JP2011230344A - Steam heating device - Google Patents

Steam heating device Download PDF

Info

Publication number
JP2011230344A
JP2011230344A JP2010101869A JP2010101869A JP2011230344A JP 2011230344 A JP2011230344 A JP 2011230344A JP 2010101869 A JP2010101869 A JP 2010101869A JP 2010101869 A JP2010101869 A JP 2010101869A JP 2011230344 A JP2011230344 A JP 2011230344A
Authority
JP
Japan
Prior art keywords
steam
microwave power
temperature
rubber
vulcanizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010101869A
Other languages
Japanese (ja)
Inventor
Akiichi Harada
明一 原田
Akio Ishikawa
昭夫 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI ROLL CO Ltd
Micro Denshi Co Ltd
Original Assignee
KANSAI ROLL CO Ltd
Micro Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI ROLL CO Ltd, Micro Denshi Co Ltd filed Critical KANSAI ROLL CO Ltd
Priority to JP2010101869A priority Critical patent/JP2011230344A/en
Publication of JP2011230344A publication Critical patent/JP2011230344A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steam heating device that efficiently increases the temperature of an object to be treated internally and externally and significantly reduces heating time.SOLUTION: The steam heating device includes a steam generating source and a steam supply tube 33 supplying steam of high temperature and high pressure in a vulcanizer 30, and a microwave circuit 35 and a microwave power source 44 supplying microwave power in the vulcanizer 30. In the steam heating device, rubber products 46 such as an unvulcanized rubber, a semi-vulcanized rubber and the like housed in the vulcanizer 30 are exposed to heating mediums including the steam of high temperature and high pressure and the microwave power, and temperature can be increased in a short time for vulcanizing the rubber products 46 by the synergistic effect of the steam of high temperature and high pressure and the microwave power.

Description

本発明は、高温高圧の水蒸気とマイクロ波電力とを加熱処理容器に供給し、加熱処理容器内に内装させた処理物を高温高圧の水蒸気とマイクロ波電力に晒して加熱処理する蒸気加熱装置に関する。   The present invention relates to a steam heating apparatus that supplies high-temperature and high-pressure steam and microwave power to a heat treatment container, and heats the treatment object contained in the heat-treatment container by exposing it to high-temperature and high-pressure steam and microwave power. .

蒸気加熱装置としては、高温高圧の水蒸気を加熱処理容器である加硫缶内に供給し、加硫缶に内装させた未加硫ゴムを高温高圧の水蒸気で加熱し、加硫処理するものが広く知られている。
図5はこの種の蒸気加熱装置を示す簡略構成図である。
この蒸気加熱装置は、加熱処理容器としての加硫缶10を備え、この加硫缶10には、バルブ11と調節弁12を介して蒸気供給管13が連結され、また、バルブ14と調節弁15を介して冷却媒体供給管16が連結されている。
As the steam heating device, high-temperature and high-pressure steam is supplied into a vulcanization can which is a heat treatment container, and unvulcanized rubber incorporated in the vulcanization can is heated with high-temperature and high-pressure steam and vulcanized. Widely known.
FIG. 5 is a simplified configuration diagram showing this type of steam heating apparatus.
The steam heating apparatus includes a vulcanizing can 10 as a heat treatment container, and a steam supply pipe 13 is connected to the vulcanizing can 10 via a valve 11 and a control valve 12, and a valve 14 and a control valve. A cooling medium supply pipe 16 is connected via 15.

さらに、加硫缶10には、加硫缶内部の残存空気を排出する排気管17がバルブ18と調節弁19を介して連結され、また、加硫缶内部で蒸気が凝縮した復水を外部に排除するための2つのスチームトラップ20、21と、加硫缶内部と外部とを連通または遮断する調節弁22、23とを有する外部連通管24が連結されている。
その他、加硫缶内部の圧力を検出する圧力センサ25、温度を検出する温度センサ26などを備えた構成となっている。
Further, an exhaust pipe 17 for discharging residual air inside the vulcanizing can is connected to the vulcanizing can 10 through a valve 18 and a control valve 19, and condensate condensed with steam inside the vulcanizing can is externally connected. Are connected to an external communication pipe 24 having two steam traps 20 and 21 and control valves 22 and 23 for communicating or blocking the inside and outside of the vulcanizing can.
In addition, the pressure sensor 25 for detecting the pressure inside the vulcanizing can and the temperature sensor 26 for detecting the temperature are provided.

他方、上記したところの加硫缶10としては、図6に拡大断面図として示したように、金属材からなる筒状の缶本体10aと、この缶本体10aの筒軸方向両端に開閉可能に設けた蓋体10b、10bとより構成されたものが広く知られている。
この加硫缶10は、缶本体10aの筒軸方向の両端外周囲に沿ってフランジ部10c、10cを設け、さらに、このフランジ部10c、10cに形成した凹部内にパッキン27、27が嵌め込んである。
On the other hand, as shown in FIG. 6 as an enlarged cross-sectional view, the vulcanized can 10 described above can be opened and closed at the cylindrical can body 10a made of a metal material and at both ends in the cylinder axis direction of the can body 10a. A configuration including the provided lids 10b and 10b is widely known.
The vulcanized can 10 is provided with flange portions 10c and 10c along the outer periphery of both ends of the can main body 10a in the cylinder axis direction, and the packings 27 and 27 are fitted into recesses formed in the flange portions 10c and 10c. It is.

そして、蓋体10b、10bの合わせ面10d、10dを上記のフランジ部10c、10cに当接させるようにして蓋体10b、10bを取り付け、加硫缶10内をパッキン27、27によって密閉する構成となっている。
なお、図6に示した参照符号28は、上記したスチームトラップや調節弁22、23などを含む外部連通管部、参照符号29は加硫缶10に収納された未加硫ゴムを示す。
Then, the lids 10b and 10b are attached so that the mating surfaces 10d and 10d of the lids 10b and 10b are in contact with the flange portions 10c and 10c, and the inside of the vulcanizing can 10 is sealed with the packings 27 and 27. It has become.
Reference numeral 28 shown in FIG. 6 indicates an external communication pipe portion including the above-described steam traps and control valves 22 and 23, and reference numeral 29 indicates unvulcanized rubber stored in the vulcanizing can 10.

上記した蒸気加熱装置は、未加硫ゴム29を加硫缶10内に収納した後、排気管17によって加硫缶10内の空気を排気し、続いて、蒸気供給管13によって加硫に必要な温度と圧力の蒸気を加硫缶10内に供給し、未加硫ゴム29を加熱処理して加硫する。
そして、未加硫ゴム29の加硫後は、冷却媒体供給管16よって加硫缶10内に冷却媒体を供給して加硫されたゴムを強制冷却し、その後、外部連通管24によって加硫缶10内の流体を外部に排出する。
In the steam heating device described above, the unvulcanized rubber 29 is accommodated in the vulcanizing can 10, and then the air in the vulcanizing can 10 is exhausted by the exhaust pipe 17, and subsequently, necessary for vulcanization by the steam supply pipe 13. Vapor having a proper temperature and pressure is supplied into the vulcanizing can 10 and the unvulcanized rubber 29 is heated and vulcanized.
Then, after vulcanization of the unvulcanized rubber 29, the cooling medium is supplied into the vulcanizing can 10 by the cooling medium supply pipe 16 to forcibly cool the vulcanized rubber, and then vulcanized by the external communication pipe 24. The fluid in the can 10 is discharged to the outside.

特開2002−336676号公報JP 2002-336676 A 特開平11−226969号公報Japanese Patent Laid-Open No. 11-226969

上記した蒸気加熱装置に備えられる加硫缶10としては、最大圧力2000kPa(約20気圧)まで使用可能な高耐圧加硫缶が知られており、この高耐圧加硫缶10に上記のように未加硫ゴムを入れ、180℃(1000kPa)の水蒸気を注入して加硫している。   As the vulcanizing can 10 provided in the steam heating apparatus described above, a high pressure vulcanizing can that can be used up to a maximum pressure of 2000 kPa (about 20 atm) is known. Unvulcanized rubber is put and vulcanized by injecting steam at 180 ° C. (1000 kPa).

ちなみに、一般にゴムの加硫反応時間は、10℃則にしたがうとされているので、上記したような高耐圧加硫缶10を用いれば、120℃(200kPa)の水蒸気でゴム加硫した加硫反応時間に対し、180℃(1000kPa)の水蒸気でゴム加硫すると、加硫反応時間を約200分の3に短縮することができると言うメリットがある。
なお、圧力と水の沸点の関係は、図7に示した理科年表データのようになり、200kPaでの水の沸点が約120℃、1000kPaにおいては水の沸点が180℃となる。
Incidentally, since the rubber vulcanization reaction time is generally according to the 10 ° C. rule, if the high pressure vulcanizing can 10 as described above is used, the rubber vulcanized with 120 ° C. (200 kPa) steam is vulcanized. When the rubber is vulcanized with water vapor at 180 ° C. (1000 kPa) with respect to the reaction time, there is an advantage that the vulcanization reaction time can be shortened to about 3/200.
The relationship between the pressure and the boiling point of water is as shown in the scientific chronological data shown in FIG. 7. The boiling point of water at 200 kPa is about 120 ° C., and the boiling point of water is 180 ° C. at 1000 kPa.

しかしながら、上記のようにゴム加硫する蒸気加熱装置の場合、高温の水蒸気を未加硫ゴムの表面に接触させ、未加硫ゴムの内部を熱伝導により昇温させる方式であるため、内部まで昇温させるには長い時間が必要であった。
元々、ゴム製品は熱伝導が悪いので、例えば、水蒸気の温度を180℃に上昇させても、未加硫ゴムが180℃まで昇温する時間が長いため、加硫反応時間を短縮することができても、全体の加硫工程に必要な時間を大きく短縮することができなかった。
However, in the case of the steam heating apparatus for rubber vulcanization as described above, the high temperature steam is brought into contact with the surface of the unvulcanized rubber, and the temperature inside the unvulcanized rubber is raised by heat conduction. It took a long time to raise the temperature.
Originally, rubber products have poor heat conduction. For example, even if the temperature of water vapor is increased to 180 ° C., the time required for the unvulcanized rubber to rise to 180 ° C. is long, so the vulcanization reaction time can be shortened. Even if it was possible, the time required for the entire vulcanization process could not be greatly shortened.

そこで本発明では、上記の事情にかんがみ、処理物の内外から効率良く昇温させ、加熱処理の処理時間を大幅に短縮させることができる蒸気加熱装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a steam heating apparatus that can efficiently raise the temperature from the inside and outside of the processed material and can significantly reduce the processing time of the heat treatment.

上記した目的を達成するため、本発明では、加熱処理容器内に高温高圧の水蒸気を供給し、加熱処理容器に内装させた処理物を水蒸気に晒して加熱処理する蒸気加熱装置において、前記加熱処理容器内にマイクロ波電力を供給するマイクロ波回路とマイクロ波電力源とを備え、前記処理物を高温高圧の水蒸気とマイクロ波電力とからなる加熱媒体に晒して加熱処理することを特徴とする蒸気加熱装置を提案する。   In order to achieve the above-described object, in the present invention, in the steam heating apparatus for supplying a high-temperature and high-pressure steam into the heat treatment container, and subjecting the treatment object incorporated in the heat treatment container to the heat treatment, the heat treatment is performed. A steam comprising a microwave circuit for supplying microwave power and a microwave power source in a container, and subjecting the processed material to a heating medium comprising high-temperature and high-pressure steam and microwave power for heat treatment A heating device is proposed.

また、上記した本発明の蒸気加熱装置は、加熱処理容器に未加硫ゴムや半加硫ゴムなどのゴム製品を内装し、このゴム製品を高温高圧の水蒸気とマイクロ波電力とからなる加熱媒体に晒して加硫処理する蒸気加熱装置として利用することができる。   In the steam heating device of the present invention described above, a rubber product such as unvulcanized rubber or semi-vulcanized rubber is provided in a heat treatment container, and the rubber product is a heating medium composed of high-temperature and high-pressure steam and microwave power. It can be used as a steam heating device that is vulcanized by exposure to water.

上記した蒸気加熱装置は、加熱処理容器に内装した処理物が、高温高圧の水蒸気に晒されるので、表面から加熱されて内部に向かって熱伝導する。
また、マイクロ波電力に晒されることで、処理物の内部にマイクロ波電力が侵入し、処理物を構成する各分子がマイクロ波電力を吸収して内部から加熱し、外部に向かって熱伝導する。
In the above-described steam heating apparatus, the processing object housed in the heat processing container is exposed to high-temperature and high-pressure steam, and thus is heated from the surface and conducts heat toward the inside.
In addition, when exposed to microwave power, the microwave power penetrates into the processed material, and each molecule constituting the processed material absorbs the microwave power and heats it from the inside to conduct heat toward the outside. .

この結果、処理物が内外から加熱され、さらに、表面から内部に向かって熱伝導すると共に、内部から外部に向かって熱伝導することから、処理物全体を均一温度に、かつ、短時間に上昇させることができる。   As a result, the processed material is heated from the inside and outside, and further conducts heat from the surface to the inside, and also conducts heat from the inside to the outside. Can be made.

したがって、加熱処理容器に未加硫ゴムや半加硫ゴムなどのゴム製品を収納させて加熱すれば、ゴム製品の昇温効率が極めて高く、加硫処理に必要な昇温時間を大幅に短縮することができる。
したがって、ゴムの加硫処理に有効な蒸気加熱装置として利用することができる。
Therefore, if a rubber product such as unvulcanized rubber or semi-vulcanized rubber is stored in a heat treatment container and heated, the temperature rise efficiency of the rubber product is extremely high, and the temperature rise time required for the vulcanization treatment is greatly reduced. can do.
Therefore, it can be used as a steam heating device effective for rubber vulcanization.

他方、水はマイクロ波電力を良く吸収する物質であることから、水蒸気もマイクロ波電力を良く吸収するはずであると考えて、上記したような蒸気加熱装置にはマイクロ波加熱手段が採用されていなかった。   On the other hand, since water is a substance that absorbs microwave power well, it is considered that water vapor should also absorb microwave power well, and the above-described steam heating apparatus employs microwave heating means. There wasn't.

しかし、水の気体の密度は液体の密度の1万分の7しかないので、水蒸気のマイクロ波電力吸収性能は水の1千分の1以下と推定され、水蒸気によるマイクロ波電力の吸収量は少ない。   However, since the density of water gas is only 7 / 10,000 of the density of liquid, the microwave power absorption performance of water vapor is estimated to be less than 1/1000 of water, and the amount of absorption of microwave power by water vapor is small. .

この結果、水蒸気に比べマイクロ波電力の吸収量が大きいゴム製品はマイクロ波電力を良く吸収して昇温されるから、この種の蒸気加熱装置に有効である。   As a result, a rubber product that absorbs a larger amount of microwave power than water vapor absorbs the microwave power well and rises in temperature, which is effective for this type of steam heating apparatus.

ゴム製品を加硫処理する一実施形態を示す蒸気加熱装置の簡略構成図である。It is a simplified lineblock diagram of a steam heating device showing one embodiment which vulcanizes a rubber product. 図1の蒸気加熱装置に備えた加硫缶の断面図である。It is sectional drawing of the vulcanization can with which the steam heating apparatus of FIG. 1 was equipped. 図2に示した加硫缶の蓋体を開閉する状態を示した部分図である。FIG. 3 is a partial view showing a state in which a lid body of the vulcanizing can shown in FIG. 2 is opened and closed. 図1の蒸気加熱装置に備えた加硫缶に設けたマイクロ波窓の断面図である。It is sectional drawing of the microwave window provided in the vulcanization can with which the steam heating apparatus of FIG. 1 was equipped. 従来例として示した蒸気加熱装置の簡略構成図である。It is a simplified block diagram of the steam heating apparatus shown as a prior art example. 図5の蒸気加熱装置に備えることができる加熱処理容器としての加硫缶を示す断面図であるIt is sectional drawing which shows the vulcanization can as a heat processing container which can be equipped with the steam heating apparatus of FIG. 水の沸点を示した理科年表データを表す図である。It is a figure showing the scientific chronological data which showed the boiling point of water.

次に、ゴム製品の加硫に適する蒸気加熱装置の一実施形態について図面に沿って説明する。
図1は、蒸気加熱装置を示した簡略構成図で、図示するように、加硫缶30には、従来例同様にバルブ31と調節弁32を介して蒸気供給管33が連結してある。
Next, an embodiment of a steam heating apparatus suitable for rubber product vulcanization will be described with reference to the drawings.
FIG. 1 is a simplified configuration diagram showing a steam heating apparatus. As shown in the figure, a steam supply pipe 33 is connected to a vulcanizing can 30 via a valve 31 and a control valve 32 as in the conventional example.

なお、この蒸気供給管33は、ボイラ(水蒸気発生器)などで生成した高温高圧の水蒸気を加硫缶30内に供給するもので、この蒸気供給管33には、水分を排除するためのドレンセパレータを備えることができる。
また、図示するように、加硫缶30の下部には、加硫缶内に発生したドレン(水などの流体)を外部に排出するスチームトラップ34が設けてある。
The steam supply pipe 33 supplies high-temperature and high-pressure steam generated by a boiler (steam generator) or the like into the vulcanizing can 30, and the steam supply pipe 33 has a drain for removing moisture. A separator can be provided.
Further, as shown in the figure, a steam trap 34 for discharging drain (fluid such as water) generated in the vulcanizing can 30 to the outside is provided at the lower portion of the vulcanizing can 30.

一方、本実施形態は、上記の加硫缶30にマイクロ波電力を供給するマイクロ波回路35を連結させたことが特徴となっている。
このマイクロ波回路35は、マイクロ波導入管36、接続導波管37、EHチュナー38、接続導波管39、パワーモニタ40、アイソレータ41、接続導波管42、高周波結合器43などから構成してあり、マイクロ波電力源44から出力されるマイクロ波電力を加硫缶30内に供給するものである。
On the other hand, this embodiment is characterized in that a microwave circuit 35 for supplying microwave power to the vulcanizing can 30 is connected.
The microwave circuit 35 includes a microwave introduction tube 36, a connection waveguide 37, an EH tuner 38, a connection waveguide 39, a power monitor 40, an isolator 41, a connection waveguide 42, a high frequency coupler 43, and the like. The microwave power output from the microwave power source 44 is supplied into the vulcanizing can 30.

なお、EHチュナー38は、加熱処理物を負荷とするインピーダンスと整合させる整合器で、これはスタブチューナーに置き換えることができる。
パワーモニタ40は、マイクロ波電力源44から加硫缶30に向かうマイクロ波電力の進行波と、この反対に、加硫缶30からマイクロ波電力源44に向かうマイクロ波電力の反射波とを計測するモニタである。
Note that the EH tuner 38 is a matching device that matches the impedance of the heat-treated product as a load, and can be replaced with a stub tuner.
The power monitor 40 measures the traveling wave of the microwave power from the microwave power source 44 toward the vulcanizing can 30 and the reflected wave of the microwave power from the vulcanizing can 30 toward the microwave power source 44 on the contrary. It is a monitor.

アイソレータ41は、マイクロ波電力源44に向かうマイクロ波電力の反射波を吸収し、反射波によるマイクロ波電力源44(マグネトロン)の故障を防ぐものである。
高周波結合器43は、マイクロ波電力源44に備えるマグネトロンのアンテナを連結し、マイクロ波電力源44が出力するマイクロ波電力をマイクロ波回路35に導くものである。
The isolator 41 absorbs the reflected wave of the microwave power directed to the microwave power source 44 and prevents a failure of the microwave power source 44 (magnetron) due to the reflected wave.
The high frequency coupler 43 connects a magnetron antenna provided in the microwave power source 44 and guides the microwave power output from the microwave power source 44 to the microwave circuit 35.

マイクロ波電力源44は、マグネトロンとその駆動回路などを含み、マグネトロンの発振動作にしたがってマイクロ波電力(例えば、周波数が2.45GHz帯の電磁波)を出力する。   The microwave power source 44 includes a magnetron and its drive circuit, and outputs microwave power (for example, an electromagnetic wave having a frequency of 2.45 GHz band) according to the oscillation operation of the magnetron.

図2は、上記した加硫缶30の拡大断面図で、この加硫缶30は従来例の加硫缶10と同様に構成してあり、金属材からなる筒状の缶本体30aと、この缶本体30aの筒軸方向の両端に取り付けた金属材からなる蓋体30b、30bとから構成してある。
そして、缶本体30aの両端外周囲には、フランジ部30c、30cを形成すると共に、このフランジ部30c、30cの凹部に嵌合させたパッキン45に圧接させるように蓋体30b、30bを取り付け、加硫缶30内を密閉してある。
FIG. 2 is an enlarged cross-sectional view of the vulcanization can 30 described above. The vulcanization can 30 is configured in the same manner as the vulcanization can 10 of the conventional example, and a cylindrical can body 30a made of a metal material, It is comprised from the cover bodies 30b and 30b which consist of metal materials attached to the both ends of the cylinder axis direction of the can main body 30a.
Then, the outer periphery of both ends of the can body 30a is formed with flange portions 30c, 30c, and lid bodies 30b, 30b are attached so as to be in pressure contact with the packing 45 fitted in the recesses of the flange portions 30c, 30c, The inside of the vulcanizing can 30 is sealed.

なお、蓋体30b、30bは、モータ駆動やシリンダ駆動或いは手動操作で開閉し、加硫缶30内に未加硫ゴムや半加硫ゴムなどのゴム製品(例えば、ゴムロール、ゴムホース)46を治具47に載せて収納するように構成してあるが、これら蓋体30b、30bについては、いずれか一方の蓋体を備える構成とすることができる。   The lids 30b and 30b are opened and closed by motor drive, cylinder drive or manual operation, and a rubber product (for example, rubber roll, rubber hose) 46 such as unvulcanized rubber or semi-vulcanized rubber is cured in the vulcanized can 30. Although it has comprised so that it may mount on the tool 47 and store, about these lid bodies 30b and 30b, it can be set as the structure provided with either one lid body.

また、図示するように、缶本体30aのフランジ部30c、30cと蓋体30b、30bの周囲部とを密接させるように嵌入させるクランプリング48を設け、加硫缶30内の圧力が大きくなっても蓋体30b、30bが缶本体30aに密接して保持されるようになっている。   Further, as shown in the figure, a clamp ring 48 is provided for fitting the flange portions 30c, 30c of the can body 30a and the peripheral portions of the lid bodies 30b, 30b so that the pressure in the vulcanizing can 30 increases. Also, the lids 30b and 30b are held in close contact with the can body 30a.

上記したクランプリング48は、図3より分かる通り、蓋体30bに固定した半円形弧状の上側クランプ部48aと、缶本体30aに固定した半円形弧状の下側クランプ部48bとから形成してある。
そして、これら上側クランプ部48aと下側クランプ部48bとはコの字形断面としてあり、上側クランプ部48aには、缶本体30aに設けたフランジ部30cの上半分を嵌入させる溝部48cを設け、下側クランプ部48bには蓋体30bの下半周囲部を嵌入させる溝部48dが設けてある。
As shown in FIG. 3, the clamp ring 48 described above is formed of a semicircular arc-shaped upper clamp portion 48a fixed to the lid 30b and a semicircular arc-shaped lower clamp portion 48b fixed to the can body 30a. .
The upper clamp part 48a and the lower clamp part 48b have a U-shaped cross section, and the upper clamp part 48a is provided with a groove part 48c into which the upper half of the flange part 30c provided in the can body 30a is fitted. The side clamp portion 48b is provided with a groove portion 48d into which the lower half peripheral portion of the lid body 30b is fitted.

上記のようにクランプリング48を設けた加硫缶30は、図3の如く、蓋体30bを上方に引き抜き開蓋し、また、蓋体30bを下降させ、缶本体30aのフランジ部30cの上半部を上側クランプ部48aの溝部48cに、蓋体30bの下半周囲部を下側クランプ部48bの溝部48dに各々嵌入させるようにして蓋体30bを缶本体30aに取り付けて閉蓋する。
なお、図3は、左側の蓋体30b部分について示したが右側の蓋体30b部分は同じ構成としてある。
As shown in FIG. 3, the vulcanizing can 30 provided with the clamp ring 48 as described above is pulled out from the lid 30b and opened, and the lid 30b is lowered so that the top of the flange portion 30c of the can main body 30a is lowered. The lid 30b is attached to the can body 30a and the lid is closed so that the half is fitted into the groove 48c of the upper clamp 48a and the lower half of the periphery of the lid 30b is fitted into the groove 48d of the lower clamp 48b.
Although FIG. 3 shows the left lid 30b, the right lid 30b has the same configuration.

また、本実施形態では、蒸気供給管33、マイクロ波回路35及びマイクロ波電力源44、スチームトラップ34を備えた構成としたが、従来例と同様に、冷却媒体供給管や排気管、圧力センサーや温度センサーなどを備えることができるし、また、マイクロ波回路35は必づしも缶本体30aに連結しないで、蓋体30bに連結することもできる。   In this embodiment, the steam supply pipe 33, the microwave circuit 35, the microwave power source 44, and the steam trap 34 are provided. However, as in the conventional example, the cooling medium supply pipe, the exhaust pipe, and the pressure sensor are provided. In addition, the microwave circuit 35 can be connected to the lid body 30b without necessarily being connected to the can body 30a.

図4は上記したマイクロ波導入管36を示す拡大断面図である。
図示する如く、第1窓枠51、第2窓枠52、方形導波管53、絶縁体54、Oリング55から構成してある。
第1窓枠51と第2窓枠52は共に金属材で形成し、また、それらの外径は同径の円形としてあるが、第1窓枠51はリング状枠、第2窓枠52は有底円形の容状体に形成してある。
FIG. 4 is an enlarged cross-sectional view showing the microwave introduction tube 36 described above.
As shown in the figure, the first window frame 51, the second window frame 52, a rectangular waveguide 53, an insulator 54, and an O-ring 55 are included.
Both the first window frame 51 and the second window frame 52 are formed of a metal material, and their outer diameters are circular with the same diameter. The first window frame 51 is a ring-shaped frame, and the second window frame 52 is It is formed into a bottomed circular container.

そして、第1窓枠51は、缶本体30aに嵌入し溶接等で気密に、且つ、高圧に耐えるように固定し、さらに、第2窓枠52は第1窓枠にボルト等でネジ止めして取り外し可能に固定してある。
また、上記した方形導波管53は、第2窓枠52の底外面(図4において上面側)にネジ止めなどにより固定してある。
The first window frame 51 is fitted into the can body 30a and is fixed by welding or the like so as to withstand high pressure, and the second window frame 52 is screwed to the first window frame with bolts or the like. And is removably fixed.
The rectangular waveguide 53 is fixed to the bottom outer surface (the upper surface side in FIG. 4) of the second window frame 52 by screws or the like.

一方、図示するように、第1窓枠51には、加硫缶内側となる内孔51aと、加硫缶外側となる内孔51bとが形成してあり、また、これら内孔51a、51bは、内孔51a(直径r1)に対し内孔51b(直径r2)を大きく形成し、それら内孔51a、51bの間の段形部51cにOリング55を嵌合するリング溝が形成してある。
そして、第2窓枠52には、第1窓枠51の内孔51a、51bの直径r1、r2に対しr1<r3<r2の関係とした直径r3の内孔52aが形成してある。
On the other hand, as shown in the figure, the first window frame 51 is formed with an inner hole 51a on the inside of the vulcanizing can and an inner hole 51b on the outside of the vulcanizing can, and these inner holes 51a, 51b. The inner hole 51a (diameter r1) is formed larger than the inner hole 51b (diameter r2), and a ring groove for fitting the O-ring 55 is formed in the stepped portion 51c between the inner holes 51a and 51b. is there.
The second window frame 52 is formed with an inner hole 52a having a diameter r3 that satisfies the relationship r1 <r3 <r2 with respect to the diameters r1 and r2 of the inner holes 51a and 51b of the first window frame 51.

上記した絶縁体54は、マイクロ波電力の吸収が少なく、高圧に耐える材料、例えば、強化ガラス(石英ガラス、硼珪酸ガラスなど)、セラミック(アルミナ、窒化珪素等)などで、第1窓枠51の内孔51bの直径r2とその内孔51bの奥行き幅に合わせた大きさの円盤状に形成してある。
そして、この絶縁体54は、第1窓枠51の内孔51bに嵌合した後、第2窓枠52を第1窓枠51にネジ止めすることで、第2窓枠52の開口縁52bで絶縁体54を圧接保持させてある。
The insulator 54 described above is made of a material that absorbs less microwave power and can withstand high pressure, such as tempered glass (quartz glass, borosilicate glass, etc.), ceramic (alumina, silicon nitride, etc.), and the like. The inner hole 51b is formed in a disc shape having a diameter r2 and a depth width of the inner hole 51b.
The insulator 54 is fitted into the inner hole 51b of the first window frame 51, and then the second window frame 52 is screwed to the first window frame 51, whereby the opening edge 52b of the second window frame 52 is secured. The insulator 54 is held in pressure contact.

なお、Oリング55は、絶縁体54を嵌合する前に予め段形部51cの凹溝に嵌合させて置き、第1窓枠51と絶縁体54とを気密に保つようにしてある。
このOリング55は、高圧の水蒸気による劣化とマイクロ波電力の加熱の影響を最小にするために、シリコン系の材料で形成してあるが、高圧の水蒸気による劣化とマイクロ波電力の加熱の影響を最小にすることができる材料であれば、他の材料であっても形成することができる。
The O-ring 55 is placed in the recessed groove of the stepped portion 51c in advance before the insulator 54 is fitted, so that the first window frame 51 and the insulator 54 are kept airtight.
The O-ring 55 is formed of a silicon-based material in order to minimize the effects of high-pressure steam deterioration and microwave power heating. However, the O-ring 55 is affected by high-pressure steam deterioration and microwave power heating. Any other material can be used as long as the material can minimize the thickness.

また、第2窓枠52の底部には方形孔52cが設けてあり、この方形孔52cを方形導波管53の内孔に連通させてある。
なお、方形孔52cを設けないで、第2窓枠52の内孔52aに方形導波管33の内孔を直接に連通させる構成とすることもできる。
A square hole 52 c is provided at the bottom of the second window frame 52, and the square hole 52 c communicates with the inner hole of the rectangular waveguide 53.
It is also possible to adopt a configuration in which the inner hole of the rectangular waveguide 33 communicates directly with the inner hole 52a of the second window frame 52 without providing the rectangular hole 52c.

上記の如く構成した本実施形態の蒸気加熱装置は、ゴム製品46を加硫缶30に収納させた後、蒸気供給管33から高温高圧の水蒸気を加硫缶30内に、また、マイクロ波回路35からマイクロ波電力を加硫缶30内に各々供給し、加硫缶30内を高温高圧の水蒸気とマイクロ波電力の加熱雰囲気とする。   In the steam heating apparatus of the present embodiment configured as described above, after the rubber product 46 is accommodated in the vulcanizing can 30, high-temperature and high-pressure steam is supplied from the steam supply pipe 33 into the vulcanizing can 30, and the microwave circuit. 35, microwave power is supplied into the vulcanizing can 30 respectively, and the inside of the vulcanizing can 30 is heated to a high-temperature and high-pressure steam and microwave power.

したがって、ゴム製品46が、表面に接触する高温の水蒸気によって加熱され、表面から内面に向かって熱伝導し、表面が高く、内部に行くほど低くなる温度分布となる。
また、マイクロ波電力はゴム製品46の内部にまで侵入し、ゴム製品46を構成する分子の極性基を激しく振動させて分子を昇温させるから、ゴム製品46の内部が加熱昇温し、内部から表面に向かって熱伝導する。
Therefore, the rubber product 46 is heated by the high-temperature water vapor in contact with the surface, conducts heat from the surface toward the inner surface, and has a temperature distribution in which the surface is high and decreases toward the inside.
The microwave power penetrates into the rubber product 46 and vibrates the polar groups of the molecules constituting the rubber product 46 to raise the temperature of the molecule. Conducts heat from the surface to the surface.

このことから、ゴム製品46が高温の水蒸気とマイクロ波電力の相乗効果で短時間に加硫温度まで昇温する。
この結果、昇温に要する時間が大幅に短縮できるので、加硫工程に要する時間を概略半減することができる。
For this reason, the rubber product 46 is heated to the vulcanization temperature in a short time due to the synergistic effect of the high temperature steam and the microwave power.
As a result, the time required for the temperature increase can be greatly shortened, so that the time required for the vulcanization process can be roughly halved.

一般に、水は誘電体損失角tanδと比誘電率εが高くマイクロ波電力の吸収性能が良いが、水蒸気の密度が水の1千分の1以下であるから、水蒸気は水のtanδの1千分の1以下のtanδとなると考えられるから、水蒸気はマイクロ波電力を吸収しないテフロン(登録商標)や石英ガラス並のマイクロ波吸収性能でしかないことが推定できる。
したがって、マイクロ波電力が水蒸気には吸収されないから、ゴム製品46が高温の水蒸気とマイクロ波電力の相乗効果によって効果的に加熱され、昇温時間が短縮される。
In general, water has a high dielectric loss angle tan δ and relative dielectric constant ε r and good microwave power absorption performance. However, since the density of water vapor is 1 / 1,000 or less of water, water vapor is 1 of water tan δ. Since it is considered that the tan δ is 1 / 1,000 or less, it can be estimated that water vapor has only a microwave absorption performance comparable to that of Teflon (registered trademark) or quartz glass that does not absorb microwave power.
Therefore, since the microwave power is not absorbed by the water vapor, the rubber product 46 is effectively heated by the synergistic effect of the high temperature water vapor and the microwave power, and the temperature rise time is shortened.

他方、本実施形態の蒸気加熱装置に備えたマイクロ波導入管36は、加硫缶30外側となる内孔51bに対し加硫缶30内側となる内孔51aの直径r1を小さく形成した第1窓枠51を設けているので、内孔51aと内孔51bとの間となる段形部51cに凹溝を設けてOリング55を嵌合し、また、絶縁体54は内孔51bに内装させ、上記の段形部51cに接合させることができる。   On the other hand, the microwave introduction pipe 36 provided in the steam heating apparatus of the present embodiment is a first in which the diameter r1 of the inner hole 51a inside the vulcanizing can 30 is made smaller than the inner hole 51b outside the vulcanizing can 30. Since the window frame 51 is provided, a concave groove is provided in the stepped portion 51c between the inner hole 51a and the inner hole 51b to fit the O-ring 55, and the insulator 54 is provided in the inner hole 51b. And can be joined to the stepped portion 51c.

したがって、マイクロ波窓を気密に保ち、かつ、絶縁体54にかかる全圧力を小さくすることができる。
さらに、高温の水蒸気が侵入するOリング55までの距離を最小にできるので、窓枠表面の錆が発生する領域が小さくなり、信頼性の高いマイクロ波導入管36を備えた蒸気加熱装置となる。
Therefore, the microwave window can be kept airtight and the total pressure applied to the insulator 54 can be reduced.
Furthermore, since the distance to the O-ring 55 into which high-temperature water vapor enters can be minimized, the area where rust is generated on the window frame surface is reduced, and the steam heating apparatus including the highly reliable microwave introduction pipe 36 is obtained. .

高温高圧の水蒸気とマイクロ波電力に晒して処理物を加熱処理する蒸気加熱装置、例えば、未加硫ゴムや加硫ゴムなどのゴム製品を昇温させて加硫する蒸気加熱装置として適用することができる。   Applying as a steam heating device that heats the processed material by exposing it to high-temperature and high-pressure steam and microwave power, for example, a steam heating device that heats and vulcanizes rubber products such as unvulcanized rubber and vulcanized rubber Can do.

30 加硫缶
33 蒸気供給管
35 マイクロ波回路
36 マイクロ波導入管
44 マイクロ波電力源
46 ゴム製品
51 第1窓枠
51a、51b 内孔
51c 段形部
52 第2窓枠
52a 内孔
53 方形導波管
54 絶縁体
55 Oリング







30 Vulcanization can 33 Steam supply pipe 35 Microwave circuit 36 Microwave introduction pipe 44 Microwave power source 46 Rubber product 51 First window frame 51a, 51b Inner hole 51c Stepped part 52 Second window frame 52a Inner hole 53 Rectangular guide Wave tube 54 Insulator 55 O-ring







Claims (2)

加熱処理容器内に高温高圧の水蒸気を供給し、加熱処理容器に内装させた処理物を水蒸気に晒して加熱処理する蒸気加熱装置において、
前記加熱処理容器内にマイクロ波電力を供給するマイクロ波回路とマイクロ波電力源とを備え、
前記処理物を高温高圧の水蒸気とマイクロ波電力とからなる加熱媒体に晒して加熱処理することを特徴とする蒸気加熱装置。
In a steam heating device that supplies high-temperature and high-pressure steam into a heat treatment container, and heat-treats the processed material built in the heat treatment container by exposing it to water vapor.
A microwave circuit for supplying microwave power into the heat treatment container and a microwave power source;
A steam heating apparatus, wherein the processed product is exposed to a heating medium composed of high-temperature and high-pressure steam and microwave power to perform heat treatment.
請求項1に記載した蒸気加熱装置において、
前記加熱処理容器には、未加硫ゴム或いは半加硫ゴムなどのゴム製品を内装し、このゴム製品を高温高圧の水蒸気とマイクロ波電力とからなる加熱媒体に晒して加硫処理することを特徴とする蒸気加熱装置。















The steam heating apparatus according to claim 1,
The heat treatment container is provided with a rubber product such as unvulcanized rubber or semi-vulcanized rubber, and the rubber product is exposed to a heating medium composed of high-temperature and high-pressure steam and microwave power to be vulcanized. A steam heating device.















JP2010101869A 2010-04-27 2010-04-27 Steam heating device Pending JP2011230344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010101869A JP2011230344A (en) 2010-04-27 2010-04-27 Steam heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010101869A JP2011230344A (en) 2010-04-27 2010-04-27 Steam heating device

Publications (1)

Publication Number Publication Date
JP2011230344A true JP2011230344A (en) 2011-11-17

Family

ID=45320177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010101869A Pending JP2011230344A (en) 2010-04-27 2010-04-27 Steam heating device

Country Status (1)

Country Link
JP (1) JP2011230344A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921674A (en) * 1972-06-22 1974-02-26
JPS5091791A (en) * 1973-12-20 1975-07-22
JPS592829A (en) * 1982-06-30 1984-01-09 Toyoda Gosei Co Ltd Continuous pressure vulcanizer
JPH0699439A (en) * 1992-09-22 1994-04-12 Micro Denshi Kk Continuous bridging method for extrusion molded body such as organic-peroxide compounded polymer
JP2003170441A (en) * 2001-12-05 2003-06-17 Micro Denshi Kk Continuous vulcanization device for unvulcanized rubber extrusion-molded product
JP2004050615A (en) * 2002-07-19 2004-02-19 Nishikawa Rubber Co Ltd Method and apparatus for vulcanizing rubber product
JP2004122650A (en) * 2002-10-04 2004-04-22 Kobe Steel Ltd Apparatus and method for vulcanizing tire
JP2009226760A (en) * 2008-03-24 2009-10-08 Hitachi Cable Ltd Microwave irradiation vulcanizing method and apparatus
JP2010139217A (en) * 2008-12-15 2010-06-24 Yamamoto Vinita Co Ltd Heating method and heating equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921674A (en) * 1972-06-22 1974-02-26
JPS5091791A (en) * 1973-12-20 1975-07-22
JPS592829A (en) * 1982-06-30 1984-01-09 Toyoda Gosei Co Ltd Continuous pressure vulcanizer
JPH0699439A (en) * 1992-09-22 1994-04-12 Micro Denshi Kk Continuous bridging method for extrusion molded body such as organic-peroxide compounded polymer
JP2003170441A (en) * 2001-12-05 2003-06-17 Micro Denshi Kk Continuous vulcanization device for unvulcanized rubber extrusion-molded product
JP2004050615A (en) * 2002-07-19 2004-02-19 Nishikawa Rubber Co Ltd Method and apparatus for vulcanizing rubber product
JP2004122650A (en) * 2002-10-04 2004-04-22 Kobe Steel Ltd Apparatus and method for vulcanizing tire
JP2009226760A (en) * 2008-03-24 2009-10-08 Hitachi Cable Ltd Microwave irradiation vulcanizing method and apparatus
JP2010139217A (en) * 2008-12-15 2010-06-24 Yamamoto Vinita Co Ltd Heating method and heating equipment

Similar Documents

Publication Publication Date Title
JPS5939178B2 (en) Activated gas generator
JP5026317B2 (en) Ultraviolet irradiation apparatus and method having a liquid filter
JP2014531352A (en) Molding of plastic particulate material
AU2017350567B2 (en) Flexible molding process and system for magnetic pole protective layer
US4968489A (en) UV lamp enclosure sleeve
KR20020003826A (en) Processing apparatuw with sealing mechanism
EP0024966A1 (en) Process and apparatus for comminuting rubber
CN107917614A (en) A kind of microwave pressure sintering furnace
JP2011230355A (en) Steam heating device
JP2011230344A (en) Steam heating device
KR101208254B1 (en) Gas analysis apparatus using microwave
CN104105239A (en) Microwave heating device and microwave heating method
KR20000062960A (en) Microwave plasma generating apparatus with improved heat protection of sealing o-rings
JPH09312285A (en) Double wall microwave plasma applicator
JP2015063055A (en) High-pressure heating device
JP2007120934A (en) Microwave dryer
KR20140070513A (en) Ultrasonic scrubber for semiconductor fabrication facilities
WO1997028831A1 (en) Method for thermally disinfecting waste, particularly biologically hazardous waste, and device therefor
KR100380714B1 (en) Continuous-drying and vulcanization apparatus using microwave
KR101361648B1 (en) Waterload for absorbing high power microwave
JP2004122650A (en) Apparatus and method for vulcanizing tire
JP3789863B2 (en) Plasma processing equipment
JP4237204B2 (en) Microwave plasma processing apparatus and microwave plasma processing method
JP6002635B2 (en) Raw tire heating method and apparatus
JP3930625B2 (en) Plasma processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218