JP2011226948A - Heat generation method and regeneration method for heavy hydrogen storage metal - Google Patents

Heat generation method and regeneration method for heavy hydrogen storage metal Download PDF

Info

Publication number
JP2011226948A
JP2011226948A JP2010097723A JP2010097723A JP2011226948A JP 2011226948 A JP2011226948 A JP 2011226948A JP 2010097723 A JP2010097723 A JP 2010097723A JP 2010097723 A JP2010097723 A JP 2010097723A JP 2011226948 A JP2011226948 A JP 2011226948A
Authority
JP
Japan
Prior art keywords
deuterium
storage metal
metal
heavy hydrogen
heavy water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010097723A
Other languages
Japanese (ja)
Inventor
Tsunehiro Honda
常裕 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2010097723A priority Critical patent/JP2011226948A/en
Publication of JP2011226948A publication Critical patent/JP2011226948A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve an increase in storage amount of heavy hydrogen in heavy hydrogen storage metal while facilitating the movement of stored heavy hydrogen in a heat generation method through electrolysis of heavy water, a so-called room-temperature nuclear fusion reaction.SOLUTION: A heat generation method successively performs a step for storing heavy hydrogen in a heavy hydrogen storage metal by using the heavy hydrogen storage metal as an anode so that heavy water is subject to electrolysis; a step for forming a barrier layer composed of metal which has a low permeability of heavy hydrogen and with which the anode elution can be performed at the surface of the heavy hydrogen storage metal in which heavy hydrogen is stored in a state in which the electrification continues; and a step for performing electrification of heavy water by increasing the temperature of heavy water and using the heavy hydrogen storage metal as a cathode.

Description

本発明は、重水の電気分解による発熱方法、いわゆる常温核融合反応に関し、さらに詳しくは、重水素吸蔵金属に多くの重水素を吸蔵させることと、吸蔵させた重水素の運動を促進させることとの両立をはかった発熱方法に関する。   The present invention relates to an exothermic method by electrolysis of deuterium water, so-called cold fusion reaction, and more specifically, occlusion of a large amount of deuterium in a deuterium occlusion metal, and promotion of movement of the occluded deuterium. The present invention relates to a heat generation method that achieves both.

また、本発明は、上記発熱方法に用いた、重水素吸蔵金属の再生方法に関する。   The present invention also relates to a method for regenerating deuterium storage metal used in the heat generation method.

重水の電気分解による発熱方法、いわゆる常温核融合反応において、反応を起こりやすくするためには、Pdなどの重水素吸蔵金属からなる電極にできるだけ多くの重水素を吸蔵させることと、吸蔵させた重水素の運動を促進させることが重要であることが知られている。   In the exothermic method of electrolysis of heavy water, so-called cold fusion reaction, in order to make the reaction easy to occur, an electrode made of a deuterium occlusion metal such as Pd is made to occlude as much deuterium as possible and It is known that it is important to promote the movement of hydrogen.

しかしながら、Pd中の重水素の吸蔵量は低温の方が多くなるが、低温では吸蔵した重水素の運動を促成させる効果が小さい。従来の実験では、重水素の吸蔵に対して不利な、80℃程度で電気分解をおこなうことが多かった。すなわち、過剰熱の発生には、高いD/Pd(Pdに対する吸蔵した重水素の割合)と、重水素の運動(拡散)とが不可欠とされながら、両者を両立させることは困難であった。   However, the amount of occluded deuterium in Pd increases at lower temperatures, but the effect of promoting the movement of occluded deuterium is small at low temperatures. In conventional experiments, electrolysis was often performed at about 80 ° C., which is disadvantageous to deuterium storage. That is, in order to generate excess heat, high D / Pd (ratio of stored deuterium to Pd) and deuterium motion (diffusion) are indispensable, but it is difficult to achieve both.

この課題を解決するための取組みが、特許文献1(特開平6−293985号公報)および特許文献2(特開平6‐148366号公報)に、それぞれ開示されている。   Approaches for solving this problem are disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 6-293985) and Patent Document 2 (Japanese Patent Laid-Open No. 6-148366), respectively.

まず、特許文献1では、低温で電気分解することによってPd中へ重水素を多く吸蔵させた後に、速やかに重水の温度を上昇させて重水素の運動を促進させ、核反応を促進させる方法が開示されている。   First, Patent Document 1 discloses a method in which a large amount of deuterium is occluded into Pd by electrolysis at a low temperature, and then the temperature of heavy water is rapidly increased to promote the movement of deuterium to promote the nuclear reaction. It is disclosed.

一方、特許文献2では、重水の電気分解によりPd中に重水素を吸蔵させた後に、電解めっき法により、Pdの表面にバリア層を形成し、重水素を閉じ込めた後に、Pdを電解槽から取出して局部的な温度差をつけることで、Pd内部において局部的に重水素濃度を高め、核反応を促進させる方法が開示されている。   On the other hand, in Patent Document 2, after deuterium is occluded in Pd by electrolysis of heavy water, a barrier layer is formed on the surface of Pd by electrolytic plating, and after deuterium is confined, Pd is removed from the electrolytic cell. A method of increasing the deuterium concentration locally in Pd and promoting the nuclear reaction by taking out and giving a local temperature difference is disclosed.

特開平6−293985号公報JP-A-6-293985 特開平6‐148366号公報JP-A-6-148366

しかしながら、上述した特許文献1に開示された方法では、重水温度の上昇にともない、Pd中の重水素の溶解度が低下するため、温度上昇とともにPdの表面から急速に重水素ガスが放出さて、高D/Pdを維持できないという問題があった。   However, in the method disclosed in Patent Document 1 described above, the deuterium solubility in Pd decreases as the deuterium water temperature rises, so deuterium gas is rapidly released from the surface of Pd as the temperature rises. There was a problem that D / Pd could not be maintained.

一方、上述した特許文献2に開示された方法は、Pd内に局部的に温度差をつけることで、低温側に高D/Pd領域を生成することが目的であるが、Pdが発熱することで冷却媒体の温度が上昇してしまい、温度差を維持することが困難であるという問題があった。   On the other hand, the method disclosed in Patent Document 2 described above is intended to generate a high D / Pd region on the low temperature side by locally creating a temperature difference in Pd, but Pd generates heat. Thus, there is a problem that the temperature of the cooling medium rises and it is difficult to maintain the temperature difference.

すなわち、特許文献1および2のいずれの方法も、Pdに多くの重水素を吸蔵させることと、重水素の運動を促進することとの、両立をはかることは困難であった。   That is, in both methods of Patent Documents 1 and 2, it has been difficult to achieve both the occlusion of a large amount of deuterium in Pd and the promotion of deuterium movement.

本発明は、上述した、従来の発熱方法の有する問題を解決するためになされたものである。その手段として、本発明の発熱方法は、重水素吸蔵金属(Pdなど)を負極に用いて、重水を電気分解し、重水素吸蔵金属に重水素を吸蔵させるステップと、重水素吸蔵金属を負極に用いた重水への通電を継続した状態で、重水素を吸蔵した重水素吸蔵金属の表面に、重水素の透過率が低く、アノード溶出が可能な金属からなるバリア層を形成するステップと、重水の温度を上昇させるとともに、重水素吸蔵金属を正極に用いて、重水に通電するステップとを順に備えることとした。   The present invention has been made to solve the above-described problems of the conventional heat generation method. As a means for this, the heat generation method of the present invention includes a step of electrolyzing heavy water using a deuterium storage metal (such as Pd) as a negative electrode, and storing the deuterium storage metal in the negative electrode. Forming a barrier layer made of a metal having a low deuterium permeability and capable of anodic elution on the surface of the deuterium occlusion metal that occludes deuterium in a state in which energization of the deuterium used in the above is continued; In addition to increasing the temperature of heavy water, a step of energizing heavy water using a deuterium storage metal as a positive electrode was sequentially provided.

本発明の発熱方法によれば、低温で重水を電気分解することができるため、重水素吸蔵金属に十分に多くの重水素を吸蔵させることができる。   According to the heat generation method of the present invention, heavy water can be electrolyzed at a low temperature, so that a sufficient amount of deuterium can be stored in the deuterium storage metal.

また、本発明の発熱方法は、発熱促進段階において、重水素吸蔵金属を正極に用いて重水に通電するものであるため、重水素吸蔵金属内部における重水素の運動(拡散)が促進される。すなわち、重水素吸蔵金属を正極に用いて通電することにより、重水素吸蔵金属の内部から、重水素が重水素吸蔵金属の外部に抜けようとするものの、重水素吸蔵金属と比較してバリア層は重水素を透過させにくいため、バリア層との界面付近の重水素吸蔵金属領域に高濃度の重水素が蓄積される。そして、電気分解により重水素吸蔵金属に吸蔵された重水素は、電気的作用により重水素吸蔵金属内に保持されているため、通電を停止することにより、一部の重水素が、速やかに重水素吸蔵金属外に、重水素ガスとして放出されることが従来法においても確認されているが、本発明においては、極性を逆にして通電することにより、通電を停止する場合と比較して、多量の重水素を速やかに放出する効果が働き、重水素吸蔵金属内部において、重水素の運動(拡散)を促進させることができる。   In the heat generation method of the present invention, since deuterium storage metal is used as a positive electrode and electricity is supplied to heavy water in the heat generation promotion stage, the movement (diffusion) of deuterium inside the deuterium storage metal is promoted. That is, deuterium occlusion metal tends to escape from the inside of the deuterium occlusion metal by energizing using the deuterium occlusion metal as the positive electrode, but the barrier layer compared to the deuterium occlusion metal. Is difficult to permeate deuterium, so that a high concentration of deuterium accumulates in the deuterium storage metal region near the interface with the barrier layer. Since the deuterium occluded in the deuterium occlusion metal by electrolysis is retained in the deuterium occlusion metal by electrical action, some deuterium is quickly deuterated by stopping energization. Although it has been confirmed in the conventional method that it is released as deuterium gas outside the hydrogen storage metal, in the present invention, by energizing with the polarity reversed, compared with the case of stopping energization, The effect of promptly releasing a large amount of deuterium works, and the movement (diffusion) of deuterium can be promoted inside the deuterium storage metal.

すなわち、本発明の発熱方法によれば、重水素吸蔵金属の高D/Pdと、重水素の運動促進とを両立させることができ、確実に発熱させることが可能になる。   That is, according to the heat generation method of the present invention, both the high D / Pd of the deuterium storage metal and the promotion of deuterium motion can be achieved, and heat can be reliably generated.

本発明の実施例にかかる発熱方法において、重水を電気分解し、重水素吸蔵金属に重水素を吸蔵させるステップを示す断面図である。In the heat generating method concerning the Example of this invention, it is sectional drawing which shows the step which electrolyzes heavy water and makes deuterium occlusion metal occlude deuterium. 本発明の実施例にかかる発熱方法において、重水素吸蔵金属の表面に、重水素の透過率が低く、アノード溶出が可能な金属からなるバリア層を形成するステップを示す断面図である。FIG. 5 is a cross-sectional view showing a step of forming a barrier layer made of a metal having low deuterium permeability and capable of anode elution on the surface of the deuterium storage metal in the heat generation method according to the example of the present invention. 本発明の実施例にかかる発熱方法において、重水の温度を上昇させるとともに、重水素吸蔵金属を正極に用いて、重水に通電するするステップを示す断面図である。In the heat generating method concerning the Example of this invention, while raising the temperature of heavy water, it is sectional drawing which shows the step which energizes heavy water using a deuterium storage metal for a positive electrode.

以下、本発明を実施するための形態について説明する。   Hereinafter, modes for carrying out the present invention will be described.

本実施形態においては、低温で重水を電気分解することにより、負極であるPdなどの重水素吸蔵金属中に、多量の重水素を吸蔵させる。重水素吸蔵金属は、Pdには限られず、Pd合金、Ti、Ti合金など、他の種類のものであっても良い。   In the present embodiment, a large amount of deuterium is occluded in the deuterium storage metal such as Pd as the negative electrode by electrolyzing heavy water at a low temperature. The deuterium storage metal is not limited to Pd, but may be other types such as Pd alloy, Ti, Ti alloy.

次に、重水素を吸蔵したPd(重水素吸蔵金属の一例)の表面に、電解めっき法により、厚いバリア層を形成する。バリア層には、Pdと比較して水素の透過率が低く、アノード溶解が可能な、たとえばCuやNiなどの成分を用いる。   Next, a thick barrier layer is formed by electrolytic plating on the surface of Pd (an example of a deuterium storage metal) that has stored deuterium. For the barrier layer, a component such as Cu or Ni, which has a lower hydrogen permeability than Pd and is capable of anodic dissolution, is used.

Pdの表面にバリア層を形成した後、重水の温度を上昇させるとともに、電源の極性を逆に切り替え、Pdを正極として重水に通電をおこなう。これにより、Pd中から重水素を放出する力が増加するとともに、アノード溶出によりバリア層を薄くすることで、バリア層を少量の重水素が通過できるようになる。Pd層とバリア層との界面付近は高D/Pdとなり、重水素の運動も促進されるため、核反応を再現性良く生じさせることが可能になる。   After the barrier layer is formed on the surface of Pd, the temperature of heavy water is raised, and the polarity of the power source is reversed, and electricity is supplied to heavy water using Pd as the positive electrode. As a result, the force for releasing deuterium from the Pd increases, and a small amount of deuterium can pass through the barrier layer by thinning the barrier layer by elution of the anode. Since the vicinity of the interface between the Pd layer and the barrier layer has a high D / Pd and the movement of deuterium is promoted, the nuclear reaction can be generated with good reproducibility.

なお、反応が終了したPdは、アノード溶解を再開し、バリア層を全て溶解させることにより、再利用が可能になる。   The Pd that has been reacted can be reused by restarting the anodic dissolution and dissolving the entire barrier layer.

(実施例)
以下、本発明の実施例について説明する。
(Example)
Examples of the present invention will be described below.

まず、図1に示すように、恒温槽(図示せず)中に設置したガラス製容器1に、重水を投入し、続いて重水を撹拌しながらLiを投入し、両者を反応させて、LiODを電解質として含む重水2を得た。   First, as shown in FIG. 1, heavy water is put into a glass container 1 installed in a thermostatic bath (not shown), and then Li is added while stirring heavy water. Was obtained as an electrolyte.

次に、重水2の中に、Pd板3とメッシュ状のPt4とを浸漬させた。Pd板3は全体が重水2に浸かるように設置し、Pt4はPd板3を取り巻くように設置した。   Next, the Pd plate 3 and the mesh-like Pt 4 were immersed in the heavy water 2. The Pd plate 3 was installed so that the whole was immersed in the heavy water 2, and Pt 4 was installed so as to surround the Pd plate 3.

次に、Pd板3を負極として、Pt4を正極として、電流密度100mAで通電して、重水2を電気分解するとともに、Pd板3中に重水素を吸蔵させた。なお、電気分解中の重水2の温度は、20℃に保った。   Next, the Pd plate 3 was used as a negative electrode, Pt4 was used as a positive electrode, and current was applied at a current density of 100 mA to electrolyze the heavy water 2 and to store the deuterium in the Pd plate 3. The temperature of heavy water 2 during electrolysis was kept at 20 ° C.

次に、図2に示すように、Pd板3のD/Pd値が飽和したことを確認したうえで、通電を継続した状態で、pH調整用にH2SO4を含むNiメッキ液を重水2の中に投入し、さらに通電を継続して、Pd板3の表面に、Ni膜からなるバリア層4を形成した。 Next, as shown in FIG. 2, after confirming that the D / Pd value of the Pd plate 3 is saturated, the Ni plating solution containing H 2 SO 4 is added to the heavy water for pH adjustment in a state where energization is continued. 2 and continued energization to form a barrier layer 4 made of a Ni film on the surface of the Pd plate 3.

次に、通電を継続した状態で、恒温槽の温度を上昇させ、重水2の温度を上昇させた。そして、重水2の温度が90℃に達した時点で通電を停止するとともに、重水2の温度を90℃に維持した。   Next, in a state where energization was continued, the temperature of the thermostatic bath was raised, and the temperature of the heavy water 2 was raised. And when the temperature of the heavy water 2 reached 90 degreeC, while stopping electricity supply, the temperature of the heavy water 2 was maintained at 90 degreeC.

次に、図3に示すように、電源の極性を逆にし、Pd板3を正極として、Pt4を負極として、通電を開始した。そして、重水2の温度が90℃を超えて上昇を開始した時点で、通電および恒温槽による加熱を停止した。   Next, as shown in FIG. 3, the polarity of the power source was reversed, and energization was started with the Pd plate 3 as the positive electrode and Pt4 as the negative electrode. And when the temperature of the heavy water 2 exceeded 90 degreeC and started the raise, electricity supply and the heating by a thermostat were stopped.

電源の極性を逆にして通電をおこない、表面がNi膜のバリア層で覆われたPd板3から重水素ガスが発生し始めた時点から、重水2の温度が上昇し、恒温槽による加熱を停止した後も、重水2が継続して沸騰することを確認した。   The energization is performed with the polarity of the power source reversed, and when the deuterium gas starts to be generated from the Pd plate 3 whose surface is covered with the barrier layer of the Ni film, the temperature of the heavy water 2 rises and the heating by the thermostatic bath is performed. After stopping, it was confirmed that heavy water 2 continued to boil.

次に、発熱終了後、次の方法で、Pd板3の表面に形成された、バリア層4を構成するNi膜を除去した。すなわち、発熱が終了したのを確認した上で、通電を再開し、アノード溶出により、Pd板3表面のバリア層4を構成するNi膜を除去した。   Next, after completion of heat generation, the Ni film forming the barrier layer 4 formed on the surface of the Pd plate 3 was removed by the following method. That is, after confirming the end of heat generation, the energization was resumed, and the Ni film constituting the barrier layer 4 on the surface of the Pd plate 3 was removed by anode elution.

この方法で再生したPd板3を用いて、再度、上述した重水2の発熱操作をおこなった。新品のPd板3を用いた場合と同様に、重水2を沸騰させることができた。   Using the Pd plate 3 regenerated by this method, the above-described heat generation operation of the heavy water 2 was performed again. Similar to the case of using a new Pd plate 3, the heavy water 2 could be boiled.

1:ガラス製容器
2:重水
3:Pd板
4:Pt(メッシュ状)
5:バリア層
1: Glass container 2: Heavy water 3: Pd plate 4: Pt (mesh)
5: Barrier layer

Claims (4)

重水素吸蔵金属を負極に用いて、重水を電気分解し、前記重水素吸蔵金属に重水素を吸蔵させるステップと、
前記重水素吸蔵金属を負極に用いた前記重水への通電を継続した状態で、前記重水素を吸蔵した前記重水素吸蔵金属の表面に、重水素の透過率が低く、アノード溶出が可能な金属からなるバリア層を形成するステップと、
前記重水の温度を上昇させるとともに、前記重水素吸蔵金属を正極に用いて、前記重水に通電するステップとを、順に備えてなる発熱方法。
Using the deuterium storage metal for the negative electrode, electrolyzing heavy water, and storing the deuterium in the deuterium storage metal;
A metal having a low deuterium permeability and capable of anodic elution on the surface of the deuterium occlusion metal that occludes the deuterium in a state where the deuterium occlusion metal is used as a negative electrode and the energization to the deuterium is continued. Forming a barrier layer comprising:
And a step of energizing the heavy water in order by increasing the temperature of the heavy water and using the deuterium storage metal as a positive electrode.
前記重水素吸蔵金属の表面への前記バリア層の形成が、電解めっき法によりおこなわれる、請求項1に記載された発熱方法。   The heat generation method according to claim 1, wherein the barrier layer is formed on the surface of the deuterium storage metal by an electrolytic plating method. 前記重水素吸蔵金属が、Pd、Pd合金、Ti、Ti合金のいずれかである、請求項1または2に記載された発熱方法。   The heat generation method according to claim 1 or 2, wherein the deuterium storage metal is any one of Pd, Pd alloy, Ti, and Ti alloy. 請求項1ないし3のいずれか1項に記載された発熱方法の後に、
アノード溶出を実施することにより、前記重水素吸蔵金属の表面から、前記バリア層を除去する、重水素吸蔵金属の再生方法。
After the heat generation method according to any one of claims 1 to 3,
A method for regenerating a deuterium storage metal, wherein the barrier layer is removed from the surface of the deuterium storage metal by performing anode elution.
JP2010097723A 2010-04-21 2010-04-21 Heat generation method and regeneration method for heavy hydrogen storage metal Pending JP2011226948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097723A JP2011226948A (en) 2010-04-21 2010-04-21 Heat generation method and regeneration method for heavy hydrogen storage metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097723A JP2011226948A (en) 2010-04-21 2010-04-21 Heat generation method and regeneration method for heavy hydrogen storage metal

Publications (1)

Publication Number Publication Date
JP2011226948A true JP2011226948A (en) 2011-11-10

Family

ID=45042450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097723A Pending JP2011226948A (en) 2010-04-21 2010-04-21 Heat generation method and regeneration method for heavy hydrogen storage metal

Country Status (1)

Country Link
JP (1) JP2011226948A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170982A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Nuclide transformation device and nuclide transformation method
JP2016138807A (en) * 2015-01-27 2016-08-04 三菱重工業株式会社 Method for regenerating nuclide conversion reaction membrane and nuclide conversion system
JP2017167161A (en) * 2017-05-31 2017-09-21 三菱重工業株式会社 Radioactive cesium processing system and radioactive cesium processing method
WO2021206036A1 (en) * 2020-04-07 2021-10-14 児玉 紀行 Cold fusion device, and heat generation device and heat generation method using cold fusion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170982A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Nuclide transformation device and nuclide transformation method
JP2016138807A (en) * 2015-01-27 2016-08-04 三菱重工業株式会社 Method for regenerating nuclide conversion reaction membrane and nuclide conversion system
JP2017167161A (en) * 2017-05-31 2017-09-21 三菱重工業株式会社 Radioactive cesium processing system and radioactive cesium processing method
WO2021206036A1 (en) * 2020-04-07 2021-10-14 児玉 紀行 Cold fusion device, and heat generation device and heat generation method using cold fusion

Similar Documents

Publication Publication Date Title
Zhang et al. Forming process of anodic TiO2 nanotubes under a preformed compact surface layer
US20080296172A1 (en) Pulsed electrolysis apparatus and method of using same
JP2016098410A (en) Organic hydride production apparatus and organic hydride production method using the same
KR102023363B1 (en) Leveling agent for nickel electrolytic plating and nickel electrolytic plating solution containing the leveling agent
CN113430570A (en) Hydrogen production electrolyte temperature control method and hydrogen production system
JP2016204698A (en) Electrolysis system, and electrolysis method using electrolysis system
JP2011226948A (en) Heat generation method and regeneration method for heavy hydrogen storage metal
JP2014136832A (en) Anodic oxide film and method for manufacturing the same
US20190161876A1 (en) Electrochemical Method of Ammonia Generation
JP5779292B1 (en) Electrolytic solution manufacturing method, electrolytic solution and electrolytic solution manufacturing apparatus
JP3549865B2 (en) Separation and recovery method of rare element FP in spent nuclear fuel and nuclear power generation-fuel cell power generation symbiosis system using the same
JP4407529B2 (en) Sulfuric acid recycling cleaning system
Cross et al. Power and energy capacity tradeoffs in an all-aqueous copper thermally regenerative ammonia battery
Xie et al. Electro-reduction of hematite using water as the redox mediator
Huang Solar hydrogen production via pulse electrolysis of aqueous ammonium sulfite solution
JP3080971B2 (en) Electrode structure for ozone production and method for producing the same
JPH0432502B2 (en)
JP5352246B2 (en) Persulfuric acid production apparatus and persulfuric acid production method
JP5600011B2 (en) Hydrogen gas production method
JP6587061B2 (en) Hydrogen water production equipment
CN110592608B (en) Device for electrolyzing seawater for tri-generation, method and application thereof
JP4862981B2 (en) Sulfuric acid recycle cleaning system and operation method thereof
JPH04314881A (en) Electrolytic device
JP6870389B2 (en) How to remove the oxide film on the surface of metal material
JP2016014179A (en) Method and apparatus for electrolytic treatment for continuous electrolysis of electrolytic solution