JP2011231947A - Outdoor unit and indoor unit, and air-conditioner - Google Patents

Outdoor unit and indoor unit, and air-conditioner Download PDF

Info

Publication number
JP2011231947A
JP2011231947A JP2010100469A JP2010100469A JP2011231947A JP 2011231947 A JP2011231947 A JP 2011231947A JP 2010100469 A JP2010100469 A JP 2010100469A JP 2010100469 A JP2010100469 A JP 2010100469A JP 2011231947 A JP2011231947 A JP 2011231947A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
outdoor
temperature
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010100469A
Other languages
Japanese (ja)
Other versions
JP5452342B2 (en
Inventor
Takanori Isogawa
貴則 五十川
Fukuji Tsukada
福治 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010100469A priority Critical patent/JP5452342B2/en
Publication of JP2011231947A publication Critical patent/JP2011231947A/en
Application granted granted Critical
Publication of JP5452342B2 publication Critical patent/JP5452342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To precisely detect high-pressure-side pressure on a compressor discharge side using a temperature sensor of a heat exchanger.SOLUTION: An outdoor unit including a compressor 1, the outdoor heat exchanger 3, and an outdoor expansion valve 4 includes at least one flow passage for allowing gas refrigerants to flow in the outdoor heat exchanger 3 from two places and to flow out of the outdoor heat exchanger 3 from one place after the refrigerants condensed into two gas and liquid phases are flowed together when the outdoor heat exchanger 3 operates as a condenser, and the temperature sensor 6 for detecting the temperature of the refrigerants is provided at the confluence part.

Description

本発明は、熱交換器(凝縮器)で高圧冷媒の飽和温度を検出し、圧力センサを使用せずに圧縮機吐出側の高圧圧力を推定する空気調和機に関する。   The present invention relates to an air conditioner that detects the saturation temperature of a high-pressure refrigerant with a heat exchanger (condenser) and estimates the high-pressure pressure on the compressor discharge side without using a pressure sensor.

空気調和機において、圧縮機吐出側の高圧圧力を検知し、高圧圧力の異常上昇の抑制による圧縮機信頼性の確保や、ファンや室外膨張弁を動作させ空気温度に見合った適正な圧力に制御することでユーザーの快適性を確保する。しかし、圧力センサは高価なため製品の原価がアップする問題が生じる。   In air conditioners, high pressure on the discharge side of the compressor is detected to ensure compressor reliability by suppressing abnormal rises in high pressure, and to operate the fan and outdoor expansion valve to control the pressure appropriately for the air temperature. To ensure user comfort. However, since the pressure sensor is expensive, there is a problem that the cost of the product increases.

例えば、冷房運転において、圧力センサの代わりに圧縮機吐出側に配置される室外熱交換器に取り付けた温度センサにより検知している温度を使用し圧力を推定する方法がある。圧力の推定に使用する温度センサとして、暖房運転時の着霜状態の検知に使用している室外熱交換器の液配管に取り付けられた温度センサ(以下室外液管温度センサと呼ぶ)で兼用するのが一般的である。冷房運転において室外熱交換器は凝縮器となり、室外液管温度センサは室外熱交換器出口側の凝縮後の冷媒温度を検知している。凝縮しやすい温度条件や、冷媒循環量の多い運転において過冷却が生じ、圧縮機吐出側の高圧圧力と同等の飽和圧力に対する飽和温度に対し、低い温度を検知している。そのため、圧縮機吐出側の高圧圧力に対し、低い圧力を推定してしまう。その際、実際の高圧圧力は推定した圧力より上昇しているため、高圧圧力状態での運転継続による圧縮機寿命低下や冷房能力過多による冷風感,高圧圧力異常上昇の抑制遅れによる空調機停止が生じ、製品の信頼性やユーザーの快適性の低下が問題となる。   For example, in the cooling operation, there is a method of estimating the pressure using a temperature detected by a temperature sensor attached to an outdoor heat exchanger arranged on the compressor discharge side instead of the pressure sensor. As a temperature sensor used for pressure estimation, a temperature sensor (hereinafter referred to as an outdoor liquid pipe temperature sensor) attached to the liquid piping of the outdoor heat exchanger used for detecting the frosting state during heating operation is also used. It is common. In the cooling operation, the outdoor heat exchanger becomes a condenser, and the outdoor liquid pipe temperature sensor detects the refrigerant temperature after condensation on the outlet side of the outdoor heat exchanger. Supercooling occurs in temperature conditions that tend to condense and operation with a large amount of refrigerant circulation, and a low temperature is detected with respect to a saturation temperature for a saturation pressure equivalent to the high pressure on the compressor discharge side. Therefore, a low pressure is estimated with respect to the high pressure on the compressor discharge side. At that time, since the actual high pressure is higher than the estimated pressure, the compressor life is reduced due to continued operation in the high pressure state, the feeling of cold air due to excessive cooling capacity, and the air conditioner shut down due to the suppression delay of the high pressure abnormal rise. As a result, the reliability of the product and the comfort of the user are problematic.

そこで、特許文献1では、室外熱交換器の出口側ではなく、室外熱交換器内の冷媒通路途中の熱交換器中間部温度を検知し圧力を推定している。これにより、室外液管温度センサよりも飽和温度に近い温度を検知することができるため、圧力推定の精度は向上する。   Therefore, in Patent Document 1, not the outlet side of the outdoor heat exchanger but the temperature of the intermediate portion of the heat exchanger in the refrigerant passage in the outdoor heat exchanger is detected to estimate the pressure. Thereby, since the temperature closer to the saturation temperature than the outdoor liquid pipe temperature sensor can be detected, the accuracy of pressure estimation is improved.

特許第3939292号公報Japanese Patent No. 3939292

特許文献1のものでは、熱交換器前で分配された1本の伝熱管を1分配とすると、熱交換器を通過する1分配あたりの伝熱管長さが各分配で同一として圧力損失を同等とする必要があり、熱交換器中間部の温度センサを伝熱管の中央とすることが望ましい。しかし、冷却能力を大きくするために熱交換器を大きくする場合は、伝熱管の本数を増やしたり、伝熱管を長くすることにより、熱交換器を通過する1分配あたりの伝熱管が長くなるため圧力損失が増加する。このため、熱交換器中間部の温度は凝縮しやすい温度条件や冷媒循環量の多い運転においては過冷却が生じ、室外液管温度センサを使用した場合と結局同様の運転になるという課題がある。   In the case of Patent Document 1, if one heat transfer tube distributed in front of the heat exchanger is defined as one distribution, the heat transfer tube length per distribution passing through the heat exchanger is the same for each distribution, and the pressure loss is equivalent. Therefore, it is desirable that the temperature sensor in the middle part of the heat exchanger is at the center of the heat transfer tube. However, when the heat exchanger is increased in order to increase the cooling capacity, the number of heat transfer tubes is increased or the heat transfer tubes are lengthened, so that the heat transfer tubes per distribution passing through the heat exchanger become longer. Pressure loss increases. For this reason, the temperature of the intermediate portion of the heat exchanger is subject to overcooling in temperature conditions where condensation easily occurs and in operation with a large amount of refrigerant circulation, and eventually the same operation as when using an outdoor liquid pipe temperature sensor occurs. .

本発明の目的は、熱交換器の温度センサを用いて、圧縮機吐出側の高圧圧力を精度よく検知することである。   An object of the present invention is to accurately detect a high pressure on the compressor discharge side using a temperature sensor of a heat exchanger.

前述の目的を達成するために、本発明では、圧縮機,室外熱交換器,室外膨張弁を有する室外機において、前記室外熱交換器が凝縮器として作用する場合に、前記室外熱交換器に2箇所からガス冷媒を流入させ、気液2相に凝縮した冷媒を合流させた後に前記室外熱交換器の1箇所から流出させる流路を少なくとも1つ備え、前記合流部分に冷媒の温度を検知するための温度センサを備えたことを特徴とする。   In order to achieve the above-mentioned object, in the present invention, in an outdoor unit having a compressor, an outdoor heat exchanger, and an outdoor expansion valve, when the outdoor heat exchanger acts as a condenser, At least one flow path that allows gas refrigerant to flow in from two locations, merges the refrigerant condensed in the gas-liquid two-phase and then flows out from one location of the outdoor heat exchanger, and detects the temperature of the refrigerant at the merged portion It is characterized by having a temperature sensor for the purpose.

また、圧縮機,室外熱交換器,室外膨張弁,室内熱交換器を順次冷媒配管で接続した空気調和機において、前記室外熱交換器が凝縮器として作用する場合に、前記室外熱交換器に2箇所からガス冷媒を流入させ、気液2相に凝縮した冷媒を合流させた後に前記室外熱交換器の1箇所から流出させる流路を少なくとも1つ備え、前記合流部分に冷媒の温度を検知するための温度センサを備えたことを特徴とする。   Further, in an air conditioner in which a compressor, an outdoor heat exchanger, an outdoor expansion valve, and an indoor heat exchanger are sequentially connected by a refrigerant pipe, when the outdoor heat exchanger acts as a condenser, the outdoor heat exchanger At least one flow path that allows gas refrigerant to flow in from two locations, merges the refrigerant condensed in the gas-liquid two-phase and then flows out from one location of the outdoor heat exchanger, and detects the temperature of the refrigerant at the merged portion It is characterized by having a temperature sensor for the purpose.

本発明によれば、圧縮機吐出側の高圧圧力を精度よく検知することができる。   According to the present invention, the high pressure on the compressor discharge side can be detected with high accuracy.

実施例1の空気調和機の全体構成図である。It is a whole block diagram of the air conditioner of Example 1. 実施例1の熱交換器の構成である。1 is a configuration of a heat exchanger of Example 1. 従来の冷凍サイクルにおけるp−h線図である。It is a ph diagram in the conventional refrigeration cycle. 実施例1の冷凍サイクルにおけるp−h線図である。2 is a ph diagram in the refrigeration cycle of Example 1. FIG.

以下、本発明の複数の実施形態について図を用いて説明する。各実施形態の図における同一符号は同一物または相当物を示す。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.

本実施例の空気調和機を図1及び図2を用いて説明する。   The air conditioner of a present Example is demonstrated using FIG.1 and FIG.2.

まず、図1は本実施例の空気調和機50の全体構成図である。室外機51は、圧縮機1,四方弁2,室外熱交換器3,室外膨張弁4,室外ファン7等を具備している。室内機52は室内熱交換器5,室内ファン8等を具備する。室外機51と室内機52はガス接続配管53と液接続配管54で接続され冷凍サイクルを構成する。制御装置16は、空気調和機50を構成する機器の制御を行う。   First, FIG. 1 is an overall configuration diagram of an air conditioner 50 according to the present embodiment. The outdoor unit 51 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an outdoor expansion valve 4, an outdoor fan 7, and the like. The indoor unit 52 includes an indoor heat exchanger 5, an indoor fan 8, and the like. The outdoor unit 51 and the indoor unit 52 are connected by a gas connection pipe 53 and a liquid connection pipe 54 to constitute a refrigeration cycle. The control device 16 controls the devices that make up the air conditioner 50.

制御装置16が圧縮機1の運転を制御する。四方弁2は、この圧縮機1から吐出された冷媒の流れ方向及び圧縮機1へ吸い込まれる冷媒の流れ方向を切換える弁である。この四方弁2は、制御装置16により、冷房運転時に実線に示す流路を形成し、暖房運転時に点線で示す流路を形成するように制御される。   The control device 16 controls the operation of the compressor 1. The four-way valve 2 is a valve that switches the flow direction of the refrigerant discharged from the compressor 1 and the flow direction of the refrigerant sucked into the compressor 1. The four-way valve 2 is controlled by the control device 16 so as to form a flow path indicated by a solid line during cooling operation and a flow path indicated by a dotted line during heating operation.

次に、図2は本実施例の室外熱交換器3又は室内熱交換器5を示す。室外熱交換器3又は室内熱交換器5は狭い間隔で並置された多数枚のプレート状フィン21a,21bと、これらのフィンを貫通するU字型の伝熱管22a,22bと、U字型の伝熱管22a,22bの端部に曲げパイプ23と、三又状パイプ24とを接続し、蛇行状の冷媒配管を形成したプレートフィン型熱交換器として構成されている。ここではプレート状フィンが2列の場合を示しているが3列以上となった場合も同様である。ファンにより熱交換器に空気を通風し、冷媒配管内を流れる冷媒が空気から熱を奪う、または空気から熱を与えることにより熱交換される。   Next, FIG. 2 shows the outdoor heat exchanger 3 or the indoor heat exchanger 5 of the present embodiment. The outdoor heat exchanger 3 or the indoor heat exchanger 5 includes a large number of plate-like fins 21a and 21b arranged side by side at narrow intervals, U-shaped heat transfer tubes 22a and 22b penetrating these fins, and a U-shaped A bent fin 23 and a trifurcated pipe 24 are connected to the ends of the heat transfer tubes 22a and 22b to form a plate fin type heat exchanger in which a meandering refrigerant pipe is formed. Here, the case where the plate-like fins are arranged in two rows is shown, but the same applies to the case where there are three or more rows. Air is passed through the heat exchanger by the fan, and the refrigerant flowing through the refrigerant pipe takes heat from the air or heat is exchanged by giving heat from the air.

冷凍サイクル運転について説明する。圧縮機1から吐出される高温高圧のガス冷媒は、冷房運転の場合、実線矢印に示すように、四方弁2を経由して、室外熱交換器3に至り、室外熱交換器3により凝縮されて液冷媒となる。この液冷媒は、室外膨張弁4,液阻止弁12及び液接続配管54を通って室内機52に至り、室内熱交換器5の前で減圧されて低圧のガス液混合冷媒となる。この減圧された冷媒は、室内熱交換器5で蒸発され、ガス冷媒となってガス接続配管53を通って圧縮機1に戻る。暖房運転の場合は点線矢印で示され、冷媒流れ方向は逆となる。いずれも圧縮機1から吐出したあと冷媒が入る熱交換器が凝縮器として作用し、冷房運転の場合は室外熱交換器3、暖房運転の場合は室内熱交換器5が凝縮器となる。   The refrigeration cycle operation will be described. In the cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 reaches the outdoor heat exchanger 3 via the four-way valve 2 and is condensed by the outdoor heat exchanger 3 as indicated by solid arrows. It becomes a liquid refrigerant. This liquid refrigerant reaches the indoor unit 52 through the outdoor expansion valve 4, the liquid blocking valve 12 and the liquid connection pipe 54, and is decompressed in front of the indoor heat exchanger 5 to become a low-pressure gas-liquid mixed refrigerant. The decompressed refrigerant is evaporated in the indoor heat exchanger 5, becomes a gas refrigerant, and returns to the compressor 1 through the gas connection pipe 53. In the case of heating operation, it is indicated by a dotted arrow, and the refrigerant flow direction is reversed. In either case, the heat exchanger into which the refrigerant enters after being discharged from the compressor 1 acts as a condenser, and the outdoor heat exchanger 3 in the cooling operation and the indoor heat exchanger 5 in the heating operation become the condenser.

図2は熱交換器が圧縮機吐出後に配置される凝縮器として作用する場合の冷媒の流れを示す。熱交換器は冷媒が通過する際の抵抗が大きいため、複数に分配して冷媒を熱交換器に流入させ、熱交換器から流出させている。冷媒が熱交換器に流入して、冷媒配管を通って熱交換器を通過し、熱交換器を流出するまでを1分配とし、図2はその1分配を示している(例えばa点からb点)。ガス冷媒が流れる1分配のガス配管25に対し、熱交換器の2箇所から冷媒を流入させる。冷媒は空気と熱交換をしながら冷媒配管を通過し気液2相の飽和状態となる。熱交換器の入口から出口までの冷媒配管の途中であって、冷媒が気液2相の飽和状態となるところに三又状パイプ24を設ける。ここで、2箇所から流入した冷媒を合流させ、さらに熱交換しながら冷媒配管を通過し1箇所から流出させる。液の割合が多い冷媒が流れる液配管26の配管サイズを調整することで、1分配あたりに循環する冷媒量を調整することができ、圧力損失が小さい気液2相状態になったところで合流させ流出させることができる。   FIG. 2 shows the flow of refrigerant when the heat exchanger acts as a condenser arranged after discharge of the compressor. Since the heat exchanger has a large resistance when the refrigerant passes through, the heat exchanger distributes the refrigerant to the heat exchanger and causes the refrigerant to flow into the heat exchanger and out of the heat exchanger. The distribution from the refrigerant flowing into the heat exchanger, passing through the heat exchanger through the refrigerant pipe and flowing out of the heat exchanger is defined as one distribution, and FIG. 2 shows the one distribution (for example, from point a to b point). The refrigerant is caused to flow from two locations of the heat exchanger into the one distribution gas pipe 25 through which the gas refrigerant flows. The refrigerant passes through the refrigerant pipe while exchanging heat with the air, and becomes a gas-liquid two-phase saturated state. A trifurcated pipe 24 is provided in the middle of the refrigerant piping from the inlet to the outlet of the heat exchanger where the refrigerant is in a gas-liquid two-phase saturated state. Here, the refrigerant that has flowed in from two places is merged, and further passes through the refrigerant pipe while exchanging heat, and flows out from one place. By adjusting the pipe size of the liquid pipe 26 through which the refrigerant with a high liquid ratio flows, the amount of refrigerant circulating per distribution can be adjusted, and when the gas-liquid two-phase state with a small pressure loss is reached, the refrigerant is combined. Can be drained.

図3(a)は従来の冷凍サイクルにおけるp−h線図を示す。温度線の低エンタルピ側が過冷却域、高エンタルピ側が過熱域であり、これらの間が飽和域である。熱交換器で凝縮すると、圧力は配管による圧力損失分のみ減少するだけだが、温度が大きく変化する。従来は、飽和温度に対して大きく低下した過冷却状態の冷媒温度を測定するため、その温度に相当する飽和圧力と実際の吐出圧力との誤差が大きくなり推定する精度が悪くなっていた。また、過冷却する場合としない場合もあるため、推定値を安定して補正することが困難であった。   Fig.3 (a) shows the ph diagram in the conventional refrigerating cycle. The low enthalpy side of the temperature line is the supercooling region, the high enthalpy side is the superheating region, and the region between them is the saturation region. When condensing in a heat exchanger, the pressure only decreases by the pressure loss due to the piping, but the temperature changes greatly. Conventionally, since the refrigerant temperature in the supercooled state that has greatly decreased with respect to the saturation temperature is measured, an error between the saturation pressure corresponding to the temperature and the actual discharge pressure has increased, and the accuracy of estimation has deteriorated. Further, since there are cases where supercooling is performed or not, it is difficult to stably correct the estimated value.

図3(b)は本実施例の冷凍サイクルにおけるp−h線図を示す。本実施例では、熱交換器での凝縮中であって、飽和域での温度を検知する。過冷却域で測定する場合と異なり、飽和域では測定した温度に対応する圧力(飽和圧力)を決定することができる。配管を流れることにより圧力損失が生じ、飽和圧力は吐出圧力から圧力損失分だけ減少するほぼ一定の関係となっており、精度良く圧力を推定することが可能となる。   FIG.3 (b) shows the ph diagram in the refrigerating cycle of a present Example. In this embodiment, the temperature in the saturation region is detected during condensation in the heat exchanger. Unlike the case of measurement in the supercooling region, the pressure corresponding to the measured temperature (saturation pressure) can be determined in the saturation region. A pressure loss is caused by flowing through the piping, and the saturation pressure has a substantially constant relationship that decreases by the amount of the pressure loss from the discharge pressure, so that the pressure can be accurately estimated.

即ち、本実施例によれば、圧力損失の大きなガス冷媒を1分配につき2箇所に分けて熱交換器に流入させることにより圧力損失を小さくすることができる。また、2箇所で流入させた冷媒を途中で合流させてから流出させることで、配管の途中に飽和状態の気液2相冷媒を作り出すことができる。この気液2相冷媒となる部分を合流部とし、そこに温度センサ6を取り付けることで高圧冷媒の飽和温度を検知できる。この検知温度を制御装置16に取り込み圧力に換算することにより圧縮機吐出側の高圧圧力を推定することが可能となる。   That is, according to the present embodiment, the pressure loss can be reduced by dividing the gas refrigerant having a large pressure loss into two portions per distribution and flowing into the heat exchanger. Moreover, the saturated gas-liquid two-phase refrigerant | coolant can be created in the middle of piping by making it flow out, after making the refrigerant flowed in in two places join in the middle. The saturation temperature of the high-pressure refrigerant can be detected by attaching the temperature sensor 6 to a portion that becomes the gas-liquid two-phase refrigerant. It is possible to estimate the high pressure on the discharge side of the compressor by taking this detected temperature into the control device 16 and converting it into a pressure.

測定した温度が所定値よりも高い場合、つまり温度から換算した圧力値が所定値よりも高くなると、圧縮機1の回転数を下げるように制御装置16は圧縮機1に指令を出す。圧縮機1の他に室外ファン7(暖房運転時は室内ファン8)の回転数を上げるように指令を出して室外熱交換器3(暖房運転時は室内熱交換器5)での熱交換を促進してもよい。これらによれば、圧縮機1の高圧圧力が所定値を超えた場合でも、高圧圧力を下げることができるので、圧縮機1が故障しにくくなる。本実施例では、三又状パイプ24に温度センサ6を設けているが、気液2相冷媒となる部分に温度センサ6を設けるものであればよい。三又状パイプ24は積層されたプレート状フィン21a,21bの外側なので温度センサ6を取り付け易い。さらに2箇所流入により合流部までの圧力損失を半分にしているため、凝縮しやすい温度条件や、冷媒循環量の多い運転においても、1分配につき1箇所から流入させる1流入1流出の場合より過冷却しにくく確実に飽和温度を検知することができるので、精度よく高圧圧力を推定することができる。2流入1流出の分配とする流路は少なくとも1つ備えていればよく、他に、2流入1流出ではない分配(1流入1流出)を併せて備えていてもよい。また、2流入1流出の分配を複数形成することも可能である。2流入1流出の分配を複数形成した場合は、温度センサ6は1箇所のみでよく、どの合流部に取り付けるかは生産性を考慮し決定しても問題はない。   When the measured temperature is higher than the predetermined value, that is, when the pressure value converted from the temperature becomes higher than the predetermined value, the control device 16 issues a command to the compressor 1 to reduce the rotation speed of the compressor 1. In addition to the compressor 1, a command is issued to increase the rotational speed of the outdoor fan 7 (indoor fan 8 during heating operation), and heat exchange is performed in the outdoor heat exchanger 3 (indoor heat exchanger 5 during heating operation). May be promoted. According to these, even when the high pressure of the compressor 1 exceeds a predetermined value, the high pressure can be lowered, so that the compressor 1 is less likely to fail. In the present embodiment, the temperature sensor 6 is provided in the trifurcated pipe 24, but any device may be used as long as the temperature sensor 6 is provided in a portion that becomes a gas-liquid two-phase refrigerant. Since the trifurcated pipe 24 is outside the laminated plate-like fins 21a and 21b, the temperature sensor 6 can be easily attached. Furthermore, the pressure loss up to the merging section is halved due to the two inflows, so even in the temperature conditions where condensation tends to occur and in the operation with a large amount of refrigerant circulation, it is more than the case of one inflow and one outflow from one place per distribution. Since it is difficult to cool and the saturation temperature can be detected reliably, the high pressure can be estimated with high accuracy. It is only necessary to provide at least one flow path for distributing two inflows and one outflow, and in addition, a distribution other than two inflows and one outflow (one inflow and one outflow) may be provided. It is also possible to form a plurality of distributions of two inflows and one outflow. When a plurality of distributions of two inflows and one outflow are formed, only one temperature sensor 6 is required, and there is no problem even if it is determined in consideration of productivity which one of the junctions is attached.

1 圧縮機
2 四方弁
3 室外熱交換器
4 室外膨張弁
5 室内熱交換器
6 温度センサ
7 室外ファン
8 室内ファン
11 ガス阻止弁
12 液阻止弁
16 制御装置
21a,21b プレート状フィン
22a,22b 伝熱管
23 曲げパイプ
24 三又状パイプ
25 ガス配管
26 液配管
50 空気調和機
51 室外機
52 室内機
53 ガス接続配管(冷媒配管)
54 液接続配管(冷媒配管)
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Outdoor expansion valve 5 Indoor heat exchanger 6 Temperature sensor 7 Outdoor fan 8 Indoor fan 11 Gas blocking valve 12 Liquid blocking valve 16 Controller 21a, 21b Plate-shaped fins 22a, 22b Heat pipe 23 Bend pipe 24 Triangular pipe 25 Gas pipe 26 Liquid pipe 50 Air conditioner 51 Outdoor unit 52 Indoor unit 53 Gas connection pipe (refrigerant pipe)
54 Liquid connection piping (refrigerant piping)

Claims (6)

圧縮機,室外熱交換器,室外膨張弁を有する室外機において、前記室外熱交換器が凝縮器として作用する場合に、前記室外熱交換器に2箇所からガス冷媒を流入させ、気液2相に凝縮した冷媒を合流させた後に前記室外熱交換器の1箇所から流出させる流路を少なくとも1つ備え、前記合流部分に冷媒の温度を検知するための温度センサを備えたことを特徴とする室外機。   In an outdoor unit having a compressor, an outdoor heat exchanger, and an outdoor expansion valve, when the outdoor heat exchanger acts as a condenser, gas refrigerant is allowed to flow into the outdoor heat exchanger from two locations, and a gas-liquid two-phase At least one flow path for causing the condensed refrigerant to flow out from one place of the outdoor heat exchanger and then a temperature sensor for detecting the temperature of the refrigerant at the merged portion. Outdoor unit. 圧縮機,室外熱交換器,室外膨張弁,室内熱交換器を順次冷媒配管で接続した空気調和機において、前記室外熱交換器が凝縮器として作用する場合に、前記室外熱交換器に2箇所からガス冷媒を流入させ、気液2相に凝縮した冷媒を合流させた後に前記室外熱交換器の1箇所から流出させる流路を少なくとも1つ備え、前記合流部分に冷媒の温度を検知するための温度センサを備えたことを特徴とする空気調和機。   In an air conditioner in which a compressor, an outdoor heat exchanger, an outdoor expansion valve, and an indoor heat exchanger are sequentially connected by a refrigerant pipe, when the outdoor heat exchanger acts as a condenser, two locations are provided in the outdoor heat exchanger. In order to detect the temperature of the refrigerant in the merged portion, at least one flow path is provided for allowing the gas refrigerant to flow in, and after the refrigerant condensed in the gas-liquid two phases is merged to flow out from one location of the outdoor heat exchanger. An air conditioner provided with a temperature sensor. 請求項2において、前記温度センサにより検知された温度が所定値よりも高い場合、前記圧縮機の回転数を下げることを特徴とする空気調和機。   3. The air conditioner according to claim 2, wherein when the temperature detected by the temperature sensor is higher than a predetermined value, the rotational speed of the compressor is decreased. 請求項2において、前記室外熱交換器に風を送る室外ファンを備え、前記温度センサにより検知された温度が所定値よりも高い場合、前記室外ファンの回転数を上げることを特徴とする空気調和機。   3. The air conditioner according to claim 2, further comprising an outdoor fan that sends air to the outdoor heat exchanger, and when the temperature detected by the temperature sensor is higher than a predetermined value, the rotational speed of the outdoor fan is increased. Machine. 請求項2乃至4の何れかにおいて、前記合流部分を三又状パイプで構成することを特徴とする空気調和機。   The air conditioner according to any one of claims 2 to 4, wherein the merging portion is constituted by a trifurcated pipe. 室内熱交換器を有する室内機において、前記室内熱交換器が凝縮器として作用する場合に、前記室内熱交換器に2箇所からガス冷媒を流入させ、気液2相に凝縮した冷媒を合流させた後に前記室内熱交換器の1箇所から流出させる流路を少なくとも1つ備え、前記合流部分に冷媒の温度を検知するための温度センサを備えたことを特徴とする室内機。   In an indoor unit having an indoor heat exchanger, when the indoor heat exchanger acts as a condenser, gas refrigerant is allowed to flow into the indoor heat exchanger from two locations, and the condensed refrigerant is condensed into a gas-liquid two-phase. An indoor unit comprising: at least one flow path that flows out from one place of the indoor heat exchanger after the heat sensor; and a temperature sensor for detecting the temperature of the refrigerant at the joining portion.
JP2010100469A 2010-04-26 2010-04-26 Outdoor unit, indoor unit and air conditioner Active JP5452342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010100469A JP5452342B2 (en) 2010-04-26 2010-04-26 Outdoor unit, indoor unit and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010100469A JP5452342B2 (en) 2010-04-26 2010-04-26 Outdoor unit, indoor unit and air conditioner

Publications (2)

Publication Number Publication Date
JP2011231947A true JP2011231947A (en) 2011-11-17
JP5452342B2 JP5452342B2 (en) 2014-03-26

Family

ID=45321447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010100469A Active JP5452342B2 (en) 2010-04-26 2010-04-26 Outdoor unit, indoor unit and air conditioner

Country Status (1)

Country Link
JP (1) JP5452342B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945395A (en) * 2019-03-21 2019-06-28 广东美的制冷设备有限公司 Detection method, air-conditioning system and medium
CN115013931A (en) * 2022-05-16 2022-09-06 美的集团武汉暖通设备有限公司 Air conditioner, control method and device thereof, and computer readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149636A (en) * 1991-11-29 1993-06-15 Toshiba Corp Air-conditioner
JPH102638A (en) * 1996-06-17 1998-01-06 Hitachi Ltd Heat exchanger and slit fin
JP2003042586A (en) * 2002-02-25 2003-02-13 Daikin Ind Ltd Outdoor heat exchanger and air conditioner
JP2008196811A (en) * 2007-02-14 2008-08-28 Mitsubishi Electric Corp Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149636A (en) * 1991-11-29 1993-06-15 Toshiba Corp Air-conditioner
JPH102638A (en) * 1996-06-17 1998-01-06 Hitachi Ltd Heat exchanger and slit fin
JP2003042586A (en) * 2002-02-25 2003-02-13 Daikin Ind Ltd Outdoor heat exchanger and air conditioner
JP2008196811A (en) * 2007-02-14 2008-08-28 Mitsubishi Electric Corp Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945395A (en) * 2019-03-21 2019-06-28 广东美的制冷设备有限公司 Detection method, air-conditioning system and medium
CN115013931A (en) * 2022-05-16 2022-09-06 美的集团武汉暖通设备有限公司 Air conditioner, control method and device thereof, and computer readable storage medium
CN115013931B (en) * 2022-05-16 2024-03-26 美的集团武汉暖通设备有限公司 Air conditioner, control method and device thereof and computer readable storage medium

Also Published As

Publication number Publication date
JP5452342B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP4762797B2 (en) Multi-type air conditioning system
JP5447499B2 (en) Refrigeration equipment
WO2013160929A1 (en) Refrigeration cycle system
CN102770718A (en) Air conditioning system and method of controlling air conditioning system
US20170130996A1 (en) Refrigeration cycle apparatus
JP6479181B2 (en) Air conditioner
JP2007198711A (en) Air conditioner
CN103890501A (en) Air conditioning device
JP5452342B2 (en) Outdoor unit, indoor unit and air conditioner
JP5496161B2 (en) Refrigeration cycle system
JP6242289B2 (en) Refrigeration cycle equipment
JP6102724B2 (en) Heat exchanger
JP5627564B2 (en) Refrigeration cycle system
JP4902625B2 (en) Heat pump water heater and refrigeration equipment
KR101504003B1 (en) Heat pump type air conditioner
JP2018146169A (en) air conditioner
KR20120090392A (en) Heat pump air conditioning system with defrost function
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP5908177B1 (en) Refrigeration cycle apparatus, air conditioner, and control method for refrigeration cycle apparatus
JP2019066053A (en) Refrigerant cycle device
KR20100062117A (en) Air conditioner having plate heat exchanger and controlling method of the same of
JP2012163233A (en) Refrigeration cycle apparatus and water circulation system using the same
EP4350252A1 (en) Heat exchanger, air conditioner outdoor unit equipped with heat exchanger, and air conditioner equipped with air conditioner outdoor unit
JP2009281595A (en) Refrigerating device
JP5578914B2 (en) Multi-type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Ref document number: 5452342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250