JP2011231391A - STEEL SHEET HAVING HIGH Si CONTENT AND EXCELLENT IN SURFACE PROPERTY, AND METHOD FOR PRODUCTION THEREOF - Google Patents

STEEL SHEET HAVING HIGH Si CONTENT AND EXCELLENT IN SURFACE PROPERTY, AND METHOD FOR PRODUCTION THEREOF Download PDF

Info

Publication number
JP2011231391A
JP2011231391A JP2010105797A JP2010105797A JP2011231391A JP 2011231391 A JP2011231391 A JP 2011231391A JP 2010105797 A JP2010105797 A JP 2010105797A JP 2010105797 A JP2010105797 A JP 2010105797A JP 2011231391 A JP2011231391 A JP 2011231391A
Authority
JP
Japan
Prior art keywords
less
steel sheet
content
hot
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010105797A
Other languages
Japanese (ja)
Other versions
JP5343035B2 (en
Inventor
Mikako Takeda
実佳子 武田
Shohei Nakakubo
昌平 中久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010105797A priority Critical patent/JP5343035B2/en
Publication of JP2011231391A publication Critical patent/JP2011231391A/en
Application granted granted Critical
Publication of JP5343035B2 publication Critical patent/JP5343035B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet having high Si content, excellent in pickling property and having good surface property, which is obtained by suppressing the grain boundary oxidation of a steel sheet surface layer as much as possible, and to provide a useful method for producing such steel sheets having high Si content.SOLUTION: The production method includes, when hot-rolling the high-Si steel sheet in which the chemical component composition is properly controlled, winding the sheet at a temperature of ≥550°C but <750°C, and thereafter cooling to ≤500°C in the atmosphere satisfying the relationship of formula (1): (0.075×T-38)×(-1.5a+3.75)/(2.45)≤10+1.92×10×exp{-15,462/(T+273)}×(0.1566b+0.506)×60/3.6 (wherein 10≤b≤40; a is a value of ratio ([Si]/[Mn]); and T(°C) is a winding temperature).

Description

本発明は、鋼板表層部の粒界酸化を極力抑制することによって、酸洗性に優れたものとすると共に、表面性状が良好となるような高Si含有鋼板、およびそのような高Si含有鋼板を製造するための有用な方法に関するものである。   The present invention suppresses the grain boundary oxidation of the steel sheet surface layer as much as possible, thereby improving the pickling property and improving the surface properties, and the high Si-containing steel plate. The present invention relates to a useful method for manufacturing.

熱間圧延によって薄鋼板を製造するには、スラブを加熱炉で加熱した後、粗圧延および仕上げ圧延によって所定の板厚まで圧延し、更に水冷帯(水冷ゾーン)が配置されたホットランテーブル上で所定温度まで水冷し、コイル状に巻取る。   In order to manufacture a thin steel plate by hot rolling, a slab is heated in a heating furnace, then rolled to a predetermined thickness by rough rolling and finish rolling, and further on a hot run table in which a water cooling zone (water cooling zone) is arranged. Water-cool to a predetermined temperature and wind in a coil.

近年、自動車用途を中心に広く使用されている高強度鋼板では、強度を確保するためにSiが比較的多く添加されるのが一般的である。Siを多く含む鋼板に対して通常の熱間圧延を施すと、表層部に粒界酸化が生じることが知られている。この粒界酸化は、数μm〜数十μmの深さで生じるが、通常の酸洗によっては除去できず、酸洗後の冷間圧延において鋼板の粒界酸化部が剥離し、剥離した鋼片によって押し疵が発生し、鋼板の表面性状を悪化させる。また、粒界酸化層でのミクロクラックに起因して、加工性が劣化する等の問題も生じる。   In recent years, in a high-strength steel plate that is widely used mainly for automobile applications, it is common that a relatively large amount of Si is added to ensure strength. It is known that when normal hot rolling is performed on a steel sheet containing a large amount of Si, grain boundary oxidation occurs in the surface layer portion. This grain boundary oxidation occurs at a depth of several μm to several tens of μm, but cannot be removed by ordinary pickling, and the grain boundary oxidized portion of the steel sheet peels off during cold rolling after pickling, and the peeled steel Pushing occurs by the piece, which deteriorates the surface properties of the steel sheet. In addition, problems such as deterioration of workability occur due to microcracks in the grain boundary oxide layer.

粒界酸化は、コイルの冷却中に発生、若しくは助長されることが多く、易酸化性のSiが大気中或はスケール中の酸素で酸化されるものである。粒界酸化は、高温になればなるほど発生しやすくなり、巻取り温度が高い場合や、冷却速度が遅い場合等、長時間高温で保持されたときに粒界酸化が著しく発生することになる。   Grain boundary oxidation is often generated or promoted during cooling of the coil, and oxidizable Si is oxidized by oxygen in the atmosphere or scale. Grain boundary oxidation is more likely to occur at higher temperatures, and grain boundary oxidation occurs significantly when held at a high temperature for a long time, such as when the coiling temperature is high or the cooling rate is slow.

こうしたことから、粒界酸化を抑制するために、これまでにも様々の技術が提案されている。こうした技術として、例えば特許文献1には、C,Si,Mnの含有量を規定した鋼片を、仕上げ圧延から巻取りまでの間に変態を完了させ、所定の温度で巻取りを行なうことによって、粒界割れのない表面性状に優れた熱延鋼板を製造することが開示されている。また、特許文献2には、鋼材加熱時に、鋼材表面または近傍に固体炭素を配置し、特定温度にて加熱することにより、鋼材の表面酸化、粒界酸化を抑制して熱延鋼板の歩留まりと品質を向上させる技術が提案されている。   For these reasons, various techniques have been proposed so far in order to suppress grain boundary oxidation. As such a technique, for example, in Patent Document 1, a steel slab in which the contents of C, Si, and Mn are defined is completed by transformation between finish rolling and winding, and is wound at a predetermined temperature. It is disclosed that a hot-rolled steel sheet having excellent surface properties without grain boundary cracking is produced. Patent Document 2 discloses that the yield of hot-rolled steel sheets is controlled by disposing solid carbon on or near the steel material during heating, and heating the steel material at a specific temperature to suppress surface oxidation of the steel material and grain boundary oxidation. Technologies for improving quality have been proposed.

特許文献3には、鋼片表面への酸化防止剤塗布と、鋼板表面への被覆との組み合わせによって、粒界酸化の発生を防止し、鋼板加工時の耳割れの発生を防止する技術が提案されている。また、特許文献4には、熱延後に30℃/秒以上の冷却速度で冷却し、且つ450〜580℃で巻取って熱延鋼板の粒界酸化深さを5μm以下にする技術も提案されている。更に、特許文献5には、CrやMoを所定量含有する合金鋼素材を加熱し、粗圧延を施し、次で、加熱、粗圧延の条件から熱延鋼板における粒界酸化層深さを推定し、その粒界酸化層深さを熱延鋼板における必要スケール厚さとし、この必要スケール厚さが仕上げ圧延終了温度とで所定の関係を満足するように熱間圧延を施し、その後、巻取るような技術も提案されている。   Patent Document 3 proposes a technique for preventing the occurrence of grain boundary oxidation and preventing the occurrence of ear cracks during the processing of steel sheets by combining the application of an antioxidant to the surface of the steel slab and the coating on the surface of the steel sheet. Has been. Patent Document 4 also proposes a technique of cooling at a cooling rate of 30 ° C./second or more after hot rolling and winding at 450 to 580 ° C. to reduce the grain boundary oxidation depth of the hot rolled steel sheet to 5 μm or less. ing. Furthermore, in Patent Document 5, an alloy steel material containing a predetermined amount of Cr or Mo is heated and subjected to rough rolling, and then the grain boundary oxide layer depth in the hot rolled steel sheet is estimated from the heating and rough rolling conditions. Then, the grain boundary oxide layer depth is set as the necessary scale thickness in the hot-rolled steel sheet, and hot rolling is performed so that the required scale thickness satisfies a predetermined relationship with the finish rolling finish temperature, and then winding is performed. Technologies have also been proposed.

これまで提案されている各種技術は、特定の冷却速度や巻取り温度で鋼板を製造することや、或は酸化防止剤を塗布する等の手段を採用するものである。しかしながら、Siに起因する粒界酸化を抑制する技術としては、こうした手段では、必ずしも十分なものとは言えない状況である。   Various techniques proposed so far employ a means such as manufacturing a steel sheet at a specific cooling rate or winding temperature, or applying an antioxidant. However, as a technique for suppressing grain boundary oxidation caused by Si, such a means is not necessarily sufficient.

特開平01−087716号公報JP-A-01-087716 特開昭62−013520号公報JP-A-62-013520 特許第1571951号公報Japanese Patent No. 1571951 特開2008−231493号公報JP 2008-231493 A 特開2005−060768号公報JP-A-2005-060768

本発明は上記の様な事情に着目してなされたものであって、その目的は、鋼板表層部の粒界酸化を極力抑制することによって、酸洗性に優れたものとすると共に、表面性状が良好となる高Si含有鋼板、およびそのような高Si含有鋼板を製造するための有用な方法を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and the purpose thereof is to suppress the grain boundary oxidation of the steel sheet surface layer as much as possible, thereby making it excellent in pickling properties and surface properties. It is in providing the useful method for manufacturing the high Si content steel plate which becomes favorable, and such a high Si content steel plate.

上記目的を達成することのできた本発明の高Si含有熱延鋼板の製造方法とは、C:0.02〜0.30%(質量%の意味。鋼の化学成分において以下同じ。)、Si:1.0〜3.0%、Mn:1.0〜3.5%、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)およびAl:0.15%以下(0%を含まない)を夫々含有すると共に、Siの含有量[Si]とMnの含有量の比([Si]/[Mn])が0.5〜2.0であり、残部が鉄および不可避的不純物からなる高Si含有鋼板を熱間圧延する際に、巻取り温度を550℃以上、750℃未満として巻取った後、雰囲気中水蒸気濃度をb(体積%:但し、10≦b≦40)、前記比([Si]/[Mn])の値をa、巻取り温度をT(℃)としたときに、下記(1)式の関係を満たす雰囲気中で500℃以下まで冷却する点に要旨を有する。
(0.075×T−38)×(−1.5a+3.75)2/(2.45)2
10+1.92×106×exp{−15462/(T+273)}×
(0.1566b+0.506)×600.5/3.6 …(1)
The production method of the high-Si content hot-rolled steel sheet of the present invention that has achieved the above object is C: 0.02 to 0.30% (meaning mass%; the same applies to the chemical components of steel), Si : 1.0-3.0%, Mn: 1.0-3.5%, P: 0.03% or less (not including 0%), S: 0.03% or less (not including 0%) And Al: 0.15% or less (not including 0%), respectively, and the ratio of the Si content [Si] to the Mn content ([Si] / [Mn]) is 0.5 to 2 0.0, and when hot-rolling a high-Si-containing steel plate, the balance of which is iron and inevitable impurities, after coiling at a coiling temperature of 550 ° C. or more and less than 750 ° C., the water vapor concentration in the atmosphere is b ( % By volume, provided that 10 ≦ b ≦ 40), the ratio ([Si] / [Mn]) is a, and the winding temperature is T (° C.). To have the gist in that cooling to 500 ° C. or less in an atmosphere which satisfies the following relationship (1).
(0.075 × T-38) × (−1.5a + 3.75) 2 /(2.45) 2
10 + 1.92 × 10 6 × exp {−15462 / (T + 273)} ×
(0.1566b + 0.506) × 60 0.5 /3.6 (1)

本発明の製造方法において、前記雰囲気は、大気に水蒸気を添加することによって制御されたものであることが好ましい。   In the manufacturing method of this invention, it is preferable that the said atmosphere is controlled by adding water vapor | steam to air | atmosphere.

本発明では、対象とする鋼板は上記基本成分を有するものであるが、必要によって更に(a)Cr:1.0%以下(0%を含まない)、(b)Cu:0.5%以下(0%を含まない)および/またはNi:1.0%以下(0%を含まない)、(c)Ti:1.0%以下(0%を含まない)、V:1.0%以下(0%を含まない)およびNb:1.0%以下(0%を含まない)よりなる群から選ばれる1種以上、(d)B:0.1%以下(0%を含まない)、(e)Mo:1.0%以下(0%を含まない)、(f)Ca:0.005%以下(0%を含まない)および/またはMg:0.01%以下(0%を含まない)等を含有させてもよく、含有される成分に応じて鋼板の特性が更に改善される。   In the present invention, the target steel sheet has the above basic components, but if necessary, (a) Cr: 1.0% or less (excluding 0%), (b) Cu: 0.5% or less (Not including 0%) and / or Ni: 1.0% or less (not including 0%), (c) Ti: 1.0% or less (not including 0%), V: 1.0% or less (Not including 0%) and Nb: one or more selected from the group consisting of 1.0% or less (not including 0%), (d) B: 0.1% or less (not including 0%), (E) Mo: 1.0% or less (not including 0%), (f) Ca: 0.005% or less (not including 0%) and / or Mg: 0.01% or less (including 0%) And the like, and the properties of the steel sheet are further improved depending on the components contained.

本発明の製造方法は、基本的に熱間圧延までの段階を規定したものであるが、この方法によって得られた高Si含有熱延鋼板を、更に冷間圧延することによって表面性状に優れた冷延鋼板が得られることになる。   The production method of the present invention basically defines the steps up to hot rolling, but the high-Si content hot-rolled steel sheet obtained by this method is excellent in surface properties by further cold rolling. A cold-rolled steel sheet will be obtained.

本発明によれば、巻取り温度、および巻取り後の冷却雰囲気を適切に制御することによって、高Si含有鋼板表面に形成される酸化スケール層の形態を適正なものとすると共に、粒界酸化を極力低減でき、このような鋼板は表面性状に優れたものとなる。   According to the present invention, by appropriately controlling the winding temperature and the cooling atmosphere after winding, the form of the oxide scale layer formed on the surface of the high Si-containing steel sheet is made appropriate, and the grain boundary oxidation is performed. Such a steel sheet is excellent in surface properties.

熱延鋼板表面におけるスケールの構造を模式的に示した説明図である。It is explanatory drawing which showed typically the structure of the scale in a hot-rolled steel plate surface. 比([Si]/[Mn])の値と粒界酸化深さの関係を示すグラフである。It is a graph which shows the relationship between the value of ratio ([Si] / [Mn]) and the grain boundary oxidation depth. 巻取り温度と粒界酸化深さの関係を示すグラフである。It is a graph which shows the relationship between coiling temperature and grain boundary oxidation depth. 巻取り温度と内方酸化層厚さの関係を示すグラフである。It is a graph which shows the relationship between coiling temperature and inner oxide layer thickness. 水蒸気濃度と内方酸化層厚さの関係を示すグラフである。It is a graph which shows the relationship between a water vapor | steam density | concentration and an inner oxide layer thickness.

本発明者らは、高Si含有鋼板表面で生じる粒界酸化の発生機構について、様々な角度から検討した。熱延(熱間圧延)工程においては、熱延鋼板表面には、図1(模式図)に示すような構造のスケールが形成される。鉄系酸化物であるヘマタイト(Fe23)、マグネタイト(Fe34)およびウスタイト(FeO)から構成される外方酸化層と、Si含有酸化物であるファイアライト(Fe2SiO4)を主体とする内方酸化層によって、表層スケールが鋼板表面に形成されることになる。 The present inventors examined the generation mechanism of grain boundary oxidation occurring on the surface of a high Si content steel sheet from various angles. In the hot rolling (hot rolling) step, a scale having a structure as shown in FIG. 1 (schematic diagram) is formed on the surface of the hot rolled steel sheet. An outer oxide layer composed of iron-based oxides hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and wustite (FeO), and a Si-containing oxide firelite (Fe 2 SiO 4 ) A surface scale is formed on the surface of the steel sheet by the inner oxide layer mainly composed of.

本発明者らが、熱延冷却工程を模擬した実験を行なった結果、外方酸化層および内方酸化層を介して、大気中の酸素が鋼板内に向かって拡散(内方拡散)し、鋼板表面の粒界に拡散したSiを酸化してSiO2からなる粒界酸化層(前記図1参照)が形成されることが明らかとなった。また、内方酸化層を介した酸素の内方拡散は、内方酸化層の性状に依存し、内方酸化層中のファイアライト(Fe2SiO4)量によって酸素の内方拡散の程度が変わり、酸素の拡散阻害能のあるファイアライトの生成量が少ない場合は、酸素の鋼板内部への内方拡散が増加し、粒界酸化層が厚くなることが分かった。 As a result of experiments conducted by the inventors to simulate the hot rolling cooling process, oxygen in the atmosphere diffuses (inward diffusion) into the steel sheet through the outer oxide layer and the inner oxide layer, It became clear that Si diffused in the grain boundary on the steel plate surface was oxidized to form a grain boundary oxide layer (see FIG. 1) made of SiO 2 . In addition, the inward diffusion of oxygen through the inner oxide layer depends on the properties of the inner oxide layer, and the degree of inward diffusion of oxygen depends on the amount of firelite (Fe 2 SiO 4 ) in the inner oxide layer. In other words, it was found that when the amount of firelite capable of inhibiting the diffusion of oxygen is small, the inward diffusion of oxygen into the steel sheet increases and the grain boundary oxide layer becomes thick.

また本発明者らの検討によれば、ファイアライトの生成量は、Siの含有量[Si]とMnの含有量の比([Si]/[Mn])の値が大きいほど増加し、この比([Si]/[Mn])の値を大きくすると、ファイアライト(Fe2SiO4)の比率が増加し、比([Si]/[Mn])の値を減少させると、Mn2SiO4の比率が増加することになることも分かった。 Further, according to the study by the present inventors, the amount of firelite generated increases as the value of the ratio of Si content [Si] to Mn content ([Si] / [Mn]) increases. Increasing the ratio ([Si] / [Mn]) increases the ratio of firelite (Fe 2 SiO 4 ) and decreasing the ratio ([Si] / [Mn]) decreases Mn 2 SiO It was also found that the ratio of 4 would increase.

ファイアライト(Fe2SiO4)は、鋼板とスケールの界面付近に密の状態で膜状に存在し、酸素の拡散を阻害するが、Mn2SiO4は粒状に形成されるため、拡散阻害能は低いものとなる。従って、(比[Si]/[Mn])の値が減少すると、粒状のMn2SiO4が多く生成し、ファイアライト(Fe2SiO4)による拡散阻害性を損なう結果、酸素が多く拡散してきて粒界酸化が深くなるものと考えられる。 Firelite (Fe 2 SiO 4 ) exists in the form of a dense film near the interface between the steel plate and the scale and inhibits oxygen diffusion. However, Mn 2 SiO 4 is formed in a granular form, so that it has a diffusion inhibiting ability. Is low. Therefore, when the value of (ratio [Si] / [Mn]) decreases, a large amount of granular Mn 2 SiO 4 is generated, and as a result of impairing the diffusion inhibition by firelite (Fe 2 SiO 4 ), a large amount of oxygen diffuses. It is thought that the grain boundary oxidation becomes deep.

上記のような知見に基づき、比([Si]/[Mn])の値を様々に設定した各種鋼板について、巻取り温度を550℃以上、750℃未満で、大気中にて生成する粒界酸化深さと比([Si]/[Mn])の値との関係について実験予測式を求めた。その結果、比([Si]/[Mn])の値が0.5以上、2.0以下の範囲内で、この比([Si]/[Mn])の値aと、粒界酸化に影響を及ぼす内方酸化層の厚さも含めた粒界酸化深さ(=内方酸化層厚さ+粒界酸化層厚さ)A(μm)は下記(2)式で表されることが分かった。
A=(0.075×T−38)×(−1.5a+3.75)2/(2.45)2 …(2)
但し、T:巻取り温度(℃)を示す。
Based on the above findings, for various steel sheets with various ratio ([Si] / [Mn]) values, grain boundaries generated in the atmosphere at a coiling temperature of 550 ° C. or higher and lower than 750 ° C. An experimental prediction formula was obtained for the relationship between the oxidation depth and the ratio ([Si] / [Mn]) value. As a result, when the value of the ratio ([Si] / [Mn]) is in the range of 0.5 or more and 2.0 or less, the value a of the ratio ([Si] / [Mn]) and the grain boundary oxidation It is understood that the grain boundary oxidation depth (= inner oxide layer thickness + grain boundary oxide layer thickness) A (μm) including the thickness of the influencing inner oxide layer is expressed by the following equation (2). It was.
A = (0.075 × T−38) × (−1.5a + 3.75) 2 /(2.45) 2 (2)
However, T represents a coiling temperature (° C.).

上記(2)式の関係を導くに至った実験結果の一例を図2、3に示す。この実験では、酸化処理前の種々のSi含有鋼のサンプル表面に、スパッタ法によりPtマーカー層を形成し、種々の温度で夫々酸化したサンプル断面の光学顕微鏡観察より当該Ptマーカー部分(内方酸化層の最表面)から粒界酸化層先端(粒界酸化層の最深部)までの距離を「粒界酸化深さ」として定義し、各々の酸化条件に対しプロットを行ったものである。   An example of the experimental result that led to the relationship of the above equation (2) is shown in FIGS. In this experiment, a Pt marker layer was formed by sputtering on the surface of various Si-containing steel samples before oxidation treatment, and the Pt marker portion (inward oxidation) was observed by optical microscope observation of the sample cross-sections oxidized at various temperatures. The distance from the outermost surface of the layer) to the tip of the grain boundary oxide layer (the deepest part of the grain boundary oxide layer) is defined as “grain boundary oxidation depth” and plotted for each oxidation condition.

図2は、比([Si]/[Mn])の値aと粒界酸化深さの関係を示すグラフであり、図3は巻取り温度と粒界酸化深さの関係を示すグラフである。   FIG. 2 is a graph showing the relationship between the ratio ([Si] / [Mn]) value a and the grain boundary oxidation depth, and FIG. 3 is a graph showing the relationship between the coiling temperature and the grain boundary oxidation depth. .

これらの結果から明らかなように、粒界酸化深さは、比([Si]/[Mn])の値aや巻取り温度等の要因に決定されることになる。そこで、本発明者らは、比([Si]/[Mn])の値aや巻取り温度によって決定される粒界酸化深さを低減するべく、大気に水蒸気を添加して雰囲気を制御し、鋼板内部を酸化することによって内方酸化層を形成させ、粒界酸化部をスケール化することについて更に検討した。   As is clear from these results, the grain boundary oxidation depth is determined by factors such as the value a of the ratio ([Si] / [Mn]) and the coiling temperature. Therefore, the present inventors control the atmosphere by adding water vapor to the atmosphere in order to reduce the grain boundary oxidation depth determined by the value a of the ratio ([Si] / [Mn]) and the coiling temperature. Further studies were made to form an inner oxide layer by oxidizing the inside of the steel sheet and to scale the grain boundary oxidized portion.

種々の比([Si]/[Mn])の値aの各種高Si含有鋼板について、大気中への水蒸気添加による雰囲気制御と内方酸化層の厚みを測定した結果、550℃以上、750℃未満の巻取り温度範囲においては、内方酸化層厚さB(μm)は、水蒸気濃度b(体積%)としたとき、下記(3)式で表せることが分かった。
B=1.92×106×exp{−15462/(T+273)}×(0.1566b+0.506)×600.5/3.6 …(3)
但し、T:巻取り温度(℃)を示す。
As a result of measuring the atmosphere control by adding water vapor to the atmosphere and the thickness of the inner oxide layer for various high Si content steel sheets having various ratios ([Si] / [Mn]) value a, 550 ° C. or higher, 750 ° C. In the coiling temperature range below, it was found that the inner oxide layer thickness B (μm) can be expressed by the following equation (3) when the water vapor concentration is b (volume%).
B = 1.92 × 10 6 × exp {-15462 / (T + 273)} × (0.1566b + 0.506) × 60 0.5 /3.6 (3)
However, T represents a coiling temperature (° C.).

上記(3)式の関係を導くに至った実験結果の一例(図4、5)を示す。この実験では、酸化処理前の種々のSi含有鋼のサンプル表面に、スパッタ法によりPtマーカー層を形成し、種々の温度で夫々酸化したサンプル断面の光学顕微鏡観察より内方酸化層厚さを各々の酸化条件に対しプロットを行ったものである。   An example (FIGS. 4 and 5) of the experimental results that led to the relationship of the above expression (3) is shown. In this experiment, a Pt marker layer was formed by sputtering on the surface of various Si-containing steel samples before the oxidation treatment, and the inner oxide layer thickness was determined by optical microscope observation of the sample cross-sections that were oxidized at various temperatures. A plot was made with respect to the oxidation conditions.

図4は、巻取り温度と内方酸化層厚さの関係を示すグラフであり、図5は水蒸気濃度と内方酸化層厚さの関係を示すグラフである。   FIG. 4 is a graph showing the relationship between the coiling temperature and the inner oxide layer thickness, and FIG. 5 is a graph showing the relationship between the water vapor concentration and the inner oxide layer thickness.

次に、酸洗不良となる粒界酸化層厚さについて検討したところ、粒界酸化層厚さが10μm以上となれば酸洗不良となることが判明した。従って、前記(2)式で表される粒界酸化深さが、前記(3)式で表される内方酸化層厚さに10μmを足した厚みよりも小さくなれば、即ち、下記(1)式で規定される関係を満足すれば、粒界酸化層厚さは10μm以下にできることを見出し、本発明を完成した。
(0.075×T−38)×(−1.5a+3.75)2/(2.45)2
10+1.92×106×exp{−15462/(T+273)}×
(0.1566b+0.506)×600.5/3.6 …(1)
但し、a:比[Si]/[Mn]の値、b:水蒸気濃度、T:巻取り温度(℃)
Next, when the thickness of the grain boundary oxide layer that causes poor pickling was examined, it was found that if the grain boundary oxide layer thickness was 10 μm or more, pickling failure occurred. Therefore, if the grain boundary oxidation depth represented by the above formula (2) is smaller than the thickness of the inner oxide layer represented by the above formula (3) plus 10 μm, that is, the following (1 It was found that the thickness of the grain boundary oxide layer can be made 10 μm or less if the relationship defined by the formula is satisfied, and the present invention has been completed.
(0.075 × T-38) × (−1.5a + 3.75) 2 /(2.45) 2
10 + 1.92 × 10 6 × exp {−15462 / (T + 273)} ×
(0.1566b + 0.506) × 60 0.5 /3.6 (1)
Where a: ratio [Si] / [Mn] value, b: water vapor concentration, T: coiling temperature (° C.)

次に、本発明で規定する要件について説明する。   Next, requirements defined in the present invention will be described.

[比([Si]/[Mn])の値a:0.5〜2.0]
鋼板中のSiの含有量およびMnの含有量は、鋼板としての基本的な特性を発揮するために、所定の範囲内に設定されるが、これらの比([Si]/[Mn])の値aは、拡散阻害性を有するFe2SiO4と拡散阻害性の少ないMn2SiO4の生成量に影響する。その値aが0.5未満の場合は、鋼板内部から表面に拡散するSi量より、表層スケールを介して鋼板内部に拡散する酸素量が圧倒的に多くなるため、Siは鋼板内部で酸化して粒状酸化物(即ち、Mn2SiO4)を形成する。そのため、この値aが0.5未満の場合には、そもそも粒界酸化は生じないことから、本発明ではこのような組成の鋼板は対象としない。一方、値aが2.0を超える場合は、拡散阻害能の高いFe2SiO4が厚く生成するため、粒界酸化は抑制されるものの、酸洗性が極めて悪くなる。尚、この値aの好ましい下限は0.7(より好ましくは0.8)であり、好ましい上限は1.5(より好ましくは1.2)である。
[Ratio ([Si] / [Mn]) Value a: 0.5 to 2.0]
The Si content and the Mn content in the steel sheet are set within a predetermined range in order to exhibit basic characteristics as a steel sheet, but the ratio of these ([Si] / [Mn]) The value a affects the production amount of Fe 2 SiO 4 having diffusion inhibition and Mn 2 SiO 4 having little diffusion inhibition. When the value a is less than 0.5, since the amount of oxygen diffusing into the steel plate through the surface scale is overwhelmingly larger than the amount of Si diffusing from the inside of the steel plate to the surface, Si is oxidized inside the steel plate. To form a granular oxide (that is, Mn 2 SiO 4 ). For this reason, when the value a is less than 0.5, grain boundary oxidation does not occur in the first place. Therefore, the present invention does not cover steel sheets having such a composition. On the other hand, when the value a exceeds 2.0, Fe 2 SiO 4 having a high diffusion inhibiting ability is formed thick, so that the grain boundary oxidation is suppressed, but the pickling property is extremely deteriorated. In addition, the preferable minimum of this value a is 0.7 (more preferably 0.8), and a preferable upper limit is 1.5 (more preferably 1.2).

本発明方法を実施するに当り、熱間圧延は常法に従って行えばよいが、鋼片(スラブ)を加熱するときの加熱温度は、仕上げ温度確保の観点から1000〜1300℃とすることが好ましい。また、熱間圧延の仕上げ温度は加工性を阻害する集合組織が形成されないように800〜950℃の温度範囲とし、仕上げ圧延後の冷却速度はパーライトの生成を抑制するため30〜120℃/秒とすることが好ましい(より好ましくは50〜100℃/秒程度)。但し、巻取り温度については、酸化物層の形態に影響を与えるので、厳密に制御する必要がある。   In carrying out the method of the present invention, hot rolling may be performed according to a conventional method, but the heating temperature when heating the steel slab (slab) is preferably 1000 to 1300 ° C. from the viewpoint of securing the finishing temperature. . Moreover, the finishing temperature of hot rolling is set to a temperature range of 800 to 950 ° C. so that a texture that impairs workability is not formed, and the cooling rate after finishing rolling is 30 to 120 ° C./second in order to suppress the formation of pearlite. It is preferable to be (more preferably about 50 to 100 ° C./second). However, the coiling temperature affects the form of the oxide layer and must be strictly controlled.

[巻取り温度:550℃以上、750℃未満]
巻取り温度が550℃未満の場合は、表層スケールに酸溶解性の低いヘマタイトが生成し易くなり、酸洗を行っても粒界酸化が除去できない。一方、巻取り温度が750℃以上の場合は、表層スケールが厚くなり、酸洗を行っても表層スケール自体も十分に除去できず、粒界酸化が残ってしまうことになる。こうした観点から、巻取り温度は550℃以上、750℃未満とする。好ましくは、570℃以上(より好ましくは600℃以上)、730℃以下(より好ましくは700℃以下)である。
[Winding temperature: 550 ° C or higher and lower than 750 ° C]
When the coiling temperature is less than 550 ° C., hematite with low acid solubility is easily generated on the surface scale, and grain boundary oxidation cannot be removed even by pickling. On the other hand, when the coiling temperature is 750 ° C. or higher, the surface layer scale becomes thick, and even when pickling is performed, the surface layer scale itself cannot be sufficiently removed, and grain boundary oxidation remains. From such a viewpoint, the coiling temperature is set to 550 ° C. or higher and lower than 750 ° C. Preferably, they are 570 degreeC or more (more preferably 600 degreeC or more) and 730 degreeC or less (more preferably 700 degreeC or less).

[冷却雰囲気の制御]
巻取り後に冷却する条件(冷却終了温度、冷却雰囲気)を適切に制御する必要がある。冷却停止温度に関しては、粒界酸化が生成しなくなる温度が500℃程度であるため、500℃以下まで水蒸気添加雰囲気中で冷却を行って、粒界酸化を抑制する必要がある。また、雰囲気中の水蒸気濃度は、内方酸化を進行させるという観点から、10〜40体積%とする必要がある。この水蒸気濃度は好ましくは、15体積%以上(より好ましくは20体積%以上)、38体積%以下(より好ましくは35体積%以下)であるが、少なくとも前記(1)式の関係を満足する必要がある。尚、上記雰囲気の制御に関しては、その制御のし易さからして、大気に対して水蒸気を添加して制御することが好ましい。
[Cooling atmosphere control]
It is necessary to appropriately control conditions (cooling end temperature, cooling atmosphere) for cooling after winding. Regarding the cooling stop temperature, since the temperature at which grain boundary oxidation is not generated is about 500 ° C., it is necessary to cool to 500 ° C. or lower in a steam-added atmosphere to suppress grain boundary oxidation. In addition, the water vapor concentration in the atmosphere needs to be 10 to 40% by volume from the viewpoint of proceeding inward oxidation. The water vapor concentration is preferably 15% by volume or more (more preferably 20% by volume or more) and 38% by volume or less (more preferably 35% by volume or less), but it is necessary to satisfy at least the relationship of the formula (1). There is. Note that the atmosphere is preferably controlled by adding water vapor to the atmosphere from the viewpoint of ease of control.

本発明では、上記比([Si]/[Mn])の値a、および製造条件を適切に制御することによって、表面性状に優れた鋼板を得るものであり、この鋼板の化学成分組成については、高強度鋼板としての特性を満足するものであればよい。こうした観点から、Si、Mnを含めた基本成分として、C:0.02〜0.30%、Si:1.0〜3.0、Mn:1.0〜3.5%、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)およびAl:0.15%以下(0%を含まない)を夫々含有するものが挙げられる。各元素の添加理由は、以下の通りである。   In the present invention, by appropriately controlling the value a of the ratio ([Si] / [Mn]) and the production conditions, a steel sheet having excellent surface properties is obtained. Any material that satisfies the characteristics as a high-strength steel sheet may be used. From such a viewpoint, as basic components including Si and Mn, C: 0.02 to 0.30%, Si: 1.0 to 3.0, Mn: 1.0 to 3.5%, P: 0.00. Examples include those containing not more than 03% (not including 0%), S: not more than 0.03% (not including 0%), and Al: not more than 0.15% (not including 0%). The reason for adding each element is as follows.

[C:0.02〜0.30%]
Cは鋼材(即ち、鋼板)の強度を高めるのに有効な元素であり、また低温変態生成物の量や変態を変えることで伸びや伸びフランジ性に影響を与える元素である。Cの含有量が0.02%未満では、自動車用の高強度のニーズに応えることができなくなり、一方、C含有量が0.30%を超えて過剰になると、溶接性の低下を招くことになる。好ましいC含有量は、0.04%以上(より好ましくは0.06%以上)、0.25%以下(より好ましくは0.2%以下)である。
[C: 0.02 to 0.30%]
C is an element effective for increasing the strength of a steel material (that is, a steel sheet), and is an element that affects elongation and stretch flangeability by changing the amount and transformation of a low-temperature transformation product. If the C content is less than 0.02%, it will not be possible to meet the needs of high strength for automobiles. On the other hand, if the C content exceeds 0.30%, the weldability will deteriorate. become. Preferable C content is 0.04% or more (more preferably 0.06% or more) and 0.25% or less (more preferably 0.2% or less).

[Si:1.0〜3.0%]
Siは鋼材の強度を確保する上で重要な元素である。本発明で対象とする鋼板では、強度確保に最低限必要なSi量としてその含有量は1.0%とした。しかしながら、Si含有量が過剰となると、延性が劣化する恐れがあり、3.0%以下とした。好ましいSi含有量は、1.2%以上(より好ましくは1.5%以上)、2.8%以下(より好ましくは2.6%以下)である。
[Si: 1.0-3.0%]
Si is an important element for securing the strength of the steel material. In the steel plate which is the subject of the present invention, the content was set to 1.0% as the minimum amount of Si necessary for securing the strength. However, when the Si content is excessive, the ductility may be deteriorated, and the content is set to 3.0% or less. A preferable Si content is 1.2% or more (more preferably 1.5% or more), 2.8% or less (more preferably 2.6% or less).

[Mn:1.0〜3.5%]
Mnは鋼材の強度を確保するために有用な元素であり、また加工性の非常に優れた高強度鋼板としての特性を得るためには、少なくとも1.0%以上含有させる必要がある。しかしながら、Mn含有量が過剰になると、伸びの低下や炭素当量の増大を招き、また溶接性が劣化するので3.5%以下とする必要がある。好ましいMn含有量は、1.2%以上(より好ましくは1.5%以上)、3.0%以下(より好ましくは2.5%以下)である。
[Mn: 1.0 to 3.5%]
Mn is an element useful for securing the strength of the steel material, and in order to obtain the characteristics as a high-strength steel plate with excellent workability, it is necessary to contain at least 1.0% or more. However, if the Mn content is excessive, the elongation is reduced and the carbon equivalent is increased, and the weldability is deteriorated. Preferable Mn content is 1.2% or more (more preferably 1.5% or more) and 3.0% or less (more preferably 2.5% or less).

[P:0.03%以下(0%を含まない)]
Pは高強度鋼板を得るために有効な元素であるが、0.03%を超えて過剰になると、めっきムラが生じやすくなり、また合金化処理が困難になるので、不可避的不純物として混入する場合、その上限を0.03%に止める必要がある。P含有量は、好ましくは0.01%以下にするのが良い。尚、工業生産上、鋼材中のP含有量を0%にすることは困難である。
[P: 0.03% or less (excluding 0%)]
P is an effective element for obtaining a high-strength steel sheet. However, if it exceeds 0.03%, P is likely to cause uneven plating and difficult to alloy, so it is mixed as an inevitable impurity. In that case, it is necessary to limit the upper limit to 0.03%. The P content is preferably 0.01% or less. In addition, it is difficult to make P content in steel materials 0% on industrial production.

[S:0.03%以下(0%を含まない)]
Sは熱間圧延時の熱間割れの原因となる他、スポット溶接性を著しく損なう元素である。鋼材中では、析出物として固定されるが、その量が増大すると、伸びや伸びフランジ性の劣化を招くので、不可避的不純物として混入する場合、その上限を0.03%に止める必要がある。S含有量は、好ましくは0.01%以下(より好ましくは0.008%以下)である。尚、工業生産上、鋼材中のS量を0%にすることは困難である。
[S: 0.03% or less (excluding 0%)]
S is an element that causes hot cracking during hot rolling and significantly impairs spot weldability. In steel materials, it is fixed as precipitates, but if the amount increases, elongation and stretch flangeability are deteriorated. Therefore, when mixed as an unavoidable impurity, the upper limit must be limited to 0.03%. The S content is preferably 0.01% or less (more preferably 0.008% or less). In addition, it is difficult to make S amount in steel materials 0% on industrial production.

[Al:0.15%以下(0%を含まない)]
Alは製鋼段階での脱酸剤として有用な元素である。しかしながら、Al含有量が過剰になると、製造コストの上昇を招くだけでなく、表面性状を悪化させるので0.15%を上限とする。好ましくは0.1%以下(より好ましくは0.05%以下)にするのが良い。上記効果を発揮させるためのAl含有量の好ましい下限は0.01%以上(より好ましくは0.02%以上)である。
[Al: 0.15% or less (excluding 0%)]
Al is an element useful as a deoxidizer in the steelmaking stage. However, when the Al content is excessive, not only the production cost is increased, but also the surface properties are deteriorated, so 0.15% is made the upper limit. Preferably it is 0.1% or less (more preferably 0.05% or less). The minimum with preferable Al content for exhibiting the said effect is 0.01% or more (more preferably 0.02% or more).

上記の成分組成以外の成分は、実質的に鉄である。残部が実質的に鉄の場合、不可避的不純物(例えば、原料、資材、製造設備等の状況によって持ち込まれる不純物(O、N等))が鋼板中に含まれることは、当然に許容される。本発明で対象とする鋼材には、必要に応じて種々の選択元素を含有させても良く、含有される元素の種類に応じて鋼材の特性が更に改善される。これらの元素を含有させるときの含有量および限定理由は以下の通りである。   Components other than the above component composition are substantially iron. In the case where the balance is substantially iron, it is naturally allowed that inevitable impurities (for example, impurities (O, N, etc.) brought in depending on the situation of raw materials, materials, manufacturing equipment, etc.) are contained in the steel sheet. The steel material to be used in the present invention may contain various selective elements as necessary, and the characteristics of the steel material are further improved according to the kind of the contained element. The contents and reasons for limitation when these elements are contained are as follows.

[Cr:1.0%以下(0%を含まない)]
Crは鋼板の焼入れ性を高め、組織強化を図る上で有効な元素である。また、Crはオーステナイト中にCを濃化させ、安定度を高め、マルテンサイトを生成させ易くするだけでなく、酸化物を鋼板表面に形成すことによって、めっき性にも影響を与える。しかしながら、Crの含有量が1.0%を超えると、効果が飽和するばかりでなく、コスト面も不利になる。より好ましくは0.8%以下にするのが良い。尚上記効果を発揮させるためのCr含有量のより好ましい下限は0.03%以上(更に好ましくは0.05%以上)である。
[Cr: 1.0% or less (excluding 0%)]
Cr is an element effective in enhancing the hardenability of the steel sheet and strengthening the structure. Moreover, Cr not only concentrates C in austenite, increases stability, and facilitates the formation of martensite, but also affects the plating properties by forming an oxide on the steel sheet surface. However, if the Cr content exceeds 1.0%, the effect is saturated and the cost is disadvantageous. More preferably, it is 0.8% or less. A more preferable lower limit of the Cr content for exhibiting the above effect is 0.03% or more (more preferably 0.05% or more).

[Cu:0.5%以下(0%を含まない)および/またはNi:1.0%以下(0%を含まない)]
CuおよびNiは、鋼材自体の強度を向上させる上で有効な元素である。特に、Feよりも酸化し難いCu、Niが表面に均一に濃化することによって、鋼材内部に拡散する酸素量を更に低減することができる。しかしながら、過剰に含有させることは、経済的に見合わず、加工性も劣化するので、Cuで0.5%以下、Niで1.0%以下とすべきである。尚、これらの元素を含有させるときの好ましい含有量は、いずれも0.003%以上である。また、より好ましい上限はCuで0.3%以下、Niで0.7%以下である。
[Cu: 0.5% or less (not including 0%) and / or Ni: 1.0% or less (not including 0%)]
Cu and Ni are effective elements for improving the strength of the steel material itself. In particular, the amount of oxygen diffusing into the steel material can be further reduced by uniformly concentrating Cu and Ni, which are harder to oxidize than Fe, on the surface. However, excessive inclusion is not economically compatible and the workability deteriorates, so it should be 0.5% or less for Cu and 1.0% or less for Ni. A preferable content when these elements are contained is 0.003% or more. A more preferable upper limit is 0.3% or less for Cu and 0.7% or less for Ni.

[Ti:1.0%以下(0%を含まない)、V:1.0%以下(0%を含まない)およびNb:1.0%以下(0%を含まない)よりなる群から選ばれる1種以上]
Ti、VおよびNbは、いずれも炭化物を形成し、鋼材を高強度化するために有効な元素である。また、TiはC、Nを固定し、鋼板の加工性(例えばr値)を上昇させる効果も発揮する。しかしながら、これらの含有量は、いずれも1.0%を超えて過剰になると、コスト高となる上、加工性の劣化をもたらすことになる。これらのより好ましい上限は0.8%以下である。尚、上記の効果を発揮させるためには、いずれも0.003%以上含有させることが好ましい(より好ましくは0.005%以上)。
[Ti: 1.0% or less (not including 0%), V: 1.0% or less (not including 0%) and Nb: 1.0% or less (not including 0%) One or more
Ti, V, and Nb are all effective elements for forming carbides and increasing the strength of steel. Ti also fixes C and N and exhibits the effect of increasing the workability (for example, r value) of the steel sheet. However, if any of these contents exceeds 1.0% and becomes excessive, the cost increases and processability is deteriorated. A more preferable upper limit of these is 0.8% or less. In addition, in order to exhibit said effect, it is preferable to contain all 0.003% or more (more preferably 0.005% or more).

[Mo:1.0%以下(0%を含まない)]
Moは鋼材の固溶強化を図る上で有効な元素である。しかしながらMo含有量が1.0%を超えて過剰になると、製造コストを上昇させることになる。尚、こうした効果を発揮させるためには、Moは0.003%以上(より好ましくは0.01%以上)含有させることが好ましい。尚、Mo含有量のより好ましい上限は0.7%以下である。
[Mo: 1.0% or less (excluding 0%)]
Mo is an element effective in achieving solid solution strengthening of steel materials. However, if the Mo content exceeds 1.0% and becomes excessive, the manufacturing cost will be increased. In addition, in order to exhibit such an effect, it is preferable to contain Mo 0.003% or more (more preferably 0.01% or more). In addition, the more preferable upper limit of Mo content is 0.7% or less.

[B:0.1%以下(0%を含まない)]
Bは鋼材の溶接性を向上させ、また焼入れ性を高める作用のある元素である。しかしながらB含有量が0.1%を超えて過剰になると、これらの効果が飽和するだけでなく、延性を劣化させ、加工性を低下させることになる。尚、こうした効果を発揮させるためには、Bは0.0002%以上(より好ましくは0.0005%以上)含有させることが好ましい。尚、B含有量のより好ましい上限は0.07%以下である。
[B: 0.1% or less (excluding 0%)]
B is an element that has the effect of improving the weldability of the steel material and improving the hardenability. However, when the B content exceeds 0.1% and becomes excessive, these effects are not only saturated, but ductility is deteriorated and workability is lowered. In order to exert such effects, B is preferably contained in an amount of 0.0002% or more (more preferably 0.0005% or more). In addition, the upper limit with more preferable B content is 0.07% or less.

[Ca:0.005%以下(0%を含まない)および/またはMg:0.01%以下(0%を含まない)]
CaおよびMgは、介在物の形態を制御して、延性を高め、加工性を向上させる作用がある。しかしながら、これらの含有量がCaで0.005%、Mgで0.01%を超えて過剰になると、鋼材中の介在物が増加して延性が劣化し、加工性が悪くなる。尚、こうした効果を発揮させるためには、いずれも0.0005%以上(より好ましくは0.0007%以上)含有させることが好ましい。尚、これらの含有量のより好ましい上限は、Caで0.003%以下、Mgで0.007%以下である。
[Ca: 0.005% or less (not including 0%) and / or Mg: 0.01% or less (not including 0%)]
Ca and Mg have the effect | action which controls the form of an inclusion, raises ductility, and improves workability. However, if the content of Ca exceeds 0.005% and Mg exceeds 0.01%, the inclusions in the steel increase and the ductility deteriorates and the workability deteriorates. In addition, in order to exhibit such an effect, it is preferable to contain 0.0005% or more (more preferably 0.0007% or more) in any case. In addition, a more preferable upper limit of these contents is 0.003% or less for Ca and 0.007% or less for Mg.

本発明方法によって得られる熱延鋼板は、酸洗性が良好なものとなり、また粒界酸化層厚さが薄いものとなっている。こうした熱延鋼板を冷間圧延すると、良好な冷延性が発揮されると共に、表面疵(押し疵)がない表面性状に優れた冷延鋼板となる。   The hot-rolled steel sheet obtained by the method of the present invention has good pickling properties and a thin grain boundary oxide layer. When such a hot-rolled steel sheet is cold-rolled, good cold-rollability is exhibited, and a cold-rolled steel sheet having excellent surface properties with no surface defects (pushing) is obtained.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

[実施例1]
下記表1に示す化学成分組成の鋼材スラブ(鋼種A〜V)を溶製し、1250℃に加熱し(温度管理は、熱電対を埋め込んだ測定用スラブを一般スラブを同時に加熱して実測する方法による)、仕上げ温度:870〜900℃で厚さ:2.6mmまで熱間圧延し、次いで、平均冷却速度:40℃/秒で冷却した後、下記表2、3に示す種々の巻取り温度で巻取り、その後、雰囲気中の水蒸気濃度を変えて(大気中に水蒸気を添加することによって雰囲気制御)500℃以下まで冷却した。
[Example 1]
Steel slabs (steel types A to V) having the chemical composition shown in Table 1 are melted and heated to 1250 ° C. (temperature control is measured by simultaneously heating a general slab with a measurement slab embedded with a thermocouple). Depending on the method), finishing temperature: 870-900 ° C., thickness: 2.6 mm, hot rolling, then cooling at an average cooling rate: 40 ° C./second, and then various windings shown in Tables 2 and 3 below Winding was performed at a temperature, and then the water vapor concentration in the atmosphere was changed (atmosphere control by adding water vapor to the atmosphere), and then cooled to 500 ° C. or lower.

Figure 2011231391
Figure 2011231391

Figure 2011231391
Figure 2011231391

Figure 2011231391
Figure 2011231391

得られた熱延鋼板(コイル)のスケール性状(粒界酸化深さ、内方酸化層厚さ、粒界酸化層厚さ)を光学顕微鏡によって測定した。これらについては、コイルの先端部、中央部および後端部の夫々からサンプルを採取し、各々のサンプルの任意の3箇所から断面試料を作製して光学顕微鏡によって測定し、全体の平均値を求めて各条件でのスケール性状(粒界酸化深さ、内方酸化層厚さ、粒界酸化層厚さ)とした。   The scale properties (grain boundary oxidation depth, inner oxide layer thickness, grain boundary oxide layer thickness) of the obtained hot-rolled steel sheet (coil) were measured with an optical microscope. For these, samples are taken from each of the front end, center and rear end of the coil, cross-section samples are prepared from arbitrary three locations of each sample, measured with an optical microscope, and the average value of the whole is obtained. The scale properties (grain boundary oxidation depth, inner oxide layer thickness, grain boundary oxide layer thickness) under each condition were used.

次に、通常の酸洗(15%塩酸、70℃)を行なった後のコイルを、冷延率:46%で、厚さ:1.4mmまで冷間圧延して冷延鋼板を製造し、粒界酸化層厚さ、表面性状を評価した。このとき、粒界酸化層厚さについては、コイルの先端部、中央部および後端部の夫々からサンプルを採取し、各々のサンプルの任意の3箇所から断面試料を作製して光学顕微鏡によって測定し、全体の平均値を求めて粒界酸化層厚さとした。   Next, the coil after performing normal pickling (15% hydrochloric acid, 70 ° C.) is cold rolled to a thickness of 1.4 mm at a cold rolling rate of 46% to produce a cold rolled steel sheet, Grain boundary oxide layer thickness and surface properties were evaluated. At this time, the thickness of the grain boundary oxide layer was measured by taking a sample from each of the front end portion, the central portion, and the rear end portion of the coil, preparing cross-sectional samples from arbitrary three locations of each sample, and using an optical microscope. And the average value of the whole was calculated | required and it was set as the grain boundary oxide layer thickness.

また、表面性状の評価に関しては、冷延後の鋼板表面を目視観察し、粒界酸化部の脱落がない場合を「良好」とし、粒界酸化部の脱落が生じた場合を「不良」と評価した。その結果を、下記表4、5に示す。   Also, regarding the evaluation of the surface properties, the steel plate surface after cold rolling is visually observed, and the case where there is no drop of the grain boundary oxidation part is `` good '', and the case where the drop of the grain boundary oxidation part occurs is `` bad '' evaluated. The results are shown in Tables 4 and 5 below.

Figure 2011231391
Figure 2011231391

Figure 2011231391
Figure 2011231391

この結果から次のように考察できる。まず本発明で規定する要件を満足するものは(試験No.1、2、5、7、9、11、13、15〜34)、熱延鋼板の酸洗性が良好になると共に、鋼板(熱延鋼板および冷延鋼板)における粒界酸化層深さを低減でき、優れた表面性状が得られていることが分かる。特に、冷延鋼板においては、いずれも粒界酸化層深さを5μm未満に低減でき、良好な表面性状が得られている。   From this result, it can be considered as follows. First, those satisfying the requirements specified in the present invention (Test Nos. 1, 2, 5, 7, 9, 11, 13, 15-34) are improved in pickling properties of hot-rolled steel sheets and steel sheets ( It can be seen that the grain boundary oxide layer depth in the hot-rolled steel sheet and the cold-rolled steel sheet) can be reduced, and excellent surface properties are obtained. In particular, in cold-rolled steel sheets, the grain boundary oxide layer depth can be reduced to less than 5 μm, and good surface properties are obtained.

これに対し、本発明で規定する要件を満足しないもの(試験No.3、4、6、8、10、12、14)では、粒界酸化層厚さが厚くなっており(即ち、前記(1)式の関係を満足していない)、優れた表面性状が得られていないことが分かる。   On the other hand, those that do not satisfy the requirements defined in the present invention (test Nos. 3, 4, 6, 8, 10, 12, 14) have a thick grain boundary oxide layer thickness (that is, (( 1) The relationship of the formula is not satisfied), and it is understood that excellent surface properties are not obtained.

Claims (9)

C:0.02〜0.30%(質量%の意味。鋼の化学成分において以下同じ。)、Si:1.0〜3.0%、Mn:1.0〜3.5%、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)およびAl:0.15%以下(0%を含まない)を夫々含有すると共に、Siの含有量[Si]とMnの含有量の比([Si]/[Mn])が0.5〜2.0であり、残部が鉄および不可避的不純物からなる高Si含有鋼板を熱間圧延する際に、巻取り温度を550℃以上、750℃未満として巻取った後、雰囲気中水蒸気濃度をb(体積%:但し、10≦b≦40)、前記比([Si]/[Mn])の値をa、巻取り温度をT(℃)としたときに、下記(1)式の関係を満たす雰囲気中で500℃以下まで冷却することを特徴とする表面性状に優れた高Si含有熱延鋼板の製造方法。
(0.075×T−38)×(−1.5a+3.75)2/(2.45)2
10+1.92×106×exp{−15462/(T+273)}×
(0.1566b+0.506)×600.5/3.6 …(1)
C: 0.02 to 0.30% (meaning mass%, the same applies to the chemical components of steel), Si: 1.0 to 3.0%, Mn: 1.0 to 3.5%, P: 0.03% or less (not including 0%), S: 0.03% or less (not including 0%) and Al: 0.15% or less (not including 0%), respectively, Hot-rolling a high-Si steel sheet having a content ratio [Si] and a content of Mn ([Si] / [Mn]) of 0.5 to 2.0, with the balance being iron and inevitable impurities In this case, after winding at a coiling temperature of 550 ° C. or more and less than 750 ° C., the water vapor concentration in the atmosphere is b (volume%: 10 ≦ b ≦ 40), the ratio ([Si] / [Mn]). When the value of a is a and the coiling temperature is T (° C.), cooling to 500 ° C. or lower in an atmosphere satisfying the relationship of the following equation (1) Method for producing a high Si-containing hot-rolled steel sheet having excellent surface properties according to symptoms.
(0.075 × T-38) × (−1.5a + 3.75) 2 /(2.45) 2
10 + 1.92 × 10 6 × exp {−15462 / (T + 273)} ×
(0.1566b + 0.506) × 60 0.5 /3.6 (1)
前記雰囲気は、大気に水蒸気を添加することによって制御されたものである請求項1に記載の高Si含有熱延鋼板の製造方法。   The method for producing a high-Si content hot-rolled steel sheet according to claim 1, wherein the atmosphere is controlled by adding water vapor to the atmosphere. 前記鋼板は、更にCr:1.0%以下(0%を含まない)を含有するものである請求項1または2に記載の高Si含有熱延鋼板の製造方法。   The method for producing a high-Si content hot-rolled steel sheet according to claim 1 or 2, wherein the steel sheet further contains Cr: 1.0% or less (not including 0%). 前記鋼板は、更にCu:0.5%以下(0%を含まない)および/またはNi:1.0%以下(0%を含まない)を含有するものである請求項1〜3のいずれかに記載の高Si含有熱延鋼板の製造方法。   The steel sheet further contains Cu: 0.5% or less (not including 0%) and / or Ni: 1.0% or less (not including 0%). The manufacturing method of the high Si content hot-rolled steel sheet as described in 2. 前記鋼板は、更にTi:1.0%以下(0%を含まない)、V:1.0%以下(0%を含まない)およびNb:1.0%以下(0%を含まない)よりなる群から選ばれる1種以上を含有する請求項1〜4のいずれかに記載の高Si含有熱延鋼板の製造方法。   The steel sheet further includes Ti: 1.0% or less (excluding 0%), V: 1.0% or less (not including 0%), and Nb: 1.0% or less (not including 0%). The manufacturing method of the high Si content hot-rolled steel plate in any one of Claims 1-4 containing 1 or more types chosen from the group which consists of. 前記鋼板は、更にB:0.1%以下(0%を含まない)を含有する請求項1〜5のいずれかに記載の高Si含有熱延鋼板の製造方法。   The said steel plate is a manufacturing method of the high Si content hot-rolled steel plate in any one of Claims 1-5 which contains B: 0.1% or less (excluding 0%) further. 前記鋼板は、更にMo:1.0%以下(0%を含まない)を含有する請求項1〜6のいずれかに記載の高Si含有熱延鋼板の製造方法。   The said steel plate is a manufacturing method of the high Si content hot-rolled steel plate in any one of Claims 1-6 which contains Mo: 1.0% or less (0% is not included) further. 前記鋼板は、更にCa:0.005%以下(0%を含まない)および/またはMg:0.01%以下(0%を含まない)を含有するものである請求項1〜7のいずれかに記載の高Si含有熱延鋼板の製造方法。   The steel sheet further contains Ca: 0.005% or less (not including 0%) and / or Mg: 0.01% or less (not including 0%). The manufacturing method of the high Si content hot-rolled steel sheet as described in 2. 請求項1〜8のいずれかに記載の製造方法によって得られた熱延鋼板を、冷間圧延することによって得られたものである表面性状に優れた高Si含有冷延鋼板。   A high-Si content cold-rolled steel sheet having excellent surface properties, which is obtained by cold rolling the hot-rolled steel sheet obtained by the production method according to claim 1.
JP2010105797A 2010-04-30 2010-04-30 High Si content steel sheet with excellent surface properties and method for producing the same Expired - Fee Related JP5343035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010105797A JP5343035B2 (en) 2010-04-30 2010-04-30 High Si content steel sheet with excellent surface properties and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010105797A JP5343035B2 (en) 2010-04-30 2010-04-30 High Si content steel sheet with excellent surface properties and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011231391A true JP2011231391A (en) 2011-11-17
JP5343035B2 JP5343035B2 (en) 2013-11-13

Family

ID=45321007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010105797A Expired - Fee Related JP5343035B2 (en) 2010-04-30 2010-04-30 High Si content steel sheet with excellent surface properties and method for producing the same

Country Status (1)

Country Link
JP (1) JP5343035B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237924A (en) * 2012-04-20 2013-11-28 Kobe Steel Ltd Method of manufacturing high-strength cold-rolled steel sheet with excellent chemical conversion treatment property
JP2014214374A (en) * 2013-04-30 2014-11-17 株式会社神戸製鋼所 Method of producing hot rolled steel sheet and hot rolled steel sheet
WO2016152870A1 (en) * 2015-03-23 2016-09-29 新日鐵住金株式会社 Hot-rolled steel sheet and manufacturing method of same, and manufacturing method of cold-rolled steel sheet
KR20170137164A (en) 2015-04-15 2017-12-12 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet and manufacturing method thereof
CN113695392A (en) * 2021-09-14 2021-11-26 鞍钢股份有限公司 Production method for reducing grain boundary oxidation of hot continuous rolling 65Mn strip steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077922A (en) * 1983-10-05 1985-05-02 Nippon Steel Corp Production of hot-rolled steel plate having high adhesion to scale
JP2005193291A (en) * 2004-01-09 2005-07-21 Kobe Steel Ltd Hot rolled steel sheet excellent in surface properties, and method for manufacturing the same
JP2009274093A (en) * 2008-05-14 2009-11-26 Kobe Steel Ltd Method for manufacturing silicon containing hot-rolled steel sheet excellent in surface property
JP2011147956A (en) * 2010-01-20 2011-08-04 Kobe Steel Ltd METHOD FOR PRODUCING Si-CONTAINING STEEL SHEET

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077922A (en) * 1983-10-05 1985-05-02 Nippon Steel Corp Production of hot-rolled steel plate having high adhesion to scale
JP2005193291A (en) * 2004-01-09 2005-07-21 Kobe Steel Ltd Hot rolled steel sheet excellent in surface properties, and method for manufacturing the same
JP2009274093A (en) * 2008-05-14 2009-11-26 Kobe Steel Ltd Method for manufacturing silicon containing hot-rolled steel sheet excellent in surface property
JP2011147956A (en) * 2010-01-20 2011-08-04 Kobe Steel Ltd METHOD FOR PRODUCING Si-CONTAINING STEEL SHEET

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237924A (en) * 2012-04-20 2013-11-28 Kobe Steel Ltd Method of manufacturing high-strength cold-rolled steel sheet with excellent chemical conversion treatment property
JP2014214374A (en) * 2013-04-30 2014-11-17 株式会社神戸製鋼所 Method of producing hot rolled steel sheet and hot rolled steel sheet
WO2016152870A1 (en) * 2015-03-23 2016-09-29 新日鐵住金株式会社 Hot-rolled steel sheet and manufacturing method of same, and manufacturing method of cold-rolled steel sheet
JP6070907B1 (en) * 2015-03-23 2017-02-01 新日鐵住金株式会社 Hot-rolled steel sheet and method for producing the same, and method for producing cold-rolled steel sheet
KR20170122723A (en) * 2015-03-23 2017-11-06 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet, manufacturing method thereof, and method of manufacturing cold-rolled steel sheet
CN107429343A (en) * 2015-03-23 2017-12-01 新日铁住金株式会社 The manufacture method of hot rolled steel plate, its manufacture method and cold-rolled steel sheet
US20170369964A1 (en) * 2015-03-23 2017-12-28 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and manufacturing method thereof, and manufacturing method of cold-rolled steel sheet
EP3276030A4 (en) * 2015-03-23 2018-10-10 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and manufacturing method of same, and manufacturing method of cold-rolled steel sheet
KR101958130B1 (en) 2015-03-23 2019-03-13 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet, manufacturing method thereof, and method of manufacturing cold-rolled steel sheet
US11066720B2 (en) 2015-03-23 2021-07-20 Nippon Steel Corporation Hot-rolled steel sheet and manufacturing method thereof, and manufacturing method of cold-rolled steel sheet
KR20170137164A (en) 2015-04-15 2017-12-12 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet and manufacturing method thereof
CN113695392A (en) * 2021-09-14 2021-11-26 鞍钢股份有限公司 Production method for reducing grain boundary oxidation of hot continuous rolling 65Mn strip steel

Also Published As

Publication number Publication date
JP5343035B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP6515393B2 (en) Hot rolled steel sheet and method of manufacturing the same
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
WO2014119796A1 (en) Ferritic stainless steel sheet with excellent workability and process for producing same
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP5633594B2 (en) Cold-rolled steel sheet excellent in punchability and heat-strain resistance and method for producing the same
JP5271981B2 (en) Method for producing Si-containing hot-rolled steel sheet having excellent pickling properties and pickling method
JP6196453B2 (en) Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
JP6475840B2 (en) High-strength hot-dip galvanized steel sheet excellent in surface quality, plating adhesion, and formability, and its manufacturing method
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
JP5817671B2 (en) Hot-rolled steel sheet and manufacturing method thereof
US20170044640A1 (en) Method for producing high-strength galvanized steel sheet and high-strength galvannealed steel sheet (as amended)
JP6872009B2 (en) Cold-rolled steel sheet for hot forming, non-plated hot forming member with excellent corrosion resistance and spot weldability, and its manufacturing method
WO2013122191A1 (en) Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
JP5343035B2 (en) High Si content steel sheet with excellent surface properties and method for producing the same
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP2021505771A (en) Ferritic stainless steel with excellent high-temperature oxidation resistance and its manufacturing method
JP2011147956A (en) METHOD FOR PRODUCING Si-CONTAINING STEEL SHEET
JP5520086B2 (en) High Si content steel sheet with excellent surface properties and method for producing the same
JP6294197B2 (en) Hot rolled steel sheet and manufacturing method thereof
JP5124865B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP2023509382A (en) Steel plate for enamel and manufacturing method thereof
JP2023100953A (en) Plated steel sheet for hot press forming having excellent impact properties after hot press forming, hot press formed member, and manufacturing methods thereof
JP2009275268A (en) Cold-rolled ferritic stainless steel sheet and method for manufacturing therefor
JP5128366B2 (en) Method for producing Si-containing hot-rolled steel sheet having excellent surface properties
KR102020387B1 (en) High-carbon hot-rolled steel sheet having excellent surface quality and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5343035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees