JP2007041378A - Multiplexing light source - Google Patents

Multiplexing light source Download PDF

Info

Publication number
JP2007041378A
JP2007041378A JP2005226644A JP2005226644A JP2007041378A JP 2007041378 A JP2007041378 A JP 2007041378A JP 2005226644 A JP2005226644 A JP 2005226644A JP 2005226644 A JP2005226644 A JP 2005226644A JP 2007041378 A JP2007041378 A JP 2007041378A
Authority
JP
Japan
Prior art keywords
light
optical waveguides
light source
optical fiber
combined light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005226644A
Other languages
Japanese (ja)
Inventor
Shinichi Shimozu
臣一 下津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005226644A priority Critical patent/JP2007041378A/en
Priority to PCT/JP2006/315697 priority patent/WO2007015577A1/en
Priority to TW095128418A priority patent/TW200714925A/en
Publication of JP2007041378A publication Critical patent/JP2007041378A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • G02B6/425Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2856Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers formed or shaped by thermal heating means, e.g. splitting, branching and/or combining elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain multiplexed light rays having uniform light intensity by multiplexing light rays emitted from a plurality of light sources without using an optical means. <P>SOLUTION: Using a multiplexer 4 in which optical waveguides 3 are integrated extending from the outgoing ends of a plurality of optical waveguides 3, the light rays made incident on the optical waveguides 3 is multiplexed to form multiplexed light rays. The multiplexed light rays emitted from the multiplexer 4 is made incident to a rod integrator 5 and output by uniformizing the light intensity of the multiplexed light rays. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の光源から出射される光を光ファイバを用いて合波する合波光源に関するものである。   The present invention relates to a combined light source that combines light emitted from a plurality of light sources using an optical fiber.

光ファイバを用いた光源モジュール等において、複数の光源から出射されるレーザ光を合波する場合、特許文献1に開示された技術のように、従来は光源から出射されたレーザ光を集光レンズ等の光学手段を用いてレーザ光を集光させ、合波を行っていた。   When combining laser beams emitted from a plurality of light sources in a light source module or the like using an optical fiber, conventionally, as in the technique disclosed in Patent Document 1, a laser beam emitted from a light source is conventionally used as a condensing lens. The laser beam is condensed by using an optical means such as, and then multiplexed.

また、マルチモード光ファイバを用いた合波は、ファイバレーザ用の要素技術として盛んに研究が行われている。ファイバレーザにおける励起光を合波する場合、特許文献2及び3に開示された技術のように、中心にシングルモード光ファイバを配置して該シングルモード光ファイバの周辺にマルチモード光ファイバを複数本配置して束ね、シングルモード光ファイバのクラッド部とマルチモード光ファイバの出射端のコアを一体化(複数のコアを1つにする)して、入射された励起光を合波していた。
特開2005−032909号公報 米国特許5864644号公報 米国特許6434302号公報
Further, multiplexing using a multimode optical fiber has been actively studied as an element technology for fiber lasers. When combining pumping light in a fiber laser, as in the techniques disclosed in Patent Documents 2 and 3, a single mode optical fiber is arranged at the center, and a plurality of multimode optical fibers are arranged around the single mode optical fiber. The clad part of the single mode optical fiber and the core of the output end of the multimode optical fiber are integrated (a plurality of cores are made into one), and the incident excitation light is multiplexed.
JP 2005-032909 A US Pat. No. 5,864,644 US Pat. No. 6,434,302

光強度が均一化された合波光を得るためには、特許文献1に開示された技術の場合、ロッドインテグレータ等の透明媒体に合波光を入射させて光強度の均一化を図る必要がある。この場合、ロッドインテグレータの入射端面に集光レンズによって集光された合波光を正確に入射させる必要があり、ロッドインテグレータの配置位置の調整が製作作業を煩雑化させていた。   In order to obtain combined light with uniform light intensity, in the case of the technique disclosed in Patent Document 1, it is necessary to make the combined light incident on a transparent medium such as a rod integrator to make the light intensity uniform. In this case, it is necessary to accurately enter the combined light condensed by the condenser lens on the incident end face of the rod integrator, and adjustment of the arrangement position of the rod integrator complicates the production work.

また、ファイバレーザを用いた合波の場合、ファイバレーザの励起効率を高めるために高い開口率で合波光が出射されていた。開口率を高くすることにより、出射される合波光の高出力化が可能になる。更にシングルモード光ファイバから出力される信号光とファイバレーザから出力される励起光のオーバーラップを高めることができ、増幅率が高まる。しかし、高い開口率で合波光を出射すると、合波光の輝度が低下してしまうため、高輝度光源には不向きであった。   In the case of multiplexing using a fiber laser, the combined light is emitted with a high aperture ratio in order to increase the excitation efficiency of the fiber laser. By increasing the aperture ratio, it is possible to increase the output of the combined light that is emitted. Furthermore, the overlap between the signal light output from the single mode optical fiber and the pumping light output from the fiber laser can be increased, and the amplification factor is increased. However, when the combined light is emitted with a high aperture ratio, the brightness of the combined light is lowered, so that it is not suitable for a high-intensity light source.

本発明は、上記事情に鑑みてなされたものであり、複数の光源から出射される光を光学手段を用いずに光ファイバによって合波して、光強度の均一な合波光を得るための合波光源を提供することを目的とする。   The present invention has been made in view of the above circumstances, and combines light emitted from a plurality of light sources with an optical fiber without using optical means to obtain combined light with uniform light intensity. An object is to provide a wave light source.

以上の課題を解決するために、請求項1に記載の合波光源は、複数の光源と、該複数の光源から出射された光を入射する複数の光導波路と、該複数の光導波路の出射端から延びた該光導波路が一体化されて形成され、前記複数の光導波路から出射された光を合波して合波光を出射する合波手段と、該合波手段の出射端に接続された透明媒体と、を備え、前記透明媒体の入射端面が、前記合波手段の出射端面の断面積以上であることを特徴とする。   In order to solve the above-described problems, a combined light source according to claim 1 includes a plurality of light sources, a plurality of optical waveguides that receive light emitted from the plurality of light sources, and emission of the plurality of optical waveguides. The optical waveguide extending from the end is formed integrally, and is coupled to the light emitting means for combining the light emitted from the plurality of optical waveguides to emit the combined light, and to the output end of the multiplexing means. A transparent medium, wherein an incident end face of the transparent medium is equal to or larger than a cross-sectional area of an outgoing end face of the multiplexing means.

ここで、複数の光導波路が一体化されて形成される合波手段の形態には、コア部とクラッド部を有する光導波路において、コア部が実質的に一体化したもの、及びコア部とクラッド部の何れも一体化したもの等が含まれる。   Here, in the form of multiplexing means formed by integrating a plurality of optical waveguides, an optical waveguide having a core part and a clad part, in which the core part is substantially integrated, and the core part and the clad All of these parts are integrated.

また、請求項2に記載の合波光源のように、前記透明媒体が、コアとクラッドを有する光導波路であり、例えば、ライトガイド等であってもよい。   Further, as in the combined light source according to claim 2, the transparent medium is an optical waveguide having a core and a clad, and may be, for example, a light guide.

請求項3に記載の合波光源は、複数の光源と、該複数の光源から出射された光を入射する複数の光導波路と、該複数の光導波路の出射端から延びた該光導波路が一体化されて形成され、前記複数の光導波路から出射された光を合波して合波光を出射する合波手段と、を備え、前記合波手段の光導波路長が、前記合波手段が光強度の均一な合波光を出射するために十分な長さを有するものであることを特徴とする。   The combined light source according to claim 3, wherein a plurality of light sources, a plurality of optical waveguides that receive light emitted from the plurality of light sources, and the optical waveguides that extend from the emission ends of the plurality of optical waveguides are integrated. And a combining unit configured to combine the light emitted from the plurality of optical waveguides to emit combined light, and the length of the optical waveguide of the combining unit is light. It has a length sufficient to emit combined light with uniform intensity.

複数の光導波路を一体化して合波手段を形成し、複数の光導波路に入射された光を合波手段で合波して、該合波手段から出射された合波光を透明媒体に入射することにより、光強度の均一な合波光を得ることができる。また、合波手段の出射端面の断面積以上の断面積である入射端面を持つ透明媒体に合波光を入射させることによって、合波手段のコアに導波された光は勿論、クラッドに漏れた光も透明媒体に入射させることができるため、光損失を抑えることができる。   A plurality of optical waveguides are integrated to form a combining means, light incident on the plurality of optical waveguides is combined by the combining means, and the combined light emitted from the combining means is input to the transparent medium. Thus, combined light with uniform light intensity can be obtained. In addition, the light guided to the core of the multiplexing means leaks into the clad as well as the incident light to the transparent medium having the incident end face whose cross-sectional area is larger than the cross-sectional area of the emitting end face of the multiplexing means. Since light can also be incident on the transparent medium, light loss can be suppressed.

そして、光学手段を用いて合波せず、合波手段内において合波を行うため、安定した合波光を得ることができ、光学手段にかかるコストを削減することができる。更に、合波のために光学手段を用いると、光導波路の出射端面や透明媒体の入射端面が大気にさらされるため、汚染による性能劣化が問題となるが、合波手段内において合波を行うことによって合波部分が大気にさらされず、汚染による性能劣化を防ぐことができる。   And since it multiplexes within a multiplexing means, without combining using an optical means, the stable multiplexed light can be obtained and the cost concerning an optical means can be reduced. Further, when optical means is used for multiplexing, the emission end face of the optical waveguide and the incident end face of the transparent medium are exposed to the atmosphere, so that performance degradation due to contamination becomes a problem, but multiplexing is performed in the multiplexing means. As a result, the combined portion is not exposed to the atmosphere, and performance degradation due to contamination can be prevented.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

〔第1の実施の形態〕
図1は第1の実施の形態における合波光源100を示した図である。合波光源100は、光源1と、レンズ2と、マルチモード光ファイバ(光導波路)3と、マルチモード光ファイバ3が一体化されて形成された合波器(合波手段)4と、ロッドインテグレータ(透明媒体)5とを備えて構成される。
[First Embodiment]
FIG. 1 is a diagram showing a combined light source 100 in the first embodiment. A combined light source 100 includes a light source 1, a lens 2, a multimode optical fiber (optical waveguide) 3, a combiner (combining means) 4 formed by integrating the multimode optical fiber 3, and a rod. And an integrator (transparent medium) 5.

光源1として半導体レーザ、発光ダイオード等を用いる。各光源1から出射される光の光路上には各光源1に対応してレンズ2が配置され、各光源1から出射された光はレンズ2を介して各マルチモード光ファイバ3の入射端面に結合されて入射される。尚、光源1とマルチモード光ファイバ3の数は異なっていてもよく、例えば、1つの光源1から出射された光がレンズ2を介して複数のマルチモード光ファイバ3に入射されるように構成してもよい。また、マルチモード光ファイバ3は、石英ファイバ、ガラスファイバ、プラスチックファイバ等の何れでもよい。   As the light source 1, a semiconductor laser, a light emitting diode or the like is used. A lens 2 is arranged corresponding to each light source 1 on the optical path of the light emitted from each light source 1, and the light emitted from each light source 1 passes through the lens 2 to the incident end face of each multimode optical fiber 3. Combined and incident. Note that the number of the light sources 1 and the multimode optical fibers 3 may be different. For example, the light emitted from one light source 1 is incident on the plurality of multimode optical fibers 3 through the lens 2. May be. The multimode optical fiber 3 may be any one of quartz fiber, glass fiber, plastic fiber, and the like.

各マルチモード光ファイバ3の出射端側のコアは一体化されて合波器4を形成し、マルチモード光ファイバ3に入射された光が合波器4において合波され、合波光がロッドインテグレータ5に入射される。合波光が入射されるロッドインテグレータ5の入射端面の断面積は、合波器4の出射端面の断面積以上であることが望ましい。これにより、合波器4においてクラッドに漏れた光もロッドインテグレータ5に入射させることができ、光損失を抑えることができる。   The cores on the output end side of each multimode optical fiber 3 are integrated to form a multiplexer 4, the light incident on the multimode optical fiber 3 is combined in the multiplexer 4, and the combined light is converted into a rod integrator. 5 is incident. The cross-sectional area of the incident end face of the rod integrator 5 on which the combined light is incident is preferably equal to or larger than the cross-sectional area of the output end face of the multiplexer 4. Thereby, the light leaked to the clad in the multiplexer 4 can also be incident on the rod integrator 5, and the optical loss can be suppressed.

尚、本実施の形態では、透明媒体としてロッドインテグレータを用いた場合について説明しているが、入射された合波光の強度を均一化して出射するものであれば何れの手段でもよく、例えば大口径石英ファイバ、大口径プラスチックファイバ等でもよい。ここで大口径とは直径100[μm]以上の口径を示す。また、ロッドインテグレータのように直方体の形をしたもの以外に円形、その他の方形の形状をなす透明媒体であっても適用可能である。   In this embodiment, the case where a rod integrator is used as the transparent medium is described. However, any means may be used as long as the intensity of the incident combined light is uniformized and emitted, for example, a large aperture. A quartz fiber, a large-diameter plastic fiber, or the like may be used. Here, the large diameter means a diameter of 100 [μm] or more. Further, the present invention can also be applied to a transparent medium having a circular shape or other rectangular shapes other than a rectangular solid shape such as a rod integrator.

次に、合波器4の作製方法について図2を用いて説明する。最初にマルチモード光ファイバ3の所定の領域Aの被覆31を除去し(図2(1))、被覆31の除去されたマルチモード光ファイバ3を複数本束ねる。続いて、被覆31が除去された領域Aを加熱によって軟化させる。この加熱処理によって複数のマルチモード光ファイバ3の加熱部分の各コアが一体化されて1つのコアとなる。   Next, a method for manufacturing the multiplexer 4 will be described with reference to FIG. First, the coating 31 in a predetermined region A of the multimode optical fiber 3 is removed (FIG. 2 (1)), and a plurality of multimode optical fibers 3 from which the coating 31 has been removed are bundled. Subsequently, the region A from which the coating 31 has been removed is softened by heating. By this heat treatment, the respective cores of the heating portions of the plurality of multimode optical fibers 3 are integrated into one core.

そして複数のマルチモード光ファイバ3の両端を引っ張って、加熱処理によって軟化された部分を伸延させる(図2(2))。この伸延処理によってマルチモード光ファイバ3の軟化部分が細径化され、マルチモード光ファイバ3の両端のファイバ径より軟化部分のファイバ径が細いテーパ構造となる。このように光ファイバが細径化すると導波する光の閉じ込めが弱くなるため、モード径を広げることができる。ここで、マルチモード光ファイバ3を加熱により軟化させる領域は3mm長程度でよいが、3〜20mm長の領域を軟化させることにより、伸延処理の際に軟化部分を緩やかなテーパ構造にすることができる。これにより、合波光の損失を低減させることができる。   And the both ends of the several multimode optical fiber 3 are pulled, and the part softened by heat processing is distracted (FIG. 2 (2)). By this stretching process, the softened portion of the multimode optical fiber 3 is reduced in diameter, and the tapered diameter of the softened portion is smaller than the fiber diameters at both ends of the multimode optical fiber 3. When the diameter of the optical fiber is reduced in this way, the confinement of the guided light becomes weak, so that the mode diameter can be increased. Here, the region in which the multimode optical fiber 3 is softened by heating may be about 3 mm long, but by softening the region having a length of 3 to 20 mm, the softened portion can be made into a gently tapered structure during the distraction treatment. it can. Thereby, the loss of combined light can be reduced.

次に、マルチモード光ファイバ3の細径化された領域のうち、
NAinput×Dinput≦NAoutput×Doutput ・・・(1)
の式を満足する位置でマルチモード光ファイバ3を切断し、その切断面32に対して加熱融着やコネクタ等を用いた機械的な接続方法でロッドインテグレータ5を接続する(図2(3)、(4))。尚、NAinputはマルチモード光ファイバ3の切断面32における開口率、Dinputは切断面32の断面積、NAoutputはロッドインテグレータ5の入射端面の開口率、Doutputはロッドインテグレータ5の切断面32との接続面の断面積である。また、マルチモード光ファイバ3において、加熱・伸延処理によって複数のコアが1つのコアとなった部分が合波器4に相当する。
Next, among the reduced diameter regions of the multimode optical fiber 3,
NA input × D input ≦ NA output × D output (1)
The multi-mode optical fiber 3 is cut at a position satisfying the following equation, and the rod integrator 5 is connected to the cut surface 32 by a mechanical connection method using heat fusion, a connector, or the like (FIG. 2 (3)). (4)). NA input is the aperture ratio at the cut surface 32 of the multimode optical fiber 3, D input is the cross-sectional area of the cut surface 32, NA output is the aperture ratio of the incident end surface of the rod integrator 5, and D output is the cut surface of the rod integrator 5. FIG. Further, in the multimode optical fiber 3, a portion where a plurality of cores become one core by the heating and stretching process corresponds to the multiplexer 4.

上述した方法で作製された合波光源100のマルチモード光ファイバ3及びロッドインテグレータ5における長さ方向の断面図を図3に示す。図3において、点線Aの位置の断面図を図4(A)、点線Bの位置の断面図を図4(B)、点線Cの位置の断面図を図4(C)、点線Dの位置の断面図を図4(D)に示す。   FIG. 3 shows a cross-sectional view in the length direction of the multimode optical fiber 3 and the rod integrator 5 of the combined light source 100 manufactured by the method described above. 3, the sectional view at the position of dotted line A is FIG. 4 (A), the sectional view at the position of dotted line B is FIG. 4 (B), the sectional view at the position of dotted line C is FIG. A cross-sectional view of FIG.

位置Aにおいては、マルチモード光ファイバ3のコアとクラッドの境界がステップ状に変化するステップインデックスと呼ばれる境界面になる。加熱・伸延処理の行われた部分(位置B、C及びD)はコアとクラッドの境界面のドーパントが熱拡散し、なだらかな屈折率分布となる。更に、位置C及びDのようにファイバ外径が小さくなると、光ファイバのほぼ全域に光が導波される状態となる。   At the position A, the boundary between the core and the clad of the multimode optical fiber 3 becomes a boundary surface called a step index that changes in a step shape. In the portion subjected to the heating and stretching process (positions B, C, and D), the dopant at the boundary surface between the core and the clad is thermally diffused, resulting in a gentle refractive index distribution. Further, when the outer diameter of the fiber is reduced as in the positions C and D, the light is guided to almost the entire area of the optical fiber.

以上、説明したように、複数のマルチモード光ファイバ3を束ね、加熱・伸延処理等によって各コアを一体化し、切断して合波器4を形成し、合波器4の出射端(切断面32)にロッドインテグレータ5を接続して合波光源100を形成することによって、光強度の均一な合波光を得ることができる。また、合波器4の出射端面(切断面32)の断面積以上の断面積の入射端面を持つロッドインテグレータ5に合波光を入射させることによって、合波器4のコアに導波された光は勿論、クラッドに漏れた光もロッドインテグレータ5に入射させることができるため、光損失を抑えることができる。   As described above, a plurality of multi-mode optical fibers 3 are bundled, and the cores are integrated by heating and stretching processes and cut to form the multiplexer 4, and the output end (cut surface) of the multiplexer 4 By connecting the rod integrator 5 to 32) and forming the combined light source 100, combined light with uniform light intensity can be obtained. Further, the light guided to the core of the multiplexer 4 by making the combined light incident on the rod integrator 5 having the incident end surface having a cross-sectional area equal to or larger than the cross-sectional area of the output end surface (cut surface 32) of the multiplexer 4. Needless to say, since light leaking into the cladding can also be incident on the rod integrator 5, light loss can be suppressed.

そして、光学手段を用いて合波せず、合波器4内において合波が行われるため、安定した合波光を得ることができ、光学手段にかかるコストを削減することができる。また、合波のために光学手段を用いると、マルチモード光ファイバ3の出射端面やロッドインテグレータ5の入射端面が大気にさらされるため、汚染による性能劣化が問題となるが、合波器4内において合波を行うことによって、合波部分が大気にさらされず汚染による性能劣化を防ぐことができる。   And since it multiplexes within the multiplexer 4 without combining using an optical means, the stable combined light can be obtained and the cost concerning an optical means can be reduced. Further, when optical means is used for multiplexing, the output end face of the multimode optical fiber 3 and the incident end face of the rod integrator 5 are exposed to the atmosphere, so that performance degradation due to contamination becomes a problem. By performing the multiplexing in step 1, the combined portion is not exposed to the atmosphere and performance degradation due to contamination can be prevented.

尚、本実施の形態において、マルチモード光ファイバ3が一体化され合波器4を形成する形態としてマルチモード光ファイバ3のコア部とクラッド部が実質的に一体化した場合について説明したが、マルチモード光ファイバ3のコア部のみが実質的に一体化した形態であってもよい。   In the present embodiment, the case where the core part and the clad part of the multimode optical fiber 3 are substantially integrated has been described as a form in which the multimode optical fiber 3 is integrated to form the multiplexer 4. Only the core part of the multimode optical fiber 3 may be substantially integrated.

〔第2の実施の形態〕
第1の実施の形態では、合波器4aの出射端面にロッドインテグレータ5を接続した合波光源100について説明した。第2の実施の形態では、合波器を透明媒体としたときの合波光源200について説明する。尚、図1において説明した構成要素と同様のものについては同じ符号を付し、説明は省略する。
[Second Embodiment]
In the first embodiment, the combined light source 100 in which the rod integrator 5 is connected to the emission end face of the combiner 4a has been described. In the second embodiment, a combined light source 200 when a combiner is used as a transparent medium will be described. Components similar to those described in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

図5は、第2の実施の形態における合波光源200を示した図である。合波光源200は、光源1と、レンズ2と、マルチモード光ファイバ3と、マルチモード光ファイバ3の各コアが一体化されて形成された合波器(合波手段)4aとを備えて構成される。   FIG. 5 is a diagram showing a combined light source 200 according to the second embodiment. The combined light source 200 includes a light source 1, a lens 2, a multimode optical fiber 3, and a combiner (combining unit) 4 a formed by integrating each core of the multimode optical fiber 3. Composed.

合波器4aは第1の実施の形態において説明した方法で形成される。合波器4aの光導波路長は、光強度が均一である合波光を出射するために十分な長さにし(例えば5[mm]以上)、合波光の光強度を均一化させて出射させる。従って、合波器4aの出射端側にロッドインテグレータ等の透明媒体を配置しなくてもよい。このようにロッドインテグレータ等を用いずに合波器4aから光強度が均一化された合波光を出射させることができるため、合波光源200の小型化することができる。   The multiplexer 4a is formed by the method described in the first embodiment. The optical waveguide length of the multiplexer 4a is set to a sufficient length (for example, 5 [mm] or more) to emit combined light having a uniform light intensity, and the light intensity of the combined light is made uniform. Accordingly, it is not necessary to arrange a transparent medium such as a rod integrator on the output end side of the multiplexer 4a. As described above, since the combined light with uniform light intensity can be emitted from the combiner 4a without using a rod integrator or the like, the combined light source 200 can be downsized.

第1の実施の形態における合波光源を示した図The figure which showed the combined light source in 1st Embodiment 合波光源の製造方法を説明するための図The figure for demonstrating the manufacturing method of a light source マルチモード光ファイバと合波器の長さ方向の断面図Cross-sectional view of multimode optical fiber and multiplexer in length direction マルチモード光ファイバと合波器の各位置における断面図Cross-sectional view at each position of multimode optical fiber and multiplexer 第2の実施の形態における合波光源を示した図The figure which showed the combined light source in 2nd Embodiment

符号の説明Explanation of symbols

100、200 合波光源
1 光源
2 レンズ
3 マルチモード光ファイバ
4 合波器
5 ロッドインテグレータ
100, 200 Combined light source 1 Light source 2 Lens 3 Multimode optical fiber 4 Combiner 5 Rod integrator

Claims (3)

複数の光源と、
該複数の光源から出射された光を入射する複数の光導波路と、
該複数の光導波路の出射端から延びた該光導波路が一体化されて形成され、前記複数の光導波路から出射された光を合波して合波光を出射する合波手段と、
該合波手段の出射端に接続された透明媒体と、
を備え、前記透明媒体の入射端面の断面積が、前記合波手段の出射端面の断面積以上であることを特徴とする合波光源。
Multiple light sources;
A plurality of optical waveguides for receiving light emitted from the plurality of light sources;
The optical waveguides extending from the output ends of the plurality of optical waveguides are formed integrally; a multiplexing means for combining the light emitted from the plurality of optical waveguides to emit combined light; and
A transparent medium connected to the output end of the multiplexing means;
And a cross-sectional area of the incident end face of the transparent medium is greater than or equal to a cross-sectional area of the output end face of the combining means.
前記透明媒体が、ライトガイドであることを特徴とする請求項1に記載の合波光源。   The combined light source according to claim 1, wherein the transparent medium is a light guide. 複数の光源と、
該複数の光源から出射された光を入射する複数の光導波路と、
該複数の光導波路の出射端から延びた該光導波路が一体化されて形成され、前記複数の光導波路から出射された光を合波して合波光を出射する合波手段と、
を備え、前記合波手段の光導波路長が、前記合波手段が光強度の均一な合波光を出射するために十分な長さを有するものであることを特徴とする合波光源。
Multiple light sources;
A plurality of optical waveguides for receiving light emitted from the plurality of light sources;
The optical waveguides extending from the output ends of the plurality of optical waveguides are formed integrally; a multiplexing means for combining the light emitted from the plurality of optical waveguides to emit combined light; and
The combined light source is characterized in that the optical waveguide length of the combining means has a length sufficient for the combining means to emit combined light with uniform light intensity.
JP2005226644A 2005-08-04 2005-08-04 Multiplexing light source Withdrawn JP2007041378A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005226644A JP2007041378A (en) 2005-08-04 2005-08-04 Multiplexing light source
PCT/JP2006/315697 WO2007015577A1 (en) 2005-08-04 2006-08-02 Combined light source
TW095128418A TW200714925A (en) 2005-08-04 2006-08-03 Optical wavelength multiplexing light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005226644A JP2007041378A (en) 2005-08-04 2005-08-04 Multiplexing light source

Publications (1)

Publication Number Publication Date
JP2007041378A true JP2007041378A (en) 2007-02-15

Family

ID=37708848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005226644A Withdrawn JP2007041378A (en) 2005-08-04 2005-08-04 Multiplexing light source

Country Status (3)

Country Link
JP (1) JP2007041378A (en)
TW (1) TW200714925A (en)
WO (1) WO2007015577A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186267A (en) * 2010-03-10 2011-09-22 Panasonic Corp Optical fiber condenser and laser device employing the same
JP2011224042A (en) * 2010-04-15 2011-11-10 Fujifilm Corp Light source device and endoscope apparatus using the same
JP2011224044A (en) * 2010-04-15 2011-11-10 Fujifilm Corp Light source device and endoscope apparatus using the same
JP2012174936A (en) * 2011-02-22 2012-09-10 Canon Inc Illumination optical system, exposure apparatus, and device manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007007655A1 (en) * 2007-02-13 2008-08-14 Leica Microsystems Cms Gmbh microscope
US8515220B1 (en) * 2012-04-12 2013-08-20 Raytheon Company Optical fiber coupler for coupling signal beams into a non-circularly shaped optical beam
DE102012209630A1 (en) * 2012-06-08 2013-12-12 Jenoptik Laser Gmbh fiber coupler
JP2017129744A (en) * 2016-01-20 2017-07-27 フォトンリサーチ株式会社 Optical multiplexing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234010A (en) * 1990-12-28 1992-08-21 Kyocera Corp Connecting device for optical waveguide and optical fiber
JPH11142682A (en) * 1997-11-07 1999-05-28 Showa Electric Wire & Cable Co Ltd Optical waveguide module and connection method
EP1060423B1 (en) * 1998-03-04 2010-06-02 JDS Uniphase Corporation Optical couplers for multimode fibers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186267A (en) * 2010-03-10 2011-09-22 Panasonic Corp Optical fiber condenser and laser device employing the same
JP2011224042A (en) * 2010-04-15 2011-11-10 Fujifilm Corp Light source device and endoscope apparatus using the same
JP2011224044A (en) * 2010-04-15 2011-11-10 Fujifilm Corp Light source device and endoscope apparatus using the same
JP2012174936A (en) * 2011-02-22 2012-09-10 Canon Inc Illumination optical system, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
WO2007015577A1 (en) 2007-02-08
TW200714925A (en) 2007-04-16

Similar Documents

Publication Publication Date Title
JP2006337399A (en) Multiplex light source
JP2007041378A (en) Multiplexing light source
JP2007041342A (en) Multiplexing light source
US20090154881A1 (en) Optical Fiber Combiner and Method of Manufacturing Thereof
CN109445034B (en) Few-mode wavelength division multiplexing coupler
US4830453A (en) Device for optically coupling a radiation source to an optical transmission fiber
US9001850B2 (en) Excitation unit for a fiber laser
JP2008152229A (en) Optical waveguide component and method for manufacturing optical waveguide component
WO2010067510A1 (en) Optical fiber collector, optical amplifier, and fiber laser device
JP2007293298A (en) Light input/output port of optical component
JP2009175504A (en) Optical fiber structure
US7769058B2 (en) Optical fiber laser
US20190237929A1 (en) Optical fiber and fiber laser
JP2006337398A (en) Multimode multiplexer
JP2002111101A (en) Laser light source device
JP2008226886A (en) Optical pumping device, optical amplifier, fiber laser and multicore fiber for optical pumping devices, and method for fabricating the same
EP1693693B1 (en) Cooled high power laser lens array
JP4048016B2 (en) Semiconductor laser light source and semiconductor laser processing apparatus using the same
JP5725176B2 (en) Light guide device and light guide method
JP2007165822A (en) Optical pumping device, optical amplifier, fiber laser, and multi-core fiber for optical pumping device
JP2000012933A (en) Laser apparatus
JP2007163940A (en) Optical coupling apparatus
JP2008076830A (en) Optical fiber module
JP2017003791A (en) Multiplexing laser beam source
JP2007173649A (en) Fiber laser device, optical mechanism and incidence method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061211

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007