JP6068094B2 - gloves - Google Patents

gloves Download PDF

Info

Publication number
JP6068094B2
JP6068094B2 JP2012240080A JP2012240080A JP6068094B2 JP 6068094 B2 JP6068094 B2 JP 6068094B2 JP 2012240080 A JP2012240080 A JP 2012240080A JP 2012240080 A JP2012240080 A JP 2012240080A JP 6068094 B2 JP6068094 B2 JP 6068094B2
Authority
JP
Japan
Prior art keywords
glove
coating layer
acid
synthetic rubber
coagulant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012240080A
Other languages
Japanese (ja)
Other versions
JP2014088643A (en
Inventor
亮 齊藤
亮 齊藤
光大 上月
光大 上月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Glove Co
Original Assignee
Showa Glove Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Glove Co filed Critical Showa Glove Co
Priority to JP2012240080A priority Critical patent/JP6068094B2/en
Publication of JP2014088643A publication Critical patent/JP2014088643A/en
Application granted granted Critical
Publication of JP6068094B2 publication Critical patent/JP6068094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gloves (AREA)

Description

本発明は耐薬品性手袋に関し、更に詳しくは、合成ゴムまたは樹脂からなる被覆層にクラックが形成されず耐薬品透過性に優れた耐薬品性の手袋に関する。   The present invention relates to a chemical resistant glove, and more particularly, to a chemical resistant glove excellent in chemical permeability without cracks being formed in a coating layer made of synthetic rubber or resin.

従来から、ポリ塩化ビニル、ポリウレタン、天然ゴム、合成ゴム(NBR系、SBR系、クロロプレン系、シリコーン系)などが繊維製手袋上に被覆層が形成された、いわゆるサポート手袋が作業用手袋として使用されている(例えば引用文献1) 。中でも、繊維製手袋を合成ゴムで被覆したサポート手袋は防水性、作業性、耐薬品性等に優れており、家事、食品工業や電子部品製造業などの種々の工業などで幅広く使用されている。近年では、硫酸などの危険性の高い薬品に対して優れた耐透過性を有するハイスペックな手袋を求める声が高まっている。   Conventionally, so-called support gloves have been used as work gloves in which polyvinyl chloride, polyurethane, natural rubber, synthetic rubber (NBR, SBR, chloroprene, silicone), etc. have a coating layer formed on a fiber glove. (For example, cited reference 1). Above all, support gloves made by covering fiber gloves with synthetic rubber are excellent in waterproofness, workability, chemical resistance, etc., and are widely used in various industries such as housework, food industry and electronic parts manufacturing industry. . In recent years, there has been an increasing demand for high-spec gloves having excellent permeation resistance against chemicals with high risk such as sulfuric acid.

特開2012−77416号公報JP 2012-77416 A

しかしながら、合成ゴムを被覆する方法としては、ラテックスを塩によってゲル化させる、いわゆる塩凝固法が一般的であるが、従来の塩凝固法により合成ゴムを繊維製手袋上に被覆すると、合成ゴムからなる被膜にクラックが発生することがある。また、ラテックスから手形を引き上げる際に、漿液が指先部から流出し被膜に穴が開く場合があり、均一な被膜を形成するのが困難である。   However, as a method for coating synthetic rubber, a so-called salt coagulation method in which latex is gelled with a salt is common, but when synthetic rubber is coated on a fiber glove by a conventional salt coagulation method, the synthetic rubber is Cracks may occur in the resulting coating. Further, when pulling up the bill from the latex, the serum may flow out from the fingertip portion and a hole may be formed in the coating, making it difficult to form a uniform coating.

さらに、十分な耐薬品性を付与するために厚い被膜を形成する必要があり、そのためには硝酸カルシウム等の凝集力が強い凝固剤を高濃度で使用することが考えられるが、繊維製手袋をこのような凝固剤に浸漬する場合は、繊維製手袋が一部溶解するなどの問題が発生する。
このような問題を解決するには、低濃度の凝固剤を用い、被覆工程を複数回繰り返して薄い被膜を複数層積層することにより、必要な厚みを得ることが考えられる。しかしながら、このような被膜は層間剥離が生じやすく、また、膜厚が均一な被膜を形成しにくいという問題がある。
Furthermore, it is necessary to form a thick film in order to give sufficient chemical resistance. To that end, it is conceivable to use a coagulant with high cohesive strength such as calcium nitrate at a high concentration. When immersed in such a coagulant, problems such as partial dissolution of fiber gloves occur.
In order to solve such a problem, it is conceivable to obtain a necessary thickness by laminating a plurality of thin films by repeating a coating process a plurality of times using a low concentration coagulant. However, such a film has a problem that delamination is likely to occur and it is difficult to form a film having a uniform film thickness.

本発明は、上記従来の耐薬品性手袋の問題を解決し、被膜にクラックが形成されず、複数層積層した場合でも被膜が剥離しにくく、膜厚が均一なサポートタイプの耐薬品透過性に優れた耐薬品性手袋を提供することを目的とするものである。   The present invention solves the problems of the above-mentioned conventional chemical-resistant gloves, cracks are not formed in the coating, and even when a plurality of layers are laminated, the coating is difficult to peel off, and the support type has a uniform film-resistant chemical permeability. The purpose is to provide excellent chemical resistant gloves.

本発明者らは、被膜に形成されるクラックについて検討した結果、クラックには容易に目視できる程度の大きなクラック(以下、溝クラックと称す)と、引き伸ばして初めて目視できるような小さなクラック(以下、ささくれクラックと称す)の2種類のがあることを知見した。   As a result of examining the cracks formed in the film, the present inventors have found that the cracks are large cracks that can be easily seen (hereinafter referred to as groove cracks) and small cracks that can be seen only after stretching (hereinafter referred to as the cracks). It was found that there are two types of cracks.

本発明者らはかかるクラックの発生を防止するべく鋭意研究の結果、合成ゴムまたは樹脂のラテックスに所定量のクラック防止剤を配合し、さらに凝固剤として有機酸系凝固剤を使用することにより、クラックの発生、特に溝クラックの発生が抑えられるとともに、膜厚も均一で、耐薬品透過性に優れた耐薬品性の手袋が得られることを見い出した。   As a result of diligent research to prevent the occurrence of such cracks, the present inventors blended a predetermined amount of a crack preventing agent into a synthetic rubber or resin latex, and further, by using an organic acid coagulant as a coagulant, It has been found that a chemical-resistant glove having a uniform thickness and excellent chemical permeation resistance can be obtained while suppressing the occurrence of cracks, especially the occurrence of groove cracks.

本発明の特徴は、繊維製手袋の表面に合成ゴムまたは樹脂の被覆層が形成された手袋であって、合成ゴムまたは樹脂の固形分100重量部に対し、二酸化チタン、二酸化ケイ素、二酸化ジルコニウムから選択される少なくとも1種であるクラック防止剤を1.0重量部以上含む合成ゴムまたは樹脂のラテックスを用い、凝固剤として有機酸系凝固剤を用い、酸凝固法により繊維製手袋の表面に合成ゴムまたは樹脂の被覆層が形成され、該被覆層の厚みが300μm以下であり、かつ、該被覆層にクラックが形成されておらず、European Standard EN374−3の方法に準じた硫酸の透過試験において、硫酸透過時間が5分以上である手袋である。 A feature of the present invention is a glove in which a synthetic rubber or resin coating layer is formed on the surface of a fiber glove, and is composed of titanium dioxide, silicon dioxide, and zirconium dioxide with respect to 100 parts by weight of the solid content of the synthetic rubber or resin. Synthetic rubber or resin latex containing 1.0 part by weight or more of at least one selected crack prevention agent, organic acid coagulant as coagulant, and synthesized on the surface of fiber gloves by acid coagulation method In a permeation test for sulfuric acid according to the method of European Standard EN374-3, in which a coating layer of rubber or resin is formed, the thickness of the coating layer is 300 μm or less, and no crack is formed in the coating layer. The gloves have a sulfuric acid permeation time of 5 minutes or more.

本発明の他の特徴は、European Standard EN374−3の方法に準じた硫酸の透過試験において、硫酸透過時間が20分以上である上記手袋である。   Another feature of the present invention is the above glove wherein the sulfuric acid permeation time is 20 minutes or more in a sulfuric acid permeation test according to the method of European Standard EN374-3.

本発明の他の特徴は、European Standard EN374−3の方法に準じた硫酸の透過試験において、硫酸透過時間が30分以上である上記手袋である。   Another feature of the present invention is the above glove wherein the sulfuric acid permeation time is 30 minutes or more in a sulfuric acid permeation test according to the method of European Standard EN374-3.

本発明の他の特徴は、被覆層の厚みが200μm以上300μm以下である上記手袋である。   Another feature of the present invention is the above glove wherein the thickness of the coating layer is 200 μm or more and 300 μm or less.

本発明の更に他の特徴は、合成ゴムまたは樹脂の被覆層が繊維製手袋の全面に形成されている上記手袋である。   Still another feature of the present invention is the above glove in which a synthetic rubber or resin coating layer is formed on the entire surface of the fiber glove.

本発明の更に他の特徴は、有機酸系凝固剤が、酢酸、蟻酸、プロピオン酸、クエン酸、シュウ酸から選ばれる少なくとも1種の凝固剤と、水、メタノール、エタノールから選ばれる少なくとも1種の溶媒とからなる上記手袋である。   Still another feature of the present invention is that the organic acid coagulant is at least one coagulant selected from acetic acid, formic acid, propionic acid, citric acid and oxalic acid, and at least one selected from water, methanol and ethanol. A glove comprising the above-mentioned solvent.

本発明によれば、被覆層にクラックが形成されていないので耐薬品透過性に優れており、例えば、European Standard EN374−3の方法に準じた硫酸の透過試験において、硫酸透過時間が5分以上、好ましくは10分以上、更に好ましくは20分以上、特に好ましくは30分以上の耐薬品透過性を有する手袋が提供される。
本発明の手袋は、合成ゴム又は樹脂の固形分100重量部に対してクラック防止剤を1.0重量部以上添加するとともに、凝固剤として有機酸系凝固剤を使用し、酸凝固により合成ゴムまたは樹脂を繊維製手袋上に被覆層が形成されていることにより、クラックの発生を防ぎ、被膜を複数層形成しても層間剥離がなく、膜厚さが均一で、耐薬品透過性に優れている。
本発明の手袋は、特に溝クラックの形成が効果的に防止される。
According to the present invention, since no cracks are formed in the coating layer, the chemical permeability is excellent. For example, in a sulfuric acid permeation test according to the method of European Standard EN374-3, the sulfuric acid permeation time is 5 minutes or more. A glove having chemical permeation resistance of preferably 10 minutes or longer, more preferably 20 minutes or longer, particularly preferably 30 minutes or longer is provided.
In the glove of the present invention, 1.0 part by weight or more of a crack preventing agent is added to 100 parts by weight of a synthetic rubber or resin solid, and an organic acid-based coagulant is used as a coagulant. Alternatively, the coating layer is formed on the fiber gloves to prevent cracking, and even when multiple layers of the coating are formed, there is no delamination, the film thickness is uniform, and the chemical permeability is excellent. ing.
In the glove of the present invention, formation of groove cracks is particularly effectively prevented.

実施例1で得られた手袋の表面の顕微鏡写真(200倍)である。2 is a photomicrograph (200 times) of the surface of a glove obtained in Example 1. 実施例2で得られた手袋の表面の顕微鏡写真(200倍)である。2 is a photomicrograph (200 times) of the surface of a glove obtained in Example 2. 比較例1で得られた手袋の表面の顕微鏡写真(200倍)である。2 is a micrograph (200 times) of the surface of a glove obtained in Comparative Example 1.

本発明の手袋は、繊維製手袋の表面に合成ゴムまたは樹脂の被覆層が形成された手袋であって、該被覆層にはクラックが形成されていないことを特徴とする。従って、本発明の手袋は耐薬品透過性に優れており、例えば、European Standard EN374−3の方法に準じた硫酸の透過試験において、硫酸透過時間が5分以上の優れた耐薬品透過性を有する。   The glove of the present invention is a glove in which a synthetic rubber or resin coating layer is formed on the surface of a fiber glove, and no crack is formed in the coating layer. Therefore, the glove of the present invention is excellent in chemical permeability resistance. For example, in a sulfuric acid permeation test according to the method of European Standard EN374-3, the glove of the present invention has excellent chemical resistance resistance with a sulfuric acid permeation time of 5 minutes or more. .

本発明の手袋は、合成ゴムまたは樹脂の固形分100重量部に対し、クラック防止剤を1.0重量部以上含むラテックスを用い、凝固剤として有機酸系凝固剤を用い、酸凝固法により繊維製手袋上に合成ゴムまたは樹脂の被覆層を形成することにより得られる。   The glove of the present invention uses a latex containing 1.0 part by weight or more of a crack inhibitor with respect to 100 parts by weight of a solid content of a synthetic rubber or resin, uses an organic acid-based coagulant as a coagulant, and fiber by an acid coagulation method. It is obtained by forming a synthetic rubber or resin coating layer on a glove.

本発明において、繊維製手袋には各種繊維のものが適用でき、綿、ポリアミド(ナイロン)、ポリエステル、ポリウレタン、高強度延伸ポリエチレン、例えば、ダイニーマ(登録商標)、アラミド、例えば、ケブラー(登録商標)等、既知のフィラメント糸または紡績糸を単独で、または複合してシームレスで編まれてなる手袋や編布、織布、不織布の縫製による手袋などが使用できる。   In the present invention, various types of fibers can be applied to the fiber glove, and cotton, polyamide (nylon), polyester, polyurethane, high-strength stretched polyethylene, such as Dyneema (registered trademark), aramid, for example, Kevlar (registered trademark). For example, gloves, knitted fabrics, woven fabrics, and gloves formed by sewing a known filament yarn or spun yarn alone or in combination and seamlessly knitted can be used.

合成ゴムまたは樹脂としては、ニトリルブタジエンゴム(NBR )、クロロプレンゴム(CR)、アクリル樹脂、スチレンブタジエンゴム(SBR )、イソプレンゴム(IR)、ブチルゴム(IIR )、ポリウレタン樹脂(PU) などが例示できる。これらは一般的には水系分散ラテックスであるが、溶剤系溶液や溶剤系分散液でも使用できる。   Examples of synthetic rubber or resin include nitrile butadiene rubber (NBR), chloroprene rubber (CR), acrylic resin, styrene butadiene rubber (SBR), isoprene rubber (IR), butyl rubber (IIR), and polyurethane resin (PU). . These are generally aqueous dispersion latexes, but can also be used in solvent-based solutions and solvent-based dispersions.

本発明で使用されるクラック防止剤は4価の元素を有する酸化物であり、好ましくは、二酸化チタン(TiO2)、二酸化ケイ素(SiO2)、二酸化ジルコニウム(ZrO2)等が挙げられ、これらは単独で又は組み合わせて用いられる。クラック防止剤は、合成ゴム又は樹脂の固形分100重量部に対して1.0重量部以上使用される。1.0重量部未満では十分なクラック防止効果が得られない。クラック防止剤の上限は特にないが、十分に効果が得られる点から概ね10重量部以下が好ましく、コンパウンドの安定性から5重量部以下がより好ましく、コストの点から2重量部以下が好ましい。 The crack preventing agent used in the present invention is an oxide having a tetravalent element, preferably titanium dioxide (TiO 2 ), silicon dioxide (SiO 2 ), zirconium dioxide (ZrO 2 ), etc. Are used alone or in combination. The crack preventing agent is used in an amount of 1.0 part by weight or more based on 100 parts by weight of the solid content of the synthetic rubber or resin. If it is less than 1.0 part by weight, a sufficient crack preventing effect cannot be obtained. The upper limit of the crack preventing agent is not particularly limited, but is preferably about 10 parts by weight or less from the viewpoint of obtaining sufficient effects, more preferably 5 parts by weight or less from the viewpoint of stability of the compound, and preferably 2 parts by weight or less from the viewpoint of cost.

クラック防止剤の種類、形状、粒径は特に限定されないが、粒径については、ゴム配合系等に凝集物を発生させない点から20μm以下が好ましく、10μm以下がより好ましい。また種類や形状については、クラック防止剤が二酸化チタンである場合は結晶構造がルチル型のものが好ましく、二酸化ケイ素である場合は一定の結晶構造を持たない非晶質シリカのうち湿式法で製造されたものが好ましい。   The type, shape, and particle size of the crack preventing agent are not particularly limited, but the particle size is preferably 20 μm or less and more preferably 10 μm or less from the viewpoint of not generating aggregates in the rubber compounding system or the like. As for the type and shape, when the crack preventing agent is titanium dioxide, the crystal structure is preferably a rutile type, and when it is silicon dioxide, it is manufactured by a wet method out of amorphous silica having no fixed crystal structure. The ones made are preferred.

本発明の合成ゴムまたは樹脂のラテックスには、必要に応じ、加硫促進剤、硫黄、界面活性剤、老化防止剤、pH調整剤、可塑剤、充填剤等を、1種又は2種以上配合することができる。   If necessary, the synthetic rubber or resin latex of the present invention contains one or more vulcanization accelerators, sulfur, surfactants, anti-aging agents, pH adjusters, plasticizers, fillers, and the like. can do.

二酸化チタン及び二酸化ケイ素は充填剤として公知であり、例えば特開2011−32590号公報や特開2011−231448号公報にもラテックスに配合できることが記載されている。二酸化チタンは隠蔽性や他の充填剤をより細かく粉砕して凝集を防止する目的で使用され、また二酸化ケイ素はタレ防止や表面改質、滑り止め性を向上させる目的で使用される。   Titanium dioxide and silicon dioxide are known as fillers, and for example, JP-A 2011-32590 and JP-A 2011-231448 also describe that they can be added to latex. Titanium dioxide is used for the purpose of hiding and preventing fine particles by crushing other fillers to prevent agglomeration, and silicon dioxide is used for the purpose of preventing sagging, surface modification and anti-slip properties.

これに対し、本発明におけるこれらの使用目的はクラック防止剤としてであり、単に二酸化チタンや二酸化ケイ素を用いるだけでは本発明のクラック防止効果を得ることができず、凝固剤として有機酸系凝固剤を用い、酸凝固法により合成ゴム又は樹脂を繊維製手袋上に被覆層を形成する必要があり、クラック防止剤と有機酸系凝固剤との相乗効果により本発明の目的とするクラック防止効果が得られる。   In contrast, the purpose of use in the present invention is as an anti-cracking agent, and simply using titanium dioxide or silicon dioxide cannot provide the anti-cracking effect of the present invention. It is necessary to form a coating layer on a fiber glove with synthetic rubber or resin by an acid coagulation method, and the anti-cracking effect intended by the present invention is due to the synergistic effect of the crack preventing agent and the organic acid coagulant. can get.

本発明において凝固剤として使用される有機酸は、酸凝固法により合成ゴムまたは樹脂を凝集できるかぎり特に限定されないが、酢酸、蟻酸、プロピオン酸、クエン酸、シュウ酸等が例示できる。また、これらの有機酸を溶解する溶媒も特に限定されず、通常は水、メタノール、エタノール等が使用されるが、揮発しやすく乾燥させやすい点でメタノールが好ましい。
有機酸と溶媒との割合は、溶媒100重量部に対して有機酸が2〜6重量部であることが好ましい。有機酸が2重量部未満では溝クラックが発生し、一方、6重量部を超えると繊維製手袋から被膜が剥離しやすくなる傾向がある。
The organic acid used as the coagulant in the present invention is not particularly limited as long as the synthetic rubber or resin can be aggregated by the acid coagulation method, and examples thereof include acetic acid, formic acid, propionic acid, citric acid, and oxalic acid. Moreover, the solvent which melt | dissolves these organic acids is not specifically limited, Usually, water, methanol, ethanol etc. are used, However Methanol is preferable at the point which is easy to volatilize and is easy to dry.
The ratio of the organic acid to the solvent is preferably 2 to 6 parts by weight of the organic acid with respect to 100 parts by weight of the solvent. If the organic acid is less than 2 parts by weight, groove cracks occur. On the other hand, if it exceeds 6 parts by weight, the coating tends to peel off from the fiber glove.

溶媒が水である場合、凝固剤のpHは2〜2.7が好ましく、2.2〜2.6がより好ましい。pHが2未満では繊維手袋と被覆層との間で剥離しやすくなる傾向があり、一方、2.6を超えると十分な凝固が得らなくなる傾向がある。
溶媒が水でない場合には、溶媒を同じ重量の水に置き換えた場合に、pHが上記の範囲になるようにするのが好ましい。
When the solvent is water, the pH of the coagulant is preferably 2 to 2.7, and more preferably 2.2 to 2.6. If the pH is less than 2, it tends to be peeled easily between the fiber glove and the coating layer, whereas if it exceeds 2.6, sufficient coagulation tends not to be obtained.
When the solvent is not water, it is preferable that the pH be in the above range when the solvent is replaced with the same weight of water.

酸凝固法を用いて、繊維製手袋の表面に上記の合成ゴムまたは樹脂の被覆層を形成する方法は特に限定されないが、繊維製手袋を手型に被せ、この手型を有機酸系凝固剤に浸漬してから引き上げて乾燥させ、その後、該手型を合成ゴムまたは樹脂のラテックスに浸漬し一定時間後に引き上げ、乾燥させる方法が例示できる。使用する手型は特に限定されず、金属製、セラミック製、木製、プラスチック製のものなどが使用できる。   Although the method for forming the synthetic rubber or resin coating layer on the surface of the fiber glove using the acid coagulation method is not particularly limited, the fiber glove is put on a hand mold, and the hand mold is covered with an organic acid coagulant. It is possible to exemplify a method in which the hand mold is dipped in, lifted and dried, and then the hand mold is dipped in a synthetic rubber or resin latex and pulled up and dried after a certain time. The hand mold to be used is not particularly limited, and metal, ceramic, wooden, plastic, etc. can be used.

合成ゴムまたは樹脂のラテックスに浸漬する時間は10〜50秒が好ましく、10〜30秒程度がより好ましい。浸漬時間が10秒未満では膜が薄くなり破れやすくなる傾向が生じ、一方、50秒を超えると膜厚は十分であるにも拘らず耐薬品透過性が劣化する傾向が生じる。長時間の浸漬により形成された被膜の断面を観察すれば、多数の小孔が形成されていることから、この小孔が耐薬品透過性に悪影響を与えていると推察される。なお、小孔が形成される機構は不明である。
なお、被膜層の厚みは好ましくは150μm以上、より好ましくは200μm以上、さらに好ましくは200〜300μmであるが、1回の被覆により得られる被覆層が薄い場合には、被覆工程を複数回繰り返して複数層積層させ所望の厚みの被覆層とすることもできる。
本発明において、被覆層は薬品と接触し易い指先や掌部に部分的に形成してもよいが、より高い安全性のためには手袋の全面に形成するのが好ましい。
The time of dipping in the synthetic rubber or resin latex is preferably 10 to 50 seconds, more preferably about 10 to 30 seconds. If the immersion time is less than 10 seconds, the film tends to be thin and easily broken. On the other hand, if it exceeds 50 seconds, the chemical permeability tends to deteriorate even though the film thickness is sufficient. Observing the cross section of the film formed by long-time immersion, it is presumed that a large number of small holes are formed, and these small holes have an adverse effect on the chemical permeation resistance. The mechanism by which small holes are formed is unknown.
The thickness of the coating layer is preferably 150 μm or more, more preferably 200 μm or more, and even more preferably 200 to 300 μm. When the coating layer obtained by one coating is thin, the coating process is repeated a plurality of times. A coating layer having a desired thickness can be formed by laminating a plurality of layers.
In the present invention, the coating layer may be partially formed on the fingertip or palm that easily comes into contact with the chemical, but is preferably formed on the entire surface of the glove for higher safety.

合成ゴムまたは樹脂の被覆層を形成した後、加熱硬化を行う。加熱硬化の条件は定法でよいが、具体的には100〜150℃で0.15〜1時間が好ましく、より好ましくは120〜140℃で0.25〜0.5時間加熱することにより行う。しかしながら、いきなり上記の条件で加熱すれば手袋に含まれる水分が被膜内で急速に気化して手袋の品質に悪影響を与え、所謂ブリスター現象が発生することがあるため、高温で加熱硬化する前に、60〜90℃で0.5〜1時間、好ましくは60〜80℃で0.5〜0.75時間加熱して、被膜の含水量を低くしておくのが好ましい。
加熱硬化後は脱型し、必要に応じて、水洗、乾燥して本発明の手袋が得られる。
After forming a coating layer of synthetic rubber or resin, heat curing is performed. The conditions for heat curing may be a conventional method, but specifically, it is preferably 0.15 to 1 hour at 100 to 150 ° C, more preferably 120 to 140 ° C for 0.25 to 0.5 hour. However, if heated suddenly under the above conditions, moisture contained in the glove will rapidly evaporate in the coating, adversely affecting the quality of the glove and so-called blistering may occur. It is preferable to heat at 60 to 90 ° C. for 0.5 to 1 hour, preferably at 60 to 80 ° C. for 0.5 to 0.75 hour to keep the water content of the coating film low.
After heat curing, the mold is removed, and if necessary, washed with water and dried to obtain the glove of the present invention.

本発明の手袋は、必要に応じ、表面の被覆層を発泡させたり、溶解性微粒子を付着させた後溶解除去して凹部を形成する、等の方法により、滑り止め性を付与することもできる。   The glove of the present invention can be given anti-slip properties by a method such as foaming the coating layer on the surface or forming a recess by dissolving and removing the fine particles after adhering soluble fine particles. .

上記の如くして得られる本発明の手袋は、被覆層にクラックが形成されていないため、耐薬品透過性に優れており、例えばEuropean Standard EN374−3の方法に準じた硫酸の透過試験において、硫酸透過時間が5分以上、好ましくは10分以上、更に好ましくは20分以上、特に好ましくは30分以上の耐薬品透過性を有する手袋を得ることが可能である。   The glove of the present invention obtained as described above is excellent in chemical permeability because no cracks are formed in the coating layer. For example, in the sulfuric acid permeation test according to the method of European Standard EN374-3, It is possible to obtain a glove having chemical permeation resistance having a sulfuric acid permeation time of 5 minutes or longer, preferably 10 minutes or longer, more preferably 20 minutes or longer, particularly preferably 30 minutes or longer.

以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

実施例1
酢酸5重量部、メタノール100重量部からなる凝固剤で満たされた浴槽に、繊維製手袋(13ゲージの編み機で編んだナイロン製のシームレス手袋)を被せたセラミック製手型を浸漬し、5秒後に引き上げた。
この凝固剤に浸漬された手袋を25℃で30秒間乾燥させてから、表1に示す、クラック防止剤としてTiO2 を有する、NBRラテックス配合液の浴槽に約15秒間浸漬し、浴槽から引き上げた後、25℃で7分間乾燥させ、次いで75℃で5分間乾燥させた。その後、乾燥した手袋を50℃の温水中で2分間リーチングし、温水中から引き上げて表面の水滴がなくなるまで乾燥させ、第1層の被膜を形成させた。
第1層の被膜が形成された手袋を、NBRラテックスをLx−551に、増粘剤A−7075の量を0.3重量部に変更した他は表1に示したものと同じラテックス配合液へ5秒間浸漬してから、第1層と同様に乾燥、リーチング、乾燥を再度繰り返して第2層の被膜を形成させた。
続いて、第2層の被膜が形成された手袋を、第2層と同じラテックス配合液の浴槽に約5秒間浸漬し、浴槽から引き上げた後、表面の水滴がなくなるまで乾燥させ、第3層の被膜を形成させた。
さらに、表2に示したNBRラテックス配合液をハンドミキサーで攪拌して、容量が元の容量の1.3倍になるまで発泡させた。このラテックス配合液の浴槽に第3層の被膜が形成された手袋の掌部を約5秒浸漬し、浴槽から引き上げた後、70℃で40分間乾燥させ、その後、手袋を手型から外して25℃の水に浸漬して1時間リーチングを行った。
リーチング後、脱水し、成形用手型に被せ替えて加熱硬化を行った。加熱硬化は当初70℃で60分間加熱した後、130℃で20分間加熱することで行った。加熱硬化後、成形用手型から離型することにより、本発明の手袋を得た。
得られた手袋(発泡層部分を除く)の表面の顕微鏡写真(200倍)を図1に示すが、クラックの発生は全く認められない。
Example 1
A ceramic hand mold covered with fiber gloves (nylon seamless gloves knitted with a 13 gauge knitting machine) is immersed in a bathtub filled with a coagulant consisting of 5 parts by weight of acetic acid and 100 parts by weight of methanol for 5 seconds. Later raised.
The gloves immersed in this coagulant were dried at 25 ° C. for 30 seconds, and then immersed in a bath of NBR latex compounding liquid having TiO 2 as a crack preventing agent shown in Table 1 for about 15 seconds and pulled up from the bath. Then, it was dried at 25 ° C. for 7 minutes, and then dried at 75 ° C. for 5 minutes. Thereafter, the dried glove was leached in warm water at 50 ° C. for 2 minutes, pulled up from the warm water and dried until there were no water droplets on the surface, and a first layer film was formed.
The same latex compounding solution as shown in Table 1 except that the glove on which the first layer film was formed was changed to Nx latex Lx-551 and the amount of thickener A-7075 to 0.3 parts by weight. After dipping for 5 seconds, drying, leaching and drying were repeated again in the same manner as the first layer to form a second layer coating.
Subsequently, the glove on which the second layer coating is formed is dipped in the same latex compounding solution bath as the second layer for about 5 seconds, pulled up from the bath, and then dried until there are no water droplets on the surface. Was formed.
Furthermore, the NBR latex compounded liquid shown in Table 2 was stirred with a hand mixer and foamed until the volume became 1.3 times the original volume. The palm of the glove with the third layer coating formed in this latex compound bath is immersed for about 5 seconds, pulled up from the bath, dried at 70 ° C. for 40 minutes, and then removed from the hand mold. It was immersed in water at 25 ° C. and leaching was performed for 1 hour.
After leaching, it was dehydrated and replaced with a hand mold for molding, followed by heat curing. Heat curing was performed by heating at 70 ° C. for 60 minutes and then heating at 130 ° C. for 20 minutes. After heat-curing, the gloves of the present invention were obtained by releasing from the molding hand mold.
A micrograph (200 times) of the surface of the obtained glove (excluding the foamed layer portion) is shown in FIG. 1, but no cracks are observed.

実施例2
酢酸5重量部、メタノール100重量部からなる凝固剤で満たされた浴槽に、繊維製手袋(13ゲージの編み機で編んだナイロン製のシームレス手袋)を被せたセラミック製手型を浸漬し、5秒後に引き上げた。
この凝固剤に浸漬された手袋を25℃で30秒間乾燥させてから、表1におけるクラック防止剤TiO2 の部数を1.0に変更したNBRラテックス配合液の浴槽に約15秒間浸漬し、浴槽から引き上げた後、25℃で7分間乾燥させ、次いで75℃で15分間乾燥させた。
さらに、表2に示したNBRラテックス配合液をハンドミキサーで攪拌して、容量が元の容量の1.3倍になるまで発泡させた。このラテックス配合液の浴槽に手袋の掌部を浸漬し、5秒後に引き上げて加熱硬化を行った。加熱硬化は当初70℃で60分間加熱した後、130℃で20分間加熱することで行った。
加熱硬化後、成形用手型から離型することにより、本発明の手袋を得た。
得られた手袋(発泡層部分を除く)の表面の顕微鏡写真(200倍)を図2に示すが、クラックの発生は全く認められない。
Example 2
A ceramic hand mold covered with fiber gloves (nylon seamless gloves knitted with a 13 gauge knitting machine) is immersed in a bathtub filled with a coagulant consisting of 5 parts by weight of acetic acid and 100 parts by weight of methanol for 5 seconds. Later raised.
After the gloves immersed in this coagulant were dried at 25 ° C. for 30 seconds, they were immersed for about 15 seconds in a bath of NBR latex compounded liquid in which the number of parts of the crack preventing agent TiO 2 in Table 1 was changed to 1.0. And then dried at 25 ° C. for 7 minutes and then at 75 ° C. for 15 minutes.
Furthermore, the NBR latex compounded liquid shown in Table 2 was stirred with a hand mixer and foamed until the volume became 1.3 times the original volume. The palm of the glove was immersed in the latex blend bath, and after 5 seconds, heated and cured. Heat curing was performed by heating at 70 ° C. for 60 minutes and then heating at 130 ° C. for 20 minutes.
After heat-curing, the gloves of the present invention were obtained by releasing from the molding hand mold.
A micrograph (200 times) of the surface of the obtained glove (excluding the foam layer) is shown in FIG. 2, but no cracks are observed.

実施例3
クラック防止剤をTiO2 からSiO2 に変更した以外は、実施例1と同様にして本発明の手袋を得た。
Example 3
A glove of the present invention was obtained in the same manner as in Example 1 except that the crack preventing agent was changed from TiO 2 to SiO 2 .

実施例4、5
実施例2におけるNBRラテックス配合液への浸漬時間をそれぞれ10秒(実施例4)、30秒(実施例5)として第1層を形成し、表2に示したNBRラテックス配合液への浸漬を実施しなかった以外は、実施例2と同様にして本発明の手袋を得た。
Examples 4 and 5
The immersion time in the NBR latex compounded liquid in Example 2 was set to 10 seconds (Example 4) and 30 seconds (Example 5), respectively, and the first layer was formed, and the immersion in the NBR latex compounded liquid shown in Table 2 was performed. A glove of the present invention was obtained in the same manner as in Example 2 except that it was not performed.

実施例6
表1に示したNBRラテックス配合液への浸漬時間を1秒とし、凝固剤中の酢酸の量を3重量部とした以外は、実施例4と同様にして本発明の手袋を得た。
Example 6
A glove of the present invention was obtained in the same manner as in Example 4 except that the immersion time in the NBR latex blending solution shown in Table 1 was 1 second and the amount of acetic acid in the coagulant was 3 parts by weight.

比較例1
表1におけるクラック防止剤TiO2 の部数を0.5に変更するとともに、表2に示したNBRラテックス配合液への浸漬を実施しなかった以外は、実施例2と同様にして手袋を得た。
得られた手袋(発泡層部分を除く)の表面の顕微鏡写真(200倍)を図3に示すが、クラックの発生が認められ、繊維製手袋の繊維が露出している。
Comparative Example 1
A glove was obtained in the same manner as in Example 2 except that the number of parts of the crack preventing agent TiO 2 in Table 1 was changed to 0.5 and the immersion in the NBR latex compounding liquid shown in Table 2 was not performed. .
A micrograph (200 times) of the surface of the obtained glove (excluding the foamed layer portion) is shown in FIG. 3, but the occurrence of cracks is observed and the fibers of the fiber glove are exposed.

比較例2
有機酸系凝固剤を塩凝固剤(硝酸カルシウム5重量部、メタノール100重量部)に変更した以外は、実施例1と同様にして手袋を得た。
Comparative Example 2
A glove was obtained in the same manner as in Example 1 except that the organic acid coagulant was changed to a salt coagulant (calcium nitrate 5 parts by weight, methanol 100 parts by weight).

比較例3
表1に示したNBRラテックス配合液への浸漬時間を30秒とし第1層を形成した他は、実施例1と同様にして手袋を得た。
Comparative Example 3
A glove was obtained in the same manner as in Example 1 except that the immersion time in the NBR latex mixture shown in Table 1 was 30 seconds and the first layer was formed.

上記実施例1〜6、比較例1〜3で得られた手袋について、クラックの発生の有無を目視で観察するとともに、クラック未発生部分の被膜の厚みを測定した。厚みの測定は中指先から12cmの甲部分の断面(3cm幅)をマイクロスコープにより観察し、最も被膜厚の小さい箇所を測定することにより行った。   Regarding the gloves obtained in Examples 1 to 6 and Comparative Examples 1 to 3, the presence or absence of cracks was visually observed, and the thickness of the coating film on the crack-free portion was measured. The thickness was measured by observing a cross section (3 cm width) of the instep portion 12 cm from the middle fingertip with a microscope and measuring the portion with the smallest film thickness.

また、被膜についての耐薬品性を評価するため、European Standard EN374−3「gloves for chemical protection」の規定に基づいて、硫酸の透過試験を行った。試験は、被膜の外面側を硫酸(濃度:96%)に接した状態とし、反対面側に0.1MのKClを流し、KClのpHを測定することにより行った。
具体的には、得られたpHから水素イオン濃度を算出し、さらにこの水素イオン濃度から硫酸濃度を算出し、得られた硫酸濃度から1分あたりの硫酸透過量を算出し、得られた硫酸透過量を元に、1分あたりの硫酸透過量が1μg/cm2 を超えるまでの時間(分)を算出し、測定値とした。
Further, in order to evaluate chemical resistance of the coating, a permeation test of sulfuric acid was performed based on the provisions of European Standard EN374-3 “gloves for chemical protection”. The test was conducted by placing the outer surface of the coating in contact with sulfuric acid (concentration: 96%), flowing 0.1 M KCl on the opposite surface, and measuring the pH of KCl.
Specifically, the hydrogen ion concentration is calculated from the obtained pH, the sulfuric acid concentration is further calculated from the hydrogen ion concentration, and the sulfuric acid permeation amount per minute is calculated from the obtained sulfuric acid concentration. Based on the permeation amount, the time (minutes) until the sulfuric acid permeation amount per minute exceeded 1 μg / cm 2 was calculated and used as a measured value.

さらに、手袋を装着した際の作業性を評価するため、純曲げ試験及び官能試験を行った。
純曲げ試験は純曲げ試験機KES−FB2(カトーテック社製)を使用して、手袋甲部から切り取った5cm四方の試験片について、B値(gf・cm2 /cm)を測定することにより行った。このB値は数値が低いほど柔らかいことを示す。B値は0.001以上1.5以下が好ましく、0.1以上1.2以下がより好ましい。0.001未満は測定限界であり、1.5を超えると作業性が悪くなる。
官能試験は、10名の被試験者に手袋を装着させて硬いか柔らかいかを判断してもらい、柔らかいと答えた人が多い場合は作業性が良いと評価し、そうでない場合は作業性が悪いと評価した。
Furthermore, in order to evaluate workability when wearing gloves, a pure bending test and a sensory test were performed.
The pure bending test is performed by measuring the B value (gf · cm 2 / cm) of a 5 cm square specimen cut from the glove back using a pure bending tester KES-FB2 (manufactured by Kato Tech Co., Ltd.). went. This B value shows that it is so soft that a numerical value is low. The B value is preferably 0.001 or more and 1.5 or less, and more preferably 0.1 or more and 1.2 or less. If it is less than 0.001, it is a measurement limit, and if it exceeds 1.5, workability deteriorates.
The sensory test asks 10 test subjects to wear gloves and judge whether they are hard or soft. If there are many people who answered that they are soft, it is evaluated that workability is good. Rated bad.

結果を表3に示す。実施例1〜6の結果により、クラック防止剤としてTiO2 やSiO2 を1.0重量部以上配合したラテックスを用い、有機酸系凝固剤を用いることにより、被覆層にクラックが発生せず、耐硫酸透過性に優れた耐薬品性手袋が得られることがわかる。
また実施例2、4、5の結果より、クラック防止剤を含むラテックス配合液への浸漬時間が長い程膜厚は大きくなるがその分硬くなり、比較例3の結果より、膜厚が300μmを超えると作業性に影響することがわかる。
更に、比較例1に示すように、クラック防止剤が1重量部より少ない場合や、比較例2に示すように、塩凝固剤を用いた場合は、いずれもクラックが発生し、従って、耐硫酸透過性が低下することがわかる。
The results are shown in Table 3. According to the results of Examples 1 to 6, using a latex containing 1.0 part by weight or more of TiO 2 or SiO 2 as a crack preventing agent, using an organic acid coagulant does not cause cracks in the coating layer, It can be seen that a chemical-resistant glove having excellent resistance to sulfuric acid permeation can be obtained.
Further, from the results of Examples 2, 4, and 5, the longer the immersion time in the latex compounding liquid containing the crack inhibitor, the larger the film thickness but the harder the film thickness. From the result of Comparative Example 3, the film thickness was 300 μm. If it exceeds, it will be understood that workability is affected.
Furthermore, as shown in Comparative Example 1, when the amount of the crack preventing agent is less than 1 part by weight, or as shown in Comparative Example 2, when a salt coagulant is used, cracks are generated, and therefore, sulfuric acid resistance It turns out that permeability falls.

叙上のとおり、本発明によれば、被覆層にクラックが形成されず、従って、耐薬品透過性に優れた耐薬品性手袋が提供される。
本発明の手袋は、クラック防止剤を所定量以上配合したラテックス配合液を用い、有機酸系凝固剤を用いた酸凝固法で、繊維製手袋の表面に被覆層を形成することにより、クラックが発生せず、膜厚が均一なサポートタイプの耐薬品性手袋を提供することができる。
As described above, according to the present invention, a crack is not formed in the coating layer, and thus a chemical resistant glove having excellent chemical resistance is provided.
The glove of the present invention uses a latex compounding liquid containing a predetermined amount or more of an anti-cracking agent and forms a coating layer on the surface of the fiber glove by an acid coagulation method using an organic acid-based coagulant. It is possible to provide a support-type chemical-resistant glove that does not occur and has a uniform film thickness.

Claims (6)

繊維製手袋の表面に合成ゴムまたは樹脂の被覆層が形成された手袋であって、合成ゴムまたは樹脂の固形分100重量部に対し、二酸化チタン、二酸化ケイ素、二酸化ジルコニウムから選択される少なくとも1種であるクラック防止剤を1.0重量部以上含む合成ゴムまたは樹脂のラテックスを用い、凝固剤として有機酸系凝固剤を用い、酸凝固法により繊維製手袋の表面に合成ゴムまたは樹脂の被覆層が形成され、該被覆層の厚みが300μm以下であり、かつ、該被覆層にクラックが形成されておらず、European Standard EN374−3の方法に準じた硫酸の透過試験において、硫酸透過時間が5分以上であることを特徴とする手袋。 A glove in which a synthetic rubber or resin coating layer is formed on the surface of a fiber glove, and at least one selected from titanium dioxide, silicon dioxide, and zirconium dioxide with respect to 100 parts by weight of the solid content of the synthetic rubber or resin. A synthetic rubber or resin latex containing 1.0 part by weight or more of a crack prevention agent, an organic acid coagulant as a coagulant, and a synthetic rubber or resin coating layer on the surface of a fiber glove by an acid coagulation method In the sulfuric acid permeation test according to the method of European Standard EN374-3, the sulfuric acid permeation time was 5 in which the thickness of the coating layer was 300 μm or less and no crack was formed in the coating layer. Gloves characterized by being more than minutes. European Standard EN374−3の方法に準じた硫酸の透過試験において、硫酸透過時間が20分以上であることを特徴とする請求項1記載の手袋。   The glove according to claim 1, wherein a sulfuric acid permeation time is 20 minutes or more in a sulfuric acid permeation test according to the method of European Standard EN374-3. European Standard EN374−3の方法に準じた硫酸の透過試験において、硫酸透過時間が30分以上であることを特徴とする請求項1記載の手袋。   The glove according to claim 1, wherein a sulfuric acid permeation time is 30 minutes or more in a sulfuric acid permeation test according to the method of European Standard EN374-3. 被覆層の厚みが200μm以上300μm以下であることを特徴とする請求項1〜3のいずれか1項に記載の手袋。   The thickness of a coating layer is 200 micrometers or more and 300 micrometers or less, The glove of any one of Claims 1-3 characterized by the above-mentioned. 合成ゴムまたは樹脂の被覆層が繊維製手袋の全面に形成されていることを特徴とする請求項1〜4のいずれか1項に記載の手袋 The glove according to any one of claims 1 to 4, wherein a synthetic rubber or resin coating layer is formed on the entire surface of the fiber glove . 有機酸系凝固剤が、酢酸、蟻酸、プロピオン酸、クエン酸、シュウ酸から選ばれる少なくとも1種の凝固剤と、水、メタノール、エタノールから選ばれる少なくとも1種の溶媒とからなる請求項1〜のいずれか1項に記載の手袋。 The organic acid-based coagulant comprises at least one coagulant selected from acetic acid, formic acid, propionic acid, citric acid, and oxalic acid, and at least one solvent selected from water, methanol, and ethanol. The glove according to any one of 5 .
JP2012240080A 2012-10-31 2012-10-31 gloves Active JP6068094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012240080A JP6068094B2 (en) 2012-10-31 2012-10-31 gloves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012240080A JP6068094B2 (en) 2012-10-31 2012-10-31 gloves

Publications (2)

Publication Number Publication Date
JP2014088643A JP2014088643A (en) 2014-05-15
JP6068094B2 true JP6068094B2 (en) 2017-01-25

Family

ID=50790751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012240080A Active JP6068094B2 (en) 2012-10-31 2012-10-31 gloves

Country Status (1)

Country Link
JP (1) JP6068094B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11234469B2 (en) 2015-07-16 2022-02-01 Zeon Corporation Dip-formed article and protective glove
CN107848273B (en) * 2015-07-22 2021-03-05 日本瑞翁株式会社 Rubber molded article and protective glove
JP6780250B2 (en) * 2016-02-03 2020-11-04 Dic株式会社 Manufacturing method of coagulated product
MY188497A (en) 2016-03-30 2021-12-16 Zeon Corp Copolymer latex
CN108623858B (en) * 2018-05-17 2021-07-13 兰州科天健康科技股份有限公司 Acid coagulation preparation method of medical gloves

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896667B1 (en) * 2006-02-02 2008-04-11 Hutchinson Sa GLOVE HAVING HIGH CHEMICAL RESISTANCE
JP2011032590A (en) * 2009-07-30 2011-02-17 Sumitomo Rubber Ind Ltd Method for producing rubber glove, and rubber glove

Also Published As

Publication number Publication date
JP2014088643A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP6460363B2 (en) gloves
JP6068094B2 (en) gloves
JP4795477B1 (en) Non-slip gloves and manufacturing method thereof
JP4352101B2 (en) gloves
AU2016390428B2 (en) Elastomeric articles, compositions, and methods for their production
EP2181826B1 (en) Production of coated gloves
WO2014004814A1 (en) Abrasion and cut resistant coating and coated glove
US20200385537A1 (en) Detectable and multi detectable articles
JP2017106152A (en) Supporting glove and method for manufacturing the supporting glove
CN106397894A (en) Preparation method of butyronitrile gloves
US11006684B2 (en) Glide-on coating for polymeric gloves
EP3326807B1 (en) Rubber formed article and protective glove
WO2017197429A2 (en) Grip surfaces
US20220256953A1 (en) Elastomeric glove and method of fabrication
JP2011063923A (en) Glove
JP2011032590A (en) Method for producing rubber glove, and rubber glove
JP6021198B2 (en) Manufacturing method of rubber gloves
JP7234463B2 (en) Polymer/Inorganic Composite Particle Blends Used to Make Rubber Articles in Dip Coating Processes and Methods of Making Rubber Articles Using the Blends
EP3323613B1 (en) Dip-molded article and protective glove
JP7129735B1 (en) Manufacturing method of support type glove
JP2000096321A (en) Gloves made of nbr
JP7463759B2 (en) LAMINATE AND METHOD FOR MANUFACTURING LAMINATE
JP2011231447A (en) Method for producing antislip glove
JP2012087430A (en) Gloves
JP4792053B2 (en) Aqueous treatment agent applied to reinforcing fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161222

R150 Certificate of patent or registration of utility model

Ref document number: 6068094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250