JP2011230162A - Method of joining aluminum materials - Google Patents

Method of joining aluminum materials Download PDF

Info

Publication number
JP2011230162A
JP2011230162A JP2010103067A JP2010103067A JP2011230162A JP 2011230162 A JP2011230162 A JP 2011230162A JP 2010103067 A JP2010103067 A JP 2010103067A JP 2010103067 A JP2010103067 A JP 2010103067A JP 2011230162 A JP2011230162 A JP 2011230162A
Authority
JP
Japan
Prior art keywords
aluminum
joining
brazing
flux
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010103067A
Other languages
Japanese (ja)
Inventor
Shigenobu Nanba
茂信 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010103067A priority Critical patent/JP2011230162A/en
Publication of JP2011230162A publication Critical patent/JP2011230162A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of joining aluminum materials for joining aluminum materials to each other, or joining an aluminum material with an aluminum-ceramic composite body at the temperature of >350°C and <600°C.SOLUTION: A Zn-Al-based alloy brazing filler metal with the Al concentration being 0.5-13 mass%, or a Zn-Cu-based alloy brazing filler metal with the Cu concentration being 0.5-8 mass% is used for a brazing filler metal. CsF-AlF-based eutectic flux is used for a flux. The brazing filler metal with the flux being added thereto is melted and cooled under the atmospheric pressure to form a brazing-joined layer 3 of the thickness of 0.02-0.2 mm therebetween. Thus, the aluminum materials 1 or an aluminum material 1 and an aluminum-ceramic composite body 2 are joined to each other.

Description

本発明は、アルミニウム材同士、或いは、アルミニウム材とアルミニウム・セラミックス複合体を、フラックスを加えたろう材を用いて接合するアルミニウム材の接合方法に関するもの、特に、整流ダイオード、パワートランジスタ、サイリスタ等のパワーデバイスに用いられるアルミニウム材同士、或いは、アルミニウム材とアルミニウム・セラミックス複合体を接合するアルミニウム材の接合方法に関するものである。   The present invention relates to an aluminum material joining method for joining aluminum materials or an aluminum material and an aluminum / ceramic composite using a brazing material to which a flux is added, and in particular, power of a rectifier diode, a power transistor, a thyristor, etc. The present invention relates to a method for joining aluminum materials used in devices, or joining aluminum materials and aluminum / ceramic composites.

パワーデバイスに用いられるアルミニウム材同士、或いは、アルミニウム材とDBA(Direct Bzazing Aluminum)等のアルミニウム・セラミックス複合体の接合に用いられるろう材は、通常のアルミニウム材同士等の接合に用いられるAl−Si系ろう材が使用されることが一般的であり、ろう材の融点に応じて580〜620℃程度に加熱することで、ろう付けが行われていた。   Aluminum materials used for power devices, or brazing materials used for joining aluminum materials and aluminum ceramic composites such as DBA (Direct Bazing Aluminum) are Al-Si used for joining ordinary aluminum materials. A brazing filler metal is generally used, and brazing has been performed by heating to about 580 to 620 ° C. according to the melting point of the brazing filler metal.

この方法による接合では、通常のアルミニウム材同士等の接合の場合と同様に、被ろう付け材のろう付け部の表面の酸化皮膜を破壊して、その表面を活性化させて接合面に対する溶融ろうの濡れ性を高める必要があるため、580〜620℃程度のろう付け温度で溶融するフッ化物系や塩化物系のフラックスが用いられ、ろう付けが行われていた。   In the joining by this method, as in the case of joining ordinary aluminum materials, etc., the oxide film on the surface of the brazing portion of the brazing material is destroyed and the surface is activated to melt the joining surface to the brazing. Since it is necessary to improve the wettability, a fluoride or chloride flux that melts at a brazing temperature of about 580 to 620 ° C. is used for brazing.

しかしながら、パワーデバイスに用いられるアルミニウム材同士等の接合に、この方法を用いた場合、パワーデバイスを冷却する部材にはアルミニウム合金鋳物が用いられていることが一般的で、そのアルミニウム合金鋳物の融点は、ろう付けによる接合温度に極めて近い温度であるため、ろう付けでの接合時にアルミニウム合金鋳物が溶融してしまう可能性があった。従って、鋳物として最適の成分系のアルミニウム合金鋳物が使えないなどの問題があった。   However, when this method is used for joining aluminum materials used in power devices, an aluminum alloy casting is generally used as a member for cooling the power device, and the melting point of the aluminum alloy casting. Since it is a temperature very close to the joining temperature by brazing, there was a possibility that the aluminum alloy casting would melt at the time of joining by brazing. Therefore, there has been a problem that an aluminum alloy casting of an optimum component system cannot be used as a casting.

また、ろう付けで接合される部材の一方が、二枚の純アルミニウム板の間にAlN板を挟んで形成されたDBA等のアルミニウム・セラミックス複合体である場合には、580〜620℃程度の高温でろう付けを行うと、熱膨張率の差によって、反りなどの変形が発生することもあった。   Further, when one of the members to be joined by brazing is an aluminum / ceramic composite such as DBA formed by sandwiching an AlN plate between two pure aluminum plates, the temperature is about 580 to 620 ° C. When brazing, deformation such as warping may occur due to a difference in thermal expansion coefficient.

一方、単純に考えると、ろう付けの接合温度を低温にすることが考えられるが、パワーデバイスの場合、回路の性質上、後工程で各種回路をハンダ付けする必要があり、そのろう付け温度が低すぎては、200〜350℃程度のハンダ付けの際に、ろう付け部が同時に溶融してしまう可能性があった。   On the other hand, it is conceivable to lower the brazing junction temperature, but in the case of power devices, it is necessary to solder various circuits in the subsequent process due to the nature of the circuit, and the brazing temperature is If the temperature is too low, there is a possibility that the brazed portion melts simultaneously when soldering at about 200 to 350 ° C.

尚、このように低温でろう付けを行うことができるろう材としては、特許文献1記載のZn−Al−Ti系のろう材や、特許文献2記載のZn−希土類元素やZn−Al−希土類元素といったZn系ろう材等が既に提案されている。また、本出願人も、特許文献3として、ろう材をフラックスと組み合わせることで、低温でろう付けを行うことができるアルミニウム材のろう付け方法を提案している。   Examples of the brazing material that can be brazed at such a low temperature include a Zn-Al-Ti-based brazing material described in Patent Document 1, a Zn-rare earth element described in Patent Document 2, and a Zn-Al-rare earth. Zn-based brazing materials such as elements have already been proposed. Further, the present applicant has also proposed, as Patent Document 3, a brazing method for an aluminum material that can be brazed at a low temperature by combining a brazing material with a flux.

しかしながら、これら特許文献1〜3記載の提案は、その何れもが、パワーデバイス等に用いられるアルミニウム材同士、或いは、アルミニウム材とアルミニウム・セラミックス複合体を接合する技術を対象としたものではなく、また、その示唆もされていない。   However, none of these proposals described in Patent Documents 1 to 3 are intended for technologies for joining aluminum materials used in power devices or the like, or aluminum materials and aluminum / ceramic composites, Nor has it been suggested.

特開平10−5994号公報Japanese Patent Laid-Open No. 10-5994 特開平11−5190号公報Japanese Patent Laid-Open No. 11-5190 特開2001−150185号公報JP 2001-150185 A

本発明は、上記従来の問題を解決せんとしてなされたもので、アルミニウム材同士、或いは、アルミニウム材とアルミニウム・セラミックス複合体を、一般的なアルミニウム系の鋳造合金の融点として考えられる600℃程度よりは低く、且つ、ハンダ付けの最も高い温度である350℃よりも高い温度で、接合することができるアルミニウム材の接合方法を提供することを課題とするものである。   The present invention has been made as a solution to the above-mentioned conventional problems. The aluminum materials or the aluminum material and the aluminum / ceramic composite are considered to have a melting point of about 600 ° C. considered as a general aluminum-based casting alloy. It is an object of the present invention to provide a method of joining aluminum materials that can be joined at a temperature lower than 350 ° C., which is the lowest temperature of soldering.

また、パワーデバイスに用いられるアルミニウム材同士等を接合した場合には、パワーデバイスの冷却部材がアルミニウム合金鋳物で形成されていても、接合時にその冷却部材が溶融する危険性がない低い温度で接合することが可能で、且つ、ろう付け接合層の厚みが厚すぎて冷却部材の冷却能に影響を及ぼすこともないアルミニウム材の接合方法を提供することを課題とするものである。   In addition, when aluminum materials used for power devices are joined together, even if the cooling member of the power device is formed of an aluminum alloy casting, joining at a low temperature without the risk of melting the cooling member during joining. It is an object of the present invention to provide an aluminum material joining method that can be performed and that does not affect the cooling performance of the cooling member because the brazing joint layer is too thick.

本発明に係るアルミニウム材の接合方法は、アルミニウム材同士、或いは、アルミニウム材とアルミニウム・セラミックス複合体を、フラックスを加えたろう材を用いて接合するアルミニウム材の接合方法であって、前記ろう材として、Al濃度が0.5〜13質量%のZn−Al系合金ろう材、或いは、Cu濃度が0.5〜8質量%のZn−Cu系合金ろう材を用い、前記フラックスとして、CsF−AlF系共晶系フラックスを用い、前記フラックスを加えたろう材を大気圧下で溶融、冷却して、0.02〜0.2mmの厚みのろう付け接合層を間に形成することで、アルミニウム材同士、或いは、アルミニウム材とアルミニウム・セラミックス複合体を接合することを特徴とするアルミニウム材の接合方法である。尚、本明細書では本発明の名称で示すように、アルミニウム材とアルミニウム・セラミックス複合体を含めてアルミニウム材と称することがある。 An aluminum material joining method according to the present invention is an aluminum material joining method in which aluminum materials or an aluminum material and an aluminum / ceramic composite are joined using a brazing material to which a flux has been added. A Zn—Al based alloy brazing material having an Al concentration of 0.5 to 13% by mass or a Zn—Cu based alloy brazing material having a Cu concentration of 0.5 to 8% by mass is used as the flux. By using a 3- system eutectic flux, the brazing material to which the flux is added is melted and cooled under atmospheric pressure to form a brazing joint layer having a thickness of 0.02 to 0.2 mm between the aluminum material. A method for joining aluminum materials characterized by joining aluminum materials and an aluminum / ceramic composite. In this specification, as indicated by the name of the present invention, an aluminum material and an aluminum / ceramic composite may be referred to as an aluminum material.

本発明に係るアルミニウム材の接合方法によると、アルミニウム材同士、或いは、アルミニウム材とアルミニウム・セラミックス複合体を、一般的なアルミニウム系の鋳造合金の融点として考えられる600℃程度よりは低く、且つ、ハンダ付けの最も高い温度である350℃よりも高い温度で、ろう付けによる接合を行うことができる。   According to the aluminum material joining method according to the present invention, the aluminum materials or the aluminum material and the aluminum / ceramic composite are lower than about 600 ° C. considered as a melting point of a general aluminum-based cast alloy, and Joining by brazing can be performed at a temperature higher than 350 ° C., which is the highest temperature of soldering.

従って、パワーデバイスに用いられるアルミニウム材同士等を接合した場合に、パワーデバイスの冷却部材がアルミニウム合金鋳物で形成されていても、接合時にその冷却部材が溶融する危険性がない低い温度で接合することができ、冷却部材に安価なAl−Si合金等を採用することができる。   Therefore, when aluminum materials used for power devices are joined together, even if the cooling member of the power device is formed of an aluminum alloy casting, the cooling members are joined at a low temperature without risk of melting at the time of joining. Therefore, an inexpensive Al—Si alloy or the like can be used for the cooling member.

一方、接合後の、200〜350℃程度で行うハンダ付けの際に、ろう付け部が同時に溶融してしまう可能性がなく、また、パワーデバイスの回路にハンダの中でも融点の高いPbフリーハンダを採用することもできる。   On the other hand, there is no possibility that the brazed portion will melt at the same time when soldering is performed at about 200 to 350 ° C. after joining, and Pb-free solder having a high melting point among solders is used in the power device circuit. It can also be adopted.

また、ろう付け層の厚みが厚すぎて、冷却部材の冷却能に影響を及ぼすということもない。更には、ろう材とフラックスが共に、従来の接合より低温でも溶融する材質で形成されているため、接合するアルミニウム材、特にアルミニウム・セラミックス複合体に大きな反りが発生することがない。   In addition, the brazing layer is not too thick and does not affect the cooling performance of the cooling member. Furthermore, since both the brazing filler metal and the flux are formed of a material that melts even at a lower temperature than in the conventional joining, the aluminum material to be joined, particularly the aluminum / ceramic composite, will not be greatly warped.

本発明に用いるCsF−AlF系共晶系フラックスの状態を示す説明図である。It is an explanatory view showing a state of a CsF-AlF 3 based eutectic flux used in the present invention. せん断強度の測定に用いた試料の概要を示すもので、本発明のアルミニウム材の接合方法で接合したアルミニウムの積層体を示す斜視図である。It is a perspective view which shows the outline | summary of the sample used for the measurement of shear strength, and shows the laminated body of aluminum joined by the joining method of the aluminum material of this invention. 反り量の測定に用いた試料の概要を示すもので、左図はアルミニウム材とアルミニウム・セラミックス複合体を接合する前の側面図、右図は接合後の側面図である。The outline of the sample used for the measurement of the amount of warpage is shown, the left figure is a side view before joining the aluminum material and the aluminum / ceramic composite, and the right figure is a side view after joining.

本発明者は、パワーデバイスに用いられるアルミニウム材同士、或いは、アルミニウム材とDBA(Direct Bzazing Aluminum)等のアルミニウム・セラミックス複合体とを接合するにあたり、ろう付けによる接合時に、冷却器を形成するアルミニウム合金鋳物が溶融してしまう可能性がなく、且つ、接合後のハンダ付けにも影響を及ぼすことのない接合温度、例えば、460℃程度でも、アルミニウム材等を接合することができ、また、冷却器の冷却能にも影響を及ぼすことがないアルミニウム材の接合方法を見出すために、鋭意研究を重ねた。   The present inventor, when joining aluminum materials used for power devices, or aluminum materials and aluminum ceramic composites such as DBA (Direct Bazing Aluminum), aluminum that forms a cooler at the time of joining by brazing. It is possible to join an aluminum material or the like at a joining temperature, for example, about 460 ° C., which does not cause the alloy casting to melt and does not affect the soldering after joining. In order to find out how to join aluminum materials that do not affect the cooling capacity of the vessel, we have conducted extensive research.

その結果、アルミニウム材等の接合に用いるろう材の成分組成を適切な組成とすると共に、用いるフラックスをCsF−AlF系共晶系フラックスとし、更には、ろう付け接合層の厚みを適切な厚みとすることで、所望の効果を達成できることを見出し、本発明の完成に至った。 As a result, the component composition of the brazing material used for the joining of the aluminum material or the like is set to an appropriate composition, the flux used is a CsF-AlF 3 eutectic flux, and the thickness of the brazing joining layer is set to an appropriate thickness. Thus, it was found that the desired effect can be achieved, and the present invention has been completed.

以下、本発明を実施形態に基づいて更に詳細に説明する。尚、本発明で述べるアルミニウム材とは、アルミニウム合金材、純アルミニウム材の両方を示す。   Hereinafter, the present invention will be described in more detail based on embodiments. The aluminum material described in the present invention refers to both an aluminum alloy material and a pure aluminum material.

ろう付けによる接合時に、冷却器(冷却部材)を形成するアルミニウム合金鋳物が溶融してしまう可能性がなく、且つ、接合後のハンダ付けにも影響を及ぼすことのない接合温度で、アルミニウム材等を接合することができるろう材の融点(固液共存温度)は、380〜450℃程度であると考えられる。   Aluminum material, etc., at a joining temperature that does not cause the aluminum alloy casting forming the cooler (cooling member) to melt at the time of joining by brazing and does not affect the soldering after joining. It is considered that the melting point (solid-liquid coexistence temperature) of the brazing filler metal capable of joining is about 380 to 450 ° C.

また、ろう材として望ましい特性は、流動性、濡れ性などである。それらの特性を備えているろう材としては、Zn−Al系合金ろう材とZn−Cu系合金ろう材を挙げることができる。   Desirable characteristics as the brazing filler metal are fluidity and wettability. Examples of the brazing material having these characteristics include a Zn-Al alloy brazing material and a Zn-Cu alloy brazing material.

Zn−Al系合金ろう材を挙げたのは、その共晶温度が382℃と理想的な温度であるからである。このZn−Al系合金ろう材の融点(固液共存温度)を380〜450℃に調整するためには、Al濃度を0.5〜13質量%に制御すれば良い。一方、Zn−Cu系合金ろう材の包晶温度は424℃であり、このZn−Cu系合金ろう材の融点(固液共存温度)を380〜450℃に調整するためには、Cu濃度を0.5〜8質量%に制御すれば良い。   The reason why Zn-Al alloy brazing material is mentioned is that its eutectic temperature is 382 ° C., which is an ideal temperature. In order to adjust the melting point (solid-liquid coexistence temperature) of this Zn—Al-based alloy brazing material to 380 to 450 ° C., the Al concentration may be controlled to 0.5 to 13% by mass. On the other hand, the peritectic temperature of the Zn—Cu alloy brazing material is 424 ° C. In order to adjust the melting point (solid-liquid coexistence temperature) of this Zn—Cu alloy brazing material to 380 to 450 ° C., the Cu concentration is What is necessary is just to control to 0.5-8 mass%.

また、ろう付け接合層の厚みは、冷却器の冷却能に影響を及ぼさないようにするためには薄ければ薄い方が良く、その冷却器の冷却能に悪影響を及ぼさない最大厚は0.2mmである。しかしながら、ある程度のろう付け層の厚みがなければ、接合に不具合を生じるので、ろう付け層の厚みは0.02mm以上でなければならない。   Further, the thickness of the brazing joint layer is preferably as thin as possible so as not to affect the cooling ability of the cooler, and the maximum thickness that does not adversely affect the cooling ability of the cooler is 0. 2 mm. However, if there is no brazing layer thickness to some extent, bonding will be defective, so the brazing layer thickness must be 0.02 mm or more.

また、ろう材の融点(固液共存温度)を380〜450℃に調整して、アルミニウム材等を接合するためには、ろう材とアルミニウム材等の反応を促進するために、フラックスを用いることが有効であるが、この温度範囲(380〜450℃)に融点があるフラックスは、CsF−AlF系共晶系フラックスである。 In order to adjust the melting point (solid-liquid coexisting temperature) of the brazing material to 380 to 450 ° C. and join the aluminum material, etc., a flux is used to promote the reaction between the brazing material and the aluminum material. Is effective, but a flux having a melting point in this temperature range (380 to 450 ° C.) is a CsF—AlF 3 eutectic flux.

図1に、CsF−AlF系共晶系フラックスの状態図を示すが、CsFに対して、2〜8mol%程度のAlFを含有する濃度で融点が下がるので、2〜8mol%程度のAlFを含有するCsF−AlF系共晶系フラックスを用いることが特に有効である。尚、図1の縦軸の温度は絶対温度(単位:K)で示している。 FIG. 1 shows a phase diagram of a CsF—AlF 3 -based eutectic flux. Since the melting point is lowered at a concentration containing about 2 to 8 mol% of AlF 3 with respect to CsF, about 2 to 8 mol% of AlF. It is particularly effective to use a CsF—AlF 3 eutectic flux containing 3 . In addition, the temperature of the vertical axis | shaft of FIG. 1 is shown by the absolute temperature (unit: K).

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.

本実施例では、アルミニウム材同士、或いは、アルミニウム材とアルミニウム・セラミックス複合体を、フラックスを加えたろう材を用いて様々な条件で接合した。尚、以下の説明では、アルミニウム材およびアルミニウム・セラミックス複合体を、まとめて接合体と称することがある。   In this example, aluminum materials or aluminum material and aluminum-ceramic composite were joined under various conditions using a brazing material to which a flux was added. In the following description, the aluminum material and the aluminum / ceramic composite may be collectively referred to as a joined body.

アルミニウム材同士の接合に用いたのは、全て、米国のAA規格に規定された純アルミニウム系の1050アルミニウム合金であり、そのサイズは50mm×50mm×4mmで、図2に示すように、二枚のアルミニウム材1,1を貼り合わせるようにして、ろう付け接合層3で接合した。   All of the aluminum materials used in the joining were pure aluminum-based 1050 aluminum alloy specified in the AA standard in the United States, and the size was 50 mm × 50 mm × 4 mm. As shown in FIG. The aluminum materials 1 and 1 were bonded together with a brazing bonding layer 3.

アルミニウム材とアルミニウム・セラミックス複合体の接合に用いたアルミニウム材も、米国のAA規格に規定された純アルミニウム系の1050アルミニウム合金であり、そのサイズは25mm×70mm×4mmである。一方、アルミニウム・セラミックス複合体として用いたのは、DBA(Direct Bzazing Aluminum)であって、二枚の25mm×70mm×0.2mmの純アルミニウム板の間に、25mm×70mm×0.2mmのAlN板を挟んで形成されている。図2および図3に示すように、アルミニウム材1とアルミニウム・セラミックス複合体2を接合する場合も、アルミニウム材1とアルミニウム・セラミックス複合体2を重ね合わせ、ろう付け接合層3で接合した。   The aluminum material used for joining the aluminum material and the aluminum / ceramic composite is also a pure aluminum-based 1050 aluminum alloy specified in the AA standard in the United States, and its size is 25 mm × 70 mm × 4 mm. On the other hand, it was DBA (Direct Bazing Aluminum) used as the aluminum / ceramic composite, and an AlN plate of 25 mm × 70 mm × 0.2 mm was placed between two 25 mm × 70 mm × 0.2 mm pure aluminum plates. It is formed between. As shown in FIGS. 2 and 3, when the aluminum material 1 and the aluminum / ceramic composite 2 were joined, the aluminum material 1 and the aluminum / ceramic composite 2 were overlapped and joined by the brazing joint layer 3.

ろう材としては、Zn−Al系合金ろう材として、Al濃度が5質量%のZn−Al合金ろう材を、Zn−Cu系合金ろう材として、Cu濃度が3質量%のZn−Cu合金ろう材を夫々用いた。また、比較材として、従来から一般にアルミニウム材同士等の接合に用いられているSi濃度が10質量%のAl−10%Si合金ろう材等も用いた。   As a brazing filler metal, a Zn-Al alloy brazing filler metal having an Al concentration of 5% by mass and a Zn-Cu alloy brazing filler metal having a Cu concentration of 3% by mass are used. Each material was used. Further, as a comparative material, Al-10% Si alloy brazing material having a Si concentration of 10% by mass which has been conventionally used for joining aluminum materials or the like was also used.

フラックスとしては二種類のフラックスを用い、CsF−AlF系共晶系フラックスとして第一希元素化学工業製のCF5を用い、比較材としてノコロックフラックスを用いた。尚、CF5の溶融温度は、410〜510℃であるが、450℃までにその殆どが溶融する。一方、ノコロックフラックスの融点は、560℃である。 Two types of fluxes were used as the flux, CF5 manufactured by Daiichi Rare Element Chemical Co., Ltd. was used as the CsF—AlF 3 -based eutectic flux, and Nocolok flux was used as the comparative material. The melting temperature of CF5 is 410 to 510 ° C, but most of it melts by 450 ° C. On the other hand, the melting point of Nocolok flux is 560 ° C.

これら接合体、ろう材、フラックスを適宜選択して接合体の接合を行い、接合体の接合ができた試料について接合強度(せん断強度)と、アルミニウム・セラミックス複合体の反り量を測定した。尚、接合雰囲気は、大気圧、N雰囲気であり、各接合温度で10分間保持を行った。 The joined body, the brazing material, and the flux were appropriately selected to join the joined body, and the joining strength (shear strength) and the warpage amount of the aluminum / ceramic composite were measured for the samples that were joined to the joined body. The bonding atmosphere was atmospheric pressure and N 2 atmosphere, and holding was performed for 10 minutes at each bonding temperature.

せん断強度は、図2に示すように、試料の中心部からφ10mmの円柱状の試験片4をくりぬき、接合界面にせん断応力がかかるように負荷を付与し、その時の最大の荷重を断面積で割って、せん断強度としている。反り量は、アルミニウム材とアルミニウム・セラミックス複合体の接合に用いたアルミニウム材についてのみ測定しており、図3に示すように、アルミニウム材とアルミニウム・セラミックス複合体を接合したときの、アルミニウム材の中心部が変形した量dを測定した。その試験結果を表1に示す。   As shown in FIG. 2, the shear strength is obtained by hollowing out a cylindrical test piece 4 having a diameter of 10 mm from the center of the sample and applying a load so that a shear stress is applied to the joining interface. Divided into shear strength. The amount of warpage was measured only for the aluminum material used for joining the aluminum material and the aluminum / ceramic composite, and as shown in FIG. 3, the aluminum material when the aluminum material and the aluminum / ceramic composite were joined was measured. The amount d of deformation at the center was measured. The test results are shown in Table 1.

Figure 2011230162
Figure 2011230162

試料No.2、3、7が本発明の要件を満たす発明例であって、No.2はアルミニウム材同士をZn−Al系合金ろう材を用いて接合した発明例、No.3はアルミニウム材同士をZn−Cu系合金ろう材を用いて接合した発明例、No.7はアルミニウム材とアルミニウム・セラミックス複合体をZn−Al系合金ろう材を用いて接合した発明例である。また、これらは全てフラックスはCsF−AlF系共晶系フラックスを用いている。 Sample No. 2, 3, and 7 are invention examples that satisfy the requirements of the present invention. No. 2 is an invention example in which aluminum materials are joined together using a Zn—Al-based alloy brazing material, No. 2; No. 3 is an invention example in which aluminum materials are joined together using a Zn—Cu alloy brazing material, No. 3; 7 is an invention example in which an aluminum material and an aluminum / ceramic composite are joined using a Zn—Al alloy brazing material. In addition, all of these fluxes use CsF—AlF 3 eutectic flux.

尚、No.2、3、7の接合温度は全て460℃であるが、この温度は、ろう材の融点の380〜450℃より高く、また、CsF−AlF系共晶系フラックス(CF5)もその殆どが溶融する温度であるので、接合体同士の接合は確実にできる。また、ろう付け接合層の厚みは全て0.1mmとした。 No. The junction temperatures of 2, 3, and 7 are all 460 ° C., which is higher than the melting point of the brazing material, 380 to 450 ° C., and most of the CsF—AlF 3 -based eutectic flux (CF 5). Since it is the temperature to melt, the joined bodies can be reliably joined. The thickness of the brazing joint layer was all 0.1 mm.

これらNo.2、3、7は、全て本発明の要件を満たすため、十分な接合強度(せん断強度)を有している。また、No.7では、反り量は0.2mmと小さく使用に問題がない結果を得ることができた。   These No. 2, 3, and 7 all have sufficient joint strength (shear strength) to satisfy the requirements of the present invention. No. In No. 7, the warp amount was as small as 0.2 mm, and there was no problem in use.

これに対し、試料No.1、4、5、6、8、9は比較例である。No.1は、融点が560℃のノコロックフラックスを用いており、ろう材が適材であっても、460℃の接合温度では接合体同士を接合することはできなかった。また、No.4、8では、ノコロックフラックスを用いると共に、更にろう材として融点が高いAl−Si合金ろう材を用いたため、460℃の接合温度では接合体同士を接合することはできなかった。   In contrast, sample no. 1, 4, 5, 6, 8, and 9 are comparative examples. No. No. 1 uses a nocolok flux having a melting point of 560 ° C., and even if the brazing material is a suitable material, the joined bodies could not be joined at a joining temperature of 460 ° C. No. In Nos. 4 and 8, since nocollock flux was used and an Al—Si alloy brazing material having a high melting point was used as the brazing material, the joined bodies could not be joined at a joining temperature of 460 ° C.

No.5では、接合体同士を接合することはできなかった。ろう材とフラックスは共に適材であったが、接合温度が350℃と低く、ろう材とフラックスが共に溶融する温度ではなかったので、接合体同士を接合することはできなかった。また、No.6は、ろう材とフラックスが共に適材でないばかりか、接合温度が350℃と低温であったため、接合体同士を接合することはできなかった。   No. In No. 5, the joined bodies could not be joined together. Both the brazing material and the flux were suitable materials, but the joining temperature was as low as 350 ° C., and it was not a temperature at which the brazing material and the flux were melted together, so the joined bodies could not be joined together. No. In No. 6, not only the brazing material and the flux were not suitable materials, but also because the joining temperature was as low as 350 ° C., the joined bodies could not be joined together.

No.9では、ノコロックフラックスを用いたが、接合温度がノコロックフラックスが溶融する温度の600℃であったため、接合体同士を接合することはでき、また、接合強度も十分であるという結果を得ることができたが、反り量が0.8mmと非常に大きく使用に適さないものであった。また、この接合温度は、ろう付けによる接合時に、冷却器を形成するアルミニウム合金鋳物が溶融してしまう温度でもあり、パワーデバイスに用いる場合、適切な接合温度ではない。   No. In No. 9, nocollock flux was used, but since the joining temperature was 600 ° C., the temperature at which the nocolok flux melts, the joined bodies can be joined together, and the joining strength is sufficient. However, the amount of warping was 0.8 mm, which was very large and unsuitable for use. Moreover, this joining temperature is also a temperature at which the aluminum alloy casting forming the cooler melts during joining by brazing, and is not an appropriate joining temperature when used for a power device.

1…アルミニウム材
2…アルミニウム・セラミックス複合体
3…ろう付け接合層
DESCRIPTION OF SYMBOLS 1 ... Aluminum material 2 ... Aluminum ceramic composite 3 ... Brazing joining layer

Claims (1)

アルミニウム材同士、或いは、アルミニウム材とアルミニウム・セラミックス複合体を、フラックスを加えたろう材を用いて接合するアルミニウム材の接合方法であって、
前記ろう材として、Al濃度が0.5〜13質量%のZn−Al系合金ろう材、或いは、Cu濃度が0.5〜8質量%のZn−Cu系合金ろう材を用い、前記フラックスとして、CsF−AlF系共晶系フラックスを用い、前記フラックスを加えたろう材を大気圧下で溶融、冷却して、0.02〜0.2mmの厚みのろう付け接合層を間に形成することで、アルミニウム材同士、或いは、アルミニウム材とアルミニウム・セラミックス複合体を接合することを特徴とするアルミニウム材の接合方法。
A method for joining aluminum materials, or joining aluminum materials and aluminum / ceramic composites using a brazing material to which a flux is added,
As the brazing material, a Zn—Al based alloy brazing material having an Al concentration of 0.5 to 13% by mass or a Zn—Cu based alloy brazing material having a Cu concentration of 0.5 to 8% by mass is used as the flux. Using a CsF—AlF 3 eutectic flux, the brazing material added with the flux is melted and cooled under atmospheric pressure to form a brazing joint layer having a thickness of 0.02 to 0.2 mm. A method for joining aluminum materials, comprising joining aluminum materials or joining an aluminum material and an aluminum / ceramic composite.
JP2010103067A 2010-04-28 2010-04-28 Method of joining aluminum materials Pending JP2011230162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010103067A JP2011230162A (en) 2010-04-28 2010-04-28 Method of joining aluminum materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010103067A JP2011230162A (en) 2010-04-28 2010-04-28 Method of joining aluminum materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014258741A Division JP5992499B2 (en) 2014-12-22 2014-12-22 Method for joining aluminum materials used in power devices

Publications (1)

Publication Number Publication Date
JP2011230162A true JP2011230162A (en) 2011-11-17

Family

ID=45320041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103067A Pending JP2011230162A (en) 2010-04-28 2010-04-28 Method of joining aluminum materials

Country Status (1)

Country Link
JP (1) JP2011230162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106891070A (en) * 2017-02-23 2017-06-27 深圳市科达利实业股份有限公司 A kind of copper-aluminum composite board, pole connecting board structure and battery
CN113732422A (en) * 2021-09-23 2021-12-03 郑州机械研究所有限公司 Brazing flux-free brazing method and brazing filler metal paste for aluminum alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285816A (en) * 1998-04-07 1999-10-19 Showa Alum Corp Brazing flux for aluminum and brazing method
JP2007216267A (en) * 2006-02-17 2007-08-30 Denso Corp Low melting point brazing filler metal for aluminum heat exchanger and method for producing aluminum heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285816A (en) * 1998-04-07 1999-10-19 Showa Alum Corp Brazing flux for aluminum and brazing method
JP2007216267A (en) * 2006-02-17 2007-08-30 Denso Corp Low melting point brazing filler metal for aluminum heat exchanger and method for producing aluminum heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106891070A (en) * 2017-02-23 2017-06-27 深圳市科达利实业股份有限公司 A kind of copper-aluminum composite board, pole connecting board structure and battery
CN106891070B (en) * 2017-02-23 2023-11-07 深圳市科达利实业股份有限公司 Copper-aluminum composite board, pole connecting plate structure and battery
CN113732422A (en) * 2021-09-23 2021-12-03 郑州机械研究所有限公司 Brazing flux-free brazing method and brazing filler metal paste for aluminum alloy

Similar Documents

Publication Publication Date Title
JP6730999B2 (en) Highly reliable lead-free solder alloy for electronic applications in harsh environments
TWI702693B (en) Substrate for power module with cooler and manufacturing method thereof
TWI614845B (en) Method of producing substrate for power module
KR102130868B1 (en) Bonded body, substrate for power modules, and substrate with heat sink for power modules
TWI609461B (en) Method of jointed body, and method of producing substrate for power module
TWI641300B (en) Jointed body and power module substrate
JP4924920B2 (en) Method for bonding the entire bonding surface of an element to a substrate using an Au-Sn alloy solder paste
JP5720839B2 (en) Bonded body and power module substrate
TW201405722A (en) Power module substrate provided heat-sink and method of manufacturing power module substrate provided heat-sink
KR102330134B1 (en) Process for producing united object and process for producing substrate for power module
CN107431051B (en) Method for manufacturing substrate with radiating fin for power module
TWI725025B (en) High reliability lead-free solder alloys for harsh environment electronics applications
JP6558272B2 (en) Manufacturing method of joined body, manufacturing method of power module substrate with heat sink, joined body and power module substrate with heat sink
KR100625090B1 (en) Adhesive sheet for brazing magnesium alloy and method for brazing magnesium and aluminum alloy
JP5992499B2 (en) Method for joining aluminum materials used in power devices
JP2011230162A (en) Method of joining aluminum materials
TWI465308B (en) Aluminum alloy welding method
KR102453166B1 (en) Method for producing ceramic-aluminum bonded body, method for producing power module substrate, ceramic-aluminum bonded body, and power module substrate
JP2017228693A (en) Conjugate, substrate for power module, manufacturing method of conjugate, and manufacturing method of substrate for power module
JPH07223090A (en) Brazing filler metal for joining aluminum alloy with copper, and composite material joined thereby
TWI780113B (en) METHOD OF MANUFACTURING CERAMIC/Al-SiC COMPOSITE MATERIAL BONDED BODY AND METHOD OF MANUFACTURING POWER MODULE SUBSTRATE WITH HEAT SINK
JP2011230164A (en) Method of joining aluminum materials
JP2017120828A (en) Method for manufacturing assembly, method for manufacturing substrate for heat sink-equipped power module, assembly, and substrate for heat sink-equipped power module
JP2008021716A (en) Power module substrate and method of manufacturing the same, and power module
JP5659542B2 (en) Insulating substrate and power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150106

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150327