JP2011230023A - Biological treatment method and apparatus for waste water containing sulfuric cod component - Google Patents

Biological treatment method and apparatus for waste water containing sulfuric cod component Download PDF

Info

Publication number
JP2011230023A
JP2011230023A JP2010100568A JP2010100568A JP2011230023A JP 2011230023 A JP2011230023 A JP 2011230023A JP 2010100568 A JP2010100568 A JP 2010100568A JP 2010100568 A JP2010100568 A JP 2010100568A JP 2011230023 A JP2011230023 A JP 2011230023A
Authority
JP
Japan
Prior art keywords
sulfur
biological treatment
treatment
treatment tank
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010100568A
Other languages
Japanese (ja)
Other versions
JP5488166B2 (en
Inventor
Akira Kunugi
亮 功刀
Toshiaki Tsubone
俊明 局
Eiichiro Doba
英一郎 土場
Yasutaka Yamashita
康隆 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010100568A priority Critical patent/JP5488166B2/en
Publication of JP2011230023A publication Critical patent/JP2011230023A/en
Application granted granted Critical
Publication of JP5488166B2 publication Critical patent/JP5488166B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biological treatment method and apparatus for waste water containing a sulfuric COD component that can restrain the formation of noxious hydrogen sulfide when carrying out biological treatment of waste water containing the sulfuric COD component produced in a factory or the like to turn into sulfate ions (SO) for detoxification.SOLUTION: Traffic of a treatment liquid L is attained at a part of a partition wall 14 of a treatment tank 1 constituting the biological treatment apparatus 100, and pH is adjusted to 8-9 in respective sections with the partition wall 14 held between.

Description

本発明は、工場などで発生する硫黄系COD成分を含有する廃水の生物処理に関し、例えば、降雨時に製鉄の工場などで発生する、スラグに接触した浸出水など、硫黄系COD成分含有廃水の生物処理方法および装置に関する。   The present invention relates to biological treatment of wastewater containing sulfur-based COD components generated in factories and the like, for example, biological organisms of wastewater containing sulfur-based COD components, such as leachate that comes into contact with slag, which is generated in steelmaking plants and the like during rain The present invention relates to a processing method and apparatus.

例えば、製鉄の工場では、高炉から排出された高炉スラグは、CaO及びSiO2を主成分とするが、高炉内は強還元雰囲気であることから、鉄鉱石やコークスに含まれる硫黄の大半はスラグとなり、スラグには1〜2質量%内外の硫黄が含まれている。 For example, in an iron factory, the blast furnace slag discharged from the blast furnace is mainly composed of CaO and SiO 2 , but since the inside of the blast furnace has a strong reducing atmosphere, most of the sulfur contained in iron ore and coke is slag. Thus, the slag contains 1-2% by mass of sulfur inside and outside.

高炉から排出された溶融状態のスラグ(以下、高炉スラグ)は、通常、冷却場(スラグヤード)で適温まで冷却され、固化されて、ブルドーザー、パワーショベルなどによって掘り起こされ、一旦、仮置きされた後に、人口砕石、地盤改良材などの土木建築材料として利用される。   The molten slag discharged from the blast furnace (hereinafter referred to as blast furnace slag) is usually cooled to an appropriate temperature in a cooling field (slag yard), solidified, dug up by a bulldozer, a power shovel, etc., and temporarily placed Later, it is used as civil engineering and building materials such as artificial crushed stone and ground improvement materials.

この冷却中あるいは仮置き中に、高炉スラグに雨水が接触すると、雨水に高炉スラグ中の成分が浸出する。高炉スラグを冷却場にて冷却水を用いて冷却する場合にも、冷却水に高炉スラグ中の成分が浸出する。   If rainwater comes into contact with the blast furnace slag during this cooling or temporary placement, the components in the blast furnace slag are leached into the rainwater. Even when the blast furnace slag is cooled using cooling water in the cooling field, components in the blast furnace slag are leached into the cooling water.

また、転炉スラグや溶銑脱硫スラグなどの製鋼スラグも、雨水や冷却水と接触すると、高炉スラグと同様、製鋼スラグ中の成分が浸出する。   Moreover, when steelmaking slag, such as converter slag and hot metal desulfurization slag, contacts with rainwater or cooling water, the components in steelmaking slag leach out like blast furnace slag.

高炉スラグや製鋼スラグなどのスラグ中の成分が浸出した水を、ここでは「浸出水」と称する。   The water in which components in the slag such as blast furnace slag and steelmaking slag are leached is referred to herein as “leached water”.

この浸出水に含まれる成分のうち、硫黄は、S2-イオン(硫化水素などの硫化物の中での形態)、チオ硫酸イオン(S2O3 2-:S2+)、亜硫酸イオン(SO3 2-:S4+)などの形態で存在する。 Among the components contained in this leachate, sulfur is S 2- ion (form in sulfides such as hydrogen sulfide), thiosulfate ion (S 2 O 3 2- : S2 +), sulfite ion (SO 3 2- : S4 +).

浸出水中の硫黄が最も安定的に存在できる形態は硫酸イオン(SO4 2-:S6+)であるが、硫化物形態のS 2−イオン、チオ硫酸イオン、亜硫酸イオンなどの還元性の硫黄分は、酸化される余地があるため、廃水基準で規定されているCOD(Chemical Oxygen Demand:化学的酸素要求量:過マンガン酸カリウムを用いて定量)として計測される。 The form in which sulfur in the leachate can exist most stably is sulfate ion (SO 4 2− : S6 +), but the reducing sulfur content such as S 2− ion, thiosulfate ion and sulfite ion in the sulfide form is Since there is room for oxidation, it is measured as COD (Chemical Oxygen Demand: chemical oxygen demand: quantified using potassium permanganate) defined by the wastewater standards.

従って、廃水基準を満足できない場合は、そのまま放流できず、CODとして計測される硫黄化合物(以下、「硫黄系COD成分」或いは「硫黄系還元性物質」と記す)を酸化処理して硫酸イオン(SO4 2-)とし、Ca(OH)2と反応させて石膏(CaSO4)として回収したり、あるいは、前述の酸化処理の後、無害な硫酸イオン(SO4 2-)として放流したりする必要がある。 Therefore, when the wastewater standard cannot be satisfied, it cannot be discharged as it is, and a sulfur compound (hereinafter referred to as “sulfur-based COD component” or “sulfur-based reducing substance”) measured as COD is oxidized to sulfate ions ( SO 4 2- ), reacted with Ca (OH) 2 and recovered as gypsum (CaSO 4 ), or released as harmless sulfate ion (SO 4 2- ) after the oxidation treatment described above There is a need.

そこで、浸出水などの廃水中の硫黄系COD成分を処理する方法の一つとして、硫黄酸化細菌などの細菌を利用して生物学的に処理する方法が、従来から提案されている。   Thus, as a method for treating sulfur-based COD components in waste water such as leachate, a method for biological treatment using bacteria such as sulfur-oxidizing bacteria has been proposed.

例えば、特許文献1では、カルシウム化合物を含有する固定化担体に硫黄酸化細菌を馴養、増殖した固定床型バイオリアクターを用いて硫黄系COD成分を生物学的に処理する方法が提案されている。   For example, Patent Document 1 proposes a method of biologically treating a sulfur-based COD component using a fixed bed bioreactor in which sulfur-oxidizing bacteria are conditioned and grown on an immobilization carrier containing a calcium compound.

特許文献2では、中性の条件下、硫黄酸化機能を有するシュードモナス属の細菌を用いて処理する方法が提案されている。   Patent Document 2 proposes a treatment method using Pseudomonas bacteria having a sulfur oxidation function under neutral conditions.

特許文献3では、廃水を生物学的に処理するための設備の曝気槽に活性汚泥混合水を入れ、この曝気槽に硫黄系COD成分を含む廃水と有機化合物とを供給し、曝気槽内の酸化還元電位(ORP)を指標にして曝気槽の曝気を制御し、且つ、曝気槽内のpHを4.0〜7.5の範囲に制御、管理して、硫黄酸化細菌を馴養、増殖しながら、廃水を処理する方法が提案されている。   In Patent Document 3, activated sludge mixed water is put in an aeration tank of a facility for biological treatment of waste water, and waste water containing sulfur-based COD components and organic compounds are supplied to the aeration tank. Aeration tank aeration is controlled using the oxidation-reduction potential (ORP) as an index, and the pH in the aeration tank is controlled and managed in the range of 4.0 to 7.5 to acclimate and proliferate sulfur-oxidizing bacteria. However, methods for treating wastewater have been proposed.

特許文献4では、硫黄酸化細菌の有機栄養源として、米糠またはフイチン酸含有有機化合物を定期的に添加しながら、硫黄酸化細菌にて廃水を処理する方法が提案されている。   Patent Document 4 proposes a method of treating wastewater with sulfur-oxidizing bacteria while regularly adding rice bran or a phytic acid-containing organic compound as an organic nutrient source for sulfur-oxidizing bacteria.

これらはいずれも、硫黄酸化細菌の活性が高い、中性〜酸性の条件下にて、COD成分の処理を行うことを目的としたものであるが、pHの制御、管理をきちんと行わないと、硫化水素が多く発生することがあり、有害であるところ、硫化水素の発生を問題とならないレベルに抑えるための具体的手段について何ら言及していない。   These are all intended to treat COD components under neutral to acidic conditions where the activity of sulfur-oxidizing bacteria is high, but unless the pH is controlled and managed properly, Although hydrogen sulfide is often generated and harmful, it does not mention any specific means for suppressing the generation of hydrogen sulfide to a level that does not cause a problem.

すなわち、硫黄系COD成分含有廃水の生物処理において、硫黄系COD成分を酸化分解できる、いわゆる硫黄酸化細菌は、pHが中性から弱酸性で活性が高いことが知られているが、流入水中の硫化物濃度が高いと、中性から酸性側では硫化物が分子状の硫化水素となり、生物に必要な酸素を供給する目的で散気すると、硫化水素が気散して有害な問題がある。   That is, in biological treatment of waste water containing sulfur-based COD components, so-called sulfur-oxidizing bacteria that are capable of oxidizing and decomposing sulfur-based COD components are known to have neutral to weakly acidic pH and high activity. If the sulfide concentration is high, the sulfide becomes molecular hydrogen sulfide on the neutral to acidic side, and if diffused for the purpose of supplying oxygen necessary for living organisms, the hydrogen sulfide is diffused and there is a harmful problem.

一方、アルカリ性にして処理すると、硫化水素の発生量は低減できるものの、活性が低下するため、反応装置が大型化してしまう問題がある。   On the other hand, when the treatment is made alkaline, the amount of hydrogen sulfide generated can be reduced, but the activity is lowered, so that there is a problem that the reaction apparatus is enlarged.

そこで、硫化水素が気散せず、かつ硫黄酸化細菌の活性がある程度確保できるpHの範囲(pH8〜9)に制御、管理することによる、硫黄系COD成分含有廃水の処理方法が考えられる。   Therefore, a method for treating sulfur-based COD component-containing wastewater by controlling and managing it within a pH range (pH 8 to 9) in which hydrogen sulfide is not diffused and the activity of sulfur-oxidizing bacteria can be ensured to some extent can be considered.

しかしながら、処理槽への流入水(硫黄系COD成分含有廃水)のpHは通常12程度、中和剤(硫酸など)のpHは1程度であるところ、処理槽の構造、流入口や流出口の位置、中和剤の注入位置、などによっては、処理槽内にpH8〜9以外の部分が少なからず存在することになり、同部分での生物活性の低下による処理速度の低下や、硫化水素の発生を招く問題がある。   However, the pH of the inflow water (sulfur-based COD component-containing wastewater) to the treatment tank is usually about 12, and the pH of the neutralizer (such as sulfuric acid) is about 1, but the structure of the treatment tank, the inlet and outlet Depending on the position, the injection position of the neutralizing agent, and the like, there are not a few parts other than pH 8 to 9 in the treatment tank. There is a problem that causes it to occur.

また、処理槽内のpHを制御、管理して中和剤の添加量を調整するため、通常、処理槽にはpH測定器(pH計)が設置されるところ、pH計は、処理槽内のpHの分布を詳細に把握する上で、処理槽内にくまなく配置することが理想であるが、設置コストが増大する問題があるため、pH計の配置によっては、処理槽内のpHの分布を正しく把握することができず、中和剤の注入量に過不足が生じ、処理槽内にpH8〜9以外の部分が少なからず生じる。   In addition, in order to control and manage the pH in the treatment tank to adjust the amount of neutralizing agent added, a pH meter (pH meter) is usually installed in the treatment tank. In order to grasp the pH distribution in detail, it is ideal to arrange all over in the treatment tank, but there is a problem that the installation cost increases, so depending on the arrangement of the pH meter, the pH of the treatment tank The distribution cannot be grasped correctly, the amount of neutralizing agent injected is excessive or insufficient, and there are not a few portions other than pH 8 to 9 in the treatment tank.

特開平06−015294号公報Japanese Patent Laid-Open No. 06-015294 特開平08−323390号公報Japanese Patent Laid-Open No. 08-323390 特開平06−106187号公報Japanese Patent Laid-Open No. 06-106187 特開平07−251195号公報Japanese Patent Application Laid-Open No. 07-251195

本発明は、以上のような問題を解決するためになされたものであり、工場などで発生する硫黄系COD成分含有廃水を生物処理し、硫酸イオン(SO4 2-)化して無害化する際に、有害な硫化水素の発生を抑制できる、硫黄系COD成分含有廃水の生物処理方法および装置を提供することを目的とする。 The present invention has been made to solve the above-described problems. When the waste water containing sulfur-based COD components generated in factories or the like is biologically treated and made sulfate ion (SO 4 2− ) and rendered harmless. Another object of the present invention is to provide a biological treatment method and apparatus for sulfur-containing COD component-containing wastewater that can suppress the generation of harmful hydrogen sulfide.

すなわち、本発明は以下の通りである。
(1)微生物固定化材を用いた硫黄系COD成分の生物処理方法において、生物処理装置を構成する処理槽の仕切り壁の一部にて処理液の往来ができるようにするとともに、前記仕切り壁を挟んだそれぞれの区画内にて、pHを8〜9に調整することを特徴とする硫黄系COD成分の生物処理方法。
(2)微生物固定化材を用いた硫黄系COD成分の生物処理装置において、該生物処理装置を構成する処理槽の仕切り壁の一部にて処理液の往来ができるようにしたことを特徴とする硫黄系COD成分の生物処理装置。
(3)微生物固定化材を用いた硫黄系COD成分の生物処理装置において、処理槽への処理液の流入、および、前記処理槽への中和剤の注入が、ともに、二箇所以上で行われるようにしたことを特徴とする硫黄系COD成分の生物処理装置。
That is, the present invention is as follows.
(1) In the biological treatment method for sulfur-based COD components using a microorganism-immobilizing material, the treatment liquid can be made to pass through a part of the partition wall of the treatment tank constituting the biological treatment apparatus, and the partition wall A biological treatment method for a sulfur-based COD component, wherein the pH is adjusted to 8 to 9 in each of the compartments sandwiched between them.
(2) A sulfur-based COD component biological treatment apparatus using a microorganism-immobilizing material, characterized in that the treatment liquid can be transported through a part of a partition wall of a treatment tank constituting the biological treatment apparatus. Biological treatment equipment for sulfur-based COD components.
(3) In the biological treatment apparatus for sulfur-based COD components using a microorganism-immobilizing material, the inflow of the treatment liquid into the treatment tank and the injection of the neutralizing agent into the treatment tank are both performed at two or more locations. A biological treatment apparatus for sulfur-based COD components, characterized in that

本発明によれば、工場などで発生する硫黄系COD成分含有廃水を生物処理し、硫酸イオン(SO4 2-)化して無害化する際に、有害な硫化水素の発生を抑制できる、硫黄系COD成分含有廃水の生物処理方法および装置を提供できる。 According to the present invention, a sulfur-based COD component-containing wastewater generated in a factory or the like is biologically treated, and when it is rendered harmless by sulfate ion (SO 4 2- ), generation of harmful hydrogen sulfide can be suppressed. A biological treatment method and apparatus for wastewater containing COD components can be provided.

本発明の第一の実施形態について説明するための線図Diagram for explaining the first embodiment of the present invention 本発明の第一の実施形態について説明するための線図Diagram for explaining the first embodiment of the present invention 本発明の効果について説明するための線図Diagram for explaining the effect of the present invention 本発明の第二の実施形態について説明するための線図Diagram for explaining a second embodiment of the present invention

(第一の実施形態)
図1は、本発明の一つの実施形態に係る生物処理装置100を示している。図2は、図1の一断面である。生物処理装置100は、微生物固定化材の役割を果たす微生物固定床7を有し、生物処理装置100を構成する処理槽1の仕切り壁14の一部に設けた開口部15を介して処理液Lの往来ができるようにしている。
(First embodiment)
FIG. 1 shows a biological treatment apparatus 100 according to one embodiment of the present invention. FIG. 2 is a cross section of FIG. The biological treatment apparatus 100 has a microorganism fixed bed 7 that serves as a microorganism immobilization material, and a treatment liquid through an opening 15 provided in a part of the partition wall 14 of the treatment tank 1 constituting the biological treatment apparatus 100. L is available.

図1および図2の例では、処理槽1の底部付近に設置された散気装置2に、ブロワ4より空気を供給し、空気が気泡化した気泡3の上昇に伴って生じる旋回流Fにより、気泡3から微生物固定床7に向け、後述の処理液Lに溶解した、酸素を供給している。   In the example of FIG. 1 and FIG. 2, air is supplied from the blower 4 to the air diffuser 2 installed near the bottom of the processing tank 1, and the swirl flow F generated as the bubbles 3 are bubbled up. The oxygen dissolved in the processing liquid L described later is supplied from the bubbles 3 toward the microorganism fixed bed 7.

そして、処理槽1の奥行き方向略中央に仕切り壁14を設置し、仕切り壁14を挟んで手前側と奥側で独立して旋回流Fを生じさせることで、処理液Lの攪拌が処理槽1内にできるだけ広く及ぶようにしている。   And the partition wall 14 is installed in the depth direction approximate center of the process tank 1, and the stirring of the process liquid L is made to generate | occur | produce the swirling flow F on the near side and back side across the partition wall 14, and the process tank L is stirred. 1 as wide as possible.

また、先述の、例えば、高炉スラグや製鋼スラグなどのスラグ中の成分が浸出した浸出水のような、硫黄系COD成分含有廃水が、連続的または断続的に処理槽1内に、流入水5として流入する。そして、処理槽1内で微生物により酸化処理された水が、連続的または断続的に処理槽1から、流出水6として流出する。処理槽1内では、硫黄系COD成分含有廃水のことを、便宜上、処理液Lと称する。   In addition, for example, sulfur-based COD component-containing wastewater such as leachate from which components in slag such as blast furnace slag and steelmaking slag have been leached is continuously or intermittently introduced into the treatment tank 1 and the inflow water 5 Inflow as. Then, water oxidized by microorganisms in the treatment tank 1 flows out from the treatment tank 1 as effluent water continuously or intermittently. In the treatment tank 1, the sulfur-based COD component-containing waste water is referred to as a treatment liquid L for convenience.

微生物固定床7は、ひも状、粒状などの担体を、メッシュ状の容器に充填したものなどを、処理槽1内に固定したものなど、各種のものが用いて好適である。担体の材質としては、プラスチック系のもの、セルロース系のもの、スポンジ系のものなど、各種のものが用いて好適である。   As the microorganism fixed bed 7, various types such as those in which a mesh-like container filled with a string-like or granular carrier is fixed in the treatment tank 1 are suitable. As the material of the carrier, various materials such as plastic materials, cellulose materials, sponge materials, and the like are preferably used.

また、図1および図2の例では、処理槽1は仕切り壁14を挟んで二つの区画に仕切られているが、三つ以上の区画に仕切るようにしてもよい。   Moreover, in the example of FIG. 1 and FIG. 2, although the processing tank 1 is divided into two divisions on both sides of the partition wall 14, you may make it partition into three or more divisions.

なお、図1および図2の例のように、散気装置2を処理槽1の一部に設置し、槽内に旋回流Fを発生させる処理槽のことを、一般に、旋回流式と称している。   In addition, like the example of FIG.1 and FIG.2, the diffuser 2 is installed in a part of the processing tank 1, and the processing tank which generate | occur | produces the swirling flow F in a tank is generally called a swirling flow type. ing.

処理槽1の、仕切り壁14により仕切られた、それぞれの区画には、中和剤8を注入する装置9、pH電極10、pH測定器11などが設置されている。pH測定器11により測定されたpHは、情報12として中和剤8を注入する装置9に渡り、中和剤を注入する際の流量が制御される。仕切り壁14には、開口部15が設けられ、処理液Lは各区画を往来することができる。   A device 9 for injecting a neutralizing agent 8, a pH electrode 10, a pH measuring device 11, and the like are installed in each section of the treatment tank 1 partitioned by the partition wall 14. The pH measured by the pH measuring device 11 is transferred to the device 9 for injecting the neutralizing agent 8 as information 12, and the flow rate when injecting the neutralizing agent is controlled. The partition wall 14 is provided with an opening 15 so that the processing liquid L can travel between the sections.

図1および図2に示すような生物処理装置100の構造により、高pHの流入水5が、処理槽1内の処理液Lおよび中和剤8と十分混合することなく流出するのを防ぐことができる。   The structure of the biological treatment apparatus 100 as shown in FIG. 1 and FIG. 2 prevents the high pH influent water 5 from flowing out without being sufficiently mixed with the treatment liquid L and the neutralizing agent 8 in the treatment tank 1. Can do.

また、各区画に個別に中和剤8を注入することができるので、仕切り壁14を挟んだそれぞれの区画内にて、硫黄系COD成分含有廃水の生物処理に適したpH8〜9に調整するよう制御し、pH8〜9に恒常的に管理することができる。   Moreover, since the neutralizing agent 8 can be individually injected into each compartment, the pH is adjusted to 8 to 9 suitable for biological treatment of sulfur-based COD component-containing wastewater in each compartment across the partition wall 14. And can be constantly managed at pH 8-9.

各区画で個別にpHを調整した場合、各区画のpH測定器のいずれかに誤差や不具合が生じる、あるいは最悪の場合に設備異常で複数の区画の装置が使えなくなることがあるが、本発明では、各区分を一方向だけに流れるシステムではなく、双方向に流れるシステムとしているため、安定してpH8〜9に調整することができる。   When the pH is individually adjusted in each section, an error or malfunction may occur in any of the pH measuring devices in each section, or in the worst case, the equipment in a plurality of sections may become unusable due to equipment abnormality. Then, since each section is not a system that flows only in one direction but a system that flows in both directions, it can be adjusted to pH 8-9 stably.

旋回流式の処理槽の場合、処理槽の中心付近が澱み状態(死水域)になりやすく、処理槽の有効体積が減少してしまうため、仕切り壁14の開口部15は、仕切り壁14の中心付近に設け、流れを処理槽1の中心に向け誘導するのが好ましい。   In the case of a swirling flow type treatment tank, the vicinity of the center of the treatment tank tends to be stagnant (dead water area), and the effective volume of the treatment tank is reduced. It is preferable to provide near the center and guide the flow toward the center of the processing tank 1.

いくつの仕切り壁14を設置し、処理槽1をいくつの区画に仕切るかは、流入水5の流量および処理槽1の容量や形状によって異なり、数値解析や模型実験などによって決定されるべきであるため、一概には言えないが、硫黄系COD成分含有廃水の最適な処理を行うには、pHを厳密に管理する必要があるので、できるだけ多くの区画に分割するのが好ましい。   How many partition walls 14 are installed and how many compartments the treatment tank 1 is divided into depends on the flow rate of the influent water 5 and the capacity and shape of the treatment tank 1 and should be determined by numerical analysis, model experiment, and the like. Therefore, although it cannot be generally stated, in order to optimally treat the sulfur-based COD component-containing wastewater, it is necessary to strictly control the pH. Therefore, it is preferable to divide into as many compartments as possible.

図3は、図1に示した、幅7m、深さ5m、長さ15mの旋回流式の処理槽1をもつ生物処理装置100において、処理槽1の分割数と、処理槽1の容積に対するpH9を超える領域の体積の割合およびpH8未満の領域の体積の割合を、数値解析によって求めたものである。流入水5の流量は5000m3/日、散気の流量は625m3/hである。中和剤8の注入装置9は、処理槽1の分割数と同じだけ設置する。 FIG. 3 shows a biological treatment apparatus 100 having a swirling flow treatment tank 1 having a width of 7 m, a depth of 5 m, and a length of 15 m shown in FIG. 1, with respect to the number of divisions of the treatment tank 1 and the volume of the treatment tank 1. The ratio of the volume in the region exceeding pH 9 and the ratio of the volume in the region less than pH 8 are obtained by numerical analysis. The flow rate of the inflow water 5 is 5000 m 3 / day, and the flow rate of the diffuser is 625 m 3 / h. The injection device 9 for the neutralizing agent 8 is installed in the same number as the division number of the treatment tank 1.

仕切り壁14がない場合を分割数1とすると、処理槽1内にpH9を上回る高pHの領域が広く及んでいることがわかる。   If the partition wall 14 is not present and the number of divisions is 1, it can be seen that a high pH region exceeding pH 9 is widely spread in the treatment tank 1.

仕切り壁14を設置して処理槽1を分割した場合、分割数が増えるにつれ、pH9を上回る高pHの領域が少なくなることがわかる。   When the partition wall 14 is installed and the treatment tank 1 is divided, it can be seen that as the number of divisions increases, the region of high pH exceeding pH 9 decreases.

処理槽1において、流入水5が上記流量の場合、処理槽1を、四つを超える数に分割しても、効果が飽和することから、分割数は四以下とするのが好適である。   In the treatment tank 1, when the inflowing water 5 has the above flow rate, even if the treatment tank 1 is divided into more than four, the effect is saturated. Therefore, the division number is preferably four or less.

(第二の実施形態)
図4は、本発明の別の実施形態に係る廃水処理装置100を示し、高pHの流入水5の、処理槽1への流入が、二箇所以上で行われるようにしている。こうすることで、処理液Lが攪拌されて処理液Lの濃度の均一さが処理槽1内にできるだけ広く及ぶようにすることができ、処理槽1内に高pHの領域ができるのを抑制することができる。
(Second embodiment)
FIG. 4 shows a wastewater treatment apparatus 100 according to another embodiment of the present invention, in which the high pH inflow water 5 flows into the treatment tank 1 at two or more locations. By doing so, the treatment liquid L is agitated so that the uniformity of the concentration of the treatment liquid L can be as wide as possible in the treatment tank 1, and the formation of a high pH region in the treatment tank 1 is suppressed. can do.

また、処理槽1への中和剤の注入も、二箇所以上で行われるようにしている。こうすることで、処理液Lが攪拌されて処理液Lの濃度の均一さが処理槽1内にできるだけ広く及ぶようにすることができ、処理槽1内に高pHの領域ができるのを抑制することができる。   Moreover, injection | pouring of the neutralizing agent to the processing tank 1 is also performed at two or more places. By doing so, the treatment liquid L is agitated so that the uniformity of the concentration of the treatment liquid L can be as wide as possible in the treatment tank 1, and the formation of a high pH region in the treatment tank 1 is suppressed. can do.

さらに、同様の理由により、それぞれの区画内にて、pHを8〜9に調整することがより容易になる。   Furthermore, for the same reason, it becomes easier to adjust the pH to 8 to 9 in each compartment.

1 処理槽
2 散気装置
3 気泡
4 ブロワ
5 流入水
6 流出水
7 微生物固定床
8 中和剤
9 中和剤8の注入装置
10 pH電極
11 pH測定器
12 pH測定値情報
13 仕切り壁
14 仕切り壁
15 開口部
F 旋回流
L 処理液
DESCRIPTION OF SYMBOLS 1 Treatment tank 2 Air diffuser 3 Air bubbles 4 Blower 5 Inflow water 6 Outflow water 7 Microbe fixed bed 8 Neutralizing agent 9 Neutralizing agent 8 injection device 10 pH electrode 11 pH measuring device 12 pH measurement value information 13 Partition wall 14 Partition Wall 15 Opening part F Swirling flow L Treatment liquid

Claims (3)

微生物固定化材を用いた硫黄系COD成分の生物処理方法において、生物処理装置を構成する処理槽の仕切り壁の一部にて処理液の往来ができるようにするとともに、前記仕切り壁を挟んだそれぞれの区画内にて、pHを8〜9に調整することを特徴とする硫黄系COD成分の生物処理方法。   In the biological treatment method for sulfur-based COD components using a microorganism-immobilizing material, the treatment liquid can be made to come and go through a part of the partition wall of the treatment tank constituting the biological treatment apparatus, and the partition wall is sandwiched. A biological treatment method for a sulfur-based COD component, wherein the pH is adjusted to 8 to 9 in each compartment. 微生物固定化材を用いた硫黄系COD成分の生物処理装置において、該生物処理装置を構成する処理槽の仕切り壁の一部にて処理液の往来ができるようにしたことを特徴とする硫黄系COD成分の生物処理装置。   A sulfur-based COD component biological treatment apparatus using a microorganism-immobilizing material, characterized in that a treatment liquid can be passed through a part of a partition wall of a treatment tank constituting the biological treatment apparatus. Biological treatment equipment for COD components. 微生物固定化材を用いた硫黄系COD成分の生物処理装置において、処理槽への処理液の流入、および、前記処理槽への中和剤の注入が、ともに、二箇所以上で行われるようにしたことを特徴とする硫黄系COD成分の生物処理装置。   In a biological treatment apparatus for sulfur-based COD components using a microorganism-immobilizing material, both inflow of a treatment liquid into a treatment tank and injection of a neutralizing agent into the treatment tank are performed at two or more locations. A biological treatment apparatus for sulfur-based COD components.
JP2010100568A 2010-04-26 2010-04-26 Biological treatment method and apparatus for waste water containing sulfur-based COD components Expired - Fee Related JP5488166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010100568A JP5488166B2 (en) 2010-04-26 2010-04-26 Biological treatment method and apparatus for waste water containing sulfur-based COD components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010100568A JP5488166B2 (en) 2010-04-26 2010-04-26 Biological treatment method and apparatus for waste water containing sulfur-based COD components

Publications (2)

Publication Number Publication Date
JP2011230023A true JP2011230023A (en) 2011-11-17
JP5488166B2 JP5488166B2 (en) 2014-05-14

Family

ID=45319930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010100568A Expired - Fee Related JP5488166B2 (en) 2010-04-26 2010-04-26 Biological treatment method and apparatus for waste water containing sulfur-based COD components

Country Status (1)

Country Link
JP (1) JP5488166B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574296A (en) * 1980-06-10 1982-01-09 Dowa Mining Co Ltd Biochemical removing method of cod in waste water due to sulfur oxide
JPS57171490A (en) * 1981-04-14 1982-10-22 Hitachi Zosen Corp Removal of dithionic acid from waste liquid
JPH05337479A (en) * 1992-06-08 1993-12-21 Kurita Water Ind Ltd Aerobic treatment plant
JPH07265890A (en) * 1994-03-29 1995-10-17 Sharp Corp Treatment of water containing organic sulfur compound and device therefor
JP2004290744A (en) * 2003-03-25 2004-10-21 Univ Nihon Wastewater treatment apparatus and wastewater treatment method
JP2006142192A (en) * 2004-11-18 2006-06-08 Kurita Water Ind Ltd Apparatus for treating organic sulfur compound-containing drainage
JP2008194610A (en) * 2007-02-13 2008-08-28 Jfe Steel Kk Treatment method and system for wastewater containing sulfur-based cod component
JP2009034649A (en) * 2007-08-03 2009-02-19 Japan Organo Co Ltd Method and apparatus for treating water containing organic sulfur compound
JP2009255054A (en) * 2008-03-26 2009-11-05 Jfe Steel Corp Treating method of waste water containing sulfur-based cod component
JP2010188347A (en) * 2010-04-28 2010-09-02 Kurita Water Ind Ltd Apparatus for treating wastewater containing organic sulfur compound
JP2010234180A (en) * 2009-03-30 2010-10-21 Jfe Steel Corp Treatment apparatus and treatment method of waste water containing sulfur-based cod component

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574296A (en) * 1980-06-10 1982-01-09 Dowa Mining Co Ltd Biochemical removing method of cod in waste water due to sulfur oxide
JPS57171490A (en) * 1981-04-14 1982-10-22 Hitachi Zosen Corp Removal of dithionic acid from waste liquid
JPH05337479A (en) * 1992-06-08 1993-12-21 Kurita Water Ind Ltd Aerobic treatment plant
JPH07265890A (en) * 1994-03-29 1995-10-17 Sharp Corp Treatment of water containing organic sulfur compound and device therefor
JP2004290744A (en) * 2003-03-25 2004-10-21 Univ Nihon Wastewater treatment apparatus and wastewater treatment method
JP2006142192A (en) * 2004-11-18 2006-06-08 Kurita Water Ind Ltd Apparatus for treating organic sulfur compound-containing drainage
JP2008194610A (en) * 2007-02-13 2008-08-28 Jfe Steel Kk Treatment method and system for wastewater containing sulfur-based cod component
JP2009034649A (en) * 2007-08-03 2009-02-19 Japan Organo Co Ltd Method and apparatus for treating water containing organic sulfur compound
JP2009255054A (en) * 2008-03-26 2009-11-05 Jfe Steel Corp Treating method of waste water containing sulfur-based cod component
JP2010234180A (en) * 2009-03-30 2010-10-21 Jfe Steel Corp Treatment apparatus and treatment method of waste water containing sulfur-based cod component
JP2010188347A (en) * 2010-04-28 2010-09-02 Kurita Water Ind Ltd Apparatus for treating wastewater containing organic sulfur compound

Also Published As

Publication number Publication date
JP5488166B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5197223B2 (en) Water treatment system
JPWO2011148949A1 (en) Biological nitrogen removal method using anaerobic ammonia oxidation reaction
JP5355459B2 (en) Organic wastewater treatment system
JP2008168201A (en) Wastewater treatment method
SA516371602B1 (en) Reduction of the amount of sulphur compounds in a sulphur compounds contaminated wastewater stream, using a granular sludge treatment system
CN104801166A (en) Method and device for cooperative flue gas desulfurization and sewage organic matter degradation and denitrification
JP6404999B2 (en) Organic wastewater treatment equipment
CN107720946A (en) Cascade control method in SBR sewage treatment process
CN105722796B (en) The control program of organic waste-water treating apparatus, the processing method of organic wastewater and organic waste-water treating apparatus
Dai et al. Investigation of a sewage-integrated technology combining an expanded granular sludge bed (EGSB) and an electrochemical reactor in a pilot-scale plant
JP2016123957A (en) Apparatus and method for treating waste water containing dissolved substance and volatile substance
JP5488166B2 (en) Biological treatment method and apparatus for waste water containing sulfur-based COD components
KR100857887B1 (en) Wastewater treatment apparatus of denitrification and wastewater treatment method thereof
Torà et al. Efficient and automated start-up of a pilot reactor for nitritation of reject water: from batch granulation to high rate continuous operation
JP6049544B2 (en) Wastewater treatment equipment
TW202202454A (en) Aerobic biological processing method and device
CN108178299A (en) A kind of waste water treatment system and its wastewater treatment method using SBR processing units
JP5381231B2 (en) Apparatus and method for treating wastewater containing sulfur-based COD component
KR20160054907A (en) Device and method for ordor-free and high-level treatment using micro sand bio mass
JP4735561B2 (en) Method for treating wastewater containing sulfur-based COD components
JP2003103280A (en) Wastewater decoloring method and apparatus therefor
CN111533319A (en) Device and method for treating COD (chemical oxygen demand) in desulfurization wastewater by ozone oxidation method
Shi et al. Technologies for in-situ H2S control in wastewater treatment plants: A review
JP5267190B2 (en) Method for treating wastewater containing sulfur-based COD components
CN113003910A (en) Method for remodeling aerobic interface of polluted river and lake bottom mud-water

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5488166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees