JP5985789B2 - Manufacturing method of super junction semiconductor device - Google Patents

Manufacturing method of super junction semiconductor device Download PDF

Info

Publication number
JP5985789B2
JP5985789B2 JP2010058069A JP2010058069A JP5985789B2 JP 5985789 B2 JP5985789 B2 JP 5985789B2 JP 2010058069 A JP2010058069 A JP 2010058069A JP 2010058069 A JP2010058069 A JP 2010058069A JP 5985789 B2 JP5985789 B2 JP 5985789B2
Authority
JP
Japan
Prior art keywords
conductivity type
ion implantation
layer
superjunction
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010058069A
Other languages
Japanese (ja)
Other versions
JP2011192824A (en
Inventor
大井 明彦
明彦 大井
将伸 岩谷
将伸 岩谷
理子 矢嶋
理子 矢嶋
栗林 均
均 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010058069A priority Critical patent/JP5985789B2/en
Priority to CN201110058206.6A priority patent/CN102194701B/en
Priority to TW100108553A priority patent/TWI503872B/en
Publication of JP2011192824A publication Critical patent/JP2011192824A/en
Application granted granted Critical
Publication of JP5985789B2 publication Critical patent/JP5985789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Recrystallisation Techniques (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、ドリフト層として半導体基板の主面に垂直方向に、複数配置されるn型カラムおよびp型カラムを主面に平行方向に交互に隣接させる超接合(スーパージャンクション)構造部を有する超接合半導体装置の製造方法に関する。   The present invention provides a super junction structure portion in which a plurality of n-type columns and p-type columns arranged alternately in the direction perpendicular to the main surface of the semiconductor substrate as the drift layer are alternately adjacent to each other in the parallel direction to the main surface. The present invention relates to a method for manufacturing a junction semiconductor device.

一般に半導体装置(以降、半導体素子または単に素子と言うこともある)は、半導体基板の片面に電極をもつ横型素子と、半導体基板の両面に電極をもつ縦型半導体装置(縦型素子)とに大別される。縦型素子は、オン時にドリフト電流が流れる方向と、オフ時の逆バイアス電圧による空乏層が延びる方向とが同じである。たとえば、通常のプレーナ型のnチャネル縦型MOSFETの場合、高抵抗のnドリフト層の部分は、MOSFETがオン状態の時は縦方向にドリフト電流を流す領域として働き、オフ状態の時は空乏化して耐圧を高める。この高抵抗のnドリフト層の電流経路を短くすることは、ドリフト抵抗が低くなるのでMOSFETの実質的なオン抵抗を下げる効果に繋がるものの、逆にpベース領域とnドリフト領域との間のpn接合から進行するドレイン−ベース間空乏層の広がる幅が狭く、シリコンの臨界電界強度に速く達するため、耐圧が低下する。逆に耐圧の高い素子では、nドリフト層が厚くなるため必然的にオン抵抗が大きくなり、損失が増すことになる。このようなオン抵抗と耐圧との間の関係をトレードオフ関係と言う。このトレードオフ関係は、IGBT、バイポーラトランジスタ、ダイオード等の半導体素子においても同様に成立することが知られている。また、この関係は、オン時にドリフト電流が流れる方向と、オフ時の逆バイアスによる空乏層の延びる方向が異なる横型半導体素子についても共通である。 Generally, a semiconductor device (hereinafter also referred to as a semiconductor element or simply an element) is divided into a horizontal element having an electrode on one side of a semiconductor substrate and a vertical semiconductor device (vertical element) having electrodes on both sides of the semiconductor substrate. Broadly divided. In the vertical element, the direction in which the drift current flows when turned on is the same as the direction in which the depletion layer extends due to the reverse bias voltage when turned off. For example, in the case of a normal planar type n-channel vertical MOSFET, the portion of the high resistance n drift layer functions as a region for flowing a drift current in the vertical direction when the MOSFET is in the on state, and is depleted when in the off state. To increase pressure resistance. Shortening the current path of the high-resistance n drift layer lowers the drift resistance, leading to an effect of lowering the substantial on-resistance of the MOSFET, but conversely between the p base region and the n drift region. The width of the depletion layer between the drain and base proceeding from the pn junction is narrow and the critical electric field strength of silicon is reached quickly, so that the breakdown voltage is lowered. On the other hand, in an element with a high breakdown voltage, the n drift layer is thick, so the on-resistance is inevitably increased and the loss is increased. Such a relationship between on-resistance and breakdown voltage is called a trade-off relationship. It is known that this trade-off relationship is similarly established in semiconductor elements such as IGBTs, bipolar transistors, and diodes. This relationship is also common to lateral semiconductor elements in which the direction in which the drift current flows when on and the direction in which the depletion layer extends due to the reverse bias when off is different.

この問題に対する解決法として、図7、図8に示すように、ドリフト層を、半導体基板の主面に垂直方向では、層状またはカラム状の形状であって、通常のドリフト層よりも不純物濃度を高めた複数のn型のドリフト領域(n型カラム)4とp型の仕切領域(p型カラム)5とし、主面に平行方向では交互に繰り返し隣接するように配置した並列pn領域からなる超接合構造部10とした超接合半導体装置(超接合MOSFET)が知られている。この超接合半導体装置は、オフ状態の時は前記超接合構造部10が空乏化して耐圧を負担するドリフト層の機能を有する。   As a solution to this problem, as shown in FIGS. 7 and 8, the drift layer has a layered or columnar shape in a direction perpendicular to the main surface of the semiconductor substrate, and has an impurity concentration higher than that of a normal drift layer. A plurality of elevated n-type drift regions (n-type columns) 4 and p-type partition regions (p-type columns) 5 are used, and the superstructures are formed of parallel pn regions that are alternately and repeatedly adjacent to each other in the parallel direction to the main surface. A superjunction semiconductor device (superjunction MOSFET) having a junction structure 10 is known. This superjunction semiconductor device has the function of a drift layer in which the superjunction structure 10 is depleted and bears a withstand voltage when in an off state.

前記超接合MOSFETと通常のプレーナ型のnチャネル縦型MOSFETとの構造上の大きな違いは、ドリフト層が、単一の導電型で一様の不純物濃度の層ではなく、前述のような並列pn領域からなる超接合構造部10にされていることである。この超接合構造部10では、それぞれのp型の仕切り領域(p型カラム)5とn型のドリフト領域(n型カラム)4の不純物濃度(以降、単に濃度と表記することがある)が同耐圧クラスの通常の素子よりも高くても、オフ状態では超接合構造部10内の並列pn接合から空乏層が両側に広がってドリフト層全体を低い電界強度で空乏化するため、高耐圧化を図ることができる。   The major difference in structure between the superjunction MOSFET and the normal planar type n-channel vertical MOSFET is that the drift layer is not a single conductivity type layer having a uniform impurity concentration, but a parallel pn as described above. That is, the superjunction structure portion 10 is made of a region. In this superjunction structure portion 10, the impurity concentrations (hereinafter sometimes simply referred to as concentrations) of the p-type partition region (p-type column) 5 and the n-type drift region (n-type column) 4 are the same. Even if it is higher than the normal element of the breakdown voltage class, in the off state, the depletion layer spreads on both sides from the parallel pn junction in the superjunction structure 10, and the entire drift layer is depleted with low electric field strength. Can be planned.

図7に示す、前記並列pn領域からなる超接合構造部10を備える超接合MOSFETの周縁耐圧構造部200では、周縁耐圧構造部200内の超接合構造部10の基板表面側(上層)に一様な不純物濃度を有する低濃度nエピタキシャル層3を配置する構成を必要とする。さらに、超接合半導体装置の周縁耐圧構造部200には、超接合構造部10の上層に設けられる前記低濃度nエピタキシャル層3の表層に基板表面に沿ってp型ガードリング7が、所要の設計耐圧に応じて、所要の間隔で離間するように複数設けられる。またさらに、この周縁耐圧構造部200は、このp型ガードリング7表面と、最外周のp型ガードリング7a表面とに相互に電気的に接続される導電性プレート9を備える。さらに、p型チャネルストッパー領域11(もしくはn型チャネルストッパー領域でもよい)にも電気的に接続される導電性プレート12が設けられる。 In the peripheral withstand voltage structure portion 200 of the superjunction MOSFET including the super junction structure portion 10 composed of the parallel pn regions shown in FIG. 7, the substrate surface side (upper layer) of the super junction structure portion 10 in the peripheral withstand voltage structure portion 200 is one. A configuration in which the low-concentration n epitaxial layer 3 having such an impurity concentration is required is required. Furthermore, the peripheral breakdown voltage structure 200 of the superjunction semiconductor device has a p-type guard ring 7 along the substrate surface on the surface of the low-concentration n epitaxial layer 3 provided in the upper layer of the superjunction structure 10. A plurality are provided so as to be separated at a required interval according to the design withstand voltage. Furthermore, this peripheral pressure | voltage resistant structure part 200 is provided with the electroconductive plate 9 mutually electrically connected to this p-type guard ring 7 surface and the outermost p-type guard ring 7a surface. Further, a conductive plate 12 that is electrically connected to the p-type channel stopper region 11 (or may be an n-type channel stopper region) is also provided.

一方、超接合半導体装置の素子活性部100内では並列pn領域からなる超接合構造部10の上層に、通常の半導体装置と同様に、pベース領域13とこのpベース領域13内の表層にnエミッタ領域14を備え、nエミッタ領域14とnドリフト領域(n型カラム)4に挟まれる前記pベース領域13表面にゲート絶縁膜15を介してゲート電極16を備え、前記nエミッタ領域14表面とpベース領域13の高濃度表面とに接触するエミッタ電極17が設けられる。   On the other hand, in the element active part 100 of the superjunction semiconductor device, n is formed on the upper layer of the superjunction structure part 10 composed of parallel pn regions and on the p base region 13 and the surface layer in the p base region 13 in the same manner as in a normal semiconductor device. An emitter region 14 is provided, and a gate electrode 16 is provided on the surface of the p base region 13 sandwiched between the n emitter region 14 and the n drift region (n-type column) 4 via a gate insulating film 15. An emitter electrode 17 is provided in contact with the high concentration surface of the p base region 13.

そのような超接合構造部10を作製する方法として、エピタキシャル成長とイオン注入を多数回繰り返すことにより、一回のエピタキシャル成長とイオン注入毎に形成される厚さの薄い前記並列pn領域を順次上下に積み重ねて垂直方向に長い形状にする方法(多段エピタキシャル法)はよく知られている。   As a method for manufacturing such a superjunction structure 10, the thin parallel pn regions formed one by one by epitaxial growth and ion implantation are stacked one after another by repeating epitaxial growth and ion implantation many times. A method of making the shape long in the vertical direction (multi-stage epitaxial method) is well known.

この多段エピタキシャル法による超接合構造部の製造工程の一例について説明する。前記エピタキシャル成長とイオン注入は、高濃度nSi基板1上に、厚さ12μmの低濃度nエピタキシャル層2を形成し、マスク合わせ用のアライメントマーカー(図示せず)を形成する。25nm厚さのスクリーン酸化膜(図示せず)形成後、全面にリンイオンを100keVの加速エネルギーによりドーズ量1×1012cm−2〜9×1012cm−2で、イオン注入する。フォトリソグラフィ工程後ボロンイオンを選択的にリンイオンと同じ総不純物量となるようにイオン注入する。レジストと酸化膜除去後、水素アニールした後、ノンドープのエピタキシャル層を形成する。その後、前述のリンとボロンのイオン注入工程以降を繰り返して所要の厚さの並列pn領域からなる超接合構造部10とする。 An example of the manufacturing process of the superjunction structure by the multistage epitaxial method will be described. In the epitaxial growth and ion implantation, a low concentration n epitaxial layer 2 having a thickness of 12 μm is formed on a high concentration n + Si substrate 1 to form an alignment marker (not shown) for mask alignment. After forming a screen oxide film (not shown) having a thickness of 25 nm, phosphorus ions are implanted into the entire surface with an acceleration energy of 100 keV at a dose of 1 × 10 12 cm −2 to 9 × 10 12 cm −2 . After the photolithography process, boron ions are selectively implanted so as to have the same total impurity amount as phosphorus ions. After removing the resist and the oxide film, after hydrogen annealing, a non-doped epitaxial layer is formed. After that, the above-described phosphorus and boron ion implantation steps are repeated to obtain a superjunction structure portion 10 composed of a parallel pn region having a required thickness.

たとえば、前述の製造工程で作製された超接合構造部10を備える超接合半導体装置では、n型カラム4とp型カラム5とのチャージバランスが重要であり、同じであることが望ましい。また、前述の耐電荷性を備える周縁耐圧構造部200を形成するためには、多段エピタキシャル法で複数回のエピタキシャル層形成とイオン注入により並列pn領域からなる超接合構造を形成した後、該超接合構造の上層に低濃度nエピタキシャル層3を作製し、載置することにより形成される。別の言い方をすると、この低濃度nエピタキシャル層3は、素子活性部ではイオン注入することにより前記超接合構造部の上層を構成するが、周縁耐圧構造部200ではイオン注入をせずに低濃度nエピタキシャル層3のままとすることにより作製される。前記低濃度nエピタキシャル層3の厚さは15μm前後以上必要であるので、1回のエピタキシャル成長の厚さを10μm以下とすると、必要な段数(エピタキシャル成長の回数)は2段以上となる。 For example, in a superjunction semiconductor device including the superjunction structure unit 10 manufactured in the above-described manufacturing process, the charge balance between the n-type column 4 and the p-type column 5 is important and is preferably the same. In addition, in order to form the peripheral withstand voltage structure 200 having the above-mentioned charge resistance, after forming a superjunction structure composed of parallel pn regions by multiple times of epitaxial layer formation and ion implantation by a multistage epitaxial method, The low-concentration n epitaxial layer 3 is formed on the upper layer of the junction structure and formed. In other words, the low-concentration n epitaxial layer 3 forms an upper layer of the superjunction structure portion by ion implantation in the element active portion, but the peripheral breakdown voltage structure portion 200 is low without ion implantation. It is produced by leaving the concentration n epitaxial layer 3 as it is. Since the thickness of the low-concentration n epitaxial layer 3 is required to be about 15 μm or more, if the thickness of one epitaxial growth is 10 μm or less, the required number of stages (number of epitaxial growths) is two or more.

以上説明した超接合構造部の製造工程では、リンとボロンのイオン注入によって並列pn領域からなる超接合構造部を作製したが、ボロンのイオン注入のみにより前述と同様の超接合構造部を作製する製造方法については既に知られている(特許文献1)。   In the manufacturing process of the superjunction structure described above, a superjunction structure composed of parallel pn regions is fabricated by ion implantation of phosphorus and boron, but a superjunction structure similar to that described above is fabricated only by ion implantation of boron. The manufacturing method is already known (Patent Document 1).

また、イオン注入飛程Rpを変えて超接合構造部を作製することにより、エピタキシャル成長とイオン注入の繰り返し回数を減らして、製造効率を改善する超接合半導体装置の製造方法についても公開されている(特許文献2)。   Also disclosed is a method of manufacturing a superjunction semiconductor device that improves the manufacturing efficiency by reducing the number of repetitions of epitaxial growth and ion implantation by changing the ion implantation range Rp to produce a superjunction structure portion ( Patent Document 2).

また、前述の超接合構造部のように、深さ方向に長い形状の不純物添加領域を形成するための気相エピタキシャル成長方法に関する文献が公開されている。この文献には「気相成長工程は、硼素注入層及び燐注入層からの横方向オートドープを抑制するために、まず封止用の薄いエピタキシャルシリコン層を気相成長してから第二エピタキシャル層の本成長を行う複数段階処理とすることが望ましい。」という記載のように、エピタキシャルシリコン層のソースガスを先に処理する方法が示されている(特許文献3)。   Further, literature on a vapor phase epitaxial growth method for forming an impurity-added region having a shape that is long in the depth direction as in the above-described superjunction structure is disclosed. In this document, “a vapor phase growth process is performed by first vapor-depositing a thin epitaxial silicon layer for sealing in order to suppress lateral autodoping from a boron implantation layer and a phosphorus implantation layer, and then a second epitaxial layer. As described above, it is desirable to use a multi-stage process in which the main growth is performed. ”A method of processing the source gas of the epitaxial silicon layer first is disclosed (Patent Document 3).

特開2001−119022号公報JP 2001-1119022 A 特開2007−12858号公報JP 2007-12858 A 特許第4016371号公報(0096段落)Japanese Patent No. 4016371 (paragraph 0096)

超接合半導体装置では、超接合構造部を構成する並列pn領域のそれぞれの総不純物量にアンバランスが生じると耐圧のばらつきが大きくなり、耐圧良品率が低下する。しかしながら、前記イオン注入した不純物は、エピタキシャル成長時に再蒸発することは避けられない。エピタキシャル成長は具体的に、昇温過程、水素アニール、エピタキシャル成長、降温過程からなるが、不純物の再蒸発は前記昇温過程や水素アニール時の熱により発生するものと考えられている。再蒸発した不純物は半導体基板やエピタキシャル成長中の膜に取り込まれるオートドーピングと呼ばれる現象を引き起こす。エピタキシャル成長プロセスにおけるウエハ内およびウエハ間に温度ばらつきが存在すると、前述のような再蒸発やオートドープ現象によって、前記並列pn領域に、たとえ同ドーズ量をイオン注入したとしても、チャージアンバランスをもたらして耐圧ばらつきが大きくなり、耐圧良品率低下の原因となる。   In a superjunction semiconductor device, when the total impurity amount of each parallel pn region constituting the superjunction structure portion is unbalanced, the variation in breakdown voltage increases and the breakdown voltage non-defective rate decreases. However, it is inevitable that the ion-implanted impurities are reevaporated during epitaxial growth. Epitaxial growth specifically includes a temperature raising process, hydrogen annealing, epitaxial growth, and a temperature lowering process, and it is considered that the re-evaporation of impurities is generated by heat during the temperature raising process or hydrogen annealing. The re-evaporated impurities cause a phenomenon called auto-doping that is taken into the semiconductor substrate or the film being epitaxially grown. If there is temperature variation within and between wafers in the epitaxial growth process, even if the same dose is ion-implanted into the parallel pn regions due to the re-evaporation or auto-doping phenomenon as described above, charge imbalance is caused. The variation in withstand voltage becomes large, which causes a decrease in the yield rate of non-defective products.

本発明は前述した点に鑑みてなされたものである。本発明の目的は、n型カラムとp型カラムのチャージバランスばらつきを低減し、耐圧良品率の高い超接合半導体装置の製造方法を提供することである。   The present invention has been made in view of the above points. An object of the present invention is to provide a method of manufacturing a superjunction semiconductor device that reduces charge balance variation between an n-type column and a p-type column and has a high breakdown voltage non-defective product rate.

本発明では、前記発明の目的を達成するため、高濃度第1導電型半導体基板高濃度第1導電型半導体基板の主面に垂直方向に長い形状であって、主面に平行方向では交互に隣接配置される第1導電型領域と第2導電型領域からなる超接合構造部をドリフト層として形成する超接合半導体装置の製造方法において、前記高濃度第1導電型半導体基板上に第1導電型半導体層をエピタキシャル成長する層形成工程を備え、前記層形成工程の後に、前記第1導電型半導体層の上面にエピタキシャル層を成長させ、該エピタキシャル層の全面に第1導電型の不純物のイオン注入を行う全面イオン注入工程と、前記全面イオン注入工程後に前記エピタキシャル層上面にレジストマスクを形成し、第2導電型の不純物のイオン注入を選択的に行う選択的イオン注入工程と、前記選択的イオン注入工程後に前記レジストマスクを除去する除去工程と、を複数回繰り返す積層工程を備え、前記複数回繰り返す積層工程後に熱処理により前記第1導電型の不純物と前記第2導電型の不純物を熱拡散して前記第1導電型領域および第2導電型領域を形成する熱拡散工程と、を備え、前記第1導電型領域および第2導電型領域にそれぞれイオン注入する総不純物量が等しく、前記複数回繰り返す前記全面イオン注入工程および前記選択的イオン注入工程では、イオン注入された前記第1導電型の不純物と前記第2導電型の不純物のそれぞれの不純物濃度ピーク位置が前記エピタキシャル層の表面から一致する深さになるような加速エネルギーでイオン注入を行い、前記それぞれの不純物濃度ピーク位置が、前記エピタキシャル層の表面から0.2μmの深さより深くすることを特徴とする。
In the present invention, in order to achieve the object of the present invention, the high-concentration first conductive semiconductor substrate has a shape that is long in the direction perpendicular to the main surface of the high-concentration first conductive semiconductor substrate, and alternately in a direction parallel to the main surface. In a method of manufacturing a superjunction semiconductor device, in which a superjunction structure portion composed of a first conductivity type region and a second conductivity type region arranged adjacent to each other is formed as a drift layer, a first conductivity is formed on the high concentration first conductivity type semiconductor substrate. A layer forming step of epitaxially growing the type semiconductor layer, and after the layer forming step, an epitaxial layer is grown on the upper surface of the first conductive type semiconductor layer, and ion implantation of the first conductive type impurity is performed on the entire surface of the epitaxial layer. A selective ion implantation process for selectively performing ion implantation of impurities of the second conductivity type by forming a resist mask on the upper surface of the epitaxial layer after the entire surface ion implantation process. And a removal step of removing the resist mask after the selective ion implantation step, and a step of repeating the plurality of times, and the first conductivity type impurities and the first by heat treatment after the plurality of repetitions of the lamination step. A thermal diffusion step of thermally diffusing impurities of two conductivity types to form the first conductivity type region and the second conductivity type region, and ion-implanting into the first conductivity type region and the second conductivity type region, respectively. In the entire surface ion implantation step and the selective ion implantation step, which have the same total impurity amount and are repeated a plurality of times, the respective impurity concentration peak positions of the first conductivity type impurity and the second conductivity type impurity implanted by ion implantation There performing ion implantation at an acceleration energy such that the depth to match the surface of the epitaxial layer, wherein each of the impurity concentration peak position, Serial characterized by deeper than the depth of 0.2μm from the surface of the epitaxial layer.

本発明によれば、超接合構造部を構成するn型カラムとp型カラムのチャージバランスばらつきを低減することができ、耐圧良品率の高い超接合半導体装置の製造方法とすることができる。   According to the present invention, variation in charge balance between the n-type column and the p-type column constituting the superjunction structure can be reduced, and a method of manufacturing a superjunction semiconductor device with a high breakdown voltage yield can be obtained.

本発明の超接合半導体装置の製造方法にかかる超接合構造部の断面模式図である。It is a cross-sectional schematic diagram of the super junction structure part concerning the manufacturing method of the super junction semiconductor device of this invention. 本発明の超接合半導体装置の製造方法にかかる製造工程を示す半導体基板の要部断面図(その1)である。It is principal part sectional drawing (the 1) of the semiconductor substrate which shows the manufacturing process concerning the manufacturing method of the super junction semiconductor device of this invention. 本発明の超接合半導体装置の製造方法にかかる製造工程を示す半導体基板の要部断面図(その2)である。It is principal part sectional drawing (the 2) of the semiconductor substrate which shows the manufacturing process concerning the manufacturing method of the super junction semiconductor device of this invention. 本発明の超接合半導体装置の製造方法にかかる製造工程を示す半導体基板の要部断面図(その3)である。It is principal part sectional drawing (the 3) of the semiconductor substrate which shows the manufacturing process concerning the manufacturing method of the super junction semiconductor device of this invention. ボロンとリンの再蒸発量の不純物濃度ピーク深さ依存性を示す関係図である。It is a relationship figure which shows the impurity concentration peak depth dependence of the amount of reevaporation of boron and phosphorus. 不純物濃度ピーク深さに対する再蒸発割合とばらつきの間の関係図である。It is a relationship figure between the re-evaporation ratio with respect to impurity concentration peak depth, and dispersion | variation. 本発明にかかる超接合MOSFETの要部断面図である。It is principal part sectional drawing of the super junction MOSFET concerning this invention. 本発明にかかる超接合MOSFETの素子活性部の模式的断面斜視図である。It is a typical section perspective view of the element active part of the super junction MOSFET concerning the present invention.

以下、本発明の超接合半導体装置の製造方法にかかる実施例について、図面を参照して詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。以下に説明する実施例では、第1導電型をn型、第2導電型をp型として説明する。   Embodiments of the method for manufacturing a superjunction semiconductor device according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist. In the embodiments described below, the first conductivity type will be described as n-type and the second conductivity type will be described as p-type.

次に、本発明の超接合半導体装置の製造方法について、特には超接合構造部の作製方法について、図面を参照して説明する。図1は本発明にかかる実施例1、2、3で説明する超接合半導体装置の超接合構造部の断面模式図である。図7は本発明の実施例1、2、3にかかる超接合MOSFETの要部断面模式図である。図8は本発明の実施例1、2、3にかかる超接合MOSFETの素子活性部の模式的断面斜視図である。   Next, a method for manufacturing a superjunction semiconductor device according to the present invention, in particular, a method for manufacturing a superjunction structure will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a superjunction structure portion of a superjunction semiconductor device described in Examples 1, 2, and 3 according to the present invention. FIG. 7 is a schematic cross-sectional view of an essential part of a superjunction MOSFET according to Examples 1, 2, and 3 of the present invention. FIG. 8 is a schematic cross-sectional perspective view of the element active portion of the superjunction MOSFET according to Examples 1, 2, and 3 of the present invention.

本発明にかかる超接合半導体装置は図7に示すようなnSi基板1およびn層2上にn型カラム4およびp型カラム5が交互に配置された超接合構造部10を備える構成となっている。さらに、通常のMOSFETと同様に、素子活性部100内には、pベース領域13、nエミッタ領域14、ゲート絶縁膜15、ゲート電極16、エミッタ電極17、周縁耐圧構造部200内に、ガードリング7、フィールド絶縁膜8、チャネルストッパー領域11、チャネルストッパー電極12を備えている。またさらに、超接合半導体装置の周縁耐圧構造部200内の超接合構造部10の上層には、低濃度nエピタキシャル層3が設けられている。 A superjunction semiconductor device according to the present invention includes a superjunction structure 10 in which n-type columns 4 and p-type columns 5 are alternately arranged on an n + Si substrate 1 and an n layer 2 as shown in FIG. It has become. Further, like the normal MOSFET, in the element active part 100, the p base region 13, the n emitter region 14, the gate insulating film 15, the gate electrode 16, the emitter electrode 17, and the peripheral breakdown voltage structure part 200 are provided. 7, a field insulating film 8, a channel stopper region 11, and a channel stopper electrode 12 are provided. Furthermore, the low-concentration n epitaxial layer 3 is provided in the upper layer of the superjunction structure portion 10 in the peripheral breakdown voltage structure portion 200 of the superjunction semiconductor device.

図2から図4は、図1に示す超接合半導体装置の超接合構造部の製造工程を段階ごとに示す半導体基板の要部断面模式図である。図2に示すように、nSi基板1上にn層2をドープドエピタキシャル成長により、たとえば12μm程度の厚みで形成し、その上にノンドープ層3aをエピタキシャル成長により、たとえば3μmの厚みで形成した後、フォトリソグラフィ工程で、各段ごとの重ね合わせの際に必要となるアライメントマーカー(図示しない)を形成する。 2 to 4 are schematic cross-sectional views of the main part of the semiconductor substrate showing the manufacturing process of the superjunction structure of the superjunction semiconductor device shown in FIG. As shown in FIG. 2, an n layer 2 is formed on the n + Si substrate 1 by doped epitaxial growth to a thickness of, for example, about 12 μm, and a non-doped layer 3a is formed thereon by epitaxial growth to a thickness of, for example, 3 μm. After that, alignment markers (not shown) necessary for superposition of each step are formed in a photolithography process.

図3に示すように、n型不純物4a、たとえばリンを全面にイオン注入し、p型不純物5a、たとえばボロンを、レジストマスク6で選択的にマスクした開口部にイオン注入する。この時、後の熱拡散工程を考慮してレジストマスク6の開口幅は残し幅の1/4程度とし、それに応じてボロンイオンの注入量(ドーズ量)はリンの4倍程度とする。その後、図4に示すように、ノンドープ層3bをエピタキシャル成長により、たとえば7μmの厚みで形成する。再度前述と同様にn型不純物4aおよびp型不純物5aのイオン注入を行う。その後、設計耐圧に関係する所望の厚さになるまでこれらエピタキシャル成長とイオン注入を繰り返し行う。最後に、たとえば5μm程度の厚さのノンドープ層でキャップした後、熱処理により不純物の熱拡散を行って図1に示す超接合構造部10を形成する。   As shown in FIG. 3, n-type impurity 4 a, for example, phosphorus is ion-implanted over the entire surface, and p-type impurity 5 a, for example, boron is ion-implanted into the opening selectively masked with resist mask 6. At this time, considering the subsequent thermal diffusion process, the opening width of the resist mask 6 is set to about 1/4 of the remaining width, and the boron ion implantation amount (dose amount) is set to about four times that of phosphorus. Thereafter, as shown in FIG. 4, a non-doped layer 3b is formed by epitaxial growth to a thickness of, for example, 7 μm. Again, ion implantation of n-type impurity 4a and p-type impurity 5a is performed in the same manner as described above. Thereafter, the epitaxial growth and the ion implantation are repeated until a desired thickness related to the design withstand voltage is obtained. Finally, after capping with a non-doped layer having a thickness of about 5 μm, for example, the impurity is thermally diffused by heat treatment to form the superjunction structure 10 shown in FIG.

ここで、n型カラム4およびp型カラム5を形成する際のイオン注入において、イオン注入したボロンおよびリンの再蒸発量を制御し、n型カラム4およびp型カラム5間のチャージバランスを保持することが超接合構造部10によるばらつきの小さい耐圧特性を確保する上で重要である。n型カラム4およびp型カラム5間のイオン注入による不純物量はイオン注入時に同ドーズ量に設定しても、結果的にはばらつきを生じることが多いことが分かっている。   Here, in the ion implantation for forming the n-type column 4 and the p-type column 5, the amount of re-evaporation of the implanted boron and phosphorus is controlled, and the charge balance between the n-type column 4 and the p-type column 5 is maintained. It is important to secure a withstand voltage characteristic with small variations due to the super junction structure 10. It has been found that even if the amount of impurities by ion implantation between the n-type column 4 and the p-type column 5 is set to the same dose amount during ion implantation, the result often varies.

そこで、前記ばらつきの原因の一つにイオン注入した不純物の蒸発があると考え、ボロンとリンのイオン注入の際の加速エネルギーを変化させてイオン注入の飛程Rpを変え、すなわち、イオン注入による注入深さを変えたときの再蒸発量を測定した。その結果を図5に示す。図5より、飛程Rpが同じであれば、すなわち、深さ方向の不純物濃度ピーク位置が同じであれば、ボロンとリンとでドーズ量に対する再蒸発する量が同じであることがわかる。p型不純物5aとn型不純物4aの蒸発量が同じであれば、蒸発があったとしてもチャージバランスは保持できる。また、図6では、さらに不純物濃度ピーク位置が基板表面から0.2μmより深い場合に前記蒸発のばらつきが抑制できることを示している。従って、深さ方向の不純物濃度ピーク位置は基板表面から0.2μmより深いことが好ましい。   Therefore, it is considered that one of the causes of the variation is evaporation of the implanted impurity, and the acceleration energy at the time of boron and phosphorus ion implantation is changed to change the ion implantation range Rp, that is, by ion implantation. The amount of reevaporation when the implantation depth was changed was measured. The result is shown in FIG. As can be seen from FIG. 5, if the range Rp is the same, that is, if the impurity concentration peak position in the depth direction is the same, the amount of reevaporation with respect to the dose is the same for boron and phosphorus. If the evaporation amounts of the p-type impurity 5a and the n-type impurity 4a are the same, the charge balance can be maintained even if evaporation occurs. FIG. 6 shows that the variation in evaporation can be suppressed when the impurity concentration peak position is deeper than 0.2 μm from the substrate surface. Accordingly, the impurity concentration peak position in the depth direction is preferably deeper than 0.2 μm from the substrate surface.

本発明の超接合半導体装置の製造方法にかかる実施の一形態として、超接合構造部を形成するためのプロセス条件として、リンを200keVで、ボロンを80keVの加速エネルギーのイオン注入条件で行った、このときのイオン注入後の飛程Rp(ピーク深さ)は約0.25μmであった。この結果、前記超接合構造部における並列pn領域の再蒸発量を抑制することができ、さらにボロンとリンの再蒸発量を同じにすることができ、並列pn領域間のチャージアンバランスによる耐圧ばらつきは低減できることが分かった。   As one embodiment of the method for manufacturing a superjunction semiconductor device of the present invention, the process conditions for forming the superjunction structure were performed under the conditions of ion implantation of phosphorus at an acceleration energy of 200 keV and boron of 80 keV. The range Rp (peak depth) after ion implantation at this time was about 0.25 μm. As a result, the re-evaporation amount of the parallel pn region in the super junction structure can be suppressed, and the re-evaporation amount of boron and phosphorus can be made the same, and the withstand voltage variation due to the charge imbalance between the parallel pn regions. It was found that can be reduced.

実施例2にかかる超接合半導体装置の超接合構造部の作製方法について説明する。実施例2では、前記図1〜図4に示すようなnSi基板上へのエピタキシャル層の形成を、前処理としての水素アニール温度(1000℃で2分間の水素アニール)とエピタキシャル成長温度とを1100℃未満の温度で行うことを特徴とする。しかし、この作製方法の場合、単に温度を下げただけでは、前処理温度が低く十分なシリコン表面の清浄化ができず、成長温度も低いので結晶性が低下することが懸念される。その結果、結晶性の低下によるアライメントマーカーの形状崩れによりパターン合わせが不正確になり、超接合構造部の形成におけるエピタキシャル層の正確な積み重ねが困難になるという問題が発生する。そのため、実施例2では、前述の問題が起きないような製造条件を加えた上で超接合構造部を作製する。以下、そのような超接合構造部の製造条件について説明する。 A method for manufacturing the superjunction structure portion of the superjunction semiconductor device according to Example 2 will be described. In Example 2, the formation of the epitaxial layer on the n + Si substrate as shown in FIGS. 1 to 4 is carried out by using a hydrogen annealing temperature as a pretreatment (hydrogen annealing at 1000 ° C. for 2 minutes) and an epitaxial growth temperature. It is characterized by being performed at a temperature below 1100 ° C. However, in the case of this manufacturing method, there is a concern that the crystallinity may be lowered because the pretreatment temperature is low and the silicon surface cannot be sufficiently cleaned and the growth temperature is low simply by lowering the temperature. As a result, there is a problem that pattern alignment becomes inaccurate due to the collapse of the shape of the alignment marker due to the decrease in crystallinity, and it is difficult to accurately stack the epitaxial layers in the formation of the superjunction structure portion. Therefore, in Example 2, the super junction structure is manufactured after adding manufacturing conditions that do not cause the above-described problems. Hereinafter, manufacturing conditions for such a super-junction structure will be described.

前記nSi基板上にエピタキシャル層を成長させる前処理として、水素アニール処理を行うが、その直前にさらに、過酸化水素液にアンモニア水との混合液を用いるいわゆるRCA洗浄を加える。その理由は、nSi基板の表面にケミカルオキサイドを形成した直後に水素アニール処理を行うことでシリコン清浄表面が低温でも得られ易くなるからである。この表面清浄化方法によれば、結晶性の良いエピタキシャル成長が可能になる。またさらに、エピタキシャル成長も1100℃未満の低温で行うことにより、Si基板からの外方拡散を抑えオートドープを抑えやすくなる。ただし、前記1100℃未満という低い温度でのエピタキシャル成長を全部行うと、アライメントマーカーの形状崩れが大きくなる問題があるので、前記低温でのエピタキシャル成長はオートドープを抑えるのに必要な最低厚みのエピタキシャル成長にとどめる。その後、所要の厚みまで、アライメントマーカーの形状崩れを抑えることのできる1100℃以上に昇温してエピタキシャル成長を行う方法とする。このような超接合構造部の作製方法とすることにより、超接合構造部におけるエピタキシャル成長の際にオートドープを抑えることができるので、1100℃未満の低温でも、結晶性のよい並列pn領域からなる超接合構造部を作製することができ、超接合半導体装置を高い耐圧良品率で製造することができる。 As a pretreatment for growing an epitaxial layer on the n + Si substrate, a hydrogen annealing treatment is performed. Immediately before that, so-called RCA cleaning using a mixed solution of ammonia water and hydrogen peroxide solution is added. The reason is that a silicon clean surface can be easily obtained even at a low temperature by performing a hydrogen annealing treatment immediately after chemical oxide is formed on the surface of the n + Si substrate. According to this surface cleaning method, epitaxial growth with good crystallinity becomes possible. Furthermore, by performing epitaxial growth at a low temperature of less than 1100 ° C., it becomes easy to suppress autodoping by suppressing outward diffusion from the Si substrate. However, if all epitaxial growth is performed at a temperature as low as less than 1100 ° C., there is a problem that the shape of the alignment marker is greatly deformed. . Thereafter, the epitaxial growth is performed by raising the temperature to 1100 ° C. or higher, which can suppress the deformation of the alignment marker to a required thickness. By adopting such a method for manufacturing a superjunction structure part, autodoping can be suppressed during epitaxial growth in the superjunction structure part. A junction structure portion can be manufactured, and a super junction semiconductor device can be manufactured with a high yield rate.

実施例3にかかる超接合半導体装置の超接合構造部の作製方法について説明する。実施例3では、前記図1〜図4に示すようなnSi基板上のエピタキシャル層の形成を前処理としての水素アニール温度とエピタキシャル成長温度を1000℃以下の温度で行うことを特徴とする製造方法である。 A method for manufacturing a superjunction structure portion of a superjunction semiconductor device according to Example 3 will be described. In Example 3, the formation of the epitaxial layer on the n + Si substrate as shown in FIGS. 1 to 4 is performed at a hydrogen annealing temperature and an epitaxial growth temperature as pre-treatment at a temperature of 1000 ° C. or less. Is the method.

水素アニール処理無しで、エピタキシャル成長を1000℃以下の温度で行うこともできる。この場合は、エピタキシャル成長のための950℃までの昇温過程でシリコン表面の清浄化機能をエピタキシャル成長の前処理として利用する方法である。しかし、シリコン表面の清浄化が充分にはできなくて前記実施例2と同様に、結晶性が低下することが懸念される。その結果、結晶性の低下によるアライメントマーカーの形状崩れによりパターン合わせが不正確になり、超接合構造部の形成におけるエピタキシャル層の正確な積み重ねが困難になる問題が発生する。そのため、実施例3では、前述の問題が起きないような製造条件をさらに加えた上で超接合構造部を作製する。以下、そのような超接合構造部の製造条件について説明する。   Epitaxial growth can also be performed at a temperature of 1000 ° C. or less without hydrogen annealing treatment. In this case, the silicon surface cleaning function is used as a pretreatment for epitaxial growth in the temperature rising process up to 950 ° C. for epitaxial growth. However, the silicon surface cannot be sufficiently cleaned, and there is a concern that the crystallinity is lowered as in Example 2. As a result, there arises a problem that pattern alignment becomes inaccurate due to the collapse of the shape of the alignment marker due to the decrease in crystallinity, making it difficult to accurately stack the epitaxial layers in the formation of the superjunction structure. Therefore, in Example 3, the super junction structure part is manufactured after further adding manufacturing conditions that do not cause the above-described problem. Hereinafter, manufacturing conditions for such a super-junction structure will be described.

前記nSi基板1上にエピタキシャル層を成長させる前処理として、水素アニール処理をせずに、前述のRCA洗浄にさらに希釈フッ酸処理を加える。この希釈フッ酸処理によりSi基板表面を水素終端した状態でエピタキシャル成長を行う。エピタキシャル成長は950℃以下の温度で行う。nSi基板1表面は、950℃以下の所定温度まで昇温する際に水素が脱離して清浄なシリコン表面が得られる。このことにより950℃以下の低温でも結晶性の良いエピタキシャル成長が可能になる。エピタキシャル成長も前述のような低温で行うことによりSi基板からの外方拡散を抑えオートドープを抑えやすくなる。ただし、実施例2と同様に実施例3でも、アライメントマーカーの形状崩れが大きくなってしまうので、前記低温ではオートドープを抑えるのに必要な最低限の厚みのエピタキシャル成長を950℃でまず行う。その後、所要の厚みまで、アライメントマーカーの形状崩れを抑えることのできる1100℃以上に昇温してエピタキシャル成長を行う方法とする。 As a pretreatment for growing an epitaxial layer on the n + Si substrate 1, a dilute hydrofluoric acid treatment is further added to the RCA cleaning described above without performing a hydrogen annealing treatment. Epitaxial growth is performed with the Si substrate surface terminated with hydrogen by this diluted hydrofluoric acid treatment. Epitaxial growth is performed at a temperature of 950 ° C. or lower. When the temperature of the n + Si substrate 1 is raised to a predetermined temperature of 950 ° C. or lower, hydrogen is desorbed and a clean silicon surface is obtained. This enables epitaxial growth with good crystallinity even at a low temperature of 950 ° C. or lower. Epitaxial growth is also performed at a low temperature as described above, so that outdiffusion from the Si substrate can be suppressed and autodoping can be easily suppressed. However, in Example 3 as in Example 2, the shape of the alignment marker is greatly deformed. Therefore, at the low temperature, epitaxial growth with a minimum thickness necessary to suppress autodoping is first performed at 950 ° C. Thereafter, the epitaxial growth is performed by raising the temperature to 1100 ° C. or higher, which can suppress the deformation of the alignment marker to a required thickness.

実施例3によれば、エピタキシャル成長する表面を低温で清浄化することで、低温のエピタキシャル成長の結晶性を改善することができる。オートドープを抑えるために低温でエピタキシャル成長する。しかし膜厚はオートドープを防ぐ最小限の厚み(たとえば、1μm程度)とする。このことで、マーク形状崩れを抑えることができる。その後昇温して1100℃で目的の所定の厚みまで結晶性のよい条件でエピタキシャル成長を行う。このことで、オートドープを抑えつつ、結晶性を悪化させずにアライメントマーカーの形状崩れを抑えることが可能になる。オートドープを抑えることで、高精度の並列pn領域からなる超接合構造部の不純物濃度のコントロールが可能になり、並列pn領域のチャージバランスを保持できるので、超接合半導体装置の耐圧良品率の向上等による低コスト化が可能になる。   According to Example 3, the crystallinity of the epitaxial growth at a low temperature can be improved by cleaning the surface on which the epitaxial growth is performed at a low temperature. In order to suppress auto-doping, epitaxial growth is performed at a low temperature. However, the film thickness is set to a minimum thickness (for example, about 1 μm) to prevent auto-doping. As a result, the mark shape collapse can be suppressed. Thereafter, the temperature is raised, and epitaxial growth is performed at 1100 ° C. to a desired predetermined thickness under good crystallinity conditions. As a result, it is possible to suppress the shape collapse of the alignment marker without deteriorating crystallinity while suppressing autodoping. By suppressing auto-doping, it becomes possible to control the impurity concentration of the superjunction structure part consisting of a high-precision parallel pn region and to maintain the charge balance of the parallel pn region, thus improving the breakdown voltage non-defective rate of the superjunction semiconductor device. The cost can be reduced by such as.

1 nSi基板
2 n
3 低濃度n−エピタキシャル層
4 n型カラム
4a n型不純物
5 p型カラム
5a p型不純物
6 レジストマスク
10 超接合構造部
100 素子活性部
200 周縁耐圧構造部

DESCRIPTION OF SYMBOLS 1 n + Si substrate 2 n - layer 3 Low concentration n-epitaxial layer 4 n-type column 4a n-type impurity 5 p-type column 5a p-type impurity 6 Resist mask 10 Superjunction structure part 100 Element active part 200 Peripheral pressure | voltage resistant structure part

Claims (1)

高濃度第1導電型半導体基板の主面に垂直方向に長い形状であって、主面に平行方向では交互に隣接配置される第1導電型領域と第2導電型領域からなる超接合構造部をドリフト層として形成する超接合半導体装置の製造方法において、
前記高濃度第1導電型半導体基板上に第1導電型半導体層をエピタキシャル成長する層形成工程を備え、
前記層形成工程の後に、
前記第1導電型半導体層の上面にエピタキシャル層を成長させ、該エピタキシャル層の全面に第1導電型の不純物のイオン注入を行う全面イオン注入工程と、
前記全面イオン注入工程後に前記エピタキシャル層上面にレジストマスクを形成し、第2導電型の不純物のイオン注入を選択的に行う選択的イオン注入工程と、
前記選択的イオン注入工程後に前記レジストマスクを除去する除去工程と、を複数回繰り返す積層工程を備え、
前記複数回繰り返す積層工程後に熱処理により前記第1導電型の不純物と前記第2導電型の不純物を熱拡散して前記第1導電型領域および第2導電型領域を形成する熱拡散工程と、を備え、
前記第1導電型領域および第2導電型領域にそれぞれイオン注入する総不純物量が等しく、
前記複数回繰り返す前記全面イオン注入工程および前記選択的イオン注入工程では、イオン注入された前記第1導電型の不純物と前記第2導電型の不純物のそれぞれの不純物濃度ピーク位置が前記エピタキシャル層の表面から一致する深さになるような加速エネルギーでイオン注入を行い、
前記それぞれの不純物濃度ピーク位置は前記エピタキシャル層の表面から0.2μmの深さより深いことを特徴とする超接合半導体装置の製造方法。
A superjunction structure having a shape that is long in the direction perpendicular to the main surface of the high-concentration first conductivity type semiconductor substrate and that is alternately arranged adjacent to each other in the direction parallel to the main surface. In a method for manufacturing a superjunction semiconductor device that forms a drift layer,
A layer forming step of epitaxially growing a first conductivity type semiconductor layer on the high concentration first conductivity type semiconductor substrate;
After the layer forming step,
An entire surface ion implantation step of growing an epitaxial layer on the upper surface of the first conductivity type semiconductor layer and implanting an ion of a first conductivity type impurity on the entire surface of the epitaxial layer;
A selective ion implantation step of forming a resist mask on the upper surface of the epitaxial layer after the entire surface ion implantation step and selectively implanting ions of a second conductivity type impurity;
A removal step of removing the resist mask after the selective ion implantation step, and a lamination step that repeats a plurality of times,
A thermal diffusion step of thermally diffusing the first conductivity type impurity and the second conductivity type impurity by heat treatment after the plurality of lamination steps to form the first conductivity type region and the second conductivity type region; Prepared,
The total amount of impurities implanted into the first conductivity type region and the second conductivity type region is equal,
In the entire surface ion implantation step and the selective ion implantation step that are repeated a plurality of times, the respective impurity concentration peak positions of the first conductivity type impurity and the second conductivity type impurity that are ion implanted are the surface of the epitaxial layer. Ion implantation is performed with acceleration energy that matches the depth from
Each of the impurity concentration peak positions is deeper than the depth of 0.2 μm from the surface of the epitaxial layer .
JP2010058069A 2010-03-15 2010-03-15 Manufacturing method of super junction semiconductor device Expired - Fee Related JP5985789B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010058069A JP5985789B2 (en) 2010-03-15 2010-03-15 Manufacturing method of super junction semiconductor device
CN201110058206.6A CN102194701B (en) 2010-03-15 2011-03-08 Manufacturing method of super-junction semiconductor device
TW100108553A TWI503872B (en) 2010-03-15 2011-03-14 Method for manufacturing super-connected semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010058069A JP5985789B2 (en) 2010-03-15 2010-03-15 Manufacturing method of super junction semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014088808A Division JP5757355B2 (en) 2014-04-23 2014-04-23 Manufacturing method of super junction semiconductor device

Publications (2)

Publication Number Publication Date
JP2011192824A JP2011192824A (en) 2011-09-29
JP5985789B2 true JP5985789B2 (en) 2016-09-06

Family

ID=44602544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010058069A Expired - Fee Related JP5985789B2 (en) 2010-03-15 2010-03-15 Manufacturing method of super junction semiconductor device

Country Status (3)

Country Link
JP (1) JP5985789B2 (en)
CN (1) CN102194701B (en)
TW (1) TWI503872B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785306B2 (en) * 2011-09-27 2014-07-22 Alpha And Omega Semiconductor Incorporated Manufacturing methods for accurately aligned and self-balanced superjunction devices
US9431249B2 (en) 2011-12-01 2016-08-30 Vishay-Siliconix Edge termination for super junction MOSFET devices
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
US9105717B2 (en) * 2013-12-04 2015-08-11 Infineon Technologies Austria Ag Manufacturing a semiconductor device using electrochemical etching, semiconductor device and super junction semiconductor device
US9887259B2 (en) 2014-06-23 2018-02-06 Vishay-Siliconix Modulated super junction power MOSFET devices
CN105900245B (en) 2014-07-04 2019-08-06 富士电机株式会社 Semiconductor device
JP6375743B2 (en) 2014-07-15 2018-08-22 富士電機株式会社 Manufacturing method of semiconductor device
US9882044B2 (en) 2014-08-19 2018-01-30 Vishay-Siliconix Edge termination for super-junction MOSFETs
US9881997B2 (en) 2015-04-02 2018-01-30 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
JP6477174B2 (en) 2015-04-02 2019-03-06 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6824115B2 (en) 2017-06-19 2021-02-03 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor devices
US10636660B2 (en) 2018-09-28 2020-04-28 General Electric Company Super-junction semiconductor device fabrication
TWI787819B (en) * 2021-05-14 2022-12-21 國立臺灣大學 Three-dimensional superjunction power semiconductor with concentration variation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714509B2 (en) * 1997-09-29 2005-11-09 株式会社Sumco Method for manufacturing thin film epitaxial wafer
JP4927401B2 (en) * 1998-11-12 2012-05-09 富士電機株式会社 Super junction semiconductor device
JP2001119022A (en) * 1999-10-20 2001-04-27 Fuji Electric Co Ltd Semiconductor device and manufacturing method therefor
JP4016371B2 (en) * 1999-11-10 2007-12-05 信越半導体株式会社 Manufacturing method of silicon epitaxial wafer
JP3636345B2 (en) * 2000-03-17 2005-04-06 富士電機デバイステクノロジー株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2002008994A (en) * 2000-06-22 2002-01-11 Ulvac Japan Ltd Manufacturing method for thin film
EP1267415A3 (en) * 2001-06-11 2009-04-15 Kabushiki Kaisha Toshiba Power semiconductor device having resurf layer
US7377978B2 (en) * 2003-06-26 2008-05-27 Shin-Etsu Handotai Co., Ltd. Method for producing silicon epitaxial wafer and silicon epitaxial wafer
JP2007012858A (en) * 2005-06-30 2007-01-18 Toshiba Corp Semiconductor element and its manufacturing method
JP4564510B2 (en) * 2007-04-05 2010-10-20 株式会社東芝 Power semiconductor device

Also Published As

Publication number Publication date
TW201145361A (en) 2011-12-16
JP2011192824A (en) 2011-09-29
TWI503872B (en) 2015-10-11
CN102194701A (en) 2011-09-21
CN102194701B (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5985789B2 (en) Manufacturing method of super junction semiconductor device
JP5560931B2 (en) Manufacturing method of super junction semiconductor device
US8785306B2 (en) Manufacturing methods for accurately aligned and self-balanced superjunction devices
JP6135178B2 (en) Manufacturing method of super junction semiconductor device
JP2009004668A (en) Semiconductor device
US9647059B2 (en) Manufacturing methods for accurately aligned and self-balanced superjunction devices
JP6375743B2 (en) Manufacturing method of semiconductor device
JP5533067B2 (en) Manufacturing method of super junction semiconductor device
JP2018110166A (en) Semiconductor device and manufacturing method of semiconductor device
JP2013175655A (en) Power semiconductor device and method of manufacturing the same
CN109564932B (en) Semiconductor device with a plurality of semiconductor chips
US20110291181A1 (en) Semiconductor device and method for manufacturing same
JP5997426B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2013069786A (en) Power semiconductor device
JP5757355B2 (en) Manufacturing method of super junction semiconductor device
US10424637B2 (en) Method of manufacturing semiconductor device
TWI802811B (en) Semiconductor device
JP5556293B2 (en) Manufacturing method of super junction semiconductor device
JP5532758B2 (en) Semiconductor device manufacturing method and semiconductor device
US10217857B2 (en) Super junction MOSFET and method of manufacturing the same
JP5556335B2 (en) Manufacturing method of super junction semiconductor device
US20230246076A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP2012204410A (en) Semiconductor device and method of manufacturing the same
JP2010219109A (en) Trench gate type semiconductor device, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160804

R150 Certificate of patent or registration of utility model

Ref document number: 5985789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees