JP2011231448A - Slip-resistant glove and method for producing the same - Google Patents

Slip-resistant glove and method for producing the same Download PDF

Info

Publication number
JP2011231448A
JP2011231448A JP2011090902A JP2011090902A JP2011231448A JP 2011231448 A JP2011231448 A JP 2011231448A JP 2011090902 A JP2011090902 A JP 2011090902A JP 2011090902 A JP2011090902 A JP 2011090902A JP 2011231448 A JP2011231448 A JP 2011231448A
Authority
JP
Japan
Prior art keywords
glove
coating layer
fine particles
soluble fine
slip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011090902A
Other languages
Japanese (ja)
Inventor
Akira Saito
亮 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Glove Co
Original Assignee
Showa Glove Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Glove Co filed Critical Showa Glove Co
Priority to JP2011090902A priority Critical patent/JP2011231448A/en
Publication of JP2011231448A publication Critical patent/JP2011231448A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Gloves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slip-resistant glove having antislip properties and abrasion resistance in a balanced manner, in particular, excellent in antislip properties on oil, and having a small content of anion or cation causing rust development.SOLUTION: The slip-resistant glove includes a fibrous glove and a rubber or resin coating layer over the surface of the glove, wherein recessed parts each having a width of 0.1 to 425 μm, a depth of 0.1 to 200 μm and a number density of 1,000 to 5,000 pieces/cmis formed on the surface of the coating layer.

Description

本発明は滑り止め性手袋及びその製造方法に関し、更に詳しくは、表面に多数かつ極小の凹部を設けた、耐摩耗性が著しく優れたゴムまたは樹脂製の滑止め性手袋及びその製造方法に関する。   The present invention relates to an anti-slip glove and a method for manufacturing the same, and more particularly to an anti-slip glove made of rubber or resin having a large number of extremely small recesses on the surface and having extremely excellent wear resistance, and a method for manufacturing the same.

従来より手袋の滑止め性を向上させるために、手袋の表面に極小の凹部を設けたゴム又は樹脂製の手袋が知られている。
例えば、製品の表面となる未固化状態の液状樹脂組成物の表面に、その固化した樹脂組成物を溶解しない溶液に溶ける粉粒物を付着させてから、その液状樹脂組成物を固化し、粉粒物を溶解除去することにより、その樹脂組成物からなる表皮に凹凸を付けることを特徴とする手袋が開示され(例えば、特許文献1参照) 、また、より凹部の径が小さく、単位面積当たりの凹部の数が多い手袋およびその製造方法が開示されている( 例えば特許文献2、特許文献3) 。
その他にも、表面に多数かつ極小の凹部を設けた手袋として、化学発泡剤を用いて発泡させた、或いは、機械的に発泡させたゴム又は樹脂を繊維性手袋の上に被覆させた手袋が提案されている(例えば特許文献4) 。
2. Description of the Related Art Conventionally, rubber or resin gloves having a very small recess on the surface of the glove are known in order to improve the non-slip property of the glove.
For example, after adhering powder particles that dissolve in a solution that does not dissolve the solidified resin composition to the surface of an unsolidified liquid resin composition that becomes the surface of the product, the liquid resin composition is solidified and powdered. Disclosed is a glove characterized in that the skin made of the resin composition is made uneven by dissolving and removing the granules (see, for example, Patent Document 1). A glove having a large number of recesses and a method for manufacturing the same are disclosed (for example, Patent Document 2 and Patent Document 3).
In addition, as a glove having a large number of extremely small concave portions on its surface, a glove that is foamed with a chemical foaming agent or mechanically foamed rubber or resin is coated on a fibrous glove. It has been proposed (for example, Patent Document 4).

特許第2639415号公報Japanese Patent No. 2639415 特開2002−20913号公報JP 2002-20913 A 特表2007−524771号公報Special table 2007-52471 特開2000−96322号公報JP 2000-96322 A

しかしながら、特許文献1の手袋は表面に設けられた凹部の径が大きく、かつ手袋表面の単位面積当たりの凹部の数が少ないため、滑り止め効果が十分とはいえない。
また、特許文献2、3の手袋は、滑り止め効果が改善されているものの、実際には凹凸部の形状において凹部と凸部とが配列されたような形状ではなく、スポンジのような多孔質形状になっているため、耐摩耗性に著しく劣るという問題を含んでいる。
更に、特許文献3の手袋は塩の粒子をラテックスに接触させてゲル化させた後、硬化させることなく塩の粒子を水洗除去するためラテックス皮膜強度が弱く、強力な水洗が不可能である。そのため、水洗中に凹部の形状や個数が変動したり、また、例えば錆を惹き起こす硫酸イオン等の残留イオンを除去することができず、作業中に手袋が接触した金属部を発錆させるという問題を含んでいる。この残留イオンは水洗時間を延長する等の手段を施してもイオン濃度の低下は見込めず、ひいては繊維製手袋が変色することもある。
更に、特許文献4の手袋は、滑り止め性は優れているものの、やはり耐摩耗性に弱く、さらには被覆部が気泡によって貫通した部分を有しているため、薬液などが付着した部品を触るなどの作業では薬品が手袋内部に浸入してくるなどの弊害があり、当該手袋を使用できる作業環境が限られるといった問題がある。
However, the glove of Patent Document 1 has a large diameter of the concave portion provided on the surface, and the number of concave portions per unit area on the surface of the glove is small.
Further, although the gloves of Patent Documents 2 and 3 have improved anti-slip effect, they are actually not a shape in which concave and convex portions are arranged in the shape of the concave and convex portions, but are porous like sponges. Since it has a shape, there is a problem that the wear resistance is remarkably inferior.
Furthermore, since the glove of Patent Document 3 gels the salt particles by bringing them into contact with the latex and then removes the salt particles with water without curing, the latex film strength is weak and strong water washing is impossible. For this reason, the shape and number of recesses change during washing, and residual ions such as sulfate ions that cause rust, for example, cannot be removed, and the metal part in contact with the glove is rusted during work. Contains a problem. Even if the residual ions are subjected to measures such as extending the washing time, the ion concentration cannot be lowered, and the fiber glove may be discolored.
Furthermore, although the glove of patent document 4 is excellent in anti-slip properties, it is also poor in wear resistance, and furthermore, since the covering portion has a portion penetrated by air bubbles, it touches a part to which a chemical solution or the like is attached. In such a work, there is a problem that chemicals enter the inside of the glove, and there is a problem that the working environment in which the glove can be used is limited.

本発明は、上記実情に鑑み、ゴム又は樹脂からなる被覆層の表面に多数かつ極小の凹部を設けた手袋において、該被覆層の表面に特定の幅で、特定の深さで、特定の数密度の凹部を形成することにより、滑止め性に優れ、作業性を損なうことなく、耐摩耗性に著しく優れ、特に油に接触した際の滑り止め性に著しく優れた手袋を提供することを目的とする。   In view of the above circumstances, the present invention provides a glove in which a large number of extremely small recesses are provided on the surface of a coating layer made of rubber or resin, with a specific width and a specific depth on the surface of the coating layer. The purpose of the present invention is to provide a glove that is excellent in anti-slip property by forming a concave portion of density, has excellent wear resistance without impairing workability, and particularly excellent in anti-slip property when in contact with oil. And

本発明は上記課題を解決するためになされたもので、本発明の請求項1は、繊維製手袋とその表面のゴム又は樹脂の被覆層とからなり、該被覆層の表面に幅0. 1〜425μm 、深さ0. 1〜200μm 、数密度1000〜5000個/cm2の凹部が設けられていることを特徴とする滑り止め性手袋を内容とする。 The present invention has been made to solve the above problems, and claim 1 of the present invention comprises a fiber glove and a coating layer of rubber or resin on the surface thereof, and a width of 0.1 on the surface of the coating layer. A non-slip glove characterized by being provided with recesses of ˜425 μm, a depth of 0.1 to 200 μm, and a number density of 1000 to 5000 / cm 2 .

本発明の請求項2は、被覆層が成膜助剤を含有することを特徴とする請求項1記載の滑り止め性手袋を内容とする。   According to a second aspect of the present invention, the anti-slip glove according to the first aspect is characterized in that the coating layer contains a film forming aid.

本発明の請求項3は、被覆層中における下記の残留イオンの少なくとも1つが下記の含有量であることを特徴とする請求項1又は2記載の滑り止め手袋を内容とする。
硫酸イオン 100ppm以下
硝酸イオン 50ppm以下
塩素イオン 1000ppm以下
ナトリウムイオン 1000ppm以下
アンモニウムイオン 50ppm以下。
A third aspect of the present invention includes the anti-slip glove according to the first or second aspect, wherein at least one of the following residual ions in the coating layer has the following content.
Sulfate ion 100 ppm or less Nitrate ion 50 ppm or less Chlorine ion 1000 ppm or less Sodium ion 1000 ppm or less Ammonium ion 50 ppm or less.

本発明の請求項4は、手型に被せた繊維製手袋の表面に成膜助剤を含有するゴム又は樹脂配合液により被覆層を形成し、次いで、該被覆層が溶解性微粒子を埋め込み、該溶解性微粒子を埋め込んだ被覆層を加熱により予備硬化し、更に、前記溶解性微粒子を被覆層から溶解除去した後、前記被覆層を加熱により本硬化することを特徴とする請求項1記載の滑り止め性手袋の製造方法を内容とする。   According to claim 4 of the present invention, a coating layer is formed on the surface of a fiber glove covered with a hand mold by using a rubber or resin compounding solution containing a film forming aid, and then the coating layer embeds soluble fine particles, The coating layer embedded with the soluble fine particles is pre-cured by heating, and further, the soluble fine particles are dissolved and removed from the coating layer, and then the coating layer is main-cured by heating. The manufacturing method of non-slip gloves is included.

本発明の請求項5は、手型に被せた繊維製手袋の表面に成膜助剤を含有するゴム又は樹脂配合液により被覆層を形成し、次いで、該被覆層が溶解性微粒子を埋め込み、該溶解性微粒子を埋め込んだ被覆層を加熱により硬化し、更に、前記溶解性微粒子を被覆層から溶解除去した後、前記被覆層を乾燥することを特徴とする請求項1記載の滑り止め性手袋の製造方法を内容とする。   Claim 5 of the present invention forms a coating layer with a rubber or resin compounding liquid containing a film forming aid on the surface of a fiber glove put on a hand mold, and then the coating layer embeds soluble fine particles, The anti-slip glove according to claim 1, wherein the coating layer in which the soluble fine particles are embedded is cured by heating, and further, the soluble fine particles are dissolved and removed from the coating layer, and then the coating layer is dried. The manufacturing method is as follows.

本発明の請求項6は、溶解性微粒子を埋め込んだ被覆層を加熱により予備硬化した手袋を手型から離型して、前記溶解性微粒子を溶解除去することを特徴とする請求項4記載の滑り止め性手袋の製造方法を内容とする。   Claim 6 of the present invention is characterized in that the soluble fine particles are dissolved and removed by releasing a glove obtained by pre-curing the coating layer embedded with the soluble fine particles by heating from the hand mold. The manufacturing method of non-slip gloves is included.

本発明の請求項7は、溶解性微粒子を埋め込んだ被覆層を加熱により硬化した手袋を手型から離型して、前記溶解性微粒子を溶解除去することを特徴とする請求項5記載の滑り止め性手袋の製造方法を内容とする。   Claim 7 of the present invention is characterized in that the soluble fine particles are dissolved and removed by releasing a glove obtained by curing the coating layer embedded with the soluble fine particles by heating from the hand mold. The content of the manufacturing method is a glove.

本発明の請求項8は、ドラムウオッシャーにより溶解性微粒子を溶解除去することを特徴とする請求項4〜7のいずれか1項に記載の滑り止め性手袋の製造方法を内容とする。   The eighth aspect of the present invention includes the method for producing a non-slip glove according to any one of the fourth to seventh aspects, wherein the soluble fine particles are dissolved and removed by a drum washer.

本発明の請求項9は、成膜助剤が30〜40℃の曇点を有する化合物であり、ゴム又は樹脂の固形分100重量部に対し0.05〜20重量部含有することを特徴とする請求項4〜8のいずれか1項に記載の滑り止め性手袋の製造方法を内容とする。   According to a ninth aspect of the present invention, the film forming aid is a compound having a cloud point of 30 to 40 ° C., and is contained in an amount of 0.05 to 20 parts by weight based on 100 parts by weight of the solid content of rubber or resin. The manufacturing method of the anti-slip | skid glove of any one of Claims 4-8 made into content.

本発明の請求項10は、成膜助剤がアルコール系化合物であり、ゴム又は樹脂の固形分100重量部に対して5〜25重量部含有することを特徴とする請求項4〜8のいずれか1項に記載の手袋の製造方法を内容とする。   According to a tenth aspect of the present invention, the film forming aid is an alcohol compound and is contained in an amount of 5 to 25 parts by weight based on 100 parts by weight of the solid content of rubber or resin. The manufacturing method of the glove according to item 1.

本発明の請求項11は、溶解性微粒子が硫酸ナトリウムである請求項4〜10のいずれか1項に記載の手袋の製造方法を内容とする。   The eleventh aspect of the present invention includes the method for producing a glove according to any one of the fourth to tenth aspects, wherein the soluble fine particles are sodium sulfate.

本発明によれば、繊維製手袋表面のゴム又は樹脂の被覆層表面に、幅0. 1〜425μm 、深さ0. 1〜200μm 、数密度1000〜5000個/cm2の凹部が形成されていることにより、滑止め性、特に油に接触している際の滑止め性に優れ、かつ著しく耐摩耗性が向上した滑り止め性手袋が提供される。 According to the present invention, concave portions having a width of 0.1 to 425 μm, a depth of 0.1 to 200 μm, and a number density of 1000 to 5000 / cm 2 are formed on the surface of the rubber or resin coating layer on the fiber glove surface. Therefore, an anti-slip glove having excellent anti-slip property, particularly when it is in contact with oil, and having significantly improved wear resistance is provided.

また、本発明によれば、硫酸イオン、硝酸イオン、塩素イオン、ナトリウムイオン、アンモニウムイオン等の含有量の小さい手袋を提供でき、作業中に手袋が接触することによる金属部の発錆を防ぐことができる。   In addition, according to the present invention, a glove having a small content of sulfate ion, nitrate ion, chlorine ion, sodium ion, ammonium ion, etc. can be provided, and rusting of the metal part due to contact with the glove during work can be prevented. Can do.

また、本発明の手袋の製造方法によれば、溶解性微粒子を埋め込んだ被覆層を予備硬化又は硬化することにより被膜強度を高めてから溶解性微粒子を溶解除去するので、形成された凹部は溶解除去による影響を受けず、凹部の形状や個数が変動することがなく、所望の滑り止めを備えた手袋を製造することができる。   Further, according to the method for manufacturing a glove of the present invention, since the coating strength is increased by pre-curing or curing the coating layer in which the soluble fine particles are embedded, the soluble fine particles are dissolved and removed. A glove having a desired anti-slip can be manufactured without being affected by the removal and without changing the shape and number of the recesses.

また、上記のように、被膜強度が高められているので、手袋を手型から取り外してドラムウオッシャー等を用いて強力に溶解除去でき、上記したような有害残留イオンを大巾に減らすことができ、作業中に手袋が金属部に接触したとしても、該金属部を発錆させることがない。   In addition, as described above, since the coating strength is increased, the gloves can be removed from the hand mold and powerfully dissolved and removed using a drum washer, etc., and the above-mentioned harmful residual ions can be greatly reduced. Even if the glove contacts the metal part during work, the metal part is not rusted.

実施例3の手袋の掌部の表面を真上からDIGITAL MICROSCOPE VHX-900 (KEYENCE 社製)により撮影した拡大写真(100倍)である。It is an enlarged photograph (100 times) which image | photographed the surface of the palm part of the glove of Example 3 from right above by DIGITAL MICROSCOPE VHX-900 (made by KEYENCE). 実施例3の手袋の掌部の断面を真上からDIGITAL MICROSCOPE VHX-900 (KEYENCE 社製)により撮影した拡大写真(100倍)である。It is an enlarged photograph (100 times) which image | photographed the cross section of the palm part of the glove of Example 3 from right above by DIGITAL MICROSCOPE VHX-900 (made by KEYENCE). 比較例1の手袋の掌部の表面を真上からDIGITAL MICROSCOPE VHX-900 (KEYENCE 社製)により撮影した拡大写真(100倍)である。It is an enlarged photograph (100 times) which image | photographed the surface of the palm part of the glove of the comparative example 1 from right above by DIGITAL MICROSCOPE VHX-900 (made by KEYENCE). 比較例1の手袋の掌部の断面を真上からDIGITAL MICROSCOPE VHX-900 (KEYENCE 社製)により撮影した拡大写真(100倍)である。It is an enlarged photograph (100 times) which photographed the section of the palm part of the glove of comparative example 1 from right above by DIGITAL MICROSCOPE VHX-900 (made by KEYENCE). 比較例2の手袋の掌部の表面を真上からDIGITAL MICROSCOPE VHX-900 (KEYENCE 社製)により撮影した拡大写真(100倍)である。It is an enlarged photograph (100 times) which image | photographed the surface of the palm part of the glove of the comparative example 2 from right above by DIGITAL MICROSCOPE VHX-900 (made by KEYENCE). 比較例2の手袋の掌部の断面を真上からDIGITAL MICROSCOPE VHX-900 (KEYENCE 社製)により撮影した拡大写真(100倍)である。It is an enlarged photograph (100 times) which photographed the cross section of the palm part of the glove of comparative example 2 from right above by DIGITAL MICROSCOPE VHX-900 (made by KEYENCE). 比較例7の手袋の掌部の表面を真上からDIGITAL MICROSCOPE VHX-900 (KEYENCE 社製)により撮影した拡大写真(100倍)である。It is an enlarged photograph (100 times) which image | photographed the surface of the palm part of the glove of the comparative example 7 from right above by DIGITAL MICROSCOPE VHX-900 (made by KEYENCE). 比較例7の手袋の掌部の断面を真上からDIGITAL MICROSCOPE VHX-900 (KEYENCE 社製)により撮影した拡大写真(100倍)である。It is an enlarged photograph (100 times) which photographed the cross section of the palm part of the glove of comparative example 7 from right above by DIGITAL MICROSCOPE VHX-900 (made by KEYENCE). 耐摩耗性テスト後の実施例3の手袋の掌部の表面を真上からデジタルカメラにより撮影した写真である。It is the photograph which image | photographed the surface of the palm part of the glove of Example 3 after a wear-resistance test with the digital camera from right above. 耐摩耗性テスト後の比較例2の手袋の掌部の表面を真上からデジタルカメラにより撮影した写真である。It is the photograph which image | photographed the surface of the palm part of the glove of the comparative example 2 after an abrasion resistance test with the digital camera from right above. 耐摩耗性テスト後の比較例7の手袋の掌部の表面を真上からデジタルカメラにより撮影した写真である。It is the photograph which image | photographed the surface of the palm part of the glove of the comparative example 7 after an abrasion resistance test with the digital camera from right above. 滑り止め性の評価に用いた六角穴付ボルトと六角ナットを示す概略図である。It is the schematic which shows the hex socket head bolt and hex nut which were used for evaluation of anti-slip property.

本発明の滑り止め性手袋は、繊維製手袋とその表面のゴム又は樹脂の被覆層とからなり、該被覆層の表面に幅0. 1〜425μm 、深さ0. 1〜200μm 、数密度1000〜5000個/cm2の凹部が設けられていることを特徴とする。 The anti-slip glove of the present invention comprises a fiber glove and a rubber or resin coating layer on the surface thereof. The surface of the coating layer has a width of 0.1 to 425 μm, a depth of 0.1 to 200 μm, and a number density of 1000. It is characterized in that a recess of ˜5000 pieces / cm 2 is provided.

本発明における手袋の被覆層表面の凹部の幅、数密度については被覆層の表面を、また、深さについては被覆層の断面をDIGITAL MICROSCOPE VHX-900(KEYENCE製) を用いて100倍に拡大して観察され測定される。   Using the DIGITAL MICROSCOPE VHX-900 (manufactured by KEYENCE) to enlarge the surface of the coating layer for the width and number density of the recesses on the surface of the coating layer of the glove and the cross section of the coating layer for the depth. Observed and measured.

凹部の幅は0.1〜425μmである必要があり、好ましくは0.1〜300μm、より好ましくは75〜300μmであり、全ての凹部の少なくとも99.5%が300μm以下の幅を有する。凹部の幅は埋め込まれた溶解性微粒子が抜け出た形跡(凹部)の幅であるから該微粒子の粒子径分布と実質的に同じとなり、従って、溶解性微粒子の粒子径分布によりコントロール可能である。0.1μmよりも小さい幅の凹部は存在する割合が極端に少なく、たとえ僅かに存在するとしても滑り止め効果には殆ど影響することはなく、また、425μmを超えると滑り止め効果が著しく低下する。
凹部の幅とは、凹部を真上から見たときの外周上に2点の任意点を設定し、その直線距離のうちの最大のものを指し、被覆層表面上の任意の点における1mm2 に存在する全ての凹部の幅を測定し、その測定値の最小値と最大値とで示す。
The width of the recesses needs to be 0.1 to 425 μm, preferably 0.1 to 300 μm, more preferably 75 to 300 μm, and at least 99.5% of all the recesses have a width of 300 μm or less. The width of the concave portion is the width of the trace (recessed portion) from which the embedded soluble fine particles have escaped, and therefore is substantially the same as the particle size distribution of the fine particles, and can therefore be controlled by the particle size distribution of the soluble fine particles. The proportion of recesses with a width smaller than 0.1 μm is extremely small, and even if it is slightly present, the anti-slip effect is hardly affected, and if it exceeds 425 μm, the anti-slip effect is significantly reduced. .
The width of the concave portion means that two arbitrary points are set on the outer periphery when the concave portion is viewed from directly above, and indicates the maximum of the linear distances, and 1 mm 2 at an arbitrary point on the surface of the coating layer. The widths of all the recesses present in the are measured and indicated by the minimum value and the maximum value of the measured values.

凹部の深さは0.1〜200μmである必要があり、好ましくは30〜200μm、より好ましくは30〜150μmである。凹部の深さは溶解性微粒子の粒子径分布と成膜助剤の添加によるゲル化スピードによりコントロール可能である。0.1μmよりも浅いと凹部を設けた意義が失われ目的とする効果が得られず、200μmよりも深いと耐摩耗性が低下したり、被覆層を貫通するおそれがある。
凹部の深さとは、手袋の断面を被覆層を上に、繊維製手袋を下にして観察した場合に、被覆層に存する空隙のうちで最も繊維製手袋側に位置する空隙の最下点と手袋表面(被覆層表面)との距離を指し、被覆層上の任意の10箇所における2mm幅の断面を測定したときの深さのうちの最小値と最大値とを示す。
The depth of the concave portion needs to be 0.1 to 200 μm, preferably 30 to 200 μm, more preferably 30 to 150 μm. The depth of the recess can be controlled by the particle size distribution of the soluble fine particles and the gelation speed by the addition of a film forming aid. If the depth is less than 0.1 μm, the significance of providing the concave portion is lost and the intended effect cannot be obtained. If the depth is greater than 200 μm, the wear resistance may be lowered or the coating layer may be penetrated.
The depth of the recess means the lowest point of the gap located on the fiber glove side among the gaps existing in the coating layer when the cross section of the glove is observed with the coating layer on top and the fiber glove on the bottom. It refers to the distance from the surface of the glove (the surface of the coating layer), and indicates the minimum and maximum values of the depth when measuring a 2 mm wide cross section at any 10 locations on the coating layer.

凹部の数密度は1000〜5000個/cm2 である必要があり、好ましくは1000〜4000個/cm2 、さらに好ましくは1500〜3500個/cm2 である。数密度が1000個/cm2 よりも少ないと十分な滑り止め効果、特に油に対する十分な滑り止め効果が得られず、一方、5000個/cm2 を超えるような手袋を作製するのは極めて困難である。数密度は溶解性微粒子の粒子径分布によりコントロール可能である。
凹部の数密度とは、被覆層表面上の任意の1mm2 内に存在する凹部の個数を数え、これを被覆層表面上10箇所で行い、得られた測定値10個のうち最大値と最小値を除いた8個の測定値の平均値を算出し、更に、この平均値を100倍して1cm2 当りの凹部の個数としたものである。
The number density of the concave portions needs to be 1000 to 5000 pieces / cm 2 , preferably 1000 to 4000 pieces / cm 2 , more preferably 1500 to 3500 pieces / cm 2 . When the number density is less than 1000 pieces / cm 2 , a sufficient anti-slip effect, particularly an anti-slip effect against oil, cannot be obtained, while it is extremely difficult to produce gloves exceeding 5000 pieces / cm 2. It is. The number density can be controlled by the particle size distribution of the soluble fine particles.
The number density of recesses is the number of recesses present in an arbitrary 1 mm 2 on the surface of the coating layer, which is performed at 10 locations on the surface of the coating layer, and the maximum value and minimum value among the 10 measured values obtained. The average value of the eight measured values excluding the value is calculated, and this average value is multiplied by 100 to obtain the number of recesses per 1 cm 2 .

本発明の手袋の被覆層中の硫酸イオン含有量は好ましくは100ppm以下、より好ましくは50ppm以下、更に好ましくは30ppm以下、ナトリウムイオンの含有量は好ましくは1000ppm以下、より好ましくは700ppm以下、更に好ましくは50ppm以下、塩素イオンの含有量は好ましくは1000ppm以下、より好ましくは100ppm以下、更に好ましくは30ppm以下、アンモニウムイオンの含有量は好ましくは50ppm以下、硝酸イオンの含有量は好ましくは50ppm以下である。これらのイオンの含有量が上記範囲を超えると、作業中に手袋が金属部に接触した際に、該金属部が発錆する場合がある。   The sulfate ion content in the coating layer of the glove of the present invention is preferably 100 ppm or less, more preferably 50 ppm or less, still more preferably 30 ppm or less, and the sodium ion content is preferably 1000 ppm or less, more preferably 700 ppm or less, still more preferably. Is 50 ppm or less, the chlorine ion content is preferably 1000 ppm or less, more preferably 100 ppm or less, still more preferably 30 ppm or less, the ammonium ion content is preferably 50 ppm or less, and the nitrate ion content is preferably 50 ppm or less. . If the content of these ions exceeds the above range, the metal part may rust when the glove contacts the metal part during work.

本発明の滑り止め性手袋は、手型に被せた繊維製手袋の表面に成膜助剤を含有するゴム又は樹脂配合液により被覆層を形成し、次いで、該被覆層が溶解性微粒子を埋め込み、該溶解性微粒子を埋め込んだ被覆層を加熱により予備硬化し、更に、前記溶解性微粒子を被覆層から溶解除去した後、前記被覆層を加熱により本硬化することにより得ることができる。   The anti-slip glove of the present invention is formed by forming a coating layer on a surface of a fiber glove covered with a hand mold by using a rubber or resin compounding solution containing a film-forming aid, and then the coating layer is embedded with soluble fine particles. The coating layer in which the soluble fine particles are embedded is pre-cured by heating, and further, the soluble fine particles are dissolved and removed from the coating layer, and then the coating layer is main-cured by heating.

先ず、手型に被せた繊維製手袋の表面に、成膜助剤を含有するゴム又は樹脂配合液により被覆層を形成させる。繊維製手袋には各種繊維のものが適用でき、綿、ポリエステル、ポリウレタン、高強度延伸ポリエチレン、例えば、ダイニーマ(登録商標)、アラミド、例えば、ケブラー(登録商標)等、既知のフィラメント糸または紡績糸を単独で、または複合してシームレスで編まれてなる手袋や編布、織布、不織布の縫製による手袋などが使用できる。   First, a coating layer is formed on a surface of a fiber glove put on a hand mold by using a rubber or resin compounding liquid containing a film forming aid. Various types of fibers can be applied to the gloves made of fiber. Known filament yarn or spun yarn such as cotton, polyester, polyurethane, high-strength stretched polyethylene such as Dyneema (registered trademark), aramid, such as Kevlar (registered trademark), etc. Gloves, knitted fabrics, woven fabrics, gloves made by sewing non-woven fabrics, etc. that are seamlessly knitted alone or in combination can be used.

ゴムまたは樹脂としては、天然ゴム(NR)、ニトリルブタジエンゴム(NBR )、クロロプレンゴム(CR)、アクリル樹脂、ウレタン樹脂、スチレンブタジエンゴム(SBR )、イソプレンゴム(IR)、ブチルゴム(IIR )、塩化ビニル樹脂(PVC) などが例示できる。これらは一般的には水系分散ラテックスであるが、溶剤系溶液や溶剤系分散液でも使用できる。   As rubber or resin, natural rubber (NR), nitrile butadiene rubber (NBR), chloroprene rubber (CR), acrylic resin, urethane resin, styrene butadiene rubber (SBR), isoprene rubber (IR), butyl rubber (IIR), chloride Examples include vinyl resin (PVC). These are generally aqueous dispersion latexes, but can also be used in solvent-based solutions and solvent-based dispersions.

上記ゴム又は樹脂の中では、汎用的かつ安価であるNBR が好ましい。市販品のNBR としては、Nipol (登録商標)Lx−550(日本ゼオン株式会社製)、Nipol (登録商標)Lx−551(日本ゼオン株式会社製)、Nipol (登録商標)Lx−550L (日本ゼオン株式会社製)、Nipol (登録商標)Lx−556(日本ゼオン株式会社製)、PERBUNAN(登録商標)N LATEX VT-LA (Polymer Latex 社製)、PERBUNAN(登録商標) N LATEX X 1130 (Polymer Latex 社製)、PERBUNAN(登録商標) N LATEX X 1138 (PolymerLatex社製)、PERBUNAN(登録商標) N LATEX X 1150 (Polymer Latex 社製)、PERBUNAN(登録商標) N LATEX X 1172 (Polymer Latex 社製)、PERBUNAN(登録商標) N LATEX 2000 (Polymer Latex 社製)、PERBUNAN(登録商標)N LATEX426C (Polymer Latex 社製)、Synthomer (登録商標)6810(Synthomer 社製)、Synthomer (登録商標)6311(Synthomer 社製)、Synthomer (登録商標)6501(Synthomer 社製)、Synthomer (登録商標) 6617 (Synthomer 社製)、Synthomer (登録商標) 6710 (Synthomer 社製)などが使用可能である。これらは単独で又は必要に応じ2種以上組み合わせて用いられる。   Among the above rubbers or resins, NBR which is general purpose and inexpensive is preferable. Commercially available NBRs include Nipol (registered trademark) Lx-550 (manufactured by Nippon Zeon Co., Ltd.), Nipol (registered trademark) Lx-551 (manufactured by Nippon Zeon Co., Ltd.), Nipol (registered trademark) Lx-550L (Nihon Zeon). Nipol (registered trademark) Lx-556 (manufactured by Zeon Corporation), PERBUNAN (registered trademark) N LATEX VT-LA (manufactured by Polymer Latex), PERBUNAN (registered trademark) N LATEX X 1130 (Polymer Latex) PERBUNAN (registered trademark) N LATEX X 1138 (PolymerLatex), PERBUNAN (registered trademark) N LATEX X 1150 (Polymer Latex), PERBUNAN (registered trademark) N LATEX X 1172 (Polymer Latex) , PERBUNAN (registered trademark) N LATEX 2000 (manufactured by Polymer Latex), PERBUNAN (registered trademark) N LATEX426C (manufactured by Polymer Latex), Synthomer (registered trademark) 6810 (manufactured by Synthomer), Synthomer (registered trademark) 6311 (Synthomer) ), Synthomer (registered trademark) 6501 (Synthomer), S ynthomer (registered trademark) 6617 (manufactured by Synthomer), Synthomer (registered trademark) 6710 (manufactured by Synthomer) and the like can be used. These may be used alone or in combination of two or more as required.

これらには一般的なゴムに用いられる添加剤、すなわち金属酸化物、加硫促進剤、硫黄、界面活性剤、老化防止剤、充填剤等を配合することが好ましい。
金属酸化物としては、例えば、酸化亜鉛、酸化鉛、四酸化三鉛などが挙げられる。これらは単独で又は必要に応じ2種以上組み合わせて用いられる。金属酸化物の配合量は、ゴムラテックスの固形分100重量部に対し1〜3重量部が好ましい。1重量部未満では十分な強度が得られないために引張強度及びモジュラスの基本特性が得られにくく、また3重量部を超えるとモジュラスが高くなりすぎて手袋にした際にごわごわとした触感となる傾向がある。
These are preferably blended with additives used in general rubber, that is, metal oxide, vulcanization accelerator, sulfur, surfactant, anti-aging agent, filler and the like.
Examples of the metal oxide include zinc oxide, lead oxide, and trilead tetraoxide. These may be used alone or in combination of two or more as required. The compounding amount of the metal oxide is preferably 1 to 3 parts by weight with respect to 100 parts by weight of the solid content of the rubber latex. If it is less than 1 part by weight, sufficient strength cannot be obtained, so that it is difficult to obtain the basic properties of tensile strength and modulus. If it exceeds 3 parts by weight, the modulus becomes too high and the feel becomes stiff when used as a glove. Tend.

加硫促進剤としては、例えば、チウラム系、ジチオカーバメート系、チオウレア系、グアニジン系の加硫促進剤が使用できるが、中でもチウラム系、ジチオカーバメート系のものが好ましい。チウラム系の加硫促進剤としては、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィドなどが挙げられる。ジチオカーバメート系加硫促進剤としては、ジブチルチオジカルバミン酸ナトリウム、ジブチルチオジカルバミン酸亜鉛、ジエチルチオジカルバミン酸亜鉛などが挙げられる。これらは単独で又は必要に応じ2種以上組み合わせて用いられる。
加硫促進剤の配合量は、ゴムラテックスの固形分100重量部に対し0.1〜3.0重量部が好ましい。0.1重量部未満では、加硫の促進効果が十分でなく、また3.0重量部を超えると手袋にしても硬い触感の手袋となったり、初期加硫が進み、スコーチ現象を起こすなどの問題が発生する場合がある。
As the vulcanization accelerator, for example, thiuram, dithiocarbamate, thiourea, and guanidine vulcanization accelerators can be used. Of these, thiuram and dithiocarbamate are preferable. Examples of thiuram-based vulcanization accelerators include tetraethylthiuram disulfide and tetrabutylthiuram disulfide. Examples of the dithiocarbamate vulcanization accelerator include sodium dibutylthiodicarbamate, zinc dibutylthiodicarbamate, and zinc diethylthiodicarbamate. These may be used alone or in combination of two or more as required.
The blending amount of the vulcanization accelerator is preferably 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the solid content of the rubber latex. If it is less than 0.1 parts by weight, the effect of promoting vulcanization is not sufficient, and if it exceeds 3.0 parts by weight, even if it is a glove, it becomes a glove having a hard touch, or the initial vulcanization proceeds, causing a scorch phenomenon, etc. The problem may occur.

加硫促進剤だけでは加硫が不十分の場合、通常、硫黄を併用する。硫黄の配合量は、ゴムラテックスの固形分100重量部に対し0.1〜3.0重量部が好ましい。0. 1重量部未満では架橋が十分でないために、引張強度およびモジュラスの基本特性が得られにくく、また3.0重量部を超えるとモジュラスが高すぎて手袋にした際にごわごわとした触感となる傾向がある。   When vulcanization is insufficient with only the vulcanization accelerator, sulfur is usually used in combination. As for the compounding quantity of sulfur, 0.1-3.0 weight part is preferable with respect to 100 weight part of solid content of rubber latex. If less than 0.1 part by weight, crosslinking is not sufficient, so that it is difficult to obtain the basic properties of tensile strength and modulus, and if it exceeds 3.0 parts by weight, the modulus is too high and the tactile sensation when used as a glove Tend to be.

乳化剤としては、アルキル硫酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、ナフタレンスルホン酸ホルムアルデヒド縮合物ナトリウム、ロジン酸石鹸、脂肪酸石鹸などが挙げられる。これらは単独で又は必要に応じ2種以上組み合わせて用いられる。
乳化剤の配合量は、ゴムラテックスの固形分100重量部に対し0.1〜10.0重量部が好ましい。0.1重量部未満では、ラテックスの安定性が不十分となりやすく、また10.0重量部を超えると、ラテックスが安定となり過ぎ、被膜が形成しにくくなる傾向がある。
Examples of the emulsifier include sodium alkyl sulfate, sodium alkylbenzene sulfonate, sodium naphthalene sulfonate formaldehyde condensate, rosin acid soap, and fatty acid soap. These may be used alone or in combination of two or more as required.
The blending amount of the emulsifier is preferably 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the solid content of the rubber latex. If the amount is less than 0.1 parts by weight, the stability of the latex tends to be insufficient, and if it exceeds 10.0 parts by weight, the latex tends to be too stable and a coating tends to be difficult to form.

老化防止剤としては、ナフチルアミン系、ジフェニルアミン系、p−フェニレンジアミン系、キノリン系、ハイドロキノン誘導体系、モノフェノール系、ビスフェノール系、ポリフェノール系、イミダゾール系、ジチオカルバミン酸ニッケル塩系、亜リン酸エステル系、有機チオ酸系、チオウレア系等の化合物が挙げられる。これらは単独で又は必要に応じ2種以上組み合わせて用いられる。
老化防止剤の配合量は、ゴムラテックスの固形分100重量部に対し0.5〜3.0重量部が好ましい。0.5重量部未満では、劣化を遅延させる十分な効果が得られにくく、また、3.0重量部を超えると、特に劣化を遅延させる効果が増大するわけでもなく、さらには強度が低下する場合もある。
Anti-aging agents include naphthylamine, diphenylamine, p-phenylenediamine, quinoline, hydroquinone derivative, monophenol, bisphenol, polyphenol, imidazole, dithiocarbamate nickel salt, phosphite, Examples include organic thioacid-based compounds and thiourea-based compounds. These may be used alone or in combination of two or more as required.
The blending amount of the antioxidant is preferably 0.5 to 3.0 parts by weight with respect to 100 parts by weight of the solid content of the rubber latex. If the amount is less than 0.5 parts by weight, it is difficult to obtain a sufficient effect of delaying the deterioration. If the amount exceeds 3.0 parts by weight, the effect of particularly delaying the deterioration does not increase, and the strength further decreases. In some cases.

無機充填剤としては、酸化物系充填剤、炭酸塩系充填剤、ケイ酸塩系充填剤、窒化物系充填剤などが挙げられる。酸化物系充填剤としては、シリカ、酸化チタン、酸化マグネシウム、珪藻土、アルミナ、酸化鉄、酸化スズなどが挙げられ、中でも、シリカ、酸化チタン、酸化鉄が好ましい。炭酸塩系充填剤としては、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛などが挙げられるが、中でも炭酸カルシウムが好ましい。ケイ酸塩系充填剤としては、クレー、カオリナイト、パイロフィライトといったケイ酸アルミニウム、タルクのようなケイ酸マグネシウム、ウォラストナイト、ゾノトライトといったケイ酸カルシウム、ベントナイト、ガラスビーズ、ガラス繊維などが挙げられるが、中でもケイ酸アルミニウム、ケイ酸マグネシウム、ベントナイトが好ましい。これらは単独で又は必要に応じ2種以上組み合わせて用いられる。
充填剤の配合量は、ゴムラテックスの固形分100重量部に対し1〜40重量部が好ましい。1重量部未満では充填剤の効果があまり得られず、また40重量部を超えるとゴムラテックスの安定性等が損なわれる場合がある。
Examples of inorganic fillers include oxide fillers, carbonate fillers, silicate fillers, and nitride fillers. Examples of the oxide filler include silica, titanium oxide, magnesium oxide, diatomaceous earth, alumina, iron oxide, tin oxide and the like. Among these, silica, titanium oxide, and iron oxide are preferable. Examples of the carbonate-based filler include calcium carbonate, magnesium carbonate, and zinc carbonate, among which calcium carbonate is preferable. Silicate fillers include aluminum silicates such as clay, kaolinite and pyrophyllite, magnesium silicates such as talc, calcium silicates such as wollastonite and zonotlite, bentonite, glass beads and glass fibers. Of these, aluminum silicate, magnesium silicate, and bentonite are preferable. These may be used alone or in combination of two or more as required.
The blending amount of the filler is preferably 1 to 40 parts by weight with respect to 100 parts by weight of the solid content of the rubber latex. If the amount is less than 1 part by weight, the effect of the filler cannot be obtained so much, and if it exceeds 40 parts by weight, the stability of the rubber latex may be impaired.

本発明では、必要に応じて、更に上記以外の添加剤、例えば、顔料、着色剤、湿潤剤、可塑剤、消泡剤などを適宜配合することができる。
上記の如くして得られた配合物の粘度を、カルボン酸系増粘剤、セルロース系増粘剤、多糖類系増粘剤等を用いて、好ましくは1000〜3500mPa ・秒、より好ましくは1500〜3000mPa ・秒、さらに好ましくは2000〜3000mPa ・秒に調節して用いるのが好ましい。粘度が1000mPa ・秒未満であると、手袋作製時に繊維性手袋内部に原料が浸透し、手袋にしたときの触感が極めて悪くなる傾向があり、3500mPa ・秒を超えると、皮膜が厚すぎて作業効率の悪い手袋となる傾向がある。
In the present invention, additives other than the above, for example, pigments, colorants, wetting agents, plasticizers, antifoaming agents, and the like can be appropriately blended as necessary.
The viscosity of the blend obtained as described above is preferably 1000 to 3500 mPa · sec, more preferably 1500 using a carboxylic acid thickener, a cellulose thickener, a polysaccharide thickener and the like. It is preferable to adjust to ˜3000 mPa · sec, more preferably 2000 to 3000 mPa · sec. When the viscosity is less than 1000 mPa · s, the raw material penetrates into the inside of the fibrous glove at the time of making the glove, and there is a tendency that the touch feeling when it is made into a glove tends to be extremely bad. Tends to be inefficient gloves.

本発明においては、上記のようにして得られた基本的な配合に、成膜助剤が添加される。成膜助剤は凝固剤や熱によるゲル化スピードに影響を与え、本発明の目的とする凹部の幅、深さ及び数密度を達成するために必要である。このような成膜助剤としては、30〜40℃の曇点を有する化合物からなる成膜助剤またはアルコール系化合物からなる成膜助剤が好ましい。曇点が40℃を超えると熱によるラテックスのゲル化スピードが低下し、目的とする深さの凹部が得られず、一方、30℃未満ではラテックスのゲル化スピードが速く、原料の不安定化を招く恐れがある。
30〜40℃の曇点を有する化合物からなる成膜助剤としては、ポリビニルメチルエーテル(34℃) 、官能性オルガノポリシロキサン(35±5℃) が好ましい。ここで官能性オルガノポリシロキサンとは低級アルコキシ基、ポリオキシ低級アルキレン基、ポリ低級アルキレンアミノ基又はこれらの誘導体を官能基に持つオルガノシロキサンであって、特にアルキレンオキサイドが付加したものが汎用的であり好ましい。さらに、この官能性ポリオルガノシロキサンの変性物であってもよい。これらは単独で又は必要に応じ2種以上組み合わせて用いられる。
30〜40℃の曇点を有する化合物からなる成膜助剤の添加量は0.05〜20重量部、好ましくは0.05〜5重量部、より好ましくは0.1〜1重量部、さらに好ましくは0.2〜0.5重量部である。0.05よりも少ないと本発明の目的とする凹部を有する手袋を作製することが困難で、20重量部を超えるとブリスターが発生しやすくなり不良率が高くなるので好ましくない。
In the present invention, a film-forming aid is added to the basic composition obtained as described above. The film-forming aid affects the gelation speed due to the coagulant and heat, and is necessary to achieve the width, depth and number density of the recesses that are the object of the present invention. As such a film forming aid, a film forming aid made of a compound having a cloud point of 30 to 40 ° C. or a film forming aid made of an alcohol compound is preferable. If the cloud point exceeds 40 ° C, the gelation speed of the latex due to heat decreases, and a recess having the desired depth cannot be obtained. On the other hand, if it is less than 30 ° C, the gelation speed of the latex is fast and the raw material becomes unstable. There is a risk of inviting.
As the film-forming aid made of a compound having a cloud point of 30 to 40 ° C., polyvinyl methyl ether (34 ° C.) and functional organopolysiloxane (35 ± 5 ° C.) are preferable. Here, the functional organopolysiloxane is an organosiloxane having a lower alkoxy group, a polyoxy lower alkylene group, a poly lower alkylene amino group or a derivative thereof as a functional group, and in particular, an alkylene oxide added. preferable. Further, it may be a modified product of this functional polyorganosiloxane. These may be used alone or in combination of two or more as required.
The addition amount of the film-forming aid comprising a compound having a cloud point of 30 to 40 ° C. is 0.05 to 20 parts by weight, preferably 0.05 to 5 parts by weight, more preferably 0.1 to 1 part by weight, Preferably it is 0.2-0.5 weight part. If it is less than 0.05, it is difficult to produce a glove having a concave portion, which is the object of the present invention, and if it exceeds 20 parts by weight, blisters tend to occur and the defect rate becomes high, which is not preferable.

アルコール系化合物からなる成膜助剤としては、アルコールやポリオール、エーテルポリオールのように複数のアルコール性ヒドロキシル基をもつ化合物をいい、具体的には、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、へキシレングリコール、ベンジルアルコール、イソプロピルアルコール等が挙げられる。これらは単独で又は必要に応じ2種以上組み合わせて用いられる。
アルコール系化合物からなる成膜助剤の添加量は5〜25重量部が好ましく、10〜25重量部がより好ましい。5重量部よりも少ないと本発明の目的とする凹部を有する手袋を作製することが困難で、25重量部を超えるとブリスターが発生しやすくなり不良率が高くなるので好ましくない。
As the film-forming aid composed of an alcohol compound, a compound having a plurality of alcoholic hydroxyl groups such as alcohol, polyol and ether polyol is used. Specifically, 2,2,4-trimethyl-1,3- Pentanediol monoisobutyrate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol dibutyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, hexylene Examples include glycol, benzyl alcohol, and isopropyl alcohol. These may be used alone or in combination of two or more as required.
The addition amount of the film-forming aid made of an alcohol compound is preferably 5 to 25 parts by weight, and more preferably 10 to 25 parts by weight. If the amount is less than 5 parts by weight, it is difficult to produce a glove having a concave portion, which is the object of the present invention, and if it exceeds 25 parts by weight, blisters are likely to occur and the defect rate increases, which is not preferable.

上記の如く形成された被覆層に溶解性微粒子が埋め込まれる。溶解性微粒子としては、水や溶媒、好ましくは水に溶解するものが好適に用いられる。例えば、塩化ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム、硝酸カルシウム、リン酸ナトリウム、炭酸カルシウム、硝酸ナトリウム、硫酸ナトリウムなどの金属塩や、グラニュー糖などの砂糖類、クエン酸、アスコルビン酸などの有機酸、その他にはワックス等が挙げられ、これらは単独で又は必要に応じ2種以上組み合わせて用いられる。しかしながら、例えば塩化ナトリウムなどは市販品を入手した場合、その粒子径は500μm前後である場合が多く、下記の粒子径を満たすために粒子を粉砕するなどの手間が必要になる。従って、このような粉砕が不要で、容易に準備できる硫酸ナトリウムが最も好ましい。   Dissolving fine particles are embedded in the coating layer formed as described above. As the soluble fine particles, water or a solvent, preferably those soluble in water are suitably used. For example, metal salts such as sodium chloride, sodium bicarbonate, sodium carbonate, calcium nitrate, sodium phosphate, calcium carbonate, sodium nitrate, sodium sulfate, sugars such as granulated sugar, organic acids such as citric acid and ascorbic acid, In addition, a wax etc. are mentioned, These are used individually or in combination of 2 or more types as needed. However, for example, when a commercially available product such as sodium chloride is obtained, the particle size is often around 500 μm, and it is necessary to work such as crushing the particles to satisfy the following particle size. Therefore, sodium sulfate which does not require such pulverization and can be easily prepared is most preferable.

溶解性微粒子の粒子径は0.1〜425μmであるのが好ましく、より好ましくは0.1〜300μm、さらに好ましくは75〜300μmである。さらに、使用した全粒子のうち、少なくとも99.5%の粒子の粒子径が300μm以下であることが好ましい。
ここで粒子径とは、Endecotts社製の装置を用いて英国規格(BS812:Part103:1985)に基づいて測定して得られた値である。
The particle diameter of the soluble fine particles is preferably 0.1 to 425 μm, more preferably 0.1 to 300 μm, and still more preferably 75 to 300 μm. Furthermore, it is preferable that the particle diameter of at least 99.5% of all the used particles is 300 μm or less.
Here, the particle size is a value obtained by measurement based on the British standard (BS812: Part103: 1985) using an apparatus manufactured by Endecotts.

被覆層への溶解性微粒子の付着量は、被覆層のうち溶解性微粒子を付着する面積、即ち、凹部を形成する被覆層の面積に対し付着させ埋め込むに十分な量である。従って、溶解性微粒子の付着量は、該微粒子を付着させ埋め込む面積、形成させる凹部の数密度により変動する。
溶解性微粒子は被覆層が予備硬化する前に該被覆層に埋め込まれるが、埋め込む方法としては流動浸漬、静電塗装、吹き付け、ふりかけ等の方法が用いられる。
The adhesion amount of the soluble fine particles to the coating layer is an amount sufficient to adhere to and embed the area of the coating layer on which the soluble fine particles adhere, that is, the area of the coating layer forming the recess. Therefore, the adhesion amount of the soluble fine particles varies depending on the area where the fine particles are adhered and embedded and the number density of the concave portions to be formed.
The soluble fine particles are embedded in the coating layer before the coating layer is pre-cured. As the method of embedding, methods such as fluid dipping, electrostatic coating, spraying, and sprinkling are used.

次に、溶解性微粒子が埋め込まれた被覆層は、加熱により予備硬化される。予備硬化は次の溶解除去の工程で被覆層が流去したり、変形したりしない程度の強度を被覆層に与えるためのもので、通常、被覆層の固形分量が好ましくは65〜100%、より好ましくは70〜100%、更に好ましくは85〜100%になるように硬化させる。具体的には100〜150℃で5〜10分程度加熱される。   Next, the coating layer in which the soluble fine particles are embedded is pre-cured by heating. The pre-curing is to give the coating layer strength that does not cause the coating layer to flow away or deform in the next dissolution and removal step. Usually, the solid content of the coating layer is preferably 65 to 100%, More preferably 70 to 100%, and still more preferably 85 to 100%. Specifically, it is heated at 100 to 150 ° C. for about 5 to 10 minutes.

次に、被覆層に埋め込まれた溶解性微粒子は、水や溶媒により溶解除去される。溶解性微粒子の除去は水又は温水による洗浄による方法が好ましい。被覆層は前記予備硬化により強度が高められているので、強力な条件下で溶解除去することができ、必要に応じ、手袋を手型から離型してドラムウオッシャー等により溶解除去することも可能である。
この場合、例えば、作業中に接触することによる金属部の発錆を防ぐ手袋を得るには、発錆の原因となるアニオンやカチオンの含有量ができるだけ少なくなるように洗浄するのが好ましく、特に、硫酸イオンは100ppm以下、硝酸イオンは50ppm以下、塩素イオンは1000ppm以下、ナトリウムイオンは1000ppm以下、アンモニウムイオンは50ppm以下とするのが好ましい。
Next, the soluble fine particles embedded in the coating layer are dissolved and removed with water or a solvent. Removal of the soluble fine particles is preferably performed by washing with water or warm water. Since the strength of the coating layer is increased by the preliminary curing, it can be dissolved and removed under strong conditions. If necessary, the glove can be removed from the hand mold and dissolved and removed with a drum washer, etc. It is.
In this case, for example, in order to obtain a glove that prevents rusting of the metal part due to contact during work, it is preferable to wash so that the content of anions and cations that cause rusting is as low as possible. The sulfate ion is preferably 100 ppm or less, the nitrate ion is 50 ppm or less, the chlorine ion is 1000 ppm or less, the sodium ion is 1000 ppm or less, and the ammonium ion is preferably 50 ppm or less.

次に、溶解性微粒子が除去され、該微粒子が抜け出た形跡である凹部が形成された被覆層は、加熱することにより本硬化される。本硬化により凹部が形成された被覆層は硬化され、形成された凹部の幅、深さ、数密度が維持される。本硬化は通常100〜160℃で15〜60分加熱される。
本硬化された手袋は、手型から離型される。得られた手袋は、滑り止め性及び耐摩耗性のバランスに優れ、発錆の原因となるアニオンやカチオンの含有量が少なく、手袋を装着して作業をする際に金属部に接触しても、該金属部を発錆させることが防止される。
尚、上記した予備硬化、溶解除去、本硬化の方法に代えて、硬化(本硬化)、溶解除去、乾燥の方法を採用することもできる。
Next, the coating layer in which the soluble fine particles are removed and the concave portions that are traces of the fine particles are formed is finally cured by heating. The coating layer in which the concave portions are formed by the main curing is cured, and the width, depth, and number density of the formed concave portions are maintained. The main curing is usually performed at 100 to 160 ° C. for 15 to 60 minutes.
The fully cured glove is released from the hand mold. The resulting glove has a good balance of anti-slip and wear resistance, has a low content of anions and cations that cause rusting, and even when it comes into contact with the metal part when wearing gloves Rusting of the metal part is prevented.
In place of the above-described preliminary curing, dissolution removal, and main curing methods, curing (main curing), dissolution removal, and drying methods may be employed.

以下、実施例によって本発明を更に詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.

実施例1
金属製手型に13ゲージの編み機で編んだナイロン製のシームレス手袋を被せ、70℃に加温した後、メタノール100重量部、硝酸カルシウム1.0重量部から成る凝固剤浴槽に浸漬した後、室温30〜40℃の間で30秒間放置することにより、ゴム配合液浸漬直前の手型表面温度を38℃に調整した。
一方、表1記載のゴム配合液に、成膜助剤であるアルキレンオキサイド変性オルガノポリシロキサンとして、TPA−4380(GE東芝シリコーン株式会社製、曇点:35℃)をゴムの固形分100重量部に対し0.05重量部添加したゴム配合液の浴槽に浸漬し、浴槽から引き上げた。続いて、室温で20秒間放置し、溶解性微粒子として粒子径0.1〜300μm の硫酸ナトリウムを満たした流動浸漬槽に浸漬した。その後、100℃で10分間加熱して予備硬化させ、35℃のぬるま湯で60分間水洗して溶解性微粒子を溶解除去した後、135℃で30分間加熱して本硬化させた。その後、手型から離型して手袋を得た。
Example 1
Nylon seamless gloves knitted with a 13 gauge knitting machine are put on a metal hand mold, heated to 70 ° C., and immersed in a coagulant bath composed of 100 parts by weight of methanol and 1.0 part by weight of calcium nitrate. The hand mold surface temperature immediately before immersion in the rubber compounding solution was adjusted to 38 ° C. by leaving it at room temperature of 30 to 40 ° C. for 30 seconds.
On the other hand, TPA-4380 (manufactured by GE Toshiba Silicone Co., Ltd., cloud point: 35 ° C.) is added to the rubber compounding solution shown in Table 1 as an alkylene oxide-modified organopolysiloxane that is a film forming aid. It was immersed in the bathtub of the rubber | gum compounding liquid which added 0.05 weight part with respect to the, and pulled up from the bathtub. Then, it was left to stand at room temperature for 20 seconds and immersed in a fluidized immersion tank filled with sodium sulfate having a particle size of 0.1 to 300 μm as soluble fine particles. Thereafter, it was preliminarily cured by heating at 100 ° C. for 10 minutes, washed with water with 35 ° C. lukewarm water for 60 minutes to dissolve and remove soluble fine particles, and then heated at 135 ° C. for 30 minutes for main curing. Thereafter, the mold was released from the hand mold to obtain a glove.

実施例2
アルキレンオキサイド変性オルガノポリシロキサンTPA−4380の添加量を0.10重量部とした以外は実施例1と同様にして手袋を得た。
Example 2
A glove was obtained in the same manner as in Example 1 except that the addition amount of the alkylene oxide-modified organopolysiloxane TPA-4380 was changed to 0.10 parts by weight.

実施例3
アルキレンオキサイド変性オルガノポリシロキサンTPA−4380の添加量を0.25重量部とした以外は実施例1と同様にして手袋を得た。
得られた手袋の掌部表面を真上からDIGITAL MICROSCOPE VHX-900 (KEYENCE 社製)により撮影した拡大写真(100倍)を図1に示し、同じく断面を真上から撮影した拡大写真(100倍)を図2に示す。図1、図2に示すように、凹部は被覆層の表面に形成され、被覆層の内部には多孔質層は実質的に形成されていない。
Example 3
A glove was obtained in the same manner as in Example 1 except that the addition amount of the alkylene oxide-modified organopolysiloxane TPA-4380 was changed to 0.25 parts by weight.
Fig. 1 shows a magnified photo (100x) taken from directly above the palm surface of the resulting glove with DIGITAL MICROSCOPE VHX-900 (manufactured by KEYENCE). ) Is shown in FIG. As shown in FIGS. 1 and 2, the recess is formed on the surface of the coating layer, and the porous layer is not substantially formed inside the coating layer.

実施例4
アルキレンオキサイド変性オルガノポリシロキサンTPA−4380の添加量を1.00重量部とした以外は実施例1と同様にして手袋を得た。
Example 4
A glove was obtained in the same manner as in Example 1 except that the addition amount of the alkylene oxide-modified organopolysiloxane TPA-4380 was changed to 1.00 parts by weight.

実施例5
アルキレンオキサイド変性オルガノポリシロキサンTPA−4380の添加量を2.50重量部とした以外は実施例1と同様にして手袋を得た。
Example 5
A glove was obtained in the same manner as in Example 1 except that the addition amount of the alkylene oxide-modified organopolysiloxane TPA-4380 was 2.50 parts by weight.

実施例6
アルキレンオキサイド変性オルガノポリシロキサンTPA−4380の添加量を5.00重量部とした以外は実施例1と同様にして手袋を得た。
Example 6
A glove was obtained in the same manner as in Example 1 except that the addition amount of the alkylene oxide-modified organopolysiloxane TPA-4380 was changed to 5.00 parts by weight.

実施例7
アルキレンオキサイド変性オルガノポリシロキサンTPA−4380の添加量を10.00重量部とした以外は実施例1と同様にして手袋を得た。
Example 7
A glove was obtained in the same manner as in Example 1 except that the addition amount of the alkylene oxide-modified organopolysiloxane TPA-4380 was 10.00 parts by weight.

実施例8
アルキレンオキサイド変性オルガノポリシロキサンTPA−4380の添加量を18.00重量部とした以外は実施例1と同様にして手袋を得た。
Example 8
A glove was obtained in the same manner as in Example 1 except that the addition amount of the alkylene oxide-modified organopolysiloxane TPA-4380 was changed to 18.00 parts by weight.

実施例9
アルキレンオキサイド変性オルガノポリシロキサンTPA−4380の添加量を0.25重量部とし、さらに溶解性微粒子として粒子径100〜200μm に調整した硫酸ナトリウムを用いた以外は実施例1と同様にして手袋を得た。
Example 9
A glove was obtained in the same manner as in Example 1 except that the amount of the alkylene oxide-modified organopolysiloxane TPA-4380 was 0.25 parts by weight, and sodium sulfate adjusted to a particle size of 100 to 200 μm was used as the soluble fine particles. It was.

実施例10
アルキレンオキサイド変性オルガノポリシロキサンTPA−4380の添加量を0.25重量部とし、さらに溶解性微粒子として粒子径75〜250μm に調整した硫酸ナトリウムを用いた以外は実施例1と同様にして手袋を得た。
Example 10
A glove was obtained in the same manner as in Example 1 except that the amount of addition of the alkylene oxide-modified organopolysiloxane TPA-4380 was 0.25 parts by weight, and sodium sulfate adjusted to a particle size of 75 to 250 μm was used as the soluble fine particles. It was.

実施例11
表1に記載したゴム配合液に、成膜助剤としてポリビニルメチルエーテル(PVME)Lutonal(登録商標、M/BASF Corporation製、曇点:34℃)1.00重量部を添加した以外は実施例1と同様にして手袋を得た。
Example 11
Example except that 1.00 parts by weight of polyvinyl methyl ether (PVME) Lutonal (registered trademark, manufactured by M / BASF Corporation, cloud point: 34 ° C.) was added to the rubber compounding solution described in Table 1 as a film forming aid. A glove was obtained in the same manner as in 1.

実施例12
ポリビニルメチルエーテル(PVME)Lutonal(登録商標、M/BASF Corporation製、曇点:34℃)を5.00重量部添加した以外は実施例1と同様にして手袋を得た。
Example 12
A glove was obtained in the same manner as in Example 1 except that 5.00 parts by weight of polyvinyl methyl ether (PVME) Lutonal (registered trademark, manufactured by M / BASF Corporation, cloud point: 34 ° C.) was added.

実施例13
成膜助剤としてシロキサン系のCoagulant WS(LANXESS株式会社製、曇点:38℃))を0.25重量部添加した以外は実施例1と同様にして手袋を得た。
Example 13
A glove was obtained in the same manner as in Example 1 except that 0.25 parts by weight of siloxane-based Coagulant WS (manufactured by LANXESS, cloud point: 38 ° C.)) was added as a film forming aid.

実施例14
Coagulant WSを5.00重量部添加した以外は実施例1と同様にして手袋を得た。
Example 14
A glove was obtained in the same manner as in Example 1 except that 5.00 parts by weight of Coagulant WS was added.

実施例15
Coagulant WSを10.00重量部添加した以外は実施例1と同様にして手袋を得た。
Example 15
A glove was obtained in the same manner as in Example 1 except that 10.00 parts by weight of Coagulant WS was added.

実施例16
成膜助剤としてジエチレングリコールモノブチルエーテルアセテートであるブチルセノール20アセテート(協和発酵ケミカル株式会社製)6.00重量部添加した以外は実施例1と同様にして手袋を得た。
Example 16
A glove was obtained in the same manner as in Example 1 except that 6.00 parts by weight of butylsenol 20 acetate (Kyowa Hakko Chemical Co., Ltd.), which is diethylene glycol monobutyl ether acetate, was added as a film forming aid.

実施例17
成膜助剤として2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレートKyowanol-M( 協和発酵ケミカル株式会社製) 10.00重量部添加した以外は実施例1と同様にして手袋を得た。
Example 17
As in Example 1, except that 10.00 parts by weight of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate Kyowanol-M (Kyowa Hakko Chemical Co., Ltd.) was added as a film forming aid. I got gloves.

実施例18
ジエチレングリコールモノブチルエーテルアセテートであるブチルセノール20アセテート20.00重量部添加した以外は実施例1と同様にして手袋を得た。
Example 18
A glove was obtained in the same manner as in Example 1 except that 20.00 parts by weight of butylsenol 20 acetate which is diethylene glycol monobutyl ether acetate was added.

実施例19
実施例1で用いた表1記載のゴム配合液を表2記載の樹脂配合液へ変更し、135℃で30分間の架橋を115℃で20分間の乾燥に変更した以外は実施例1と同様にして手袋を得た。
Example 19
Same as Example 1 except that the rubber compounding solution shown in Table 1 used in Example 1 was changed to the resin compounding solution shown in Table 2, and the crosslinking at 135 ° C. for 30 minutes was changed to drying at 115 ° C. for 20 minutes. And got gloves.

実施例20
実施例1において、成膜助剤であるアルキレンオキサイド変性オルガノポリシロキサン、TPA−4380(GE東芝シリコーン株式会社製、曇点:35℃)をゴムの固形分100重量部に対し0.25重量部に変更し、予備硬化を、110℃で15分間、更に130℃で15分間加熱して本硬化に変更し、本硬化の後、40℃のぬるま湯で30分間水洗して溶解性微粒子を溶解除去した後、130℃で20分間乾燥させた他は、実施例1と同様に操作し、手袋を得た。
Example 20
In Example 1, 0.25 parts by weight of an alkylene oxide-modified organopolysiloxane, TPA-4380 (manufactured by GE Toshiba Silicone Co., Ltd., cloud point: 35 ° C.), which is a film forming aid, is used with respect to 100 parts by weight of rubber solid content. The pre-curing is changed to main curing by heating at 110 ° C. for 15 minutes and further at 130 ° C. for 15 minutes. After the main curing, the fine particles are washed with 40 ° C. lukewarm water for 30 minutes to dissolve and remove soluble fine particles. After that, a glove was obtained in the same manner as in Example 1 except that it was dried at 130 ° C. for 20 minutes.

比較例1
成膜助剤を添加せず、溶解性微粒子を用いなかった以外は実施例1と同様にして手袋を得た。
得られた手袋の掌部表面を真上からDIGITAL MICROSCOPE VHX-900 (KEYENCE 社製)により撮影した拡大写真(100倍)を図3に示し、同じく断面を真上から撮影した拡大写真(100倍)を図4に示す。
Comparative Example 1
A glove was obtained in the same manner as in Example 1 except that no film forming aid was added and no soluble fine particles were used.
Fig. 3 shows an enlarged photograph (100x) taken from above the palm surface of the resulting glove with DIGITAL MICROSCOPE VHX-900 (manufactured by KEYENCE). ) Is shown in FIG.

比較例2
成膜助剤を添加しなかった以外は実施例1と同様にして手袋を得た。
得られた手袋の掌部表面を真上からDIGITAL MICROSCOPE VHX-900 (KEYENCE 社製)により撮影した拡大写真(100倍)を図5に示し、同じく断面を真上から撮影した拡大写真(100倍)を図6に示す。
Comparative Example 2
A glove was obtained in the same manner as in Example 1 except that the film forming aid was not added.
Fig. 5 shows a magnified photograph (100x) taken from above the palm surface of the resulting glove with DIGITAL MICROSCOPE VHX-900 (manufactured by KEYENCE). ) Is shown in FIG.

比較例3
ポリビニルメチルエーテル(PVME)Lutonalを0.01重量部添加した以外は実施例1と同様にして手袋を得た。
Comparative Example 3
A glove was obtained in the same manner as in Example 1 except that 0.01 parts by weight of polyvinyl methyl ether (PVME) Lutonal was added.

比較例4
アルキレンオキサイド変性オルガノポリシロキサンTPA−4380を50.00重量部添加した以外は実施例1と同様にして手袋を得た。
Comparative Example 4
A glove was obtained in the same manner as in Example 1 except that 50.00 parts by weight of alkylene oxide-modified organopolysiloxane TPA-4380 was added.

比較例5
Kyowanol-Mを2.00重量部添加した以外は実施例1と同様にして手袋を得た。
Comparative Example 5
A glove was obtained in the same manner as in Example 1 except that 2.00 parts by weight of Kyowanol-M was added.

比較例6
Kyowanol-Mを30.00重量部添加した以外は実施例1と同様にして手袋を得た。
Comparative Example 6
A glove was obtained in the same manner as in Example 1 except that 30.00 parts by weight of Kyowanol-M was added.

比較例7
成膜助剤を添加せず、溶解性微粒子として粒子径を500〜1000μm に調整した塩化ナトリウムを用いた以外は実施例1と同様にして手袋を得た。
得られた手袋の掌部表面を真上からDIGITAL MICROSCOPE VHX-900 (KEYENCE 社製)により撮影した拡大写真(100倍)を図7に示し、同じく断面を真上から撮影した拡大写真(100倍)を図8に示す。
Comparative Example 7
A glove was obtained in the same manner as in Example 1 except that no film-forming auxiliary was added and sodium chloride having a particle diameter adjusted to 500 to 1000 μm was used as the soluble fine particles.
Fig. 7 shows an enlarged photograph (100x) taken from above the palm surface of the resulting glove with DIGITAL MICROSCOPE VHX-900 (manufactured by KEYENCE). ) Is shown in FIG.

比較例8
アルキレンオキサイド変性オルガノポリシロキサンTPA−4380の添加量を0.25重量部とし、さらに溶解性微粒子として粒子径500〜1000μm に調整した塩化ナトリウムを用いた以外は実施例1と同様にして手袋を得た。
Comparative Example 8
A glove was obtained in the same manner as in Example 1 except that the addition amount of alkylene oxide-modified organopolysiloxane TPA-4380 was 0.25 parts by weight and sodium chloride adjusted to a particle size of 500 to 1000 μm was used as the soluble fine particles. It was.

比較例9
成膜助剤を添加せず、溶解性微粒子を用いなかった以外は実施例19と同様にして手袋を得た。
Comparative Example 9
A glove was obtained in the same manner as in Example 19 except that no film forming aid was added and no soluble fine particles were used.

上記実施例1〜20及び比較例1〜9で得られた手袋について、それぞれの製造の概要を表3、表4に示す。尚、凹部の幅、深さ及び数密度は前記した方法で測定又はカウントした。また、手袋の滑り止め性、耐摩耗性、ブリスターを下記の方法で測定、評価した結果を被覆層の厚みとともに表3、表4に示す。   About the glove obtained in the said Examples 1-20 and Comparative Examples 1-9, the outline | summary of each manufacture is shown in Table 3, Table 4. In addition, the width | variety, depth, and number density of a recessed part were measured or counted by the above-mentioned method. Tables 3 and 4 show the results obtained by measuring and evaluating the anti-slip property, abrasion resistance and blister of the glove by the following methods together with the thickness of the coating layer.

(1)滑止め性テスト
工業用油であるSUNOCO IRM 903(SUN OIL COMPANY製、以下「試験用油」)100gを100mLビーカーに注ぎ込み、この中に、図12に示すように、M4と呼ばれる六角穴付ボルトと六角ナットからなる一組のネジセット(以下「ネジセットA」)及びM6と呼ばれる六角穴付ボルトと六角ナットからなる一組のネジセット(以下「ネジセットB」)を入れた。その後、この二組のネジセットを油浴中からピンセットを用いてシャーレ上に取り出した。
このネジセットを取り出したときの時間を0秒とし、この二組のネジセットを連続して組み立てて取り外すまでの一連の作業に要した時間を測定した。
ここでM4と呼ばれるネジセットAとは鋼製の六角穴付きボルトとこれに対応する六角ナットで、当該ボルトのネジ山の間隔は0.7mmであって、図中における各所寸法がdkは7.0mm、dsは4.0mm、tは2mm、kは4.0mm、lは25mm、sは3mm、eは3.4mmである。
また、M6と呼ばれるネジセットBとは鋼製の六角穴付きボルトとこれに対応する六角ナットで、当該ボルトのネジ山の間隔は1.0mmであって、図中における各所寸法がdkは10.0mm、dsは6.0mm、tは3mm、kは6.0mm、lは25mm、sは6mm、eは5.7mmである。
因みに、測定時間が短いほど、OIL使用時の組立て作業性に優れており、10人の被験者によって時間の測定を行い、その平均値(sec)を示した。
(1) Non-slip test SUNOCO IRM 903 (manufactured by SUN OIL COMPANY, hereinafter “test oil”), which is an industrial oil, is poured into a 100 mL beaker, and as shown in FIG. A set of screws consisting of a bolt and a hexagon nut (hereinafter “screw set A”) and a set of screws consisting of a hexagon socket bolt and a hexagon nut called M6 (hereinafter “screw set B”) were inserted. . Thereafter, the two sets of screws were taken out from the oil bath on a petri dish using tweezers.
The time when the screw set was taken out was set to 0 second, and the time required for a series of operations until the two sets of screw sets were assembled and removed was measured.
Here, the screw set A called M4 is a steel hexagon socket head cap screw and a corresponding hexagon nut, and the screw thread interval of the bolt is 0.7 mm. 0.0 mm, ds is 4.0 mm, t is 2 mm, k is 4.0 mm, l is 25 mm, s is 3 mm, and e is 3.4 mm.
Further, the screw set B called M6 is a steel hexagon socket head cap screw and a corresponding hexagon nut, and the screw thread spacing of the bolt is 1.0 mm. 0.0 mm, ds is 6.0 mm, t is 3 mm, k is 6.0 mm, l is 25 mm, s is 6 mm, and e is 5.7 mm.
Incidentally, the shorter the measurement time, the better the assembly workability when using the OIL. The time was measured by 10 subjects and the average value (sec) was shown.

(2)耐摩耗性テスト
欧州規格EN 388に準拠して耐摩耗性試験を行った。試験機には Nu−Martindale Abration and Pilling Tester Model 406−6 Positions(James H. Heal & Co. Ltd.製)を用いた。また、試験時には、φ40mmに切り取った試験片、サンドペーパー(OAKEY GLASS PAPER F2、#100、SAINT−GOBA IN ABRASIVES LTD.製)を準備し、摩擦子荷重を9kPaにして試験を実施し、試験開始前と2000回摩耗時の試験片の重量を測定した。
そして、摩耗開始前の試験片の重量と摩耗2000回時の試験片の重量の差を算出し、摩耗による試験片の減少量(以下「摩耗減少量」)によって摩耗強度を判断した。
従って、摩耗減少量が少ないほど耐摩耗性に優れている。
耐摩耗性テスト後の実施例3、比較例2、比較例7の各手袋の掌部表面を真上からデジタルカメラにより撮影した写真を図9、図10、図11に示す。
(2) Abrasion resistance test Abrasion resistance test was conducted according to European standard EN 388. Nu-Martindale Abrasion and Pilling Tester Model 406-6 Positions (manufactured by James H. Heal & Co. Ltd.) were used as the test machine. In addition, at the time of the test, a test piece cut out to φ40 mm and a sandpaper (OAKEY GLASS PAPER F2, # 100, manufactured by SAINT-GOBA IN ABRASIVES LTD.) Were prepared, and the test was carried out with a frictional load of 9 kPa. The weight of the specimen before and after 2000 wears was measured.
Then, the difference between the weight of the test piece before the start of wear and the weight of the test piece at the time of 2,000 wear was calculated, and the wear strength was judged from the amount of decrease in the test piece due to wear (hereinafter referred to as “wear reduction amount”).
Therefore, the smaller the amount of wear reduction, the better the wear resistance.
9, 10, and 11 are photographs obtained by photographing the palm surface of each glove of Example 3, Comparative Example 2, and Comparative Example 7 after the abrasion resistance test with a digital camera from directly above.

(3)ブリスターの評価
被覆層を目視観察し、ブリスターの有無を測定した。
(3) Evaluation of blister The coating layer was visually observed and the presence or absence of the blister was measured.

表3から明らかなように、実施例1〜20に代表される本発明の手袋は、滑り止め性及び耐摩耗性が共に優れており、ブリスターも認められない。
これに対して、成膜助剤も溶解性微粒子も使用しない比較例1、比較例9の手袋は、滑り止め性に劣っている。また、成膜助剤を使用せず、溶解性微粒子を使用した比較例2の手袋は、凹部の深さが大きすぎ耐摩耗性に劣っている。また、成膜助剤の添加量が少ない比較例3、比較例5の手袋は、凹部の深さが大きすぎ耐摩耗性に劣り、一方、成膜助剤の添加量が多い比較例4、比較例6の手袋は、ブリスターが認められる。また、成膜助剤を使用せず、溶解性微粒子として粒子径の大きいNaClを用いた比較例7の手袋は、凹部の幅が大きすぎ、従って、数密度が小さくなりすぎ、滑り止め性、耐摩耗性のいずれにおいても劣り、この場合において、成膜助剤を使用した比較例8の手袋も同様の結果である。尚、比較例7、8において、被覆層の厚みが約半分と薄くなっているが、その理由は不明である。
As is apparent from Table 3, the gloves of the present invention represented by Examples 1 to 20 are excellent in anti-slip properties and wear resistance, and no blisters are observed.
On the other hand, the gloves of Comparative Example 1 and Comparative Example 9 that do not use the film forming aid and the soluble fine particles are inferior in slip resistance. Moreover, the glove of the comparative example 2 which does not use the film-forming auxiliary | assistance and uses the soluble fine particle has the depth of a recessed part too large, and is inferior to abrasion resistance. Further, the gloves of Comparative Example 3 and Comparative Example 5 with a small amount of film-forming auxiliary added have a recess having a too large depth and poor wear resistance, while Comparative Example 4 with a large amount of film-forming auxiliary added. Blisters are observed in the gloves of Comparative Example 6. Further, the glove of Comparative Example 7 using NaCl having a large particle size as a soluble fine particle without using a film forming aid has a width of the concave portion that is too large, so that the number density becomes too small, and slip resistance is improved. In both cases, the abrasion resistance is inferior, and in this case, the gloves of Comparative Example 8 using a film-forming aid have the same result. In Comparative Examples 7 and 8, the thickness of the coating layer is as thin as about half, but the reason is unknown.

また、実施例3の手袋についての拡大写真(図1、図2)と、比較例1の手袋についての拡大写真(図3、図4)、比較例2の手袋についての拡大写真(図5、図6)との比較から実施例3に代表される本発明の手袋は被覆層に適切な幅、深さ、数密度の凹部が比較的規則的に形成されているのに対し、比較例1の手袋ではかかる凹部は存在せず、また、比較例2、比較例3の手袋はいずれも凹部の深さが大きいことがわかる。
更に、耐摩耗性テスト後の実施例3の手袋についての拡大写真(図9)と、同比較例2の手袋についての拡大写真(図10)、同比較例7の手袋についての拡大写真(図11)との比較から、実施例3に代表される本発明の手袋は、耐摩耗性テスト後も被覆層の摩耗剥離が小さく耐摩耗性に優れているのに対し、比較例2、比較例7の手袋はいずれも摩耗剥離が大きく耐摩耗性に劣ることがわかる。
Moreover, the enlarged photograph (FIG. 1, FIG. 2) about the glove of Example 3, the enlarged photograph (FIG. 3, FIG. 4) about the glove of Comparative Example 1, the enlarged photograph about the glove of Comparative Example 2 (FIG. 5, In comparison with FIG. 6), the glove of the present invention represented by Example 3 has relatively regular recesses of appropriate width, depth and number density formed on the coating layer, whereas Comparative Example 1 This glove does not have such a recess, and the gloves of Comparative Example 2 and Comparative Example 3 both have a large depth of the recess.
Furthermore, the enlarged photograph (FIG. 9) about the glove of Example 3 after an abrasion-resistance test, the enlarged photograph (FIG. 10) about the glove of the comparative example 2, The enlarged photograph about the glove of the comparative example 7 (FIG. 11) Compared with 11), the gloves of the present invention represented by Example 3 have small wear peeling of the coating layer and excellent wear resistance even after the wear resistance test. It can be seen that all of the gloves No. 7 have large wear peeling and inferior wear resistance.

実施例21
実施例1において、予備硬化させた手袋を手型から離型してドラムウオッシャーにより1分当たり容積の5%の水(ぬるま湯)を入れ換えながら60分間水洗して溶解性微粒子を溶解除去した他は実施例1と同様に操作した。
得られた手袋表面のアニオン及びカチオンのイオンを抽出し、そのイオン量をイオンクロマトグラフィーを用いて測定した。イオンの抽出方法としては、得られた手袋から被覆層を1g採取し、200gの水中に入れ85℃で1時間加熱して抽出した。その結果を表5に示す。
Example 21
In Example 1, the pre-cured glove was released from the hand mold, and the soluble fine particles were dissolved and removed by rinsing with a drum washer for 60 minutes while replacing 5% of water per minute (warm water). The same operation as in Example 1 was performed.
The anion and cation ions on the surface of the obtained glove were extracted, and the amount of ions was measured using ion chromatography. As a method for extracting ions, 1 g of the coating layer was collected from the obtained glove, placed in 200 g of water, and extracted by heating at 85 ° C. for 1 hour. The results are shown in Table 5.

比較例10
実施例1において、予備硬化させることなく直ちに40℃のめるま湯で60分間水洗した他は実施例1と同様に操作した。
得られた手袋表面のアニオン及びカチオンのイオン量を測定した。その結果を表5に示す。
Comparative Example 10
In Example 1, operation was performed in the same manner as in Example 1 except that it was immediately rinsed with warm water of 40 ° C. for 60 minutes without being precured.
The amount of anions and cations on the surface of the glove thus obtained was measured. The results are shown in Table 5.

上記表5から明らかなように、本発明は手袋の被覆層表面のアニオン及びカチオンの量を大巾に減らすことができる。特に、錆の原因となる硫酸イオン、ナトリウムイオン、塩素イオン等を顕著に減らすことができるので、作業中に手袋が接触することにより惹き起こされる金属部の発錆を防ぐことができる。   As apparent from Table 5 above, the present invention can greatly reduce the amount of anions and cations on the surface of the coating layer of the glove. In particular, since sulfate ions, sodium ions, chlorine ions, and the like that cause rust can be significantly reduced, it is possible to prevent rusting of the metal part caused by contact with gloves during work.

叙上のとおり、本発明の手袋によれば、滑り止め性と耐摩耗性とをバランス良く備え、特に油に接触している際の滑り止め性に優れ、また、発錆の原因となるアニオンやカチオンの含有量の少ない手袋が提供される。

As described above, according to the glove of the present invention, the anion that has anti-slip properties and wear resistance in a well-balanced manner, particularly excellent in anti-slip properties when in contact with oil, and causes rusting. And gloves with low cation content are provided.

Claims (11)

繊維製手袋とその表面のゴム又は樹脂の被覆層とからなり、該被覆層の表面に幅0. 1〜425μm 、深さ0. 1〜200μm 、数密度1000〜5000個/cm2の凹部が設けられていることを特徴とする滑り止め性手袋。 It consists of a fiber glove and a rubber or resin coating layer on its surface, and a recess having a width of 0.1 to 425 μm, a depth of 0.1 to 200 μm, and a number density of 1000 to 5000 / cm 2 is formed on the surface of the coating layer. An anti-slip glove characterized by being provided. 被覆層が成膜助剤を含有することを特徴とする請求項1記載の滑り止め性手袋。   The anti-slip glove according to claim 1, wherein the coating layer contains a film forming aid. 被覆層中における下記の残留イオンの少なくとも1つが下記の含有量であることを特徴とする請求項1又は2記載の滑り止め手袋。
硫酸イオン 100ppm以下
硝酸イオン 50ppm以下
塩素イオン 1000ppm以下
ナトリウムイオン 1000ppm以下
アンモニウムイオン 50ppm以下。
The anti-slip glove according to claim 1 or 2, wherein at least one of the following residual ions in the coating layer has the following content.
Sulfate ion 100 ppm or less Nitrate ion 50 ppm or less Chlorine ion 1000 ppm or less Sodium ion 1000 ppm or less Ammonium ion 50 ppm or less.
手型に被せた繊維製手袋の表面に成膜助剤を含有するゴム又は樹脂配合液により被覆層を形成し、次いで、該被覆層に溶解性微粒子を埋め込み、該溶解性微粒子を埋め込んだ被覆層を加熱により予備硬化し、更に、前記溶解性微粒子を被覆層から溶解除去した後、前記被覆層を加熱により本硬化することを特徴とする請求項1記載の滑り止め性手袋の製造方法。   A coating layer is formed on a surface of a fiber glove covered with a hand mold by using a rubber or resin compounding liquid containing a film-forming aid, and then the soluble fine particles are embedded in the coating layer, and the soluble fine particles are embedded in the coating. The method for producing anti-slip gloves according to claim 1, wherein the layer is pre-cured by heating, and further, the soluble fine particles are dissolved and removed from the coating layer, and then the coating layer is fully cured by heating. 手型に被せた繊維製手袋の表面に成膜助剤を含有するゴム又は樹脂配合液により被覆層を形成し、次いで、該被覆層に溶解性微粒子を埋め込み、該溶解性微粒子を埋め込んだ被覆層を加熱により硬化し、更に、前記溶解性微粒子を被覆層から溶解除去した後、前記被覆層を乾燥することを特徴とする請求項1記載の滑り止め性手袋の製造方法。   A coating layer is formed on a surface of a fiber glove covered with a hand mold by using a rubber or resin compounding liquid containing a film-forming aid, and then the soluble fine particles are embedded in the coating layer, and the soluble fine particles are embedded in the coating. The method for producing a non-slip glove according to claim 1, wherein the layer is cured by heating, and further, the soluble fine particles are dissolved and removed from the coating layer, and then the coating layer is dried. 溶解性微粒子を埋め込んだ被覆層を加熱により予備硬化した手袋を手型から離型して、前記溶解性微粒子を溶解除去することを特徴とする請求項4記載の滑り止め性手袋の製造方法。   5. The method for producing an anti-slip glove according to claim 4, wherein the glove obtained by pre-curing the coating layer in which the soluble fine particles are embedded is released from the hand mold, and the soluble fine particles are dissolved and removed. 溶解性微粒子を埋め込んだ被覆層を加熱により硬化した手袋を手型から離型して、前記溶解性微粒子を溶解除去することを特徴とする請求項5記載の滑り止め性手袋の製造方法。   6. The method for producing a non-slip glove according to claim 5, wherein the glove obtained by curing the coating layer in which the soluble fine particles are embedded by heating is released from the hand mold, and the soluble fine particles are dissolved and removed. ドラムウオッシャーにより溶解性微粒子を溶解除去することを特徴とする請求項4〜7のいずれか1項に記載の滑り止め性手袋の製造方法。   The method for producing a non-slip glove according to any one of claims 4 to 7, wherein the soluble fine particles are dissolved and removed by a drum washer. 成膜助剤が30〜40℃の曇点を有する化合物であり、ゴム又は樹脂の固形分100重量部に対し0.05〜20重量部含有することを特徴とする請求項4〜8のいずれか1項に記載の滑り止め性手袋の製造方法。   The film-forming auxiliary is a compound having a cloud point of 30 to 40 ° C, and is contained in an amount of 0.05 to 20 parts by weight based on 100 parts by weight of the solid content of rubber or resin. A method for producing a non-slip glove according to claim 1. 成膜助剤がアルコール系化合物であり、ゴム又は樹脂の固形分100重量部に対して5〜25重量部含有することを特徴とする請求項4〜8のいずれか1項に記載の手袋の製造方法。   The film-forming aid is an alcohol compound and is contained in an amount of 5 to 25 parts by weight with respect to 100 parts by weight of a solid content of rubber or resin. The glove according to any one of claims 4 to 8, Production method. 溶解性微粒子が硫酸ナトリウムである請求項4〜10のいずれか1項に記載の手袋の製造方法。   The method for producing a glove according to any one of claims 4 to 10, wherein the soluble fine particles are sodium sulfate.
JP2011090902A 2011-04-15 2011-04-15 Slip-resistant glove and method for producing the same Withdrawn JP2011231448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011090902A JP2011231448A (en) 2011-04-15 2011-04-15 Slip-resistant glove and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090902A JP2011231448A (en) 2011-04-15 2011-04-15 Slip-resistant glove and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010103970A Division JP4795477B1 (en) 2010-04-28 2010-04-28 Non-slip gloves and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2011231448A true JP2011231448A (en) 2011-11-17

Family

ID=45321045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090902A Withdrawn JP2011231448A (en) 2011-04-15 2011-04-15 Slip-resistant glove and method for producing the same

Country Status (1)

Country Link
JP (1) JP2011231448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2727483A2 (en) 2012-10-31 2014-05-07 Showa Glove Co. Glove

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2727483A2 (en) 2012-10-31 2014-05-07 Showa Glove Co. Glove
JP2014111853A (en) * 2012-10-31 2014-06-19 Showa Glove Kk Glove

Similar Documents

Publication Publication Date Title
JP4795477B1 (en) Non-slip gloves and manufacturing method thereof
US10350848B2 (en) Nitrile/polyurethane polymer blends
CN106666879A (en) Production method of butyronitrile superfine foam glove
EP2727483B1 (en) Glove
CN108433220B (en) Preparation method of butyronitrile particle anti-slip gloves
EP3326807B1 (en) Rubber formed article and protective glove
EP3040189B1 (en) Work glove and method of fabricating the same
JP2009527658A (en) Gloves coated with lightweight thin plastic polymer and method thereof
JP2017106152A (en) Supporting glove and method for manufacturing the supporting glove
JP6068094B2 (en) gloves
JP2007231428A (en) Working glove
KR101211488B1 (en) Manufacturing method of water borne polyurethane coated gloves
CN108433217A (en) A kind of preparation method of butyronitrile wig bubble slip-proof glove
JP2011231448A (en) Slip-resistant glove and method for producing the same
JP2011231447A (en) Method for producing antislip glove
EP2527123B1 (en) Method for making gloves
JP2018111893A (en) Non-slip glove and method for manufacturing the same
CN110313662B (en) Preparation method of butyronitrile anti-skid glove
WO2013172063A1 (en) Process for producing rubber glove
WO2018131687A1 (en) Laminate
EP3323613A1 (en) Dip-molded article and protective glove
US9695292B2 (en) Effervescent texturing
CN114654836B (en) Detectable layer for protective equipment, protective equipment and manufacturing method thereof
CN112739761B (en) Polymer latex and laminate
JP2014055389A (en) Rubber glove, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130430