JP2011228755A - Stacked semiconductor device - Google Patents

Stacked semiconductor device Download PDF

Info

Publication number
JP2011228755A
JP2011228755A JP2011179686A JP2011179686A JP2011228755A JP 2011228755 A JP2011228755 A JP 2011228755A JP 2011179686 A JP2011179686 A JP 2011179686A JP 2011179686 A JP2011179686 A JP 2011179686A JP 2011228755 A JP2011228755 A JP 2011228755A
Authority
JP
Japan
Prior art keywords
semiconductor element
adhesive layer
layer
semiconductor device
stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011179686A
Other languages
Japanese (ja)
Other versions
JP5571045B2 (en
Inventor
Atsushi Yoshimura
淳 芳村
Hideko Mukoda
秀子 向田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011179686A priority Critical patent/JP5571045B2/en
Publication of JP2011228755A publication Critical patent/JP2011228755A/en
Application granted granted Critical
Publication of JP5571045B2 publication Critical patent/JP5571045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve reliability of a heat cycle test on a stacked semiconductor device.SOLUTION: The stacked semiconductor device 1 includes a first semiconductor element 5 bonded on a circuit board 2. The first semiconductor element 5 is electrically connected to an electrode part 4 of the circuit board 2 through a first bonding wire 7. A second semiconductor element is bonded on the first semiconductor element 5 through a second adhesive layer (insulating adhesive layer) 9 whose thickness is 50 μm or more. The second adhesive layer 9 consists of an insulation resin layer of which a glass transition temperature is 135°C or higher, a linear expansion coefficient is 100 ppm or lower at the glass transition temperature or lower, and an elastic modulus at room temperature is 500 MPa to 2 GPa.

Description

本発明は複数の半導体素子を積層して構成した積層型半導体装置に関する。   The present invention relates to a stacked semiconductor device configured by stacking a plurality of semiconductor elements.

近年、半導体装置の小型化や高密度実装化等を実現するために、1つのパッケージ内に複数の半導体素子を積層して封止したスタック型マルチチップパッケージが実用化されている。スタック型マルチチップパッケージにおいて、複数の半導体素子は回路基板上に接着剤層を介して順に積層される。各半導体素子の電極パッドは、回路基板の電極部とボンディングワイヤを介して電気的に接続される。このような積層体を封止樹脂でパッケージングすることによって、スタック型マルチチップパッケージが構成される。   2. Description of the Related Art In recent years, a stacked multichip package in which a plurality of semiconductor elements are stacked and sealed in a single package has been put into practical use in order to realize miniaturization and high-density mounting of semiconductor devices. In a stacked multichip package, a plurality of semiconductor elements are sequentially stacked on a circuit board via an adhesive layer. The electrode pad of each semiconductor element is electrically connected to the electrode portion of the circuit board via a bonding wire. By stacking such a laminate with a sealing resin, a stacked multichip package is formed.

スタック型マルチチップパッケージにおいて、同形状の半導体素子同士や上段側に下段側より大きい半導体素子を積層する場合、下段側の半導体素子のボンディングワイヤと上段側の半導体素子とが接触するおそれがある。このため、ボンディングワイヤの接触による絶縁不良やショート等の発生を防止することが重要となる。そこで、半導体素子間を接着する接着剤層の厚さを例えば50〜150μmというように厚くし、下段側の半導体素子のボンディングワイヤを接着剤層内に取り込むことによって、上段側の半導体素子と接触しないようにすることが行われている(例えば特許文献1〜3参照)。   In a stacked multi-chip package, when semiconductor elements having the same shape or semiconductor elements larger than the lower stage side are stacked on the upper stage side, the bonding wires of the lower stage semiconductor element and the upper stage semiconductor element may come into contact with each other. For this reason, it is important to prevent the occurrence of insulation failure or short circuit due to the contact of the bonding wire. Therefore, the thickness of the adhesive layer for bonding the semiconductor elements is increased to, for example, 50 to 150 μm, and the bonding wire of the lower semiconductor element is taken into the adhesive layer to contact the upper semiconductor element. It is performed so that it may not (for example, refer patent documents 1-3).

ところで、接着剤層を構成する樹脂材料は、一般的に半導体素子を構成するSiウエハに比べて線膨張係数が大きい。このため、スタック型マルチチップパッケージのような積層型半導体装置に熱サイクルが印加された際に、接着剤層と半導体素子との線膨張係数の差に基づく熱応力(引張りの残留応力)が半導体素子に作用し、この熱応力により半導体素子にクラックが生じるおそれがある。特に、上述したようなスペーサ機能を付与した厚い接着剤層を適用した積層型半導体装置では、信頼性を評価するために熱サイクル試験を実施した際に半導体素子の端部表面に応力集中が起こり、この応力集中に起因してクラックが生じやすいという問題がある。   By the way, the resin material constituting the adhesive layer generally has a larger coefficient of linear expansion than the Si wafer constituting the semiconductor element. For this reason, when a thermal cycle is applied to a stacked semiconductor device such as a stacked multichip package, the thermal stress (residual tensile stress) based on the difference in the linear expansion coefficient between the adhesive layer and the semiconductor element is a semiconductor. There is a possibility that the semiconductor element may crack due to the thermal stress acting on the element. In particular, in a stacked semiconductor device to which a thick adhesive layer having a spacer function as described above is applied, stress concentration occurs on the end surface of the semiconductor element when a thermal cycle test is performed to evaluate reliability. There is a problem that cracks are likely to occur due to this stress concentration.

特開2001−308262号公報JP 2001-308262 A 特開2002−222913号公報JP 2002-222913 A 特開2004−072009号公報Japanese Patent Laid-Open No. 2004-072009

本発明の目的は、熱サイクル試験に対する信頼性を向上させた積層型半導体装置を提供することにある。   An object of the present invention is to provide a stacked semiconductor device having improved reliability for a thermal cycle test.

本発明の態様に係る積層型半導体装置は、回路基材上に接着された第1の半導体素子と、前記第1の半導体素子上に厚さが50μm以上の絶縁性接着剤層を介して接着された第2の半導体素子と、前記第1の半導体素子と前記回路基材の電極部とを電気的に接続する第1のボンディングワイヤであって、前記第1の半導体素子との接続側端部が前記絶縁性接着剤層内に取り込まれている第1のボンディングワイヤと、前記第2の半導体素子と前記回路基材の電極部とを電気的に接続する第2のボンディングワイヤと、前記第1および第2の半導体素子を前記第1および第2のボンディングワイヤと共に封止する封止樹脂とを具備し、前記絶縁性接着剤層は、ガラス転移温度が135℃以上で、かつガラス転移温度以下の線膨張係数が100ppm以下であると共に、常温弾性率が500MPa以上2GPa以下である絶縁樹脂層からなることを特徴としている。   A stacked semiconductor device according to an aspect of the present invention is bonded to a first semiconductor element bonded on a circuit substrate and an insulating adhesive layer having a thickness of 50 μm or more on the first semiconductor element. A first bonding wire for electrically connecting the second semiconductor element formed, the first semiconductor element and the electrode portion of the circuit base material, and a connection side end to the first semiconductor element A first bonding wire having a portion taken into the insulating adhesive layer, a second bonding wire for electrically connecting the second semiconductor element and the electrode portion of the circuit substrate, A sealing resin that seals the first and second semiconductor elements together with the first and second bonding wires, and the insulating adhesive layer has a glass transition temperature of 135 ° C. or more and a glass transition The linear expansion coefficient below the temperature is 100p With m or less, a normal temperature elastic modulus is characterized in that it consists of an insulating resin layer is not more than 2GPa least 500 MPa.

本発明の態様に係る積層型半導体装置によれば、熱サイクル試験で印加される温度に対する絶縁性接着剤層の線膨張係数を低減しているため、厚い絶縁性接着剤層を使用した場合においても熱サイクル試験に対する信頼性を向上させることが可能となる。   According to the stacked semiconductor device according to the aspect of the present invention, since the linear expansion coefficient of the insulating adhesive layer with respect to the temperature applied in the thermal cycle test is reduced, in the case where a thick insulating adhesive layer is used. It is also possible to improve the reliability for the thermal cycle test.

本発明の一実施形態による積層型半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the laminated semiconductor device by one Embodiment of this invention. 図1に示す積層型半導体装置の変形例を示す断面図である。FIG. 10 is a cross-sectional view showing a modification of the stacked semiconductor device shown in FIG. 1. 積層型半導体装置における第2の接着剤層の線膨張係数が熱サイクル試験(−55℃〜125℃)時に半導体素子の表面引張応力値に及ぼす影響を測定した結果の一例を示す図である。It is a figure which shows an example of the result of having measured the influence which the linear expansion coefficient of the 2nd adhesive bond layer in a laminated semiconductor device has on the surface tensile stress value of a semiconductor element at the time of a thermal cycle test (-55 degreeC-125 degreeC). 積層型半導体装置における第2の接着剤層の厚さと半導体素子の厚さが熱サイクル試験(−55℃〜125℃)時に半導体素子の表面引張応力値に及ぼす影響を測定した結果の一例を示す図である。An example of the result of measuring the influence of the thickness of the second adhesive layer and the thickness of the semiconductor element on the surface tensile stress value of the semiconductor element during the thermal cycle test (−55 ° C. to 125 ° C.) in the stacked semiconductor device is shown. FIG. 比較例の積層型半導体装置の熱サイクル試験における不良発生率(累積不良率)を示す図である。It is a figure which shows the defect generation rate (cumulative defect rate) in the thermal cycle test of the laminated semiconductor device of a comparative example.

以下、本発明を実施するための形態について、図面を参照して説明する。なお、以下では本発明の実施形態を図面に基づいて説明するが、それらの図面は図解のために提供されるものであり、本発明はそれらの図面に限定されるものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In addition, although embodiment of this invention is described based on drawing below, those drawings are provided for illustration and this invention is not limited to those drawings.

図1は本発明の一実施形態によるスタック型マルチチップ構造の積層型半導体装置の構成を示す断面図である。同図に示す積層型半導体装置1は、素子搭載用の回路基材2を有している。素子搭載用の回路基材2は半導体素子を搭載することが可能で、かつ回路を有するものであればよい。このような回路基材2としては、絶縁基板や半導体基板等の表面や内部に回路を形成した回路基板、あるいはリードフレームのような素子搭載部と回路部とを一体化した基材等を用いることができる。   FIG. 1 is a cross-sectional view showing the configuration of a stacked semiconductor device having a stacked multichip structure according to an embodiment of the present invention. A stacked semiconductor device 1 shown in FIG. 1 has a circuit substrate 2 for mounting elements. The circuit substrate 2 for element mounting may be any element that can mount a semiconductor element and has a circuit. As such a circuit base material 2, a circuit board in which a circuit is formed on the surface or inside of an insulating substrate or a semiconductor substrate, or a base material in which an element mounting portion such as a lead frame and a circuit portion are integrated is used. be able to.

図1に示す積層型半導体装置1は、素子搭載用回路基材として回路基板2を有している。回路基板2を構成する基板には、樹脂基板、セラミックス基板、ガラス基板等の絶縁基板、あるいは半導体基板等、各種の材料からなる基板を適用することができる。樹脂基板を適用した回路基板としては、一般的な多層銅張積層板(多層プリント配線板)等が挙げられる。回路基板2の下面側には、半田バンプ等の外部接続端子3が設けられている。   A stacked semiconductor device 1 shown in FIG. 1 has a circuit board 2 as an element mounting circuit base. As the substrate constituting the circuit board 2, substrates made of various materials such as a resin substrate, a ceramic substrate, an insulating substrate such as a glass substrate, or a semiconductor substrate can be applied. Examples of the circuit board to which the resin substrate is applied include a general multilayer copper-clad laminate (multilayer printed wiring board). External connection terminals 3 such as solder bumps are provided on the lower surface side of the circuit board 2.

回路基板2の素子搭載面となる上面側には、外部接続端子3と例えば内層配線(図示せず)を介して電気的に接続された電極部4が設けられている。電極部4はワイヤボンディング部となるものである。このような回路基板2の素子搭載面(上面)には、第1の半導体素子5が第1の接着剤層6を介して接着されている。第1の接着剤層6には一般的なダイアタッチ材(ダイアタッチフィルム等)が用いられる。第1の半導体素子5の上面側に設けられた第1の電極パッド5aは、第1のボンディングワイヤ7を介して回路基板2の電極部4と電気的に接続されている。   An electrode portion 4 electrically connected to the external connection terminal 3 via, for example, an inner layer wiring (not shown) is provided on the upper surface side which is an element mounting surface of the circuit board 2. The electrode part 4 becomes a wire bonding part. The first semiconductor element 5 is bonded to the element mounting surface (upper surface) of the circuit board 2 through the first adhesive layer 6. For the first adhesive layer 6, a general die attach material (die attach film or the like) is used. The first electrode pad 5 a provided on the upper surface side of the first semiconductor element 5 is electrically connected to the electrode portion 4 of the circuit board 2 through the first bonding wire 7.

第1の半導体素子5上には、第2の半導体素子8が第2の接着剤層9を介して接着されている。第2の半導体素子8は、例えば第1の半導体素子5と同形またはそれより大形の形状を有している。第2の接着剤層9は第2の半導体素子8の接着時の加熱温度(接着時温度)で軟化または溶融し、その内部に第1のボンディングワイヤ7の一部(電極パッド5aとの接続側端部)を取り込みつつ、第1の半導体素子5と第2の半導体素子8とを接着するものである。従って、第2の接着剤層9には第1のボンディングワイヤ7の絶縁を確保する上で絶縁性接着剤が用いられる。   On the first semiconductor element 5, a second semiconductor element 8 is bonded via a second adhesive layer 9. The second semiconductor element 8 has, for example, a shape that is the same as or larger than that of the first semiconductor element 5. The second adhesive layer 9 is softened or melted at the heating temperature (bonding temperature) when the second semiconductor element 8 is bonded, and a part of the first bonding wire 7 (connection with the electrode pad 5a) is formed therein. The first semiconductor element 5 and the second semiconductor element 8 are bonded together while taking in the side end portion. Accordingly, an insulating adhesive is used for the second adhesive layer 9 in order to ensure insulation of the first bonding wire 7.

第1のボンディングワイヤ7の電極パッド5aとの接続側端部は、絶縁性接着剤層からなる第2の接着剤層9内に取り込まれることで、第2の半導体素子8との接触が防止されている。すなわち、第1のボンディングワイヤ7は絶縁性接着剤層9の厚さに基づいて第2の半導体素子8の下面から離間しており、これにより第1のボンディングワイヤ7と第2の半導体素子8との接触による絶縁不良やショート等の発生を防止している。このように、第2の接着剤層はスペーサとしての機能を併せ持つものであり、このような機能を得る上で厚さが50μm以上の絶縁樹脂層が適用されている。   The connection-side end of the first bonding wire 7 with the electrode pad 5a is taken into the second adhesive layer 9 made of an insulating adhesive layer, thereby preventing contact with the second semiconductor element 8. Has been. That is, the first bonding wire 7 is separated from the lower surface of the second semiconductor element 8 based on the thickness of the insulating adhesive layer 9, whereby the first bonding wire 7 and the second semiconductor element 8 are separated. Insulation failure and short-circuiting due to contact with are prevented. Thus, the second adhesive layer also has a function as a spacer, and an insulating resin layer having a thickness of 50 μm or more is applied to obtain such a function.

第2の接着剤層9を構成する絶縁樹脂層の厚さが50μm以下であると、第1のボンディングワイヤ7が第2の半導体素子8に接触しやすくなり、絶縁不良やショート等の発生率が高くなる。ワイヤ径等にもよるが、第2の接着剤層9の厚さは70μm以上とすることがさらに好ましい。ボンディングワイヤ7の径が25μmの場合の具体例としては、厚さが75μmや85μmの絶縁性接着剤層9が挙げられる。なお、第2の接着剤層9を厚くしすぎると積層型半導体装置1の薄型化が阻害されるため、第2の接着剤層9の厚さは150μm以下とすることが好ましい。   When the thickness of the insulating resin layer constituting the second adhesive layer 9 is 50 μm or less, the first bonding wire 7 is likely to come into contact with the second semiconductor element 8, and the occurrence rate of insulation failure, short circuit, etc. Becomes higher. Although it depends on the wire diameter and the like, the thickness of the second adhesive layer 9 is more preferably 70 μm or more. As a specific example when the diameter of the bonding wire 7 is 25 μm, an insulating adhesive layer 9 having a thickness of 75 μm or 85 μm can be cited. Note that, if the second adhesive layer 9 is too thick, the thickness of the stacked semiconductor device 1 is hindered. Therefore, the thickness of the second adhesive layer 9 is preferably 150 μm or less.

接着時に第1のボンディングワイヤ7の一部を良好に取り込む上で、第2の接着剤層9は接着時温度における粘度(接着時粘度)が1kPa・s以上100kPa・s未満であることが好ましい。第2の接着剤層9の接着時粘度が1kPa・s未満であると軟らかすぎて、接着剤が素子端面からはみ出すおそれがある。一方、第2の接着剤層9の接着時粘度が100kPa・s以上であると、第1のボンディングワイヤ7に変形や接続不良等を生じさせるおそれがある。第2の接着剤層9の接着時粘度は1〜50kPa・sの範囲であることがより好ましく、さらには1〜20kPa・sの範囲であることが望ましい。   In order to satisfactorily capture a part of the first bonding wire 7 at the time of bonding, the second adhesive layer 9 preferably has a viscosity at the bonding temperature (viscosity at bonding) of 1 kPa · s or more and less than 100 kPa · s. . If the viscosity at the time of adhesion of the second adhesive layer 9 is less than 1 kPa · s, the second adhesive layer 9 is too soft and the adhesive may protrude from the element end face. On the other hand, if the viscosity at the time of adhesion of the second adhesive layer 9 is 100 kPa · s or more, the first bonding wire 7 may be deformed or poorly connected. The adhesion viscosity of the second adhesive layer 9 is more preferably in the range of 1 to 50 kPa · s, and further preferably in the range of 1 to 20 kPa · s.

図1では第2の接着剤層9の厚さに基づいて第1のボンディングワイヤ7と第2の半導体素子8との接触を抑制している。これに加えて、図2に示すように第2の半導体素子8の接着時温度で軟化または溶融する第1の層9aと、第2の半導体素子8の接着時温度に対して層形状が維持される第2の層9bとを積層した第2の接着剤層9を適用してもよい。第1の層9aは第1の半導体素子5側に形成され、第2の半導体素子8の接着層として機能する。第2の層9bは第2の半導体素子8側に形成され、第1のボンディングワイヤ7と第2の半導体素子8との接触を防止する絶縁層として機能する。   In FIG. 1, the contact between the first bonding wire 7 and the second semiconductor element 8 is suppressed based on the thickness of the second adhesive layer 9. In addition to this, as shown in FIG. 2, the first layer 9 a that softens or melts at the bonding temperature of the second semiconductor element 8, and the layer shape is maintained with respect to the bonding temperature of the second semiconductor element 8. Alternatively, the second adhesive layer 9 in which the second layer 9b is laminated may be applied. The first layer 9 a is formed on the first semiconductor element 5 side and functions as an adhesive layer for the second semiconductor element 8. The second layer 9b is formed on the second semiconductor element 8 side, and functions as an insulating layer that prevents the first bonding wire 7 and the second semiconductor element 8 from contacting each other.

このように、第2の半導体素子8の接着時温度に対して層形状が維持される第2の層(絶縁層)9bを第2の半導体素子8側に形成することによって、第1のボンディングワイヤ7と第2の半導体素子8との接触による絶縁不良やショートの発生をより確実に防止することが可能となる。また、第1の半導体素子5と第2の半導体素子8との接着自体は、第1の層9aで良好に実現することができる。このような2層構造の接着剤層9は、例えば接着時粘度が異なる接着剤樹脂シートを積層したり、あるいは接着剤樹脂組成物を順に塗布して形成することができる。   In this way, the first bonding is performed by forming the second layer (insulating layer) 9b whose layer shape is maintained with respect to the bonding temperature of the second semiconductor element 8 on the second semiconductor element 8 side. It is possible to more reliably prevent the occurrence of insulation failure and short circuit due to the contact between the wire 7 and the second semiconductor element 8. Further, the adhesion between the first semiconductor element 5 and the second semiconductor element 8 can be satisfactorily realized by the first layer 9a. The adhesive layer 9 having such a two-layer structure can be formed, for example, by laminating adhesive resin sheets having different viscosities at the time of adhesion, or by sequentially applying an adhesive resin composition.

2層構造を有する接着剤層9において、第2の層9bは接着時粘度が100kPa・s以上であることが好ましい。第2の層9bの接着時粘度が100kPa・s未満であると、第1のボンディングワイヤ7の接触防止機能を十分に発揮させることができないおそれがある。第2の層9bの接着時粘度は200kPa・s以上であることがより好ましい。ただし、粘度があまり高すぎると接合層としての機能が損なわれるため、第2の層(絶縁層)9bの接着時粘度は1000kPa・s未満であることが好ましい。第1の層(接着層)の接着時粘度は、上述したように1kPa・s以上100kPa・s未満であることが好ましい。   In the adhesive layer 9 having a two-layer structure, the second layer 9b preferably has a viscosity at the time of adhesion of 100 kPa · s or more. If the viscosity at the time of adhesion of the second layer 9b is less than 100 kPa · s, the contact prevention function of the first bonding wire 7 may not be sufficiently exhibited. The adhesion viscosity of the second layer 9b is more preferably 200 kPa · s or more. However, since the function as the bonding layer is impaired when the viscosity is too high, the adhesion viscosity of the second layer (insulating layer) 9b is preferably less than 1000 kPa · s. As described above, the viscosity at the time of adhesion of the first layer (adhesive layer) is preferably 1 kPa · s or more and less than 100 kPa · s.

さらに、第1の半導体素子5と第2の半導体素子8との間の距離は、第1の半導体素子5の接続に使用されていない電極パッド、すなわちノンコネクションパッド上に金属材料や樹脂材料等からなるスタッドパンプを形成して維持するようにしてもよい。このような構成によっても、第1のボンディングワイヤ7と第2の半導体素子8との接触を有効に防止することができる。スタッドパンプの高さは、第1のボンディングワイヤ7の高さより高くなるように設定する。第2の半導体素子8はスタッドパンプがスペーサとして機能することで、それより下には下降しないため、第1のボンディングワイヤ7との接触が防止される。スタッドパンプは1箇所のみに設置してもよいが、第1の半導体素子5の重心を通る3箇所以上に設置することが好ましい。   Further, the distance between the first semiconductor element 5 and the second semiconductor element 8 is such that a metal material, a resin material, or the like is formed on an electrode pad that is not used for connection of the first semiconductor element 5, that is, a non-connection pad. A stud pump made of may be formed and maintained. Such a configuration can also effectively prevent contact between the first bonding wire 7 and the second semiconductor element 8. The height of the stud pump is set to be higher than the height of the first bonding wire 7. The second semiconductor element 8 prevents the contact with the first bonding wire 7 because the stud bump functions as a spacer and does not descend below the second semiconductor element 8. The stud pumps may be installed at only one place, but are preferably installed at three or more places passing through the center of gravity of the first semiconductor element 5.

第2の接着剤層9を介して第1の半導体素子5上に接着された第2の半導体素子8は、その上面側に設けられた第2の電極パッド8aが第2のボンディングワイヤ10を介して回路基板2の電極部4と電気的に接続されている。回路基板2上に積層、配置された第1および第2の半導体素子5、8は、例えばエポキシ樹脂のような封止樹脂11で封止されており、これらによってスタック型マルチチップパッケージ構造の積層型半導体装置1が構成されている。なお、図1や図2では2個の半導体素子5、8を積層した構造について説明したが、半導体素子の積層数はこれに限られるものではなく、3個もしくはそれ以上であってもよいことは言うまでもない。   The second semiconductor element 8 bonded on the first semiconductor element 5 through the second adhesive layer 9 has the second electrode pad 8a provided on the upper surface side thereof connected to the second bonding wire 10. Via the electrode part 4 of the circuit board 2. The first and second semiconductor elements 5 and 8 stacked and arranged on the circuit board 2 are sealed with a sealing resin 11 such as an epoxy resin, for example, thereby stacking a stacked multichip package structure. A type semiconductor device 1 is configured. 1 and 2, the structure in which two semiconductor elements 5 and 8 are stacked has been described. However, the number of stacked semiconductor elements is not limited to this, and may be three or more. Needless to say.

上述した第2の接着剤層9(2層構造の場合には各層9a、9b)は、ガラス転移温度が135℃以上で、かつガラス転移温度以下の温度範囲における線膨張係数が100ppm以下の絶縁樹脂層からなるものである。すなわち、絶縁性接着剤層9を構成する絶縁樹脂のような高分子材料は、一般的に低温ではガラス状であり、ガラス転移温度(ガラス転移点Tg)を超えるとゴム状(さらには液状)になると共に、線膨張係数が急激に増大する。従って、第2の接着剤層9を構成する絶縁樹脂層のガラス転移温度が熱サイクル試験で印加される温度以下であると、熱サイクル試験時に接着剤層9の線膨張係数が急激に増加することで、半導体素子5、8との線膨張係数の差がさらに増大する。   The second adhesive layer 9 described above (in the case of the two-layer structure, each layer 9a, 9b) has an insulation having a glass transition temperature of 135 ° C. or more and a linear expansion coefficient of 100 ppm or less in a temperature range of the glass transition temperature or less. It consists of a resin layer. That is, a polymer material such as an insulating resin constituting the insulating adhesive layer 9 is generally glassy at a low temperature, and rubbery (and liquid) when the glass transition temperature (glass transition point Tg) is exceeded. And the linear expansion coefficient increases rapidly. Therefore, when the glass transition temperature of the insulating resin layer constituting the second adhesive layer 9 is equal to or lower than the temperature applied in the thermal cycle test, the linear expansion coefficient of the adhesive layer 9 increases rapidly during the thermal cycle test. As a result, the difference in coefficient of linear expansion from the semiconductor elements 5 and 8 further increases.

接着剤層9と半導体素子5、8との線膨張係数の差が増大すると、それに基づいて半導体素子5、8に作用する熱応力(引張応力)も増大する。引張応力は半導体素子5の端部表面に応力集中するため、この応力集中で半導体素子5にクラックや割れが生じやすくなる。半導体装置の熱サイクル試験は一般的に−55℃〜125℃の温度範囲で実施される。従って、接着剤層9を構成する絶縁樹脂層のガラス転移温度を、半導体素子5、8に引張応力を生じさせる熱サイクル試験時の高温側温度(125℃)に熱的マージン(+10℃)を加えた温度(135℃)もしくはそれより高く設定することで、熱サイクル試験時に接着剤層9と半導体素子5、8との線膨張係数の差が増大することを抑制できる。   When the difference in linear expansion coefficient between the adhesive layer 9 and the semiconductor elements 5 and 8 increases, the thermal stress (tensile stress) acting on the semiconductor elements 5 and 8 also increases based on the difference. Since tensile stress concentrates on the surface of the end portion of the semiconductor element 5, cracks and cracks are likely to occur in the semiconductor element 5 due to this stress concentration. A thermal cycle test of a semiconductor device is generally performed in a temperature range of −55 ° C. to 125 ° C. Accordingly, the thermal transition (+ 10 ° C.) is set to the glass transition temperature of the insulating resin layer constituting the adhesive layer 9 and the high temperature side temperature (125 ° C.) at the time of the thermal cycle test for generating the tensile stress in the semiconductor elements 5 and 8. By setting the applied temperature (135 ° C.) or higher, it is possible to suppress an increase in the difference in linear expansion coefficient between the adhesive layer 9 and the semiconductor elements 5 and 8 during the thermal cycle test.

さらに、熱サイクル試験時に半導体素子5、8に作用する引張応力は、接着剤層9を構成する絶縁樹脂層のガラス転移温度以下の線膨張係数の具体的な値に影響される。すなわち、絶縁樹脂層のガラス転移温度が135℃以上であっても、ガラス転移温度以下の線膨張係数の値自体が大きいと半導体素子5、8に作用する引張応力が増大し、これにより半導体素子5、8にクラック等が生じやすくなる。そこで、接着剤層9はガラス転移温度以下の線膨張係数が100ppm以下の絶縁樹脂層で構成する。図3に絶縁樹脂層のガラス転移温度以下の線膨張係数と熱サイクル試験(−55℃〜125℃)時に半導体素子(Siチップ)に作用する引張応力との関係の一例を示す。   Further, the tensile stress acting on the semiconductor elements 5 and 8 during the thermal cycle test is affected by a specific value of the linear expansion coefficient below the glass transition temperature of the insulating resin layer constituting the adhesive layer 9. That is, even if the glass transition temperature of the insulating resin layer is 135 ° C. or higher, if the value of the linear expansion coefficient below the glass transition temperature is large, the tensile stress acting on the semiconductor elements 5 and 8 increases, thereby Cracks and the like are likely to occur in 5 and 8. Therefore, the adhesive layer 9 is composed of an insulating resin layer having a linear expansion coefficient not higher than the glass transition temperature and not higher than 100 ppm. FIG. 3 shows an example of the relationship between the coefficient of linear expansion below the glass transition temperature of the insulating resin layer and the tensile stress acting on the semiconductor element (Si chip) during the thermal cycle test (−55 ° C. to 125 ° C.).

図3から明らかなように、絶縁樹脂層の線膨張係数が増加するにつれて半導体素子に作用する引張応力が増大することが分かる。一般的に半導体素子に作用する引張応力が300MPaを超えるとクラックが生じやすくなる。言い換えると、接着剤層9を構成する絶縁樹脂層の線膨張係数が100ppm以下であれば、熱サイクル試験時に半導体素子5、8に生じるクラックを抑制することが可能となる。半導体素子5、8に作用する引張応力はその厚さによっても変化し、半導体素子5、8の厚さが薄いほど引張応力が増大する。さらに、例えば厚さが70μm以下の半導体素子5、8を適用する場合、接着剤層9を構成する絶縁樹脂層の線膨張係数は70ppm以下とすることがより好ましい。   As is apparent from FIG. 3, it can be seen that the tensile stress acting on the semiconductor element increases as the linear expansion coefficient of the insulating resin layer increases. In general, cracks tend to occur when the tensile stress acting on a semiconductor element exceeds 300 MPa. In other words, if the linear expansion coefficient of the insulating resin layer constituting the adhesive layer 9 is 100 ppm or less, it is possible to suppress cracks that occur in the semiconductor elements 5 and 8 during the thermal cycle test. The tensile stress acting on the semiconductor elements 5 and 8 varies depending on the thickness thereof, and the tensile stress increases as the thickness of the semiconductor elements 5 and 8 decreases. Furthermore, for example, when the semiconductor elements 5 and 8 having a thickness of 70 μm or less are applied, the linear expansion coefficient of the insulating resin layer constituting the adhesive layer 9 is more preferably 70 ppm or less.

図4に半導体素子の厚さと接着剤層の厚さが熱サイクル試験(−55℃〜125℃)時に半導体素子(Siチップ)の表面引張応力値に及ぼす影響を測定した結果を示す。図4から明らかなように、接着剤層(絶縁樹脂層)9の厚さが厚いほど半導体素子5、8の表面引張応力値が増大し、さらに半導体素子5、8の厚さが薄いほど表面引張応力値が増大する。従って、厚さが70μm以下と薄い半導体素子5、8で積層型半導体装置1を構成する場合には、絶縁樹脂層の線膨張係数は70ppm以下とすることがより好ましい。   FIG. 4 shows the results of measuring the influence of the thickness of the semiconductor element and the adhesive layer on the surface tensile stress value of the semiconductor element (Si chip) during the thermal cycle test (−55 ° C. to 125 ° C.). As apparent from FIG. 4, the surface tension stress value of the semiconductor elements 5 and 8 increases as the thickness of the adhesive layer (insulating resin layer) 9 increases, and the surface decreases as the thickness of the semiconductor elements 5 and 8 decreases. The tensile stress value increases. Therefore, when the stacked semiconductor device 1 is composed of the semiconductor elements 5 and 8 having a thickness of 70 μm or less, it is more preferable that the linear expansion coefficient of the insulating resin layer is 70 ppm or less.

上述したように、第2の接着剤層9をガラス転移温度が135℃以上で、かつガラス転移温度以下の線膨張係数が100ppm以下、さらには70ppm以下の絶縁樹脂層で構成することによって、熱サイクル試験時における接着剤層9と半導体素子5、8との線膨張係数の差が小さくなるため、半導体素子5、8に作用する熱応力(引張応力)を低減することが可能となる。これによって、熱サイクル試験時に半導体素子5、8に生じるクラックや割れ等を抑制することができる。すなわち、積層型半導体装置1の熱サイクル試験に対する信頼性を高めることが可能となる。このような熱サイクルに対する信頼性の向上効果は、特に厚さが70μm以下の半導体素子5、8を適用した場合に有効である。   As described above, the second adhesive layer 9 is made of an insulating resin layer having a glass transition temperature of 135 ° C. or higher and a linear expansion coefficient of 100 ppm or lower, further 70 ppm or lower. Since the difference in coefficient of linear expansion between the adhesive layer 9 and the semiconductor elements 5 and 8 during the cycle test is reduced, it is possible to reduce the thermal stress (tensile stress) acting on the semiconductor elements 5 and 8. Thereby, cracks, cracks, and the like generated in the semiconductor elements 5 and 8 during the thermal cycle test can be suppressed. That is, the reliability of the stacked semiconductor device 1 with respect to the thermal cycle test can be increased. Such an effect of improving the reliability with respect to the heat cycle is particularly effective when the semiconductor elements 5 and 8 having a thickness of 70 μm or less are applied.

第2の接着剤層9を構成する絶縁樹脂層は、例えばエポキシ樹脂、シリコーン樹脂、ポリイミド樹脂、アクリル樹脂、ビスマレイミド樹脂等の熱硬化性樹脂で構成することが好ましい。このような熱硬化性絶縁樹脂を適用するにあたって、主鎖の分子量、重合度、架橋度合、側鎖の置換基の種類や量、樹脂組成物における添加剤(例えば可塑剤)の種類や量、硬化剤や架橋剤の種類や量等によって、接着剤層(絶縁樹脂層)9のガラス転移温度を調整することができる。さらに、絶縁樹脂組成物中におけるシリカ等の無機質充填材の含有量を調整することによって、絶縁樹脂層の線膨張係数を制御することができる。   The insulating resin layer that constitutes the second adhesive layer 9 is preferably composed of a thermosetting resin such as an epoxy resin, a silicone resin, a polyimide resin, an acrylic resin, or a bismaleimide resin. In applying such a thermosetting insulating resin, the molecular weight of the main chain, the degree of polymerization, the degree of crosslinking, the type and amount of side chain substituents, the type and amount of additives (for example, plasticizers) in the resin composition, The glass transition temperature of the adhesive layer (insulating resin layer) 9 can be adjusted by the kind and amount of the curing agent and the crosslinking agent. Furthermore, the linear expansion coefficient of the insulating resin layer can be controlled by adjusting the content of an inorganic filler such as silica in the insulating resin composition.

このように、熱硬化性絶縁樹脂の種類、構造、重合条件、また添加剤の種類や量等に基づいて、ガラス転移温度を135℃以上とすると共に、ガラス転移温度以下の線膨張係数を100ppm以下(さらには70ppm以下)に調整した絶縁樹脂層で、半導体素子5、8間の接着剤層9を構成する。2層構造の接着剤層9を適用する場合には、それぞれ上記条件を満足させるものとする。第2の接着剤層9は、例えば半導体ウエハの裏面に接着剤シートを貼り付けたり、接着剤樹脂組成物(塗布用樹脂組成物)を塗布した後、これらを半導体ウエハと共に切断することにより形成される。また、個片状の接着剤シートを第1の半導体素子5と第2の半導体素子8との間に供給して第2の接着剤層9として機能させるようにしてもよい。接着剤層9の供給方法は特に限定されるものではない。   Thus, based on the type, structure, polymerization conditions, and type and amount of additive of the thermosetting insulating resin, the glass transition temperature is set to 135 ° C. or higher, and the linear expansion coefficient below the glass transition temperature is set to 100 ppm. The adhesive resin layer 9 between the semiconductor elements 5 and 8 is configured with an insulating resin layer adjusted to the following (further 70 ppm or less). When the adhesive layer 9 having a two-layer structure is applied, the above conditions are satisfied. The second adhesive layer 9 is formed by, for example, attaching an adhesive sheet to the back surface of a semiconductor wafer or applying an adhesive resin composition (application resin composition) and then cutting them together with the semiconductor wafer. Is done. Alternatively, a piece of adhesive sheet may be supplied between the first semiconductor element 5 and the second semiconductor element 8 so as to function as the second adhesive layer 9. The method for supplying the adhesive layer 9 is not particularly limited.

また、第2の接着剤層9は硬化後の弾性率(常温弾性率)が500MPa以上2GPa以下であることが好ましい。硬化後の第2の接着剤層(硬化樹脂層)9の弾性率が500MPa未満であると、ワイヤボンディング工程における第2の半導体素子8の撓みが大きくなり、第2の半導体素子8にクラック等が生じやすくなる。硬化後の第2の接着剤層9の弾性率が2GPaを超えると、第2の半導体素子8や積層型半導体装置1の製造性の低下等を招くおそれがある。このような範囲において、接着剤層9の弾性率は熱サイクル試験時における半導体素子5、8の表面引張応力値に影響を及ぼさないことを確認した。   The second adhesive layer 9 preferably has a cured elastic modulus (room temperature elastic modulus) of 500 MPa to 2 GPa. When the elastic modulus of the second adhesive layer (cured resin layer) 9 after curing is less than 500 MPa, the bending of the second semiconductor element 8 in the wire bonding step increases, and cracks or the like occur in the second semiconductor element 8. Is likely to occur. If the elastic modulus of the second adhesive layer 9 after curing exceeds 2 GPa, the productivity of the second semiconductor element 8 and the stacked semiconductor device 1 may be reduced. In such a range, it was confirmed that the elastic modulus of the adhesive layer 9 does not affect the surface tensile stress values of the semiconductor elements 5 and 8 during the thermal cycle test.

上述した実施形態の積層型半導体装置1は、例えば以下のようにして作製される。まず、回路基板2上に第1の接着剤層6を用いて第1の半導体素子5を接着する。続いて、ワイヤボンディング工程を実施して、第1のボンディングワイヤ7で回路基板2の電極部4と第1の半導体素子5の電極パッド5aとを電気的に接続する。次に、第1の半導体素子5上に第2の接着剤層9を用いて第2の半導体素子8を接着する。   The stacked semiconductor device 1 of the above-described embodiment is manufactured as follows, for example. First, the first semiconductor element 5 is bonded onto the circuit board 2 using the first adhesive layer 6. Subsequently, a wire bonding step is performed to electrically connect the electrode portion 4 of the circuit board 2 and the electrode pad 5 a of the first semiconductor element 5 with the first bonding wire 7. Next, the second semiconductor element 8 is bonded onto the first semiconductor element 5 using the second adhesive layer 9.

第2の半導体素子8の接着工程を実施するにあたって、第2の接着剤層9は例えば接着剤シートの貼り付け層や接着剤樹脂組成物の塗布層として、予め第2の半導体素子8に分割する前の半導体ウエハの裏面に形成しておく。これらを半導体ウエハと共に切断(ダイシング)して個片化する。次いで、個片化した第2の半導体素子8を実装ツールで保持し、これを実装ステージ上に載置した第1の半導体素子5に対して位置合せした後に下降させ、第2の接着剤層9を第1の半導体素子5に押し当てる。この際、実装ステージおよび実装ツールの少なくとも一方を用いて第2の接着剤層9を加熱して軟化または溶融させ、さらに加熱して硬化させる。   In carrying out the bonding process of the second semiconductor element 8, the second adhesive layer 9 is divided into the second semiconductor elements 8 in advance, for example, as an adhesive sheet bonding layer or an adhesive resin composition coating layer. It is formed on the back surface of the semiconductor wafer before being processed. These are cut (diced) together with the semiconductor wafer into individual pieces. Next, the separated second semiconductor element 8 is held by a mounting tool, and after being aligned with the first semiconductor element 5 placed on the mounting stage, the second semiconductor element 8 is lowered, and the second adhesive layer 9 is pressed against the first semiconductor element 5. At this time, the second adhesive layer 9 is heated and softened or melted using at least one of the mounting stage and the mounting tool, and further heated and cured.

第2の接着剤層9はその内部に第1のボンディングワイヤ7の一部(第1の半導体素子5との接続側端部)を取り込むことが可能な厚さを有するため、第1のボンディングワイヤ7と第2の半導体素子8との接触を抑制することができる。この後、第2の半導体素子8に対してワイヤボンディング工程を実施して、第2のボンディングワイヤ10で回路基板2の電極部4と第2の半導体素子8の電極パッド8aとを電気的に接続し、さらに第1および第2の半導体素子5、8をボンディングワイヤ7、10等と共に封止樹脂11で封止することによって、図1や図2に示した積層型半導体装置1が作製される。   Since the second adhesive layer 9 has such a thickness that a part of the first bonding wire 7 (the end on the connection side with the first semiconductor element 5) can be taken into the second adhesive layer 9, the first bonding layer 9 Contact between the wire 7 and the second semiconductor element 8 can be suppressed. Thereafter, a wire bonding step is performed on the second semiconductor element 8 to electrically connect the electrode portion 4 of the circuit board 2 and the electrode pad 8 a of the second semiconductor element 8 with the second bonding wire 10. Further, the first and second semiconductor elements 5 and 8 are sealed with the sealing resin 11 together with the bonding wires 7 and 10 and the like, whereby the stacked semiconductor device 1 shown in FIGS. 1 and 2 is manufactured. The

上述した実施形態の具体例として、厚さ60μmの半導体素子5、8間を、ガラス転移温度が155℃、ガラス転移温度以下の線膨張係数が70ppmのエポキシ樹脂系接着剤で接着した積層型半導体装置(実施例)を100個作製した。接着剤層の厚さは85μmとした。このような100個の積層型半導体装置について、−55℃×20min→常温(25℃)×20min→125℃×20minを1サイクルとする熱サイクル試験を実施したところ、500サイクル後におけるクラックの発生率は0%であった。一方、ガラス転移温度が155℃、ガラス転移温度以下の線膨張係数が120ppmのエポキシ樹脂系接着剤を用いて作製した積層型半導体装置(比較例)は、500サイクル後におけるクラックの発生率が55%まで上昇した。なお、図5に比較例の積層型半導体装置の熱サイクル試験(TCT)における累積不良率のワイブルチャートを示す。   As a specific example of the above-described embodiment, a laminated semiconductor in which a semiconductor element 5 and 8 having a thickness of 60 μm is bonded with an epoxy resin adhesive having a glass transition temperature of 155 ° C. and a linear expansion coefficient equal to or lower than the glass transition temperature of 70 ppm. 100 devices (Examples) were produced. The thickness of the adhesive layer was 85 μm. When such a 100 stacked semiconductor devices were subjected to a thermal cycle test of −55 ° C. × 20 min → normal temperature (25 ° C.) × 20 min → 125 ° C. × 20 min as one cycle, generation of cracks after 500 cycles The rate was 0%. On the other hand, a laminated semiconductor device (comparative example) manufactured using an epoxy resin adhesive having a glass transition temperature of 155 ° C. and a linear expansion coefficient equal to or lower than the glass transition temperature of 120 ppm has a crack generation rate of 55 after 500 cycles. Rose to%. FIG. 5 shows a Weibull chart of the cumulative defect rate in the thermal cycle test (TCT) of the stacked semiconductor device of the comparative example.

このように、本発明の実施形態による積層型半導体装置1は、熱サイクル試験に対する信頼性に優れるものである。本発明は半導体素子の接続にワイヤボンディング接続を使用した積層型半導体装置に限らず、フリップチップ接続を使用した積層型半導体装置に適用することも可能である。本発明はフリップチップ接続部の周囲を絶縁する絶縁性接着剤層の厚さを50μm以上と厚くした積層型半導体装置にも適用可能であり、この場合にも半導体素子と絶縁性接着剤層との線膨張係数の差に基づくクラック等の発生を抑制する効果、さらにはそれに基づく積層型半導体装置の信頼性の向上効果を得ることができる。   As described above, the stacked semiconductor device 1 according to the embodiment of the present invention is excellent in reliability with respect to the thermal cycle test. The present invention is not limited to a stacked semiconductor device using wire bonding connection for connecting semiconductor elements, but can also be applied to a stacked semiconductor device using flip-chip connection. The present invention can also be applied to a stacked semiconductor device in which the thickness of the insulating adhesive layer that insulates the periphery of the flip chip connecting portion is increased to 50 μm or more. In this case, the semiconductor element, the insulating adhesive layer, It is possible to obtain the effect of suppressing the occurrence of cracks and the like based on the difference between the linear expansion coefficients, and the improvement effect of the reliability of the stacked semiconductor device based thereon.

なお、本発明は上記した各実施形態に限定されるものではなく、複数の半導体素子間を厚さが50μm以上の絶縁性接着剤層を用いて接着した各種の積層型半導体装置に適用することができる。そのような積層型半導体装置についても、本発明に含まれるものである。また、本発明の実施形態は本発明の技術的思想の範囲内で拡張もしくは変更することができ、この拡張、変更した実施形態も本発明の技術的範囲に含まれるものである。   The present invention is not limited to the above-described embodiments, and may be applied to various stacked semiconductor devices in which a plurality of semiconductor elements are bonded using an insulating adhesive layer having a thickness of 50 μm or more. Can do. Such a stacked semiconductor device is also included in the present invention. The embodiments of the present invention can be expanded or modified within the scope of the technical idea of the present invention, and the expanded and modified embodiments are also included in the technical scope of the present invention.

1…積層型半導体装置、2…回路基板、4…電極部、5…第1の半導体素子、6…第1の接着剤層、7…第1のボンディングワイヤ、8…第2の半導体素子、9…第2の接着剤層、9a…第1の層(接着層)、9b…第2の層(絶縁層)、10…第2のボンディングワイヤ、11……封止樹脂。   DESCRIPTION OF SYMBOLS 1 ... Multilayer type semiconductor device, 2 ... Circuit board, 4 ... Electrode part, 5 ... 1st semiconductor element, 6 ... 1st adhesive layer, 7 ... 1st bonding wire, 8 ... 2nd semiconductor element, DESCRIPTION OF SYMBOLS 9 ... 2nd adhesive bond layer, 9a ... 1st layer (adhesion layer), 9b ... 2nd layer (insulating layer), 10 ... 2nd bonding wire, 11 ... sealing resin.

Claims (5)

回路基材上に接着された第1の半導体素子と、
前記第1の半導体素子上に厚さが50μm以上の絶縁性接着剤層を介して接着された第2の半導体素子と、
前記第1の半導体素子と前記回路基材の電極部とを電気的に接続する第1のボンディングワイヤであって、前記第1の半導体素子との接続側端部が前記絶縁性接着剤層内に取り込まれている第1のボンディングワイヤと、
前記第2の半導体素子と前記回路基材の電極部とを電気的に接続する第2のボンディングワイヤと、
前記第1および第2の半導体素子を前記第1および第2のボンディングワイヤと共に封止する封止樹脂とを具備し、
前記絶縁性接着剤層は、ガラス転移温度が135℃以上で、かつガラス転移温度以下の線膨張係数が100ppm以下であると共に、常温弾性率が500MPa以上2GPa以下である絶縁樹脂層からなることを特徴とする積層型半導体装置。
A first semiconductor element adhered on a circuit substrate;
A second semiconductor element adhered on the first semiconductor element via an insulating adhesive layer having a thickness of 50 μm or more;
A first bonding wire for electrically connecting the first semiconductor element and the electrode portion of the circuit base material, wherein a connection side end with the first semiconductor element is in the insulating adhesive layer A first bonding wire incorporated in
A second bonding wire for electrically connecting the second semiconductor element and the electrode portion of the circuit substrate;
A sealing resin for sealing the first and second semiconductor elements together with the first and second bonding wires;
The insulating adhesive layer is composed of an insulating resin layer having a glass transition temperature of 135 ° C. or more and a linear expansion coefficient of 100 ppm or less and a normal temperature elastic modulus of 500 MPa or more and 2 GPa or less. A feature of a stacked semiconductor device.
請求項1記載の積層型半導体装置において、
前記第1のボンディングワイヤは前記絶縁性接着剤層の厚さに基づいて前記第2の半導体素子の下面から離間していることを特徴とする積層型半導体装置。
The stacked semiconductor device according to claim 1,
The stacked semiconductor device according to claim 1, wherein the first bonding wire is separated from the lower surface of the second semiconductor element based on the thickness of the insulating adhesive layer.
請求項1記載の積層型半導体装置において、
前記絶縁性接着剤層は、前記第1の半導体素子側に配置され、前記第2の半導体素子の接着時温度で軟化または溶融する第1の層と、前記第2の半導体素子側に配置され、前記第2の半導体素子の接着時温度に対して層形状が維持される第2の層とを有することを特徴とする積層型半導体装置。
The stacked semiconductor device according to claim 1,
The insulating adhesive layer is disposed on the first semiconductor element side, disposed on the second semiconductor element side, and a first layer that softens or melts at a bonding temperature of the second semiconductor element. And a second layer in which the layer shape is maintained with respect to the bonding temperature of the second semiconductor element.
請求項1ないし請求項3のいずれか1項記載の積層型半導体装置において、
前記第2の半導体素子は70μm以下の厚さを有することを特徴とする積層型半導体装置。
The stacked semiconductor device according to claim 1, wherein:
The stacked semiconductor device, wherein the second semiconductor element has a thickness of 70 μm or less.
請求項1ないし請求項4のいずれか1項記載の積層型半導体装置において、
前記絶縁性接着剤層は前記第2の半導体素子の接着時温度における粘度が1kPa・s以上100kPa・s未満であることを特徴とする積層型半導体装置。
The stacked semiconductor device according to claim 1, wherein:
The insulating layer has a viscosity at a bonding temperature of the second semiconductor element of 1 kPa · s or more and less than 100 kPa · s.
JP2011179686A 2011-08-19 2011-08-19 Multilayer semiconductor device Active JP5571045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179686A JP5571045B2 (en) 2011-08-19 2011-08-19 Multilayer semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179686A JP5571045B2 (en) 2011-08-19 2011-08-19 Multilayer semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006073142A Division JP4881044B2 (en) 2006-03-16 2006-03-16 Manufacturing method of stacked semiconductor device

Publications (2)

Publication Number Publication Date
JP2011228755A true JP2011228755A (en) 2011-11-10
JP5571045B2 JP5571045B2 (en) 2014-08-13

Family

ID=45043647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179686A Active JP5571045B2 (en) 2011-08-19 2011-08-19 Multilayer semiconductor device

Country Status (1)

Country Link
JP (1) JP5571045B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127477A (en) * 2012-12-25 2014-07-07 Sumitomo Bakelite Co Ltd Manufacturing method of semiconductor device
CN107359150A (en) * 2016-05-09 2017-11-17 艾马克科技公司 Semiconductor packages and its manufacture method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009623A1 (en) * 1998-08-13 2000-02-24 Hitachi Chemical Company, Ltd. Adhesive for bonding circuit members, circuit board, and method of producing the same
JP2003213130A (en) * 2002-01-25 2003-07-30 Nippon Steel Chem Co Ltd Polyimide resin composition and fire-resistant adhesive
JP2003258034A (en) * 2002-03-06 2003-09-12 Mitsubishi Electric Corp Method for manufacturing multilayer wiring base and multilayer wiring base
JP2006005333A (en) * 2004-05-20 2006-01-05 Toshiba Corp Stacked electronic component and manufacturing method of same
WO2006109506A1 (en) * 2005-03-30 2006-10-19 Nippon Steel Chemical Co., Ltd. Process for producing semiconductor device, and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009623A1 (en) * 1998-08-13 2000-02-24 Hitachi Chemical Company, Ltd. Adhesive for bonding circuit members, circuit board, and method of producing the same
JP2003213130A (en) * 2002-01-25 2003-07-30 Nippon Steel Chem Co Ltd Polyimide resin composition and fire-resistant adhesive
JP2003258034A (en) * 2002-03-06 2003-09-12 Mitsubishi Electric Corp Method for manufacturing multilayer wiring base and multilayer wiring base
JP2006005333A (en) * 2004-05-20 2006-01-05 Toshiba Corp Stacked electronic component and manufacturing method of same
WO2006109506A1 (en) * 2005-03-30 2006-10-19 Nippon Steel Chemical Co., Ltd. Process for producing semiconductor device, and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127477A (en) * 2012-12-25 2014-07-07 Sumitomo Bakelite Co Ltd Manufacturing method of semiconductor device
CN107359150A (en) * 2016-05-09 2017-11-17 艾马克科技公司 Semiconductor packages and its manufacture method
CN107359150B (en) * 2016-05-09 2023-09-01 艾马克科技公司 Semiconductor package and method of manufacturing the same

Also Published As

Publication number Publication date
JP5571045B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP4881044B2 (en) Manufacturing method of stacked semiconductor device
JP5918664B2 (en) Manufacturing method of stacked semiconductor device
JP4188337B2 (en) Manufacturing method of multilayer electronic component
JP5306385B2 (en) Multilayer electronic components
US7615413B2 (en) Method of manufacturing stack-type semiconductor device and method of manufacturing stack-type electronic component
JP4705748B2 (en) Manufacturing method of semiconductor device
TWI607514B (en) Semiconductor device manufacturing method
KR20070094495A (en) Method of manufacturing semiconductor device
US10026679B2 (en) Process for manufacturing a package for a surface-mount semiconductor device and semiconductor device
JP5660178B2 (en) Semiconductor wafer dicing method and semiconductor device manufacturing method using the same
JP2005303267A (en) Stack-type electronic components
JP4594777B2 (en) Manufacturing method of multilayer electronic component
JP2012009655A (en) Semiconductor package and method of manufacturing the semiconductor package
JP5571045B2 (en) Multilayer semiconductor device
TWI664266B (en) Quad-flat-non-lead (qfn) semiconductor package, method of fabricating the same, and mask sheet for manufacturing the same
JP2007242684A (en) Laminated semiconductor device and laminating method of device
JP2006222470A (en) Semiconductor device and manufacturing method thereof
WO2010134230A1 (en) Semiconductor device and method for manufacturing same
JP4641551B2 (en) Manufacturing method of semiconductor device
JP2009260225A (en) Method of manufacturing semiconductor device
JP4177198B2 (en) Manufacturing method of semiconductor device
JP5635036B2 (en) Manufacturing method of semiconductor device
JP5223231B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140625

R151 Written notification of patent or utility model registration

Ref document number: 5571045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350