epitaxial layer 3 was determined by the depth. That is, in order to connect the adjacent impurity diffusion layers of phosphorus separated in the vertical direction to form a continuous layer of phosphorus, it is necessary to reduce the thickness of the epitaxial layer 3 once. Therefore, by applying an n-type impurity element having a diffusion coefficient of at least boron or more, the n-type impurity diffusion layers adjacent in the vertical direction can be easily connected even under the same thermal diffusion treatment conditions. it can. As a result, the epitaxial layer 3 can be made thicker and the number of repeated steps can be reduced, so that the production efficiency is improved. Furthermore, it is possible to significantly shorten the thermal diffusion time for making each p ion implantation region 5a and n ion implantation region 4a a continuous impurity diffusion region (p column 5, n column 4). In the above-described embodiments, selenium is used as the n-type impurity element having a diffusion coefficient higher than that of boron. However, ion implantation using not only selenium but also sulfur or the like may be used.

なお、上記実施例では、ノンドープエピタキシャル層3を用いて説明したが、低不純物濃度のn型のエピタキシャル層を用いて各層を形成するようにしてもよい。
以上説明した本発明の実施例によれば、熱拡散時間とエピタキシャル成長の回数を削減し、生産効率を改善できるので、低コストで並列pn層を形成することができる超接合半導体装置を安価に製造することができる。
In addition, although the said Example demonstrated using the non-doped epitaxial layer 3, you may make it form each layer using a low impurity concentration n-type epitaxial layer.
According to the embodiments of the present invention described above, the thermal diffusion time and the number of epitaxial growths can be reduced and the production efficiency can be improved, so that a superjunction semiconductor device capable of forming a parallel pn layer can be manufactured at low cost. can do.

1 n型Subウエハ
2 n型エピタキシャル層
3 ノンドープエピタキシャル層
4 nカラム
4a n型イオン注入領域
5 pカラム
5a p型イオン注入領域
6 レジストマスク
7 ガードリング
8 フィールド絶縁膜
10 並列pn層
13 pベース領域
14 nソース領域
15 ゲート絶縁膜
16 ゲート電極
17 エミッタ電極
100 素子活性部
200 周縁耐圧構造部
1 n-type Sub wafer 2 n + -type epitaxial layer 3 non-doped epitaxial layer 4 n column 4a n-type ion implantation region 5 p column 5a p-type ion implantation region 6 resist mask 7 guard ring 8 field insulating film 10 parallel pn layer 13 p base Region 14 n + source region 15 gate insulating film 16 gate electrode 17 emitter electrode 100 element active part 200 peripheral breakdown voltage structure part

Claims (5)

高濃度第一導電型半導体基板上に、エピタキシャル層を成長させる第一工程と、該エピタキシャル層に、シリコン結晶への拡散係数が第二導電型不純物元素より大きい第一導電型元素のイオン注入層の形成と、異なる加速電圧による2回以上の前記第二導電型不純物元素のイオン注入による第二導電型イオン注入層を選択的に形成する第二工程と、前記第一および第二工程を1回以上繰り返して前記エピタキシャル層を所定の積層厚さにする第三工程と、イオン注入された不純物を熱拡散温度による不純物拡散によって、前記半導体基板の主面に垂直な方向では前記不純物が前記エピタキシャル層内にそれぞれ連続し、前記主面に平行な方向では相互に隣接する第一導電型領域と第二導電型領域からなる並列pn層を形成してドリフト層とする第四工程を有することを特徴とする超接合半導体装置の製造方法。 A first step of growing an epitaxial layer on a high-concentration first-conductivity-type semiconductor substrate; and an ion-implanted layer of a first-conductivity-type element having a diffusion coefficient into a silicon crystal larger than that of a second-conductivity-type impurity element in the epitaxial layer A second step of selectively forming a second conductivity type ion implantation layer by ion implantation of the second conductivity type impurity element twice or more with different acceleration voltages, and the first and second steps as 1 The third step of repeatedly forming the epitaxial layer to a predetermined stack thickness by repeating the process more than once, and impurity diffusion of the ion-implanted impurity by thermal diffusion temperature causes the impurity to be in the direction perpendicular to the main surface of the semiconductor substrate. A parallel pn layer composed of a first conductivity type region and a second conductivity type region, which are respectively continuous in the layer and parallel to the main surface, is formed as a drift layer. Method for manufacturing a superjunction semiconductor device characterized by having a fourth step. 前記第二工程において、前記第二導電型不純物元素がボロンであり、シリコン結晶への拡散係数がボロンより大きい第一導電型不純物元素がセレンまたは硫黄であることを特徴とする請求項1記載の超接合半導体装置の製造方法。 The said 2nd conductivity type impurity element is said boron in said 2nd process, The 1st conductivity type impurity element whose diffusion coefficient to a silicon crystal is larger than boron is selenium or sulfur, The said 2nd process is characterized by the above-mentioned. A method of manufacturing a superjunction semiconductor device. 前記第二工程において、異なる加速電圧とともに複数のドーズ量を組み合わせてボロンをイオン注入することにより、第二導電型領域に不純物濃度勾配を設けることを特徴とする請求項2記載の超接合半導体装置の製造方法。 3. The superjunction semiconductor device according to claim 2, wherein in the second step, an impurity concentration gradient is provided in the second conductivity type region by ion-implanting boron by combining a plurality of dose amounts together with different acceleration voltages. Manufacturing method. 前記第二工程において、異なる加速電圧によるボロンのイオン注入が7回行われることを特徴とする請求項3記載の超接合半導体装置の製造方法。 4. The method of manufacturing a superjunction semiconductor device according to claim 3, wherein in the second step, boron ion implantation is performed seven times with different acceleration voltages. 前記超接合半導体装置が超接合MOSFETであることを特徴とする請求項1乃至4のいずれか一項に記載の超接合半導体装置の製造方法。 The method of manufacturing a superjunction semiconductor device according to any one of claims 1 to 4, wherein the superjunction semiconductor device is a superjunction MOSFET.
JP2010101944A 2010-04-27 2010-04-27 Manufacturing method of super junction semiconductor device Expired - Fee Related JP5556335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010101944A JP5556335B2 (en) 2010-04-27 2010-04-27 Manufacturing method of super junction semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010101944A JP5556335B2 (en) 2010-04-27 2010-04-27 Manufacturing method of super junction semiconductor device

Publications (2)

Publication Number Publication Date
JP2011233670A true JP2011233670A (en) 2011-11-17
JP5556335B2 JP5556335B2 (en) 2014-07-23

Family

ID=45322714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010101944A Expired - Fee Related JP5556335B2 (en) 2010-04-27 2010-04-27 Manufacturing method of super junction semiconductor device

Country Status (1)

Country Link
JP (1) JP5556335B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560148A (en) * 2013-10-18 2014-02-05 西安龙腾新能源科技发展有限公司 Junction terminal structure of super junction device and manufacturing method of super junction device
CN103730355A (en) * 2013-12-27 2014-04-16 西安龙腾新能源科技发展有限公司 Method for manufacturing super junction structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208527A (en) * 1999-01-11 2000-07-28 Fuji Electric Co Ltd Manufacture of super-joint semiconductor element and the super-joint semiconductor element
JP2002520885A (en) * 1998-07-17 2002-07-09 インフィネオン テクノロジース アクチエンゲゼルシャフト Power semiconductor device for high reverse voltage
JP2003529204A (en) * 1999-09-07 2003-09-30 インフィネオン テクノロジース アクチエンゲゼルシャフト Method of manufacturing a high voltage usable edge on a pre-processed base material wafer according to the principle of lateral charge compensation
JP2007012858A (en) * 2005-06-30 2007-01-18 Toshiba Corp Semiconductor element and its manufacturing method
JP2010045245A (en) * 2008-08-14 2010-02-25 Fuji Electric Systems Co Ltd Semiconductor device and method of manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520885A (en) * 1998-07-17 2002-07-09 インフィネオン テクノロジース アクチエンゲゼルシャフト Power semiconductor device for high reverse voltage
JP2000208527A (en) * 1999-01-11 2000-07-28 Fuji Electric Co Ltd Manufacture of super-joint semiconductor element and the super-joint semiconductor element
JP2003529204A (en) * 1999-09-07 2003-09-30 インフィネオン テクノロジース アクチエンゲゼルシャフト Method of manufacturing a high voltage usable edge on a pre-processed base material wafer according to the principle of lateral charge compensation
JP2007012858A (en) * 2005-06-30 2007-01-18 Toshiba Corp Semiconductor element and its manufacturing method
JP2010045245A (en) * 2008-08-14 2010-02-25 Fuji Electric Systems Co Ltd Semiconductor device and method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560148A (en) * 2013-10-18 2014-02-05 西安龙腾新能源科技发展有限公司 Junction terminal structure of super junction device and manufacturing method of super junction device
CN103730355A (en) * 2013-12-27 2014-04-16 西安龙腾新能源科技发展有限公司 Method for manufacturing super junction structure

Also Published As

Publication number Publication date
JP5556335B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5103118B2 (en) Semiconductor wafer and manufacturing method thereof
JP5560931B2 (en) Manufacturing method of super junction semiconductor device
US9136351B2 (en) Electric power semiconductor device and manufacturing method of the same
JP6864288B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
US8785306B2 (en) Manufacturing methods for accurately aligned and self-balanced superjunction devices
JP5985789B2 (en) Manufacturing method of super junction semiconductor device
JP5261641B2 (en) Manufacturing method of semiconductor wafer
WO2002067333A1 (en) Semiconductor device and method of manufacturing the same
JP6375743B2 (en) Manufacturing method of semiconductor device
JP2007036213A (en) Semiconductor element
CN112635326A (en) Super junction manufacturing method and super junction
JP5757355B2 (en) Manufacturing method of super junction semiconductor device
JP6766522B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP5556335B2 (en) Manufacturing method of super junction semiconductor device
JP6005903B2 (en) Manufacturing method of semiconductor device
JP2006186134A (en) Semiconductor device
JP2014179595A (en) Semiconductor device and manufacturing method of the same
JP7135422B2 (en) Semiconductor device manufacturing method
JP5684304B2 (en) Silicon carbide semiconductor device
JP5556293B2 (en) Manufacturing method of super junction semiconductor device
JP2011176157A (en) Method of manufacturing semiconductor device
CN111194477B (en) Method for producing a grid
CN213519864U (en) Super junction
JP6445480B2 (en) Manufacturing method of SOI substrate
JP4806908B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees