JP2011023560A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2011023560A
JP2011023560A JP2009167488A JP2009167488A JP2011023560A JP 2011023560 A JP2011023560 A JP 2011023560A JP 2009167488 A JP2009167488 A JP 2009167488A JP 2009167488 A JP2009167488 A JP 2009167488A JP 2011023560 A JP2011023560 A JP 2011023560A
Authority
JP
Japan
Prior art keywords
led chip
wavelength conversion
light
emitting device
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009167488A
Other languages
Japanese (ja)
Inventor
Kenichiro Tanaka
健一郎 田中
Kenji Tsubaki
健治 椿
Masao Kubo
雅男 久保
Masayuki Fujita
雅之 藤田
Noriaki Miyanaga
憲明 宮永
Yasushi Fujimoto
靖 藤本
Koji Tsubakimoto
孝治 椿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Institute for Laser Technology
Original Assignee
Panasonic Electric Works Co Ltd
Institute for Laser Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd, Institute for Laser Technology filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009167488A priority Critical patent/JP2011023560A/en
Publication of JP2011023560A publication Critical patent/JP2011023560A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device capable of improving wavelength conversion efficiency of a wavelength conversion portion. <P>SOLUTION: The light emitting device includes an LED chip 1, and the wavelength conversion portion 2 disposed on a light extraction surface side of the LED chip 1 to convert part of light emitted from the LED chip 1 into light having a wavelength longer than that of the LED chip 1. The wavelength conversion portion 2 is composed of a structure wherein a plurality of wavelength conversion element portions 21 are combined and arrayed, which use fluorescent glass as glass to which a rare earth element excited with the light emitted from the LED chip 1 to emit the light having the wavelength longer than that of the LED chip 1 is added. In the wavelength conversion portion 2, the wavelength conversion element portions 21 are optical fibers 120 each including the fluorescent glass as a core 121, and the respective optical fibers 120 are arrayed each having an optical-axis direction aligned with the optical axis direction of the LED chip 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、LEDチップを用いた発光装置に関するものである。   The present invention relates to a light emitting device using an LED chip.

従来から、LEDチップと、LEDチップの光取り出し面上に形成されLEDチップから放射された光の一部をLEDチップよりも長波長の光に変換する波長変換部であるガラス蛍光体層とを備え、所望の混色光(例えば、白色光)を得るようにした発光装置が提案されている(例えば、特許文献1参照)。なお、上記特許文献1に開示された発光装置は、LEDチップとガラス蛍光体層との積層体や各リードの一部などを覆うモールド部を砲弾型の形状に形成してあるので、モールド部のレンズ効果により指向性を強めることができる。   Conventionally, an LED chip and a glass phosphor layer that is a wavelength conversion unit that is formed on the light extraction surface of the LED chip and converts part of the light emitted from the LED chip into light having a longer wavelength than the LED chip. There has been proposed a light emitting device that includes a desired color mixture light (for example, white light) (see, for example, Patent Document 1). In the light emitting device disclosed in Patent Document 1, since the mold part that covers the laminated body of the LED chip and the glass phosphor layer, a part of each lead, and the like is formed in a bullet-shaped shape, the mold part The directivity can be strengthened by the lens effect.

特開2002−33521号公報JP 2002-33521 A

ところで、上記特許文献1に開示された発光装置では、LEDチップの光取り出し面上に形成されたガラス蛍光体層により波長変換を行っているが、ガラス蛍光体層の波長変換効率が低く、波長変換効率の向上が望まれている。特に、LEDチップを用いた発光装置を光源として照明器具に組み込んで使用する場合、より大きな光出力が必要となるが、LEDチップのチップサイズを大きくするのはハイブリッドレンズのような配光レンズや反射鏡などの配光制御部材での配光制御性が低下してしまうので、波長変換部での波長変換効率の向上が望まれている。   By the way, in the light emitting device disclosed in Patent Document 1, the wavelength conversion is performed by the glass phosphor layer formed on the light extraction surface of the LED chip, but the wavelength conversion efficiency of the glass phosphor layer is low, and the wavelength Improvement of conversion efficiency is desired. In particular, when a light emitting device using an LED chip is used as a light source incorporated in a lighting fixture, a larger light output is required. However, increasing the chip size of the LED chip is a light distribution lens such as a hybrid lens. Since the light distribution controllability of the light distribution control member such as a reflecting mirror is deteriorated, it is desired to improve the wavelength conversion efficiency in the wavelength conversion unit.

本発明は上記事由に鑑みて為されたものであり、その目的は、波長変換部の波長変換効率の向上を図れる発光装置を提供することにある。   This invention is made | formed in view of the said reason, The objective is to provide the light-emitting device which can aim at the improvement of the wavelength conversion efficiency of a wavelength conversion part.

請求項1の発明は、LEDチップと、LEDチップの光取り出し面側に配設されLEDチップから放射される光の一部をLEDチップよりも長波長の光に変換する波長変換部とを備え、波長変換部は、LEDチップから放射される光によって励起されてLEDチップよりも長波長の光を放射する希土類元素を添加したガラスである蛍光ガラスを用いた複数の波長変換要素部が組み合わせて配列された構造体からなることを特徴とする。   The invention of claim 1 includes an LED chip and a wavelength conversion unit that is disposed on the light extraction surface side of the LED chip and converts part of the light emitted from the LED chip into light having a longer wavelength than the LED chip. The wavelength conversion unit is a combination of a plurality of wavelength conversion element units using fluorescent glass that is excited by light emitted from the LED chip and added with a rare earth element that emits light having a longer wavelength than the LED chip. It consists of an arrayed structure.

この発明によれば、LEDチップの光取り出し面側に配設された波長変換部が、LEDチップから放射される光によって励起されてLEDチップよりも長波長の光を放射する希土類元素を添加したガラスである蛍光ガラスを用いた複数の波長変換要素部が組み合わせて配列された構造体からなるので、LEDチップから放射される光の波長変換部中での光路長を長くすることができ、波長変換部の波長変換効率の向上を図れる。   According to this invention, the wavelength conversion unit disposed on the light extraction surface side of the LED chip is added with a rare earth element that is excited by light emitted from the LED chip and emits light having a longer wavelength than the LED chip. Since it consists of a structure in which multiple wavelength conversion elements using fluorescent glass, which is glass, are combined and arranged, the optical path length in the wavelength converter of the light emitted from the LED chip can be increased, and the wavelength The wavelength conversion efficiency of the conversion unit can be improved.

請求項2の発明は、請求項1の発明において、前記波長変換部は、前記波長変換要素部が前記蛍光ガラスをコアとする光ファイバであり、各光ファイバの光軸方向が前記LEDチップの光軸方向に一致する形で配列されてなることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the wavelength conversion unit is an optical fiber in which the wavelength conversion element unit has the fluorescent glass as a core, and an optical axis direction of each optical fiber is the LED chip. It is characterized by being arranged so as to coincide with the optical axis direction.

この発明によれば、前記波長変換部の前記波長変換要素部が光ファイバであり、各光ファイバの光軸方向が前記LEDチップの光軸方向に一致する形で配列されているので、横方向への光の伝搬を抑制することができ、指向性を強めることができる。   According to this invention, the wavelength conversion element part of the wavelength conversion part is an optical fiber, and the optical axis direction of each optical fiber is arranged in a form that matches the optical axis direction of the LED chip. Propagation of light can be suppressed, and directivity can be enhanced.

請求項3の発明は、請求項1の発明において、前記波長変換部は、前記波長変換要素部が前記蛍光ガラスからなるビーズであり、3次元周期構造を有するように配列されてなることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the invention, the wavelength conversion unit is a bead made of the fluorescent glass, and the wavelength conversion element unit is arranged so as to have a three-dimensional periodic structure. And

この発明によれば、前記波長変換部の前記波長変換要素部がビーズであり、3次元周期構造を有するように配列されているので、LEDチップから放射される光を前記波長変換部内の多重反射により閉じ込めやすくなり、前記波長変換部の波長変換効率を高めることができる。   According to this invention, since the wavelength conversion element part of the wavelength conversion part is a bead and is arranged so as to have a three-dimensional periodic structure, the light radiated from the LED chip is multiplexed and reflected in the wavelength conversion part. Therefore, it becomes easier to confine, and the wavelength conversion efficiency of the wavelength conversion unit can be increased.

請求項4の発明は、請求項1の発明において、前記波長変換部は、前記波長変換要素部が前記蛍光ガラスを用いてシート状に形成され且つ少なくとも前記LEDチップ側とは反対側に多数の微小な凸状部が形成されたシート状部材であり、前記LEDチップの光軸方向に重ねて配列されてなることを特徴とする。   According to a fourth aspect of the present invention, in the first aspect of the present invention, the wavelength conversion section includes a plurality of the wavelength conversion element sections formed in a sheet shape using the fluorescent glass and at least on the side opposite to the LED chip side. It is a sheet-like member in which minute convex portions are formed, and is arranged so as to overlap in the optical axis direction of the LED chip.

この発明によれば、前記波長変換部が、前記波長変換要素部が前記蛍光ガラスを用いてシート状に形成され且つ少なくとも前記LEDチップ側とは反対側に多数の微小な凸状部が形成されたシート状部材であり、前記LEDチップの光軸方向に重ねて配列されているので、LEDチップから放射される光を前記波長変換部内の多重反射により閉じ込めやすくなり、前記波長変換部の波長変換効率を高めることができる。   According to this invention, the wavelength conversion part is formed in a sheet shape with the wavelength conversion element part using the fluorescent glass, and a plurality of minute convex parts are formed at least on the side opposite to the LED chip side. Sheet-like members, which are arranged so as to overlap in the optical axis direction of the LED chip, so that the light emitted from the LED chip can be easily confined by multiple reflection in the wavelength conversion unit, and the wavelength conversion of the wavelength conversion unit Efficiency can be increased.

請求項5の発明は、請求項1ないし請求項4の発明において、前記LEDチップの光軸方向に直交する面内で前記波長変換部を囲み前記LEDチップおよび前記希土類元素それぞれからの光を反射するフォトニック結晶が設けられてなることを特徴とする。   According to a fifth aspect of the present invention, in the first to fourth aspects of the present invention, the wavelength conversion unit is enclosed in a plane orthogonal to the optical axis direction of the LED chip and light from each of the LED chip and the rare earth element is reflected. A photonic crystal is provided.

この発明によれば、前記LEDチップの光軸方向に直交する面内で前記波長変換部を囲み前記LEDチップおよび前記希土類元素それぞれからの光を反射するフォトニック結晶が設けられていることにより、指向性を強めることができる。   According to this invention, by providing a photonic crystal that surrounds the wavelength conversion unit in a plane orthogonal to the optical axis direction of the LED chip and reflects light from each of the LED chip and the rare earth element, Directivity can be strengthened.

請求項1の発明では、波長変換部の波長変換効率の向上を図れるという効果がある。   In the invention of claim 1, there is an effect that the wavelength conversion efficiency of the wavelength conversion section can be improved.

実施形態1の発光装置を示し、(a)は概略側面図、(b)は概略分解斜視図である。The light-emitting device of Embodiment 1 is shown, (a) is a schematic side view, (b) is a schematic exploded perspective view. 同上の発光装置の他の構成例の波長変換部の説明図である。It is explanatory drawing of the wavelength conversion part of the other structural example of a light-emitting device same as the above. 実施形態2の発光装置を示し、(a)は概略側面図、(b)は概略分解斜視図である。The light-emitting device of Embodiment 2 is shown, (a) is a schematic side view, (b) is a schematic exploded perspective view. 実施形態3の発光装置を示し、(a)は概略側面図、(b)は概略分解斜視図である。The light-emitting device of Embodiment 3 is shown, (a) is a schematic side view, (b) is a schematic exploded perspective view. 実施形態4の発光装置を示し、(a)は概略断面図、(b)は概略分解斜視図である。The light-emitting device of Embodiment 4 is shown, (a) is a schematic sectional drawing, (b) is a schematic exploded perspective view.

(実施形態1)
本実施形態の発光装置は、図1に示すように、LEDチップ1と、LEDチップ1の光取り出し面側に配設されLEDチップ1から放射される光の一部をLEDチップ1よりも長波長の光に変換する波長変換部2とを備えている。
(Embodiment 1)
As shown in FIG. 1, the light emitting device according to the present embodiment has an LED chip 1 and a part of light emitted from the LED chip 1 disposed on the light extraction surface side of the LED chip 1 longer than the LED chip 1. And a wavelength converter 2 for converting the light into a wavelength.

上述のLEDチップ1は、青色の光を放射するGaN系の青色LEDチップであって、厚み方向の一表面側に、図示しない各電極(アノード電極、カソード電極)が形成されており、例えば、図示しない実装基板などにフリップチップ実装して用いる。なお、LEDチップ1は、青色LEDチップに限定するものではなく、例えば、紫色の光を放射する紫色LEDチップや、紫外光を放射する紫外LEDチップや、緑色の光を放射する緑色LEDチップなどでもよい。また、本実施形態では、LEDチップ1としてチップサイズが1mm□のものを用いているが、LEDチップ1のチップサイズは特に限定するものではない。また、LEDチップ1は、厚み方向の上記一表面側に各電極が形成されているが、厚み方向の上記一表面側に一方の電極が形成され、他表面側に他方の電極が形成されたものを用いてもよく、実装基板に実装する際の実装構造は特に限定するものではない。   The above-described LED chip 1 is a GaN-based blue LED chip that emits blue light, and each electrode (anode electrode, cathode electrode) (not shown) is formed on one surface side in the thickness direction. Flip chip mounting is used on a mounting board (not shown). The LED chip 1 is not limited to the blue LED chip. For example, a purple LED chip that emits purple light, an ultraviolet LED chip that emits ultraviolet light, a green LED chip that emits green light, and the like. But you can. In this embodiment, the LED chip 1 having a chip size of 1 mm □ is used, but the chip size of the LED chip 1 is not particularly limited. The LED chip 1 has each electrode formed on the one surface side in the thickness direction, but one electrode is formed on the one surface side in the thickness direction, and the other electrode is formed on the other surface side. What is used may be used, and the mounting structure when mounted on the mounting board is not particularly limited.

波長変換部2は、LEDチップ1から放射される光によって励起されてLEDチップ1よりも長波長の光を放射する希土類元素を添加したガラスである蛍光ガラスを用いた複数の波長変換要素部21が組み合わせて配列された構造体により構成されている。   The wavelength conversion unit 2 is a plurality of wavelength conversion element units 21 using fluorescent glass that is excited by light emitted from the LED chip 1 and added with a rare earth element that emits light having a longer wavelength than the LED chip 1. Are constituted by structures arranged in combination.

ここにおいて、本実施形態の発光装置では、波長変換部2の波長変換要素部21が上述の蛍光ガラスをコア121とする光ファイバ120であり、各光ファイバ120の光軸方向がLEDチップ1の光軸方向に一致する形で配列されている。要するに、波長変換部2は、LEDチップ1から放射された光によって励起されてLEDチップ1よりも長波長の光を放射する希土類元素がコア121に添加されてなりLEDチップ1に光結合する複数の直線状の光ファイバ120を備えている。   Here, in the light emitting device of the present embodiment, the wavelength conversion element unit 21 of the wavelength conversion unit 2 is the optical fiber 120 having the above-described fluorescent glass as the core 121, and the optical axis direction of each optical fiber 120 is the LED chip 1. They are arranged so as to coincide with the optical axis direction. In short, the wavelength conversion unit 2 includes a plurality of rare earth elements that are excited by light emitted from the LED chip 1 and emit light having a longer wavelength than the LED chip 1 and are optically coupled to the LED chip 1. The linear optical fiber 120 is provided.

光ファイバ120は、上述のように希土類元素がコア121に添加されているが、上述のようにLEDチップ1の発光色が青色の場合、希土類元素としては、例えば、Pr(緑色〜赤色の光を放射する)、Sm(橙色〜赤色の光を放射する)、Eu(赤色の光を放射する)、Er(緑色〜赤色の光を放射する)、Ho(緑色〜赤色の光を放射する)、Dy(黄色の光を放射する)、Tb(緑色の光を放射する)などから適宜採用すればよい。   In the optical fiber 120, the rare earth element is added to the core 121 as described above. When the emission color of the LED chip 1 is blue as described above, the rare earth element may be, for example, Pr (green to red light). Sm (emits orange to red light), Eu (emits red light), Er (emits green to red light), Ho (emits green to red light) , Dy (emits yellow light), Tb (emits green light), and the like.

また、光ファイバ120としては、シングルモードファイバを採用しているが、シングルモードファイバに限らず、ステップインデックス型(SI型)マルチモードファイバや、グレーデッドインデックス型(GI型)マルチモードファイバなどを採用してもよい。また、光ファイバ120は、コア121のみを備えたもの(空気がクラッドのもの)でもよい。   The optical fiber 120 employs a single mode fiber, but is not limited to a single mode fiber, but a step index type (SI type) multimode fiber, a graded index type (GI type) multimode fiber, or the like. It may be adopted. Further, the optical fiber 120 may include only the core 121 (air is clad).

ところで、光ファイバ120は、上述のように当該光ファイバ120の光軸方向がLEDチップ1の光軸方向に一致する形(平行となる形)でLEDチップ1の光取り出し面側で配列されており、且つ、LEDチップ1側とは反対側の端面(光出射面)から増幅自然放出光(Amplified Spontaneous Emission)が出射される長さに形成されている。なお、光ファイバ120の長さは、コア121の直径にもよるが、コア121の直径が0.05mm(50μm)の場合には、例えば、コア121の全長(両端面間の距離)が4mm〜10mm程度の範囲内となるように適宜設定すればよい。   By the way, the optical fiber 120 is arranged on the light extraction surface side of the LED chip 1 so that the optical axis direction of the optical fiber 120 coincides with the optical axis direction of the LED chip 1 (a parallel shape) as described above. In addition, it is formed in such a length that amplified spontaneous emission (Amplified Spontaneous Emission) is emitted from an end surface (light emitting surface) opposite to the LED chip 1 side. The length of the optical fiber 120 depends on the diameter of the core 121, but when the diameter of the core 121 is 0.05 mm (50 μm), for example, the total length of the core 121 (distance between both end faces) is 4 mm. What is necessary is just to set suitably so that it may become in the range of about 10 mm.

以上説明した本実施形態の発光装置では、波長変換部2が、LEDチップ1から放射される光によって励起されてLEDチップ1よりも長波長の光を放射する希土類元素を添加した蛍光ガラスを用いた複数の波長変換要素部21が組み合わせて配列された構造体からなるので、LEDチップ1から放射される光の波長変換部2中での光路長を長くすることができ、波長変換部2の波長変換効率の向上を図れる。   In the light emitting device of the present embodiment described above, the wavelength conversion unit 2 uses fluorescent glass to which a rare earth element that is excited by light emitted from the LED chip 1 and emits light having a longer wavelength than the LED chip 1 is added. Since the plurality of wavelength conversion element portions 21 are combined and arranged, the optical path length of the light emitted from the LED chip 1 in the wavelength conversion portion 2 can be increased. The wavelength conversion efficiency can be improved.

また、本実施形態の発光装置では、波長変換部2の波長変換要素部21が上述の蛍光ガラスをコア121とする光ファイバ120であり、各光ファイバ120の光軸方向がLEDチップ1の光軸方向に一致する形で配列されているので、横方向への光の伝搬を抑制することができ、指向性を強めることができる。しかして、本実施形態の発光装置は、指向性が強いので、レンズや反射鏡などの配光制御部材による配光制御の自由度が高く、しかも、光出力も大きいので、例えば、照明用途(照明器具など)の光源や、自動車のヘッドライト用の光源などとしても適用可能である。   Further, in the light emitting device of the present embodiment, the wavelength conversion element unit 21 of the wavelength conversion unit 2 is the optical fiber 120 having the above-described fluorescent glass as the core 121, and the optical axis direction of each optical fiber 120 is the light of the LED chip 1. Since they are arranged so as to coincide with the axial direction, the propagation of light in the lateral direction can be suppressed and the directivity can be enhanced. Since the light emitting device of the present embodiment has high directivity, the light distribution control by a light distribution control member such as a lens or a reflector is highly flexible, and the light output is large. It can also be applied as a light source for lighting fixtures, etc., or a light source for automobile headlights.

ここで、本実施形態の発光装置では、蛍光ガラスの希土類元素を適宜選択することにより、光ファイバ120におけるLEDチップ1側とは反対側の端面から、LEDチップ1からの光と希土類元素からの光の混色光として白色光を放射させることができる。   Here, in the light emitting device of the present embodiment, by appropriately selecting the rare earth element of the fluorescent glass, the light from the LED chip 1 and the rare earth element can be obtained from the end surface of the optical fiber 120 opposite to the LED chip 1 side. White light can be radiated as light mixture.

ところで、本実施形態の発光装置では、波長変換部2を、互いに変換波長の異なる複数種の波長変換要素部21が組み合わせて配列された構造体により構成するようにすれば、構造体に用いる波長変換要素部21の組み合わせで発光色を調整することが可能になるとともに色ばらつきを低減可能となり、また、演色性の高い白色光を得ることも可能となる。   By the way, in the light emitting device of the present embodiment, if the wavelength conversion unit 2 is configured by a structure in which a plurality of types of wavelength conversion element units 21 having different conversion wavelengths are combined, a wavelength used for the structure. The light emission color can be adjusted by the combination of the conversion element portions 21, color variation can be reduced, and white light with high color rendering can be obtained.

ここにおいて、例えば、互いに変換波長の異なる7種類の波長変換要素部21を組み合わせる場合、それぞれの変換波長をλ,λ,λ,λ,λ,λ,λ,λとすれば、波長変換要素部21をLEDチップ1の光軸方向に直交する面内で、図2(a)に示すように、仮想三角格子の各格子点それぞれに波長変換要素部21の中心が一致する形で複数の波長変換要素部21を2次元アレイ状に配置するようにし、且つ、隣接する波長変換要素部21同士の変換波長が異なるように配置すればよい。同様に、互いに変換波長の異なる4種類の波長変換要素部21を組み合わせる場合、それぞれの変換波長をλ,λ,λ,λとすれば、波長変換要素部21を図2(b)のように配置すればよい。 Here, for example, when combining seven types of wavelength conversion element portions 21 having different conversion wavelengths, the respective conversion wavelengths are changed to λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 , λ 7 , λ 8. As shown in FIG. 2 (a), the wavelength conversion element unit 21 is placed at the center of the wavelength conversion element unit 21 at each lattice point of the virtual triangular lattice in the plane orthogonal to the optical axis direction of the LED chip 1. A plurality of wavelength conversion element parts 21 may be arranged in a two-dimensional array so that the wavelength conversions coincide with each other, and the wavelength conversion elements 21 adjacent to each other may have different conversion wavelengths. Similarly, when four types of wavelength conversion element units 21 having different conversion wavelengths are combined, assuming that the respective conversion wavelengths are λ 1 , λ 2 , λ 3 , and λ 4 , the wavelength conversion element unit 21 is shown in FIG. ).

(実施形態2)
本実施形態の発光装置の基本構成は実施形態1と略同じであり、図3に示すように、波長変換部2の構造が相違する。なお、実施形態1と同様の構成要素には同一の符合を付して説明を省略する。
(Embodiment 2)
The basic configuration of the light emitting device of this embodiment is substantially the same as that of the first embodiment, and the structure of the wavelength converter 2 is different as shown in FIG. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

本実施形態における波長変換部2は、波長変換要素部21が蛍光ガラスからなるビーズ321であり、3次元周期構造を有するように配列されている。本実施形態では、ビーズ321の配置時の安定性を高めるために、ビーズ321の形状を、半球状の形状としてあるが、半球状に限らず、希土類元素による変換光が閉じ込められないように非真球状の形状であればよく、例えば、半楕円球状や楕円球状でもよい。また、ビーズ321の形状を楕円球状として、LEDチップ1の光軸方向に沿った方向が長径方向となるように配置するようにし、長径を長くしていけば、長手方向(長径方向)への増幅自然放出光を得ることも可能となる。なお、ビーズ321のサイズは数μm程度に設定すればよい。   In the wavelength conversion unit 2 in this embodiment, the wavelength conversion element unit 21 is a bead 321 made of fluorescent glass, and is arranged so as to have a three-dimensional periodic structure. In the present embodiment, the bead 321 has a hemispherical shape in order to enhance the stability when the beads 321 are arranged. However, the shape of the bead 321 is not limited to a hemispherical shape, and the non-converted light from the rare earth element is not confined. It may be a true spherical shape, and may be, for example, a semi-elliptical sphere or an elliptic sphere. Further, the shape of the beads 321 is elliptical, and the bead 321 is arranged so that the direction along the optical axis direction of the LED chip 1 is the major axis direction. If the major axis is increased, the length in the longitudinal direction (major axis direction) is increased. It is also possible to obtain amplified spontaneous emission light. Note that the size of the beads 321 may be set to about several μm.

しかして、本実施形態の発光装置では、波長変換部2の波長変換要素部21が蛍光ガラスからなるビーズ321であり、3次元周期構造を有するように配列されているので、横方向への光の伝搬を抑制することができ、指向性を強めることができる。   Therefore, in the light emitting device of the present embodiment, the wavelength conversion element portion 21 of the wavelength conversion portion 2 is the beads 321 made of fluorescent glass, and is arranged so as to have a three-dimensional periodic structure. Propagation can be suppressed, and directivity can be enhanced.

(実施形態3)
本実施形態の発光装置の基本構成は実施形態1と略同じであり、図4に示すように、波長変換部2の構造が相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 3)
The basic configuration of the light emitting device of this embodiment is substantially the same as that of the first embodiment, and the structure of the wavelength converter 2 is different as shown in FIG. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

本実施形態における波長変換部2は、波長変換要素部21が、蛍光ガラスを用いてシート状に形成され且つLEDチップ1側とは反対側およびLEDチップ1側それぞれに多数の凸状部322,323が形成されたシート状部材321であり、複数のシート状部材321がLEDチップ1の光軸方向に重ねて配列されている。要するに、各シート状部材321は、各シート状部材321の厚み方向がLEDチップ1の光軸方向に一致する形で配列されている。なお、LEDチップ1の光軸方向は、当該LEDチップ1の厚み方向に一致している。   In the wavelength conversion unit 2 according to the present embodiment, the wavelength conversion element unit 21 is formed in a sheet shape using fluorescent glass, and has a large number of convex portions 322 on the side opposite to the LED chip 1 side and on the LED chip 1 side. 323 is a sheet-like member 321 in which a plurality of sheet-like members 321 are arranged so as to overlap in the optical axis direction of the LED chip 1. In short, each sheet-like member 321 is arranged in a form in which the thickness direction of each sheet-like member 321 coincides with the optical axis direction of the LED chip 1. The optical axis direction of the LED chip 1 coincides with the thickness direction of the LED chip 1.

シート状部材321におけるLEDチップ1側とは反対側の凸状部322とLEDチップ1側の凸状部323とは1対1で対応するように配置されている。   The convex part 322 on the opposite side to the LED chip 1 side in the sheet-like member 321 and the convex part 323 on the LED chip 1 side are arranged so as to correspond one-to-one.

以上説明した本実施形態の発光装置では、波長変換部2が波長変換要素部21である上述のシート状部材321をLEDチップ1の光軸方向に重ねて配列してあるので、LEDチップ1から放射される光を波長変換部2内の多重反射により閉じ込めやすくなり、波長変換部2の波長変換効率を高めることができる。ここで、本実施形態におけるシート状部材321は、LEDチップ1側とは反対側およびLEDチップ1側それぞれに多数の凸状部322,323が形成されているが、少なくともLEDチップ1側とは反対側に凸状部322が形成されていればよい。ここにおいて、シート状部材321におけるLEDチップ1側とは反対側の凸状部322は、変換光の指向性を強めるために平凸レンズ状の形状に形成することが好ましく、シート状部材321におけるLEDチップ1側の凸状部323は、LEDチップ1から放射された光の発散を抑制するために平凸レンズ状の形状に形成することが好ましい。なお、シート状部材321の厚み方向において重なる一対の凸状部322,323と両凸状部322,323の間の部位とで構成される微小構造体の形状は、希土類元素による変換光が閉じ込められないように非真球状の形状であればよくて、例えば、楕円球状の形状としてもよく、LEDチップ1の光軸方向に沿った方向を長径方向として長径を長くしていけば、長手方向(長径方向)への増幅自然放出光を得ることも可能となる。また、本実施形態では、シート状部材321の厚み方向において重なる一対の凸状部322,323と両凸状部322,323の間の部位とで構成される多数の微小構造体が、波長変換部2全体では細密構造となるように配置されているので、LEDチップ1の厚み方向において微小構造体が一直線上に連なる構造が並設されている場合に比べて、波長変換部2の波長変換効率をより高めることができる。ここで、横方向の両端の両凸状部322,323については縦割した形状(半割体)でもよい。   In the light emitting device of the present embodiment described above, the wavelength conversion unit 2 is arranged such that the above-described sheet-like member 321 that is the wavelength conversion element unit 21 is overlapped in the optical axis direction of the LED chip 1. The emitted light is easily confined by the multiple reflection in the wavelength conversion unit 2, and the wavelength conversion efficiency of the wavelength conversion unit 2 can be increased. Here, the sheet-like member 321 in the present embodiment has a plurality of convex portions 322 and 323 formed on the side opposite to the LED chip 1 side and on the LED chip 1 side, but at least with the LED chip 1 side. The convex part 322 should just be formed in the other side. Here, the convex portion 322 on the opposite side to the LED chip 1 side in the sheet-like member 321 is preferably formed in a plano-convex lens shape in order to enhance the directivity of the converted light, and the LED in the sheet-like member 321 The convex portion 323 on the chip 1 side is preferably formed in a plano-convex lens shape in order to suppress the divergence of light emitted from the LED chip 1. Note that the microstructure formed by the pair of convex portions 322 and 323 and the portion between the convex portions 322 and 323 that overlap in the thickness direction of the sheet-like member 321 is confined by the light converted by the rare earth element. For example, the shape may be a non-spherical shape, for example, may be an elliptical shape, and if the direction along the optical axis direction of the LED chip 1 is the longer diameter direction and the longer diameter is increased, the longer direction It is also possible to obtain amplified spontaneous emission light (in the major axis direction). Further, in this embodiment, a number of microstructures constituted by a pair of convex portions 322 and 323 that overlap in the thickness direction of the sheet-like member 321 and portions between both convex portions 322 and 323 are converted into wavelengths. Since the entire portion 2 is arranged so as to have a fine structure, the wavelength conversion of the wavelength conversion portion 2 is compared with the case where the structures in which the microstructures are arranged in a straight line in the thickness direction of the LED chip 1 are arranged in parallel. Efficiency can be further increased. Here, the both convex portions 322 and 323 at both ends in the horizontal direction may have a vertically-divided shape (half body).

また、本実施形態の発光装置では、波長変換部2の波長変換要素部21が上述のシート状部材321なので、互いに変換波長の異なる複数種のシート状部材321を用意しておき、適宜重ねて配列することにより、発光色の調整が容易になる。   In the light emitting device of this embodiment, since the wavelength conversion element 21 of the wavelength conversion unit 2 is the above-mentioned sheet-like member 321, a plurality of types of sheet-like members 321 having different conversion wavelengths are prepared and appropriately stacked. By arranging, the emission color can be easily adjusted.

(実施形態4)
本実施形態の発光装置の基本構成は実施形態2と略同じであり、図5に示すように、LEDチップ1の光軸方向に直交する面内で波長変換部2を囲みLEDチップ1および波長変換部2の希土類元素それぞれからの光を反射するフォトニック結晶4が設けられている点が相違するだけである。なお、実施形態2と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 4)
The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the second embodiment. As shown in FIG. 5, the wavelength conversion unit 2 is enclosed in a plane orthogonal to the optical axis direction of the LED chip 1, and the LED chip 1 and the wavelength. The only difference is that a photonic crystal 4 that reflects light from each of the rare earth elements of the converter 2 is provided. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 2, and description is abbreviate | omitted.

上述のフォトニック結晶4は、第1の材料からなる微細な球体42を所定の周期で3次元的に配列し隣接する球体42間に第1の材料とは屈折率の異なる第2の材料が充填された人工オパール構造を有する3次元フォトニック結晶であるが、フォトニック結晶4の構造は特に限定するものではなく、例えば、反転オパール構造を採用してもよい。また、フォトニック結晶4は、3次元フォトニック結晶に限らず、2次元フォトニック結晶や1次元フォトニック結晶でもよい。   In the photonic crystal 4 described above, the fine spheres 42 made of the first material are three-dimensionally arranged at a predetermined period, and a second material having a refractive index different from that of the first material is provided between the adjacent spheres 42. Although it is a three-dimensional photonic crystal having a filled artificial opal structure, the structure of the photonic crystal 4 is not particularly limited. For example, an inverted opal structure may be adopted. The photonic crystal 4 is not limited to a three-dimensional photonic crystal, and may be a two-dimensional photonic crystal or a one-dimensional photonic crystal.

しかして、本実施形態の発光装置では、LEDチップ1の光軸方向に直交する面内で波長変換部2を囲みLEDチップ1および希土類元素それぞれからの光を反射するフォトニック結晶4が設けられていることにより、指向性を強めることができるとともに、LEDチップ1から放射される光をより効率良く波長変換部2に入射させることができる。   Thus, in the light emitting device of the present embodiment, the photonic crystal 4 is provided that surrounds the wavelength conversion unit 2 in a plane orthogonal to the optical axis direction of the LED chip 1 and reflects light from each of the LED chip 1 and the rare earth element. As a result, the directivity can be enhanced, and the light emitted from the LED chip 1 can be incident on the wavelength converter 2 more efficiently.

1 LEDチップ
2 波長変換部
4 フォトニック結晶
21 波長変換要素部
120 光ファイバ
121 コア
122 クラッド
221 ビーズ
321 シート状部材
322 凸状部
323 凸状部
DESCRIPTION OF SYMBOLS 1 LED chip 2 Wavelength conversion part 4 Photonic crystal 21 Wavelength conversion element part 120 Optical fiber 121 Core 122 Cladding 221 Bead 321 Sheet-like member 322 Convex part 323 Convex part

Claims (5)

LEDチップと、LEDチップの光取り出し面側に配設されLEDチップから放射される光の一部をLEDチップよりも長波長の光に変換する波長変換部とを備え、波長変換部は、LEDチップから放射される光によって励起されてLEDチップよりも長波長の光を放射する希土類元素を添加したガラスである蛍光ガラスを用いた複数の波長変換要素部が組み合わせて配列された構造体からなることを特徴とする発光装置。   The LED chip and a wavelength conversion unit that is disposed on the light extraction surface side of the LED chip and converts a part of the light emitted from the LED chip into light having a longer wavelength than the LED chip. It consists of a structure in which a plurality of wavelength conversion elements using fluorescent glass, which is a glass doped with rare earth elements that are excited by light emitted from the chip and emit light having a longer wavelength than the LED chip, are arranged in combination. A light emitting device characterized by that. 前記波長変換部は、前記波長変換要素部が前記蛍光ガラスをコアとする光ファイバであり、各光ファイバの光軸方向が前記LEDチップの光軸方向に一致する形で配列されてなることを特徴とする請求項1記載の発光装置。   The wavelength conversion unit is configured such that the wavelength conversion element unit is an optical fiber having the fluorescent glass as a core, and an optical axis direction of each optical fiber is aligned with an optical axis direction of the LED chip. The light-emitting device according to claim 1. 前記波長変換部は、前記波長変換要素部が前記蛍光ガラスからなるビーズであり、3次元周期構造を有するように配列されてなることを特徴とする請求項1記載の発光装置。   The light emitting device according to claim 1, wherein the wavelength conversion unit is configured such that the wavelength conversion element unit is a bead made of the fluorescent glass and has a three-dimensional periodic structure. 前記波長変換部は、前記波長変換要素部が前記蛍光ガラスを用いてシート状に形成され且つ少なくとも前記LEDチップ側とは反対側に多数の微小な凸状部が形成されたシート状部材であり、前記LEDチップの光軸方向に重ねて配列されてなることを特徴とする請求項1記載の発光装置。   The wavelength conversion part is a sheet-like member in which the wavelength conversion element part is formed in a sheet shape using the fluorescent glass, and at least a plurality of minute convex parts are formed on the side opposite to the LED chip side. The light-emitting device according to claim 1, wherein the light-emitting devices are arranged so as to overlap in an optical axis direction of the LED chips. 前記LEDチップの光軸方向に直交する面内で前記波長変換部を囲み前記LEDチップおよび前記希土類元素それぞれからの光を反射するフォトニック結晶が設けられてなることを特徴とする請求項1ないし請求項4のいずれか1項に記載の発光装置。   The photonic crystal which surrounds the said wavelength conversion part within the surface orthogonal to the optical axis direction of the said LED chip, and reflects the light from each of the said LED chip and the said rare earth elements is provided. The light emitting device according to claim 4.
JP2009167488A 2009-07-16 2009-07-16 Light emitting device Withdrawn JP2011023560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009167488A JP2011023560A (en) 2009-07-16 2009-07-16 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009167488A JP2011023560A (en) 2009-07-16 2009-07-16 Light emitting device

Publications (1)

Publication Number Publication Date
JP2011023560A true JP2011023560A (en) 2011-02-03

Family

ID=43633364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009167488A Withdrawn JP2011023560A (en) 2009-07-16 2009-07-16 Light emitting device

Country Status (1)

Country Link
JP (1) JP2011023560A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011116230A1 (en) * 2011-10-17 2013-04-18 Osram Opto Semiconductors Gmbh Ceramic conversion element, optoelectronic semiconductor component with a ceramic conversion element and method for producing a ceramic conversion element
JP2016075505A (en) * 2014-10-03 2016-05-12 株式会社日立製作所 Optical fiber strain gage, optical fiber strain sensor, and optical fiber strain sensing system
US9680069B2 (en) 2015-06-08 2017-06-13 Samsung Electronics Co., Ltd. Light emitting device package, wavelength conversion film, and manufacturing method thereof
JP2020122868A (en) * 2019-01-30 2020-08-13 日亜化学工業株式会社 Wavelength conversion component and light-emitting device using the same
JP2021068917A (en) * 2021-01-20 2021-04-30 三菱電機株式会社 Light-emitting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011116230A1 (en) * 2011-10-17 2013-04-18 Osram Opto Semiconductors Gmbh Ceramic conversion element, optoelectronic semiconductor component with a ceramic conversion element and method for producing a ceramic conversion element
US9018671B2 (en) 2011-10-17 2015-04-28 Osram Opto Semiconductors Gmbh Ceramic conversion element, optoelectronic semiconductor component comprising a ceramic conversion element, and method for producing a ceramic conversion element
DE102011116230B4 (en) * 2011-10-17 2018-10-25 Osram Opto Semiconductors Gmbh Ceramic conversion element, optoelectronic semiconductor component with a ceramic conversion element and method for producing a ceramic conversion element
JP2016075505A (en) * 2014-10-03 2016-05-12 株式会社日立製作所 Optical fiber strain gage, optical fiber strain sensor, and optical fiber strain sensing system
US9680069B2 (en) 2015-06-08 2017-06-13 Samsung Electronics Co., Ltd. Light emitting device package, wavelength conversion film, and manufacturing method thereof
JP2020122868A (en) * 2019-01-30 2020-08-13 日亜化学工業株式会社 Wavelength conversion component and light-emitting device using the same
JP6989786B2 (en) 2019-01-30 2022-01-12 日亜化学工業株式会社 Wavelength conversion parts and light emitting devices using them
JP2021068917A (en) * 2021-01-20 2021-04-30 三菱電機株式会社 Light-emitting device
JP7283489B2 (en) 2021-01-20 2023-05-30 三菱電機株式会社 light emitting device

Similar Documents

Publication Publication Date Title
EP3365598B1 (en) Lighting device for example for spot lighting applications
CN102753883B (en) Comprise the lamp of phosphor, radiation source, optical system and radiator
JP6890287B2 (en) lighting equipment
KR20060113981A (en) Light source using a plurality of leds, and method of assembling the same
US11868023B2 (en) Light-emitting device and optical fiber
US9759843B2 (en) Optical beam shaping and polarization selection on LED with wavelength conversion
JP6868807B2 (en) Light source device and lighting equipment
JP2011023560A (en) Light emitting device
WO2013140484A1 (en) Light-emitting device
JP2007227573A (en) Light emitting device
JP2017531318A (en) Flexible light emitting device
US9494295B2 (en) Ring light module
JP2007041378A (en) Multiplexing light source
JP6344961B2 (en) Semiconductor light emitting device
WO2020123924A1 (en) 3-d optics with beam forming features
KR101121521B1 (en) Phosphor plate
KR102071429B1 (en) Lighting apparatus
JP7458039B2 (en) luminous system
JP2007103704A (en) Light emitting device, laser display and endoscope
JP6300080B2 (en) Light emitting device and vehicle lamp
CN112198582A (en) Composite structure and lighting structure
JP5640445B2 (en) Optical waveguide, wavelength multiplexing optical multiplexer, and medical endoscope using the same
JP2016119139A (en) Linear luminous body and solid light-emitting device
CN110778926B (en) Lighting device
US20230100241A1 (en) Speckle-suppressing lighting system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121002