JP2011232674A - Optical waveguide, wavelength-multiplex light multiplexing device, and medical endoscope using the same - Google Patents

Optical waveguide, wavelength-multiplex light multiplexing device, and medical endoscope using the same Download PDF

Info

Publication number
JP2011232674A
JP2011232674A JP2010105010A JP2010105010A JP2011232674A JP 2011232674 A JP2011232674 A JP 2011232674A JP 2010105010 A JP2010105010 A JP 2010105010A JP 2010105010 A JP2010105010 A JP 2010105010A JP 2011232674 A JP2011232674 A JP 2011232674A
Authority
JP
Japan
Prior art keywords
light
optical waveguide
core
incident
side end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010105010A
Other languages
Japanese (ja)
Other versions
JP5640445B2 (en
Inventor
Makoto Takahashi
誠 高橋
Hiroshi Masuda
宏 増田
Toshihiro Kuroda
敏裕 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2010105010A priority Critical patent/JP5640445B2/en
Publication of JP2011232674A publication Critical patent/JP2011232674A/en
Application granted granted Critical
Publication of JP5640445B2 publication Critical patent/JP5640445B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical waveguide which can be miniaturized and which multiplexes two or more lights having different wavelengths and with which a multiplexed light can be obtained with light intensity distribution of each wavelength being uniform at the core surface of a light emission part, and to provide a wavelength-multiplex light multiplexing device equipped with the optical waveguide and a medical endoscope using the wavelength-multiplex light multiplexing device.SOLUTION: There is provided an optical waveguide comprising a core which multiplexes two or more lights with different wavelengths being incident from a light incident part and propagates the multiplexed light toward a light emission part. The optical waveguide includes at least a tapered core, the breadth of which narrows from the light incident part toward the light emission part. There are also provided a wavelength-multiplex light multiplexing device equipped with the optical waveguide and a medical endoscope using the wavelength-multiplex light multiplexing device.

Description

本発明は、光導波路、及びそれを備えた波長多重光合波装置、並びにそれを用いた医療用内視鏡に関する。   The present invention relates to an optical waveguide, a wavelength division multiplexing optical apparatus including the same, and a medical endoscope using the same.

複数の光源から出射される異なる波長の光を合波する波長多重光合波装置として、様々な提案がなされている。
例えば、特許文献1では、複数の光源から出射された光を第1ファイバ合波器において合波して第1の合波光を形成する複数のファイバ合波光源ユニットからマルチモード光ファイバによって第1の合波光を導波させ、第2ファイバ合波器においてさらに合波して第2の合波光を形成する合波光源についての発明が開示されている。特許文献1では、複数の光源から出射される光を合波して高出力、高輝度な合波光を得るための合波光源を提供することを目的としている。
Various proposals have been made as a wavelength multiplexing optical multiplexer that combines light of different wavelengths emitted from a plurality of light sources.
For example, in Patent Document 1, a first light is output from a plurality of fiber combined light source units that combine light emitted from a plurality of light sources in a first fiber combiner to form first combined light, using a multimode optical fiber. An invention relating to a combined light source that guides the combined light and further combines in a second fiber combiner to form a second combined light is disclosed. In patent document 1, it aims at providing the combined light source for combining the light radiate | emitted from a several light source, and obtaining high output and high-intensity combined light.

また、特許文献2では、面発光素子の近接した2以上の発光点から入射した2以上の異なる波長の光を合波して伝搬した後、合波した光を波長選択フィルターにより分波して波長多重伝搬することができる複合化された波長多重光伝搬路構造についての発明が開示されている。特許文献2では、当該波長多重光伝搬構造により、短距離光伝搬で用いられる光伝搬路において更なる低コスト化、小型化、大容量化が図れる光伝搬技術を提供することを目的としている。   Further, in Patent Document 2, after two or more different wavelengths of light incident from two or more light emitting points adjacent to the surface light emitting element are combined and propagated, the combined light is demultiplexed by a wavelength selection filter. An invention relating to a combined wavelength division multiplexing optical propagation path structure capable of wavelength division multiplexing propagation is disclosed. Patent Document 2 aims to provide an optical propagation technique that can further reduce the cost, size, and capacity of an optical propagation path that is used for short-distance light propagation by the wavelength-multiplexed light propagation structure.

特開2007−41342号公報JP 2007-41342 A 特開2009−199038号公報JP 2009-199038 A

しかしながら、例えば、医療用内視鏡に用いられるような、小型で、かつ複数の異なる波長の光を合波して白色光を出射する照明装置では、出射光が照らした被照射部において、それぞれの波長の光の強度分布にむらがなく、どの波長の光においても分布形状が等しいことが求められる。言い換えると、波長多重合波器の光出射部側のコア表面において、各波長の光の強度分布が均一であることが求められる。
ところが、特許文献1記載の合波光源では、この光の強度分布の均一性については触れられておらず、また、小型化の手段についても提案されていない。特許文献1の合波光源で、光の強度分布を均一化するには、伝搬路を長くせざるを得ず、装置全体を大型化してしまう。
また、特許文献2でも、光の損失については言及しているが、光の強度分布を均一にする手段については開示されていない。なお、ここで述べている光源とは、レーザーやLEDなどの発光素子のほか、これらの発光素子が結合された光ファイバや光導波路なども含まれる。
本発明は、上記問題の解決を鑑みたものであり、小型化を図ると同時に、2以上の異なる波長を有する光を合波し、光出射部側のコア表面において、各波長の光の強度分布を均一である合波光を得ることができる光導波路、及び当該光導波路を備えた波長多重光合波装置、並びに当該波長多重光合波装置を用いた医療用内視鏡を提供することを目的とする。
However, for example, in a small illuminating device that emits white light by combining a plurality of light beams having different wavelengths, such as that used in a medical endoscope, It is required that the intensity distribution of the light having the same wavelength is uniform, and the distribution shape is the same for the light having any wavelength. In other words, it is required that the intensity distribution of the light of each wavelength is uniform on the core surface on the side of the light emitting portion of the wavelength multi-polymerizer.
However, in the combined light source described in Patent Document 1, the uniformity of the intensity distribution of the light is not mentioned, and no means for reducing the size is proposed. In order to make the light intensity distribution uniform with the combined light source of Patent Document 1, the propagation path must be lengthened, and the entire apparatus is enlarged.
Patent Document 2 also mentions light loss, but does not disclose means for making the light intensity distribution uniform. Note that the light source described here includes not only light emitting elements such as lasers and LEDs, but also optical fibers and optical waveguides to which these light emitting elements are coupled.
The present invention has been made in view of the solution of the above-mentioned problem. At the same time, the light having two or more different wavelengths is combined, and the intensity of the light of each wavelength is obtained on the core surface on the light emitting part side. An object of the present invention is to provide an optical waveguide capable of obtaining multiplexed light having a uniform distribution, a wavelength multiplexing optical multiplexing device including the optical waveguide, and a medical endoscope using the wavelength multiplexing optical multiplexing device. To do.

本発明者らは、上記問題点を解決するために鋭意検討したところ、以下の[1]〜[3]により上記課題が解決されることを見出した。   The inventors of the present invention have made extensive studies in order to solve the above problems, and have found that the above problems can be solved by the following [1] to [3].

[1]光入射部側から入射される2以上の異なる波長を有する光を、合波し、光出射部側へ伝搬するコアを備える光導波路であって、前記光導波路のコアは、光入射部側から光出射部側に向けて横幅が狭くなるテーパ形状を少なくとも含むテーパ形状コアを有することを特徴とする光導波路。
[2]上記[1]に記載の光導波路からなる光導波路本体と、発光素子より構成される2以上の発光点から異なる波長の光を該光導波路本体へ出射する光入射部と、を備える波長多重光合波装置。
[3]上記[2]に記載の波長多重光合波装置を用いた医療用内視鏡。
[1] An optical waveguide comprising a core that multiplexes light having two or more different wavelengths incident from the light incident portion side and propagates the light to the light emitting portion side, and the core of the optical waveguide is light incident An optical waveguide comprising: a tapered core including at least a tapered shape having a lateral width that narrows from a portion side toward a light emitting portion side.
[2] An optical waveguide body comprising the optical waveguide according to [1], and a light incident portion that emits light of different wavelengths from two or more light emitting points configured by the light emitting element to the optical waveguide body. Wavelength multiplexing optical multiplexer.
[3] A medical endoscope using the wavelength multiplexing optical multiplexer according to [2].

本発明の光導波路、及び当該光導波路を備えた波長多重光合波装置によれば、装置の小型化を図ると同時に、2以上の異なる波長を有する光を合波し、光出射部側のコア表面において、各波長の光の強度分布が均一である合波光を得ることができる。また、当該波長多重光合波装置は、特に、医療用内視鏡の用途に好適である。   According to the optical waveguide of the present invention and the wavelength multiplexing optical multiplexing device including the optical waveguide, the device is miniaturized, and at the same time, the lights having two or more different wavelengths are multiplexed, and the core on the light emitting part side On the surface, it is possible to obtain combined light in which the intensity distribution of light of each wavelength is uniform. Further, the wavelength multiplexing optical multiplexer is particularly suitable for medical endoscope applications.

本発明の第1実施形態に係る光導波路を用いた波長多重光合波装置の構造例を模式的に示した(A)平面図、及び(B)、(C)断面図である。It is (A) top view and (B), (C) sectional drawing which showed typically the example of a structure of the wavelength multiplexing optical multiplexer which used the optical waveguide concerning 1st Embodiment of this invention. 本発明の光導光路の光伝搬の様子を模式的に示した平面図である。It is the top view which showed typically the mode of the light propagation of the light guide of this invention. 本発明の光導光路の光の強度分布を模式的に示した平面図である。It is the top view which showed typically the intensity distribution of the light of the light guide of this invention. 本発明の第2実施形態に係る光導波路を用いた波長多重光合波装置の構造例を模式的に示した平面図である。It is the top view which showed typically the structural example of the wavelength multiplexing optical multiplexing apparatus using the optical waveguide which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る光導波路を用いた波長多重光合波装置の構造例を模式的に示した(A)平面図、及び(B)、(C)断面図である。It is (A) top view and (B), (C) sectional drawing which showed typically the structural example of the wavelength multiplexing optical multiplexer which used the optical waveguide concerning 3rd Embodiment of this invention. 本発明の第1及び第3実施形態に係る光導波路において、光出射部側端部の横幅W2を変化させた際の波長550nmでの光の伝搬損失を示すグラフである。In the optical waveguide according to the first and third embodiments of the present invention, it is a graph showing the propagation loss of light at a wavelength of 550nm when the lateral width W2 of the light emitting portion side end portion is changed. 本発明の第4実施形態に係る光導波路を用いた波長多重光合波装置の構造例を模式的に示した平面図である。It is the top view which showed typically the structural example of the wavelength multiplexing optical multiplexing apparatus using the optical waveguide which concerns on 4th Embodiment of this invention. 従来の光導波路の光伝搬の様子を模式的に示した平面図である。It is the top view which showed typically the mode of the light propagation of the conventional optical waveguide. 従来の光導波路の光の強度分布を模式的に示した平面図である。It is the top view which showed typically the intensity distribution of the light of the conventional optical waveguide.

〔波長多重光合波装置〕
はじめに、図1の(A)において、本発明の波長多重光合波装置の構成について説明する。
本発明の波長多重光合波装置3は、本発明の光導波路1よりなる光導波路本体10、及び、光入射部20を備える。光入射部20は、2以上の発光点(図1においては3つ)22a、22b、22cを備え、これらの発光点は、発光素子21より構成される。光入射部20は、これらの発光点から、異なる波長の光を光導波路本体10へ出射する。出射された光は、光導波路本体10を構成する光導波路1の光入射部側からコア31内へ入射される。入射された光は、コア31の内部において、コア31とクラッド32との境界面(以下、「境界面」ともいう)で全反射を繰り返し伝搬しながら、各波長の光が合波され、光出射部側のコア表面から合波光として出射される。
(Wavelength multiplexing optical multiplexer)
First, referring to FIG. 1A, the configuration of the wavelength multiplexing optical multiplexer of the present invention will be described.
The wavelength multiplexing optical multiplexer 3 according to the present invention includes an optical waveguide body 10 including the optical waveguide 1 according to the present invention, and a light incident portion 20. The light incident portion 20 includes two or more light emitting points (three in FIG. 1) 22 a, 22 b, and 22 c, and these light emitting points are constituted by the light emitting element 21. The light incident part 20 emits light of different wavelengths to the optical waveguide body 10 from these light emitting points. The emitted light enters the core 31 from the light incident portion side of the optical waveguide 1 constituting the optical waveguide body 10. The incident light is combined with light of each wavelength while repeatedly propagating total reflection at the boundary surface between the core 31 and the clad 32 (hereinafter also referred to as “boundary surface”) within the core 31. It is emitted as combined light from the core surface on the emission part side.

<光入射部>
光入射部20が有する発光素子21としては、それぞれが異なる波長の光を出射できるものであれば特に限定されない。例えば、発光ダイオードや、面発光レーザ(VCSEL)に代表される面発光素子等が挙げられ、これらの発光素子が結合された光ファイバや光導波路なども含まれる。
光入射部20は、異なる波長の光を出射する2つ以上の発光点を備える。ここで発光点は上記の発光素子より構成される。図1においては、発光点が3つの場合が示されているが、発光点の個数は用途に応じて適宜選択できる。
ただ、医療用内視鏡のような白色光を得る必要がある照明装置に本発明の波長多重光合波装置が用いられる場合、光入射部は、3つの発光点を有し、それぞれ赤色、緑色、及び青色の光となる特定の波長を有する光を出射するものであることが好ましい。均一な強度分布のこれらの光を合波することで、白色光を得ることができる。
なお、このような光が有する波長の範囲は、一般的に、赤色の発光波長が600〜760nm、緑色の発光波長が490〜575nm、青色の発光波長が390〜485nmの範囲であることが知られている。このような範囲の中でも、RGB表色系で規定されたR(赤):700nm、G(緑):546.1nm、B(青):435.8nmの波長であることが好ましい。
<Light incident part>
The light emitting element 21 included in the light incident part 20 is not particularly limited as long as each can emit light having different wavelengths. For example, a light emitting diode, a surface light emitting element typified by a surface emitting laser (VCSEL), and the like are included, and an optical fiber and an optical waveguide to which these light emitting elements are coupled are also included.
The light incident part 20 includes two or more light emitting points that emit light having different wavelengths. Here, the light emitting point is constituted by the above light emitting element. Although FIG. 1 shows a case where there are three light emitting points, the number of light emitting points can be appropriately selected according to the application.
However, when the wavelength multiplexing optical multiplexing device of the present invention is used for an illumination device that needs to obtain white light such as a medical endoscope, the light incident portion has three light emitting points, which are red and green, respectively. It is preferable to emit light having a specific wavelength that becomes blue light. By combining these lights having a uniform intensity distribution, white light can be obtained.
It is known that the wavelength range of such light is generally in the range of 600 to 760 nm for red emission wavelength, 490 to 575 nm for green emission wavelength, and 390 to 485 nm for blue emission wavelength. It has been. Among these ranges, R (red): 700 nm, G (green): 546.1 nm, and B (blue): 435.8 nm specified by the RGB color system are preferable.

<光導波路のコアとクラッド>
図1(B)は、(A)平面図で表した光導波路の断面P1−Q1等における断面図である。
図1(B)に示すとおり、光導波路1は、光路となるコア31と、そのコア31を取り囲むクラッド32より構成される。入射した光が、コア31内を境界面で全反射を起こしながら伝搬するためには、コアの屈折率は、クラッドの屈折率より大きくする必要がある。
コア31とクラッド32の素材としては、屈折率が異なるようにすれば、同じ素材から作製されてもよい。素材としては、例えば、石英ガラスやシリコン等の無機系素材や、アクリル系樹脂やエポキシ系樹脂等のポリマ系素材等が挙げられる。それらの中でも、ポリマ系素材が好ましい。ポリマ系素材を用いたポリマ光導波路であれば、無機光導波路に比べてコア厚さを大きくすることが容易であり、大きなワークサイズでの加工や成形技術による大量生産が可能であるため、生産性を向上させることができる。
ポリマ光導波路において用いられるベースポリマーとしては、一定の強度を確保し高い光透過性を有するものが好ましく、例えば、フェノキシ樹脂、エポキシ樹脂、(メタ)アクリル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルスルホン等、あるいはこれらの誘導体等が挙げられる。なお、ここで(メタ)アクリル樹脂とは、アクリル樹脂及びメタクリル樹脂を意味するものである。これらのベースポリマーは1種単独でも、又は2種以上を混合して用いてもよい。
これらの例示したベースポリマーの中でも、優れた耐熱性の観点から、主鎖に芳香族骨格を有することが好ましく、特にフェノキシ樹脂が好ましい。また、3次元架橋し、耐熱性を向上できるとの観点からは、エポキシ樹脂が好ましく、特に室温で固形のエポキシ樹脂が好ましい。さらに、光又は熱重合性化合物との相溶性が、クラッド形成用樹脂フィルムの透明性を確保するために重要であるが、この観点からは上記フェノキシ樹脂及び(メタ)アクリル樹脂が好ましい。
<Core and clad of optical waveguide>
FIG. 1B is a cross-sectional view taken along a cross-section P1-Q1 of the optical waveguide shown in the plan view of FIG.
As shown in FIG. 1B, the optical waveguide 1 includes a core 31 serving as an optical path and a clad 32 surrounding the core 31. In order for the incident light to propagate through the core 31 while causing total reflection at the boundary surface, the refractive index of the core needs to be larger than the refractive index of the cladding.
The material of the core 31 and the clad 32 may be made of the same material as long as the refractive indexes are different. Examples of the material include inorganic materials such as quartz glass and silicon, and polymer materials such as acrylic resins and epoxy resins. Among these, a polymer material is preferable. Production of polymer optical waveguides using polymer materials is easy because it is easy to increase the core thickness compared to inorganic optical waveguides, and it is possible to mass-produce with processing and molding techniques with large workpiece sizes. Can be improved.
As the base polymer used in the polymer optical waveguide, those having a certain strength and high light transmittance are preferable. For example, phenoxy resin, epoxy resin, (meth) acrylic resin, polycarbonate resin, polyarylate resin, polyether Examples thereof include amide, polyetherimide, polyethersulfone, and derivatives thereof. Here, (meth) acrylic resin means acrylic resin and methacrylic resin. These base polymers may be used alone or in combination of two or more.
Among these exemplified base polymers, from the viewpoint of excellent heat resistance, it is preferable to have an aromatic skeleton in the main chain, and phenoxy resin is particularly preferable. From the viewpoint of three-dimensional crosslinking and improving heat resistance, an epoxy resin is preferable, and an epoxy resin that is solid at room temperature is particularly preferable. Furthermore, compatibility with light or a thermopolymerizable compound is important for ensuring the transparency of the clad-forming resin film. From this viewpoint, the phenoxy resin and (meth) acrylic resin are preferable.

なお、クラッド32は、コア31を取り囲む場所に応じて、複数の素材から構成されていてもよく、これらの素材は互いに異なる屈折率を有していてもよい。例えば、図1の(C)の断面図に示すように、コア31の下に位置するクラッド32aは、ポリマ系素材を用い、それ以外のコア31を取り囲む部分のクラッド32b、32c、32dは、樹脂等の素材を用いず、空気にクラッドとしての役割を担わせる構成でもよい。本発明の実施形態においては、図1の(B)、(C)に示すいずれの構成もとることができる。   The clad 32 may be composed of a plurality of materials depending on the location surrounding the core 31, and these materials may have different refractive indexes. For example, as shown in the cross-sectional view of FIG. 1C, the clad 32a located under the core 31 is made of a polymer-based material, and the other clads 32b, 32c, 32d surrounding the core 31 are Instead of using a material such as resin, a configuration in which air serves as a cladding may be employed. In the embodiment of the present invention, any configuration shown in FIGS. 1B and 1C can be adopted.

〔本発明の光導波路の第1実施形態〕
次に、本発明の光導波路の第1実施形態について説明する。
本発明において、コア31は、光入射部側から光出射部側に向けて横幅が狭くなるテーパ形状を少なくとも含むテーパ形状コア33を有する。本実施形態のテーパ形状コア33は、図1の(B)、(C)の断面図が示すとおり、光入射部側に近い断面P1−Q1では、コアの横幅は広いが、光出射部側に近づくにつれて横幅が狭くなっている。
なお、ここでいう「テーパ形状を含む」とは、図1で示すテーパ形状コア33のように、光出射部に向かうにつれて一定の割合で徐々に横幅が狭くなる場合のみならず、光出射部側に向かう途中で、横幅が広くなるが、光出射部側端部33b付近において再び横幅が狭くなる場合も含まれる。ただし、異なる波長の光の強度分布を均一にする観点から、テーパ形状コア33としては、図1に示すような、光出射部に向かうにつれて一定の割合で徐々に横幅が狭くなるものであることが好ましい。
本発明において、光導波路1のコア31がテーパ形状コア33を有することで、入射された異なる波長の光の強度分布を均一にし、光出射部側のコア表面から各波長の光の強度分布が均一である合波光が得られる。以下、その理由について詳述する。
[First Embodiment of Optical Waveguide of the Present Invention]
Next, a first embodiment of the optical waveguide of the present invention will be described.
In the present invention, the core 31 has a tapered core 33 including at least a tapered shape whose lateral width becomes narrower from the light incident part side toward the light emitting part side. As shown in the cross-sectional views of FIGS. 1B and 1C, the tapered core 33 of the present embodiment has a wide core width in the cross section P1-Q1 close to the light incident part side, but the light emitting part side. The width becomes narrower as it approaches.
The term “including a tapered shape” as used herein refers not only to the case where the lateral width gradually decreases at a constant rate toward the light emitting portion as in the tapered core 33 shown in FIG. The width is increased on the way to the side, but the case where the width is reduced again in the vicinity of the light emitting portion side end portion 33b is also included. However, from the viewpoint of making the intensity distribution of light of different wavelengths uniform, the taper-shaped core 33 has a lateral width that gradually decreases at a constant rate toward the light emitting portion as shown in FIG. Is preferred.
In the present invention, since the core 31 of the optical waveguide 1 has the tapered core 33, the intensity distribution of the incident light of different wavelengths is made uniform, and the intensity distribution of the light of each wavelength from the core surface on the light emitting part side. Combined light that is uniform is obtained. Hereinafter, the reason will be described in detail.

図8は、従来の光導波路の光伝搬の様子を模式的に示した図である。入射した光は、境界面での反射を繰り返すことで、光の分布がランダムになる。ところが、図8のように、従来の光導波路のコアの横幅は一様であるため、入射した光が、コア131とクラッド132との境界面で反射する頻度は低い。特に、中央の発光点122bから出射される光の反射の頻度は低い。また、図9は、中央の発光点122bにのみ注目し、中央の発光点から出射される光の強度分布を模式的に示した図である。(a)及び(b)の地点では、光の強度がコアの中央付近に局在化している。(c)及び(d)の地点においては、多少、光が境界面で反射するため、境界面付近においては干渉の影響も受けるが、コアの中央付近にいたっては、その干渉の影響はほとんど受けない。そのため、(a)〜(d)のいずれの地点においても、コアの中央付近と境界面付近での光の強度差が大きく、光の強度分布は不均一である。これは、従来の光導波路では、光の反射頻度が少ないため、境界面からの干渉の影響も小さく、光の分布がランダムになりにくいためと考えられる。
一方、図2は、本発明の光導波路の光伝搬の様子を模式的に示した図である。本発明の光導波路のコアは、光出射部側に向けて横幅が狭くなるテーパ形状を含むテーパ形状コア33を有するため、光入射部側から光出射部側に向かうにつれ、境界面での光の反射頻度が高くなる。当該反射の頻度が増すことで、光の分布がランダムになり、その結果、光出射部側端部33b付近では、光の強度分布が均一化されると考えられる。光の強度分布を均一化するためには、境界面に最も大きい角度で入射する伝搬光の成分が、出射部側に到達するまでに少なくとも3回以上境界面で反射する様なコア形状にすることが望ましい。また、図3は、中央の発光点22bのみに注目し、中央の発光点から出射される光の強度分布を模式的に示した図である。光入射部側付近の(a)では、光の反射頻度も低く、境界面からの干渉の影響も小さい。そのため、境界面付近では、光の強度は小さい。しかし、コアの横幅が狭くなるにつれて、光の反射頻度も増し、境界面からの干渉の影響も大きくなり、境界面付近の光強度も強くなっている。その結果、(b)、(c)、(d)と光出射部側に向かうにつれて、境界面付近とコアの中央付近の光強度の差も徐々に縮まり、光出射部側端部33b付近の(e)では、光の強度分布をほぼ均一にすることができる。図3においては、中央の発光点22bにのみ注目しているが、他の発光点22a、22cについても、入射した光を、光出射部側端部33b付近において、光の強度分布をほぼ均一にすることができる。
したがって、本発明の光導波路を用いた波長多重光合波装置は、各波長の光の強度分布が均一である合波光を得ることができる。
FIG. 8 is a diagram schematically showing the state of light propagation in a conventional optical waveguide. The incident light repeats reflection at the boundary surface, so that the light distribution becomes random. However, as shown in FIG. 8, since the horizontal width of the core of the conventional optical waveguide is uniform, the incident light is less frequently reflected at the boundary surface between the core 131 and the clad 132. In particular, the frequency of reflection of light emitted from the central light emitting point 122b is low. FIG. 9 is a diagram schematically showing the intensity distribution of light emitted from the central light emitting point, focusing only on the central light emitting point 122b. At the points (a) and (b), the light intensity is localized near the center of the core. At the points (c) and (d), the light is reflected at the boundary surface to some extent, so that it is affected by interference near the boundary surface. I do not receive it. For this reason, at any point of (a) to (d), the difference in light intensity between the vicinity of the center of the core and the vicinity of the boundary surface is large, and the light intensity distribution is uneven. This is presumably because in the conventional optical waveguide, the light reflection frequency is low, the influence of interference from the boundary surface is small, and the light distribution is not easily randomized.
On the other hand, FIG. 2 is a diagram schematically showing the state of light propagation in the optical waveguide of the present invention. Since the core of the optical waveguide of the present invention has the tapered core 33 including the tapered shape whose lateral width becomes narrower toward the light emitting part side, the light at the boundary surface is moved from the light incident part side to the light emitting part side. The reflection frequency of becomes higher. By increasing the frequency of the reflection, the light distribution becomes random, and as a result, the light intensity distribution is considered to be uniform in the vicinity of the light emitting portion side end portion 33b. In order to make the light intensity distribution uniform, the core shape is such that the component of propagating light incident at the largest angle on the boundary surface is reflected at the boundary surface at least three times before reaching the exit side. It is desirable. FIG. 3 is a diagram schematically showing an intensity distribution of light emitted from the central light emitting point, focusing on only the central light emitting point 22b. In (a) near the light incident part side, the light reflection frequency is low and the influence of interference from the boundary surface is also small. Therefore, the intensity of light is small near the boundary surface. However, as the width of the core becomes narrower, the frequency of light reflection increases, the influence of interference from the boundary surface increases, and the light intensity near the boundary surface also increases. As a result, the difference in light intensity between the vicinity of the boundary surface and the center of the core is gradually reduced toward (b), (c), (d) and the light emitting portion side, and the light emitting portion side end portion 33b vicinity is reduced. In (e), the light intensity distribution can be made substantially uniform. In FIG. 3, attention is paid only to the central light emitting point 22b. However, the light intensity distribution of the other light emitting points 22a and 22c is almost uniform in the vicinity of the light emitting portion side end portion 33b. Can be.
Therefore, the wavelength multiplexing optical multiplexing device using the optical waveguide of the present invention can obtain multiplexed light in which the intensity distribution of light of each wavelength is uniform.

また、本発明のテーパ形状コアの少なくとも一部が、入射する光の波長に対して厚み方向の次数が複数の固有モードを有する厚さであることが好ましい。これは、図1の(B)、(C)において、Y1がテーパ形状コアの厚さを示しているが、発光点の位置がずれた場合においても、光をコアに入射させることを可能にするためには、この厚さY1は一定以上の厚さがあることが望ましく、当該厚さを有する場合、光導波路は、入射する光の波長に対して厚み方向の次数が複数の固有モードを有することになるからである。
このような厚さY1のとしては、好ましくは30〜300μmである。
Moreover, it is preferable that at least a part of the tapered core of the present invention has a thickness in which the order in the thickness direction has a plurality of natural modes with respect to the wavelength of incident light. This is because, in FIGS. 1B and 1C, Y1 indicates the thickness of the tapered core, but it is possible to allow light to enter the core even when the position of the light emitting point is shifted. In order to achieve this, it is desirable that the thickness Y1 has a certain thickness or more, and in this case, the optical waveguide has an eigenmode having a plurality of orders in the thickness direction with respect to the wavelength of incident light. It is because it will have.
The thickness Y1 is preferably 30 to 300 μm.

ここで、テーパ形状コアの形状について詳述する。図1において、本発明のテーパ形状コア33の光入射部側端部33aの横幅をW1(μm)、光出射部側端部33bの横幅をW2(μm)、及びテーパ形状コア33の光入射部側端部33aから光出射部側端部33bまでの長さをL1(μm)、テーパ形状コアの厚さをY1(μm)、及びtan-1[(W1−W2)/2/L1]で定義されるテーパ形状コアのテーパ角をα(度)としたとき、以下の(1)〜(5)を満たすことが好ましい。
(1)0.1≦α≦2.0
(2)300≦W1≦1500
(3)50≦W2≦200
(4)1500≦L1≦40000
(5)30≦Y1≦300
Here, the shape of the tapered core will be described in detail. In FIG. 1, the lateral width of the light incident portion side end 33a of the tapered core 33 of the present invention is W1 (μm), the lateral width of the light output portion side end 33b is W2 (μm), and the light incidence of the tapered core 33 is performed. L1 (μm) is the length from the part side end 33a to the light emitting part side end 33b, the thickness of the tapered core is Y1 (μm), and tan −1 [(W1-W2) / 2 / L1]. It is preferable that the following (1) to (5) are satisfied, where α (degrees) is the taper angle of the tapered core defined by:
(1) 0.1 ≦ α ≦ 2.0
(2) 300 ≦ W1 ≦ 1500
(3) 50 ≦ W2 ≦ 200
(4) 1500 ≦ L1 ≦ 40000
(5) 30 ≦ Y1 ≦ 300

条件(2)〜(4)については、上記テーパ角αの範囲を考慮した上で定められた範囲である。つまり、W1、W2、L1の範囲は、テーパ角α=tan-1[(W1−W2)/2/L1]の関係、及び上記テーパ角αの範囲を考慮している。
条件(3)において、W2が50(μm)以上であれば、光の伝搬損失を抑えることができるため好ましい。また、W2が200(μm)以下であれば、光の強度分布を十分に均一化することができるため好ましい。
条件(4)において、L1が1500(μm)以上であれば、入射した光がコアとクラッドとの境界面で全反射する頻度を十分に確保されるため好ましい。また、L1が40000(μm)以下であれば、医療用内視鏡など小型化が求められる用途に用いることができるため好ましい。
なお、条件(5)を満たすことで、素子の厚み方向の許容位置ずれを十分確保することができる。
Conditions (2) to (4) are ranges determined in consideration of the range of the taper angle α. That is, the range of W1, W2, and L1 considers the relationship of the taper angle α = tan −1 [(W1−W2) / 2 / L1] and the range of the taper angle α.
In the condition (3), it is preferable that W2 is 50 (μm) or more because the propagation loss of light can be suppressed. Moreover, it is preferable if W2 is 200 (μm) or less because the light intensity distribution can be sufficiently uniformed.
In the condition (4), if L1 is 1500 (μm) or more, it is preferable because the frequency at which the incident light is totally reflected at the boundary surface between the core and the clad is sufficiently secured. Moreover, if L1 is 40000 (micrometer) or less, since it can be used for the use as which size reduction is required, such as a medical endoscope, it is preferable.
In addition, by satisfying the condition (5), it is possible to sufficiently secure the allowable positional deviation in the thickness direction of the element.

〔本発明の光導波路の第2実施形態〕
次に、本発明の光導波路の第2実施形態について図4を用いて説明する。図4は、本発明の第2実施形態に係る光導波路を用いた波長多重光合波装置の構造例を模式的に示した平面図である。
なお、上述の実施形態と同一の構成については説明を省略し、異なる構成のみについて説明する。当該事項は、本実施形態に限らず、後述する第3、4の実施形態についても同様である。
本実施形態の波長多重光合波装置のテーパ形状コアは、光入射部側端部付近で曲線形状を含み、光出射部に向けて横幅が曲線的に狭くなるテーパ形状を少なくとも含むことが好ましい。図4に示されたように、光入射部側端部34a付近のコア31とクラッド32との境界線は曲線状に形成されている。テーパ形状コアをこのような形状にすることで、コア、クラッド界面で漏れる光を減少させ、伝搬損失を小さくすることができる。
[Second Embodiment of Optical Waveguide of the Present Invention]
Next, a second embodiment of the optical waveguide of the present invention will be described with reference to FIG. FIG. 4 is a plan view schematically showing an example of the structure of a wavelength division multiplexing apparatus using an optical waveguide according to the second embodiment of the present invention.
In addition, description is abbreviate | omitted about the structure same as the above-mentioned embodiment, and only a different structure is demonstrated. This matter is not limited to this embodiment, and the same applies to third and fourth embodiments described later.
It is preferable that the tapered core of the wavelength multiplexing optical multiplexer according to the present embodiment includes at least a tapered shape including a curved shape near the light incident portion side end portion and having a lateral width that is curvilinearly narrowed toward the light emitting portion. As shown in FIG. 4, the boundary line between the core 31 and the clad 32 in the vicinity of the light incident portion side end portion 34a is formed in a curved shape. By making the tapered core into such a shape, light leaking at the core / cladding interface can be reduced and propagation loss can be reduced.

〔本発明の光導波路の第3実施形態〕
次に、本発明の光導波路の第3実施形態について図5を用いて説明する。図5は、本発明の第3実施形態に係る光導波路を用いた波長多重光合波装置の構造例を模式的に示した(A)平面図、及び(B)、(C)断面図である。
第3実施形態の光導波路1bにおいて、コア31は、前述のテーパ形状コア33と、複数の入射用コア35a、35b、35cとから構成され、図5の(B)に示すとおり、これらのコアの回りをクラッド32により取り囲んでいる。なお、クラッド32は、上述の通り、コア31を取り囲む場所に応じて、複数の素材から構成されていてもよく、これらの素材は互いに異なる屈折率を有していてもよく、図5の(C)に示すように、例えばコア31の下に位置するクラッド32aはポリマ材料を用い、それ以外のコア31を取り囲む部分のクラッドは空気とする構成をとることもできる。
複数の入射用コア35a、35b、35cは、光入射部の各発光点22a、22b、22cに対応している。これら複数の入射用コアは、各発光点から入射される光を、テーパ形状コア33の光入射部側端部33aへと伝搬する役割を果たす。なお、入射用コアは、各発光点に対応するように発光点の数だけ有し、これら入射用コアのうち少なくとも1つが曲線形状である。当該曲線形状の入射用コアの形状としては、略S字形状であることが好ましい。図5の光導波路1bにおいては、入射用コア35a、35cの形状が、略S字形状である。このような形状であることにより、伝搬損失を低減することができる。
[Third Embodiment of Optical Waveguide of the Present Invention]
Next, a third embodiment of the optical waveguide of the present invention will be described with reference to FIG. 5A is a plan view, and FIG. 5B is a cross-sectional view illustrating a structural example of a wavelength multiplexing optical multiplexer using an optical waveguide according to the third embodiment of the present invention. .
In the optical waveguide 1b of the third embodiment, the core 31 includes the aforementioned tapered core 33 and a plurality of incident cores 35a, 35b, and 35c. As shown in FIG. Is surrounded by a clad 32. As described above, the clad 32 may be composed of a plurality of materials depending on the location surrounding the core 31, and these materials may have different refractive indexes. As shown in C), for example, the clad 32a located under the core 31 may be made of a polymer material, and the other clad surrounding the core 31 may be made of air.
The plurality of incident cores 35a, 35b, and 35c correspond to the light emitting points 22a, 22b, and 22c of the light incident portion. The plurality of incident cores play a role of propagating light incident from the respective light emitting points to the light incident portion side end portion 33 a of the tapered core 33. The incident cores have the same number of light emitting points as corresponding to the respective light emitting points, and at least one of these incident cores has a curved shape. The shape of the curved incident core is preferably substantially S-shaped. In the optical waveguide 1b of FIG. 5, the shapes of the incident cores 35a and 35c are substantially S-shaped. With such a shape, propagation loss can be reduced.

図6は、第1及び第3の実施形態の光導波路において、光出射部側端部の横幅W2を変化させた際の波長550nmでの光の伝搬損失を示すグラフである。図6のグラフが示すとおり、光出射部側端部の横幅W2を狭めると、伝搬損失が大きくなる傾向がある。ところが、本実施形態の光導波路では、少なくとも1つが曲線形状(略S字形状)である複数の入射用コアの構成を取り入れているため、伝搬損失を低減することができる。図6では一例として波長550nmの光について示したが、他の波長の光についても横幅W2と伝搬損失の関係は同様の傾向を示す。
したがって、本実施形態の波長多重光合波装置は、伝搬損失を低減しつつ、横幅W2を狭めることで、入射された異なる波長の光の強度分布が均一な合波光を得ることができる。
FIG. 6 is a graph showing a light propagation loss at a wavelength of 550 nm when the lateral width W2 of the light emitting portion side end portion is changed in the optical waveguides of the first and third embodiments. As the graph of FIG. 6 shows, when the lateral width W2 of the light emitting portion side end portion is narrowed, the propagation loss tends to increase. However, in the optical waveguide according to the present embodiment, since a configuration of a plurality of incident cores, at least one of which has a curved shape (substantially S-shape), is incorporated, propagation loss can be reduced. Although FIG. 6 shows light having a wavelength of 550 nm as an example, the relationship between the width W2 and the propagation loss shows the same tendency for light of other wavelengths.
Therefore, the wavelength division multiplexing optical multiplexer of this embodiment can obtain combined light with uniform intensity distribution of incident light of different wavelengths by narrowing the lateral width W2 while reducing propagation loss.

また、本実施形態においてもテーパ形状コアの厚さY1は、入射する光の波長に対してマルチモードとなる厚さであることが好ましい。また、入射用コアの厚さY2はテーパ形状コアの厚さY1と同じでも異なっていても良い。   Also in this embodiment, it is preferable that the thickness Y1 of the tapered core is a thickness that is multimode with respect to the wavelength of incident light. Further, the thickness Y2 of the incident core may be the same as or different from the thickness Y1 of the tapered core.

ここで、本実施形態の光導波路のコアの形状について詳述する。
図5に示す光導波路1bにおいて、テーパ形状コア33の光入射部側端部33aの横幅をW1(μm)、光出射部側端部の横幅をW2(μm)、テーパ形状コア33の光入射部側端部33aから光出射部側端部33bまでの長さをL1(μm)、テーパ形状コア33の厚みをY1(μm)、入射用コア35の厚みをY2(μm)、及びtan-1[(W1−W2)/2/L1]で定義されるテーパ形状コアのテーパ角をα(度)、光入射部側端部36aにおける複数の入射用コアのコア中心間最大距離をX1(μm)、テーパ形状コア側端部36bにおける複数の入射用コアのコア中心間最大距離をX2(μm)、入射用コアの光入射部側端部36aからテーパ形状コア側端部36bまでの長さをL2(μm)としたとき、以下の(1)〜(9)を満たすことが好ましい。
(1)0.1≦α≦2.0
(2)130≦W1≦750
(3)50≦W2≦200
(4)1000≦L1≦30000
(5)30≦Y1、Y2≦300
(6)500≦X1≦1500
(7)100≦X2≦500
(8)W1≧X2
(9)1000≦L2≦5000
Here, the shape of the core of the optical waveguide of the present embodiment will be described in detail.
In the optical waveguide 1b shown in FIG. 5, the horizontal width of the light incident portion side end portion 33a of the tapered core 33 is W1 (μm), the horizontal width of the light output portion side end portion is W2 (μm), and the light incidence of the tapered core 33 is performed. L1 (μm) is the length from the portion side end 33a to the light emitting portion side end 33b, the thickness of the tapered core 33 is Y1 (μm), the thickness of the incident core 35 is Y2 (μm), and tan −. 1 The taper angle of the tapered core defined by [(W1-W2) / 2 / L1] is α (degrees), and the maximum distance between the core centers of the plurality of incident cores at the light incident part side end 36a is X1 ( μm), the maximum distance between the core centers of the plurality of incident cores at the tapered core side end 36b is X2 (μm), and the length from the light incident part side end 36a of the incident core to the tapered core side end 36b When the thickness is L2 (μm), the following (1) to (9) are satisfied. It is preferable to add.
(1) 0.1 ≦ α ≦ 2.0
(2) 130 ≦ W1 ≦ 750
(3) 50 ≦ W2 ≦ 200
(4) 1000 ≦ L1 ≦ 30000
(5) 30 ≦ Y1, Y2 ≦ 300
(6) 500 ≦ X1 ≦ 1500
(7) 100 ≦ X2 ≦ 500
(8) W1 ≧ X2
(9) 1000 ≦ L2 ≦ 5000

上記条件のうち、条件(1)及び(5)は第一の実施形態で述べたとおりである。
条件(3)において、W2が50(μm)以上であれば、光の伝搬損失を抑えることができるため好ましい。また、W2が200(μm)以下であれば、光の強度分布を十分に均一化することができるため好ましい。
条件(4)において、L1が1000(μm)以上であれば、入射した光がコアとクラッドとの境界面で全反射する頻度を十分に確保されるため好ましい。また、L1が30000(μm)以下であれば、医療用内視鏡など小型化が求められる用途に用いることができるため好ましい。
条件(8)において、W1=X2であってもよく、発光点から入射される光が、テーパ形状コアに漏れなく伝搬できれば問題ない。
Among the above conditions, the conditions (1) and (5) are as described in the first embodiment.
In the condition (3), it is preferable that W2 is 50 (μm) or more because the propagation loss of light can be suppressed. Moreover, it is preferable if W2 is 200 (μm) or less because the light intensity distribution can be sufficiently uniformed.
In the condition (4), it is preferable that L1 is 1000 (μm) or more because the frequency at which the incident light is totally reflected at the boundary surface between the core and the clad is sufficiently secured. Moreover, if L1 is 30000 (micrometer) or less, since it can be used for the use as which size reduction is required, such as a medical endoscope, it is preferable.
In the condition (8), W1 = X2 may be satisfied, and there is no problem as long as light incident from the light emitting point can propagate to the tapered core without leakage.

〔本発明の光導波路の第4実施形態〕
本発明の光導波路の第4実施形態について、図7に示された光導波路1cが挙げられる。第4実施形態である光導波路1cは、基本的な構成として第3実施形態の光導波路1bの構成を具備しつつ、第2実施形態の光導波路1aの光入射部側端部付近で曲線形状を含み、光出射部方向に向けて横幅が曲線的に狭くなるテーパ形状を少なくとも含むテーパ形状コア34に置き換えたものである。
図7で示されたようなテーパ形状コア34を有することで、コア、クラッド界面で漏れる光を減少させ、伝搬損失を小さくすることができると共に、異なる波長の光の強度分布が均一な合波光を得ることができる。
また、図7に示されたような複数の入射用コアを有することで、より伝搬損失を低減することができる。
[Fourth Embodiment of Optical Waveguide of the Present Invention]
The optical waveguide 1c shown in FIG. 7 is mentioned about 4th Embodiment of the optical waveguide of this invention. The optical waveguide 1c according to the fourth embodiment has a curved shape in the vicinity of the light incident portion side end portion of the optical waveguide 1a according to the second embodiment while having the configuration of the optical waveguide 1b according to the third embodiment as a basic configuration. And a taper-shaped core 34 including at least a taper shape in which the lateral width becomes curvilinearly narrower toward the light emitting portion direction.
By having the tapered core 34 as shown in FIG. 7, the light leaking at the core / cladding interface can be reduced, the propagation loss can be reduced, and the combined light with uniform intensity distribution of light of different wavelengths. Can be obtained.
Further, by having a plurality of incident cores as shown in FIG. 7, the propagation loss can be further reduced.

〔その他の実施形態〕
本発明の光導波路は、上記の実施形態には限定されず、入射された異なる波長の光の強度分布を均一にできるものであれば、本発明の技術的範囲に含まれる。例えば、テーパ形状コアの一部分の横幅が、光出射部側に進むにつれて拡がるもの、もしくは一様である光導波路も、本発明に含まれる。
[Other Embodiments]
The optical waveguide of the present invention is not limited to the above embodiment, and is included in the technical scope of the present invention as long as the intensity distribution of incident light having different wavelengths can be made uniform. For example, an optical waveguide in which the lateral width of a part of the tapered core increases as it goes to the light emitting part side or is uniform is also included in the present invention.

本発明の光導波路を備えた波長多重光合波装置は、装置の小型化を図ると共に、異なる波長の光の強度分布が均一な合波光を得ることができる。そのため、例えば、医療用内視鏡等の用途で有用である。   The wavelength multiplexing optical multiplexing apparatus including the optical waveguide according to the present invention can achieve miniaturization of the apparatus and obtain multiplexed light with uniform intensity distribution of light of different wavelengths. Therefore, it is useful for applications such as medical endoscopes.

1、1a、1b、1c 光導波路
10 光導波路本体
20 光入射部
21 発光素子
22a、22b、22c 発光点
3 波長多重光合波装置
31 コア
32 クラッド
33、34 テーパ形状コア
33a、34a (テーパ形状コアの)光入射部側端部
33b、34b (テーパ形状コアの)光出射部側端部
35a、35b、35c 入射用コア
36a (複数の入射用コアの)光入射側光入射部側端部
36b (複数の入射用コアの)テーパ形状コア側端部
DESCRIPTION OF SYMBOLS 1, 1a, 1b, 1c Optical waveguide 10 Optical waveguide main body 20 Light incident part 21 Light emitting element 22a, 22b, 22c Light emission point 3 Wavelength multiplexing optical multiplexer 31 Core 32 Cladding 33, 34 Tapered core 33a, 34a (Tapered core Light incident portion side end portions 33b, 34b (light emitting portion side end portions 35a, 35b, 35c) incident core 36a (of a plurality of incident cores) light incident side light incident portion side end portions 36b Tapered core side end (of multiple incident cores)

Claims (12)

光入射部側から入射される2以上の異なる波長を有する光を、合波し、光出射部側へ伝搬するコアを備える光導波路であって、
前記光導波路のコアは、光入射部側から光出射部側に向けて横幅が狭くなるテーパ形状を少なくとも含むテーパ形状コアを有することを特徴とする光導波路。
An optical waveguide comprising a core that multiplexes light having two or more different wavelengths incident from the light incident part side and propagates to the light emitting part side,
The core of the optical waveguide has a tapered core including at least a tapered shape in which a lateral width becomes narrower from a light incident part side toward a light emitting part side.
前記テーパ形状コアの少なくとも一部が、入射する光の波長に対して厚み方向の次数が複数の固有モードを有する厚さである請求項1に記載の光導波路。   The optical waveguide according to claim 1, wherein at least a part of the tapered core has a thickness having a plurality of eigenmodes in the thickness direction with respect to the wavelength of incident light. 前記光導波路において、
テーパ形状コアの光入射部側端部の横幅をW1(μm)、光出射部側端部の横幅をW2(μm)、テーパ形状コアの光入射部側端部から光出射部側端部までの長さをL1(μm)、テーパ形状コアの厚さをY1(μm)、及びtan-1[(W1−W2)/2/L1]で定義されるテーパ形状コアのテーパ角をα(度)としたとき、以下の(1)〜(5)を満たす請求項2に記載の光導波路。
(1)0.1≦α≦2.0
(2)300≦W1≦1500
(3)50≦W2≦200
(4)1500≦L1≦40000
(5)30≦Y1≦300
In the optical waveguide,
The horizontal width of the light incident part side end of the tapered core is W1 (μm), the horizontal width of the light output part side end is W2 (μm), and from the light incident part side end of the tapered core to the light output part side end The taper angle of the tapered core defined by L1 (μm), the thickness of the tapered core Y1 (μm), and tan -1 [(W1-W2) / 2 / L1] is α (degrees). ), The optical waveguide according to claim 2 satisfying the following (1) to (5).
(1) 0.1 ≦ α ≦ 2.0
(2) 300 ≦ W1 ≦ 1500
(3) 50 ≦ W2 ≦ 200
(4) 1500 ≦ L1 ≦ 40000
(5) 30 ≦ Y1 ≦ 300
前記光導波路において、
前記光導波路のコアは、テーパ形状コアと、2以上の異なる波長を有する光を該テーパ形状コアの光入射部側端部へと伝搬する複数の入射用コアとを有し、
該複数の入射用コアのうち、少なくとも1つが曲線形状である請求項1に記載の光導波路。
In the optical waveguide,
The core of the optical waveguide has a tapered core and a plurality of incident cores for propagating light having two or more different wavelengths to the light incident part side end of the tapered core,
The optical waveguide according to claim 1, wherein at least one of the plurality of incident cores has a curved shape.
前記テーパ形状コアの少なくとも一部が、入射する光の波長に対して厚み方向の次数が複数の固有モードを有する厚さである請求項4に記載の光導波路。   The optical waveguide according to claim 4, wherein at least a part of the tapered core has a thickness having a plurality of eigenmodes in the thickness direction with respect to a wavelength of incident light. 前記光導波路において、
テーパ形状コアの光入射部側端部の横幅をW1(μm)、光出射部側端部の横幅をW2(μm)、テーパ形状コアの光入射部側端部から光出射部側端部までの長さをL1(μm)、テーパ形状コアの厚みをY1(μm)、入射用コアの厚みをY2(μm)、及びtan-1[(W1−W2)/2/L1]で定義されるテーパ形状コアのテーパ角をα(度)、光入射部側端部における複数の入射用コアのコア中心間最大距離をX1(μm)、テーパ形状コア側端部における複数の入射用コアのコア中心間最大距離をX2(μm)、入射用コアの光入射部側端部からテーパ形状コア側端部までの長さをL2(μm)としたとき、以下の(1)〜(9)を満たす請求項5に記載の光導波路。
(1)0.1≦α≦2.0
(2)130≦W1≦750
(3)50≦W2≦200
(4)1000≦L1≦30000
(5)30≦Y1,Y2≦300
(6)500≦X1≦1500
(7)100≦X2≦500
(8)W1≧X2
(9)1000≦L2≦5000
In the optical waveguide,
The horizontal width of the light incident part side end of the tapered core is W1 (μm), the horizontal width of the light output part side end is W2 (μm), and from the light incident part side end of the tapered core to the light output part side end Is defined by L1 (μm), the thickness of the tapered core is Y1 (μm), the thickness of the incident core is Y2 (μm), and tan −1 [(W1-W2) / 2 / L1]. The taper angle of the taper-shaped core is α (degrees), the maximum distance between the core centers of the plurality of incident cores at the light incident part side end is X1 (μm), and the cores of the plurality of incident cores at the tapered core side end part When the maximum distance between the centers is X2 (μm) and the length from the light incident part side end of the incident core to the tapered core side end is L2 (μm), the following (1) to (9) The optical waveguide according to claim 5, wherein the optical waveguide is satisfied.
(1) 0.1 ≦ α ≦ 2.0
(2) 130 ≦ W1 ≦ 750
(3) 50 ≦ W2 ≦ 200
(4) 1000 ≦ L1 ≦ 30000
(5) 30 ≦ Y1, Y2 ≦ 300
(6) 500 ≦ X1 ≦ 1500
(7) 100 ≦ X2 ≦ 500
(8) W1 ≧ X2
(9) 1000 ≦ L2 ≦ 5000
曲線形状の入射用コアの形状が、略S字形状である請求項4〜6のいずれか1項に記載の光導波路。   The optical waveguide according to any one of claims 4 to 6, wherein the shape of the curved incident core is substantially S-shaped. 前記テーパ形状コアが、光入射部側端部付近で曲線形状を含み、光出射部方向に向けて横幅が曲線的に狭くなるテーパ形状を少なくとも含む請求項1〜7のいずれか1項に記載の光導波路。   The taper-shaped core includes at least a tapered shape including a curved shape in the vicinity of the light incident portion side end portion, and having a lateral width that is curvilinearly narrowed toward the light emitting portion direction. Optical waveguide. 前記光導波路がポリマ光導波路である請求項1〜8のいずれか1項に記載の光導波路。   The optical waveguide according to claim 1, wherein the optical waveguide is a polymer optical waveguide. 請求項1〜9のいずれか1項に記載の光導波路からなる光導波路本体と、
発光素子より構成される2以上の発光点から異なる波長の光を該光導波路本体へ出射する光入射部と、を備える波長多重光合波装置。
An optical waveguide body comprising the optical waveguide according to any one of claims 1 to 9,
A wavelength division multiplexing optical multiplexer comprising: a light incident portion that emits light of different wavelengths from two or more light emitting points configured by light emitting elements to the optical waveguide body.
前記光入射部が、3つの発光点を有しており、それぞれ赤色、緑色、及び青色の光となる特定の波長を有する光を出射する請求項10に記載の波長多重光合波装置。   The wavelength division multiplexing optical multiplexer according to claim 10, wherein the light incident portion has three light emitting points and emits light having specific wavelengths that are red, green, and blue light, respectively. 請求項10又は11に記載の波長多重光合波装置を用いた医療用内視鏡。   A medical endoscope using the wavelength multiplexing optical multiplexer according to claim 10 or 11.
JP2010105010A 2010-04-30 2010-04-30 Optical waveguide, wavelength multiplexing optical multiplexer, and medical endoscope using the same Expired - Fee Related JP5640445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010105010A JP5640445B2 (en) 2010-04-30 2010-04-30 Optical waveguide, wavelength multiplexing optical multiplexer, and medical endoscope using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010105010A JP5640445B2 (en) 2010-04-30 2010-04-30 Optical waveguide, wavelength multiplexing optical multiplexer, and medical endoscope using the same

Publications (2)

Publication Number Publication Date
JP2011232674A true JP2011232674A (en) 2011-11-17
JP5640445B2 JP5640445B2 (en) 2014-12-17

Family

ID=45322012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010105010A Expired - Fee Related JP5640445B2 (en) 2010-04-30 2010-04-30 Optical waveguide, wavelength multiplexing optical multiplexer, and medical endoscope using the same

Country Status (1)

Country Link
JP (1) JP5640445B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022224A (en) * 2013-07-22 2015-02-02 日立化成株式会社 Optical device and method of manufacturing the same
KR20200004318A (en) * 2017-05-05 2020-01-13 더 유니버시티 코트 오브 더 유니버시티 오브 에딘버그 Optical system and method
US11971574B2 (en) 2022-04-20 2024-04-30 Apple Inc. Multi-mode devices for multiplexing and de-multiplexing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138606A (en) * 1989-10-25 1991-06-13 Mitsubishi Gas Chem Co Inc Light branching device
JP2002514783A (en) * 1998-05-08 2002-05-21 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク Multimode coupler based on miniaturized interference
JP2002233501A (en) * 2001-02-08 2002-08-20 Asahi Optical Co Ltd Electronic endoscope apparatus
JP2004199032A (en) * 2002-12-05 2004-07-15 Sony Corp Polymeric optical waveguide
JP2009199038A (en) * 2008-02-25 2009-09-03 National Institute Of Advanced Industrial & Technology Wavelength multiplexed optical transmission path structure and optical module using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138606A (en) * 1989-10-25 1991-06-13 Mitsubishi Gas Chem Co Inc Light branching device
JP2002514783A (en) * 1998-05-08 2002-05-21 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク Multimode coupler based on miniaturized interference
JP2002233501A (en) * 2001-02-08 2002-08-20 Asahi Optical Co Ltd Electronic endoscope apparatus
JP2004199032A (en) * 2002-12-05 2004-07-15 Sony Corp Polymeric optical waveguide
JP2009199038A (en) * 2008-02-25 2009-09-03 National Institute Of Advanced Industrial & Technology Wavelength multiplexed optical transmission path structure and optical module using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022224A (en) * 2013-07-22 2015-02-02 日立化成株式会社 Optical device and method of manufacturing the same
KR20200004318A (en) * 2017-05-05 2020-01-13 더 유니버시티 코트 오브 더 유니버시티 오브 에딘버그 Optical system and method
CN110831478A (en) * 2017-05-05 2020-02-21 爱丁堡大学董事会 Optical system and method
US11696676B2 (en) * 2017-05-05 2023-07-11 The University Of Bath Optical system and method
CN110831478B (en) * 2017-05-05 2023-08-08 爱丁堡大学董事会 Optical system and method
KR102588057B1 (en) * 2017-05-05 2023-10-12 더 유니버시티 코트 오브 더 유니버시티 오브 에딘버그 Optical systems and methods
US11971574B2 (en) 2022-04-20 2024-04-30 Apple Inc. Multi-mode devices for multiplexing and de-multiplexing

Also Published As

Publication number Publication date
JP5640445B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
US11143820B2 (en) Optical connector module
US8494023B2 (en) Composite optical waveguide, variable-wavelength laser, and method of oscillating laser
CA2994649C (en) Resin optical waveguide
JP2014126575A (en) Multi-core fiber
TW200704965A (en) Wave coupled light source
JP2019152804A (en) Optical connector
JP2017191214A (en) Optical module
JP2009175504A (en) Optical fiber structure
JP5640445B2 (en) Optical waveguide, wavelength multiplexing optical multiplexer, and medical endoscope using the same
JP2008216506A (en) Light source unit
KR20140039255A (en) Excitation unit for a fiber laser
US20210152794A1 (en) Optical multiplexer, light source module, two-dimensional optical scanning device, and image projection device
JP2008256853A (en) Backlight system for liquid crystal display device
JP7033366B2 (en) Optical waveguide type optical combiner, optical waveguide type combined wave light source optical device and image projection device
JP2012194448A (en) Optical connector and endoscope system
JP2011023560A (en) Light emitting device
JP5404461B2 (en) Optical transmission equipment
JP2017040887A (en) Optical waveguide connector
WO2011162745A1 (en) Coupling of a laser source to an optical data distributing device
US7327917B2 (en) Directional light beam generators
JP3964768B2 (en) Optical module
JP2007047694A (en) Optical transmission line and optical element possessing the same
JP2012173320A (en) Optical wiring board, laser beam multiplexing module, and projector using those
JP2009300617A (en) Light guide plate and optical module
JP2016212414A (en) Waveguide coupling circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

LAPS Cancellation because of no payment of annual fees