JP4862981B2 - Sulfuric acid recycle cleaning system and operation method thereof - Google Patents

Sulfuric acid recycle cleaning system and operation method thereof Download PDF

Info

Publication number
JP4862981B2
JP4862981B2 JP2004302401A JP2004302401A JP4862981B2 JP 4862981 B2 JP4862981 B2 JP 4862981B2 JP 2004302401 A JP2004302401 A JP 2004302401A JP 2004302401 A JP2004302401 A JP 2004302401A JP 4862981 B2 JP4862981 B2 JP 4862981B2
Authority
JP
Japan
Prior art keywords
cleaning
solution
electrolytic reaction
persulfuric acid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004302401A
Other languages
Japanese (ja)
Other versions
JP2006111943A (en
Inventor
範人 池宮
晴義 山川
達夫 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004302401A priority Critical patent/JP4862981B2/en
Publication of JP2006111943A publication Critical patent/JP2006111943A/en
Application granted granted Critical
Publication of JP4862981B2 publication Critical patent/JP4862981B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、シリコンウエハなどに付着した汚染物などを剥離効果が高い過硫酸溶液で洗浄剥離する際に、硫酸溶液を繰り返し利用しつつ過硫酸溶液を再生して洗浄に供する硫酸リサイクル型洗浄システムおよびその運転方法に関するものである。   The present invention relates to a sulfuric acid recycle type cleaning system that regenerates a persulfuric acid solution and uses it for cleaning while repeatedly using a sulfuric acid solution when cleaning and peeling a contaminant attached to a silicon wafer or the like with a persulfuric acid solution having a high peeling effect. And its operating method.

超LSI製造工程におけるウエハ洗浄技術は、レジスト残渣、微粒子、金属および自然酸化膜などを剥離洗浄するプロセスであり、濃硫酸と過酸化水素の混合溶液(SPM)あるいは、濃硫酸にオゾンガスを吹き込んだ溶液(SOM)が多用されている。高濃度の硫酸に過酸化水素やオゾンを加えると硫酸が酸化されて過硫酸が生成される。過硫酸は自己分解する際に強い酸化力を発するため洗浄能力が高く、上記ウエハなどの洗浄に役立つことが知られている。
また、過硫酸を生成する方法として、上記方法の他に、硫酸イオンを含む水溶液を電解槽で電解して過硫酸溶解水を得て洗浄に供する方法も知られている(特許文献1、2参照)。
Wafer cleaning technology in the VLSI manufacturing process is a process for stripping and cleaning resist residues, fine particles, metals and natural oxide films, and ozone gas is blown into concentrated sulfuric acid and hydrogen peroxide mixed solution (SPM) or concentrated sulfuric acid. A solution (SOM) is frequently used. When hydrogen peroxide or ozone is added to high-concentration sulfuric acid, the sulfuric acid is oxidized to produce persulfuric acid. It is known that persulfuric acid has a high cleaning ability because it generates a strong oxidizing power when self-decomposing, and is useful for cleaning the wafer and the like.
As a method for producing persulfuric acid, in addition to the above method, there is also known a method in which an aqueous solution containing sulfate ions is electrolyzed in an electrolytic bath to obtain persulfuric acid-dissolved water and used for washing (Patent Documents 1 and 2). reference).

特開2001−192874号公報JP 2001-192874 A 特表2003−511555号公報Special table 2003-511555 gazette

ところで、SPMでは、過酸化水素水により発生する過硫酸が自己分解し酸化力が低下すると自己分解した分を補うため過酸化水素水の補給を繰り返すことが必要である。そして硫酸濃度がある濃度を下回ると新しい高濃度硫酸と交換する。しかし、上記方法では、過酸化水素水中の水で過硫酸溶液が希釈されるため、液組成を一定に維持することが難しく、さらには所定時間もしくは処理バッチ数毎に液を廃棄して、更新することが必要である。このため洗浄効果が一定しない他、多量の薬品を保管しなければならないという問題がある。一方、SOMでは液が希釈されることがなく、一般的にSPMより液更新サイクルを長くできるものの、洗浄効果においてはSPMより劣る。   By the way, in SPM, it is necessary to repeat the replenishment of the hydrogen peroxide solution in order to compensate for the self-decomposition when the persulfuric acid generated by the hydrogen peroxide solution self-decomposes and the oxidizing power decreases. When the sulfuric acid concentration falls below a certain concentration, it is exchanged with a new high concentration sulfuric acid. However, in the above method, since the persulfuric acid solution is diluted with water in hydrogen peroxide water, it is difficult to maintain a constant liquid composition. Further, the liquid is discarded and renewed every predetermined time or every processing batch. It is necessary to. For this reason, there are problems that the cleaning effect is not constant and a large amount of chemicals must be stored. On the other hand, in the SOM, the liquid is not diluted, and although the liquid renewal cycle can be generally longer than that of the SPM, the cleaning effect is inferior to that of the SPM.

また、SPMでは、1回洗浄槽を満たした高濃度硫酸と数回の過酸化水素水添加により発生できる過硫酸量は少なく、限度がある。また、SOM法ではオゾン吹き込み量に対する過硫酸の発生効率が非常に低い。したがって、これらの方法では、生成する過硫酸の濃度に限界があり、洗浄効果にも限界があるという問題もある。   In addition, in SPM, the amount of persulfuric acid that can be generated by adding high-concentration sulfuric acid that has filled the washing tank once and hydrogen peroxide water several times is small and has a limit. Further, in the SOM method, the generation efficiency of persulfuric acid with respect to the ozone blowing amount is very low. Therefore, in these methods, there is a problem that the concentration of persulfuric acid produced is limited and the cleaning effect is also limited.

本発明は、上記事情を背景としてなされたものであり、硫酸を繰り返し使用しつつ硫酸の水溶液から電気化学的作用により過硫酸イオンを生成することで過硫酸イオンをリサイクルして硫酸使用量を大幅に低減するとともに、電気化学的反応で使用する電極の消耗を極力小さくすることができる硫酸リサイクル型洗浄システムおよびその運転方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and by reusing persulfate ions from an aqueous solution of sulfuric acid by electrochemical action while repeatedly using sulfuric acid, the persulfate ions are recycled to greatly increase the amount of sulfuric acid used. It is an object of the present invention to provide a sulfuric acid recycle type cleaning system and an operation method thereof that can reduce the consumption of an electrode used in an electrochemical reaction as much as possible.

請求項記載の硫酸リサイクル型洗浄システムの運転方法の発明は、電解反応により、溶液に含まれる硫酸イオンから過硫酸イオンを生成して過硫酸溶液を再生する電解反応装置と、過硫酸溶液を洗浄液として被洗浄材を洗浄する複数の洗浄装置と、前記電解反応装置と前記複数の洗浄装置とを個々に接続して前記過硫酸溶液をそれぞれ循環可能とする複数の循環ラインと、前記複数の洗浄装置側で洗浄液をそれぞれ加熱する加熱手段と、前記電解反応装置に送られる前記溶液を冷却する冷却手段とを備える硫酸リサイクル型洗浄システムの運転方法であって、被洗浄材の洗浄を行っている洗浄装置では、前記電解反応装置との間で過硫酸溶液の循環を停止しておき、前記被洗浄材の洗浄を行っていない洗浄装置の少なくとも一つで、電解反応により過硫酸溶液の再生を行っている前記電解反応装置との間で循環ラインによって過硫酸溶液の循環を行い、かつ該再生時に、過硫酸溶液の循環を行っている前記洗浄装置側の前記加熱手段によって前記洗浄液を高い温度に維持するとともに前記冷却手段によって該洗浄装置側から前記電解反応装置に送られる溶液の温度を低下させることを特徴とする。 The invention of the operation method of the sulfuric acid recycling type cleaning system according to claim 1 comprises an electrolytic reaction device for regenerating a persulfate solution by generating persulfate ions from sulfate ions contained in the solution by an electrolytic reaction, and a persulfate solution. A plurality of cleaning devices for cleaning a material to be cleaned as a cleaning liquid, a plurality of circulation lines that individually connect the electrolytic reaction device and the plurality of cleaning devices to allow the persulfuric acid solution to circulate; An operation method of a sulfuric acid recycling type cleaning system comprising heating means for heating the cleaning liquid on the cleaning device side and cooling means for cooling the solution sent to the electrolytic reaction device, wherein the cleaning material is cleaned. In the cleaning apparatus, the circulation of the persulfuric acid solution with the electrolytic reaction apparatus is stopped, and at least one of the cleaning apparatuses that is not cleaning the material to be cleaned, The persulfuric acid solution is circulated by a circulation line with the electrolytic reaction apparatus in which the persulfuric acid solution is regenerated by the heating, and the heating on the washing device side in which the persulfuric acid solution is circulated during the regeneration. The cleaning liquid is maintained at a high temperature by means, and the temperature of the solution sent from the cleaning device side to the electrolytic reaction device is lowered by the cooling means.

請求項記載の硫酸リサイクル型洗浄システムの運転方法の発明は、請求項に記載の発明において、前記循環ラインにおいて、前記電解反応装置からの相対的に低温な過硫酸溶液の送り液と、前記洗浄装置からの相対的に高温な過硫酸溶液の戻り液との間で熱交換を行うことを特徴とする。 The invention of the operation method of the sulfuric acid recycling type cleaning system according to claim 2 is the invention according to claim 1 , wherein in the circulation line, a relatively low temperature persulfuric acid solution feed from the electrolytic reaction device, Heat exchange is performed with a return liquid of a relatively high temperature persulfuric acid solution from the cleaning device.

請求項記載の硫酸リサイクル型洗浄システムの運転方法の発明は、請求項1または2に記載の発明において、被洗浄材の洗浄を終えた前記洗浄装置と前記電解反応装置との間で過硫酸用溶液を循環させつつ過硫酸濃度が所定濃度に達するまで前記過硫酸溶液の再生を行うステップと、その後、電解反応装置との間で過硫酸溶液の循環を行うことなく、該洗浄装置において被洗浄材の洗浄を行うステップとを繰り返し行うことを特徴とする。 The invention of claim 3 the method of operating a sulfuric acid recycle type cleaning system as claimed in the invention according to claim 1 or 2, persulfate between said electrolytic reaction apparatus and the cleaning device having been subjected to the cleaning of the cleaning material The step of regenerating the persulfuric acid solution until the persulfuric acid concentration reaches a predetermined concentration while circulating the working solution, and then the persulfuric acid solution is not circulated between the electrolytic reactor and the cleaning device. The step of cleaning the cleaning material is repeated.

請求項記載の硫酸リサイクル型洗浄システムの運転方法の発明は、請求項1〜のいずれかに記載の発明において、電解反応装置に備える電極のうち、少なくとも陽極が導電性ダイヤモンド電極であることを特徴とする。 The invention of the operation method of the sulfuric acid recycling type cleaning system according to claim 4 is the invention according to any one of claims 1 to 3 , wherein at least the anode of the electrodes provided in the electrolytic reaction apparatus is a conductive diamond electrode. It is characterized by.

請求項記載の硫酸リサイクル型洗浄システムの運転方法の発明は、請求項1〜のいずれかに記載の発明において、電解反応装置に備える導電性ダイヤモンド電極が、基板上に積層させた後に基板を取り去った自立型導電性ダイヤモンド電極であることを特徴とする。 The invention of the operation method of the sulfuric acid recycling type cleaning system according to claim 5 is the invention according to any one of claims 1 to 4 , wherein the conductive diamond electrode provided in the electrolytic reaction device is laminated on the substrate. It is a self-supporting conductive diamond electrode from which is removed.

請求項記載の硫酸リサイクル型洗浄システムの運転方法の発明は、請求項1〜のいずれかに記載の発明において、前記再生は、前記電解反応装置における電解中の過硫酸濃度が、該電解反応装置と循環接続される洗浄装置において洗浄により生成される有機性炭素濃度(TOC)に対し、過硫酸濃度〔g/l〕/TOC濃度〔g/l〕=10〜1000の条件を満たすに至るまで行うことを特徴とする。 The invention of the operation method of the sulfuric acid recycling type cleaning system according to claim 6 is the invention according to any one of claims 1 to 5 , wherein the regeneration is carried out in such a manner that the concentration of persulfuric acid during electrolysis in the electrolytic reaction apparatus is In order to satisfy the condition of persulfuric acid concentration [g / l] / TOC concentration [g / l] = 10 to 1000 with respect to the organic carbon concentration (TOC) generated by washing in the washing device circulated with the reactor. It is characterized by being performed until.

請求項記載の硫酸リサイクル型洗浄システムの発明は、電解反応により、溶液に含まれる硫酸イオンから過硫酸イオンを生成して過硫酸溶液を再生する電解反応装置と、過硫酸溶液を洗浄液として被洗浄材を洗浄する複数の洗浄装置と、前記電解反応装置と前記複数の洗浄装置とを個々に接続して前記過硫酸溶液をそれぞれ循環可能とする複数の循環ラインと、前記電解反応装置と接続する循環ラインおよび洗浄装置を選択切替する選択切替手段と、前記各洗浄装置側の洗浄液を加熱する加熱手段と、前記洗浄装置から前記電解反応装置に送られる溶液を冷却する冷却手段とを備え、前記加熱手段は、前記選択切替手段で接続される前記洗浄装置側で前記洗浄液の加熱を可能にし、前記冷却手段は、前記選択切替手段で接続されて前記溶液の電解を行う電解反応装置に送られる前記溶液の冷却を可能にすることを特徴とする。 The invention of the sulfuric acid recycling type cleaning system according to claim 7 comprises an electrolytic reaction device for regenerating a persulfate solution by generating persulfate ions from sulfate ions contained in the solution by an electrolytic reaction, and a persulfate solution as a cleaning solution. A plurality of cleaning devices for cleaning the cleaning material, a plurality of circulation lines that individually connect the electrolytic reaction device and the plurality of cleaning devices to allow the persulfuric acid solution to circulate, and a connection to the electrolytic reaction device Selection switching means for selectively switching between the circulation line and the cleaning apparatus, a heating means for heating the cleaning liquid on each cleaning apparatus side, and a cooling means for cooling the solution sent from the cleaning apparatus to the electrolytic reaction apparatus, The heating means enables heating of the cleaning liquid on the side of the cleaning device connected by the selection switching means, and the cooling means is connected by the selection switching means and the solution Characterized in that it allows the cooling of the solution to be fed to the electrolytic reaction apparatus that performs electrolytic.

本発明の方法によれば、洗浄液中の過硫酸イオンが自己分解して酸化力を発し、この酸化力によって被洗浄材の汚染物(主として有機物)などが効果的に剥離洗浄される。そして洗浄液では、溶液中の過硫酸イオンが自己分解することにより過硫酸濃度が次第に低下するが、洗浄が終了するまでは、電解反応装置との間では、汚染物を含んだ過硫酸溶液の循環はなされない。したがって、汚染物は溶液側に移行した後も洗浄装置側で過硫酸溶液によって酸化分解される。ここで、洗浄装置で洗浄している際に、洗浄装置の過硫酸溶液を電解反応装置との間で循環させると、洗浄装置内で被洗浄装置から剥離した汚染物が電解反応装置に流れ込む。この汚染物は電解反応装置に備える電極で直接酸化されることで電極を消耗させる。しかし、本願発明では、上記のように、被洗浄装置で洗浄中の過硫酸用液を電解反応装置に送液しないので、電極の上記消耗が回避される。   According to the method of the present invention, persulfate ions in the cleaning liquid self-decompose to generate an oxidizing power, and contaminants (mainly organic substances) of the material to be cleaned are effectively peeled and cleaned by this oxidizing power. In the cleaning solution, the concentration of persulfuric acid gradually decreases due to self-decomposition of persulfate ions in the solution, but until the cleaning is completed, the persulfate solution containing contaminants is circulated between the electrolytic reactor and the electrolytic reactor. Is not done. Therefore, the contaminants are oxidatively decomposed by the persulfuric acid solution on the cleaning device side even after moving to the solution side. Here, when the persulfuric acid solution of the cleaning device is circulated with the electrolytic reaction device during the cleaning by the cleaning device, the contaminants separated from the device to be cleaned in the cleaning device flow into the electrolytic reaction device. The contaminants are directly oxidized by the electrodes provided in the electrolytic reaction device, thereby consuming the electrodes. However, in the present invention, as described above, the persulfuric acid solution being cleaned by the apparatus to be cleaned is not sent to the electrolytic reaction apparatus, so that the above-described consumption of the electrodes is avoided.

また、洗浄装置で過硫酸イオンの自己分解により過硫酸濃度が低下した溶液は、洗浄が終了した後に、循環ラインを通して電解反応装置に送液される。電解反応装置では、硫酸イオンを含む溶液に陽極及び陰極を浸漬し、電極間に電流を流し電解する。これにによって溶液中の硫酸イオンが酸化されて過硫酸イオンが生成され、過硫酸濃度が十分に高い過硫酸溶液が再生される。過硫酸濃度を高めた溶液は、循環ラインを通して洗浄装置に送液される。そして溶液を洗浄装置と電解反応装置との間で循環させて上記動作を繰り返すことで、溶液の過硫酸濃度をさらに高めていくことができる。上記電解反応では、過硫酸濃度の目標値を予め定めておき、目標値に達したことで再生終了とすることができる。過硫酸濃度は、濃度自体を測定することによって知ることができる。また、この他に、洗浄終了時点での過硫酸濃度と、電解反応装置における電解条件(電解電流、電解時間)と過硫酸イオンの生成量との関係とを予めデータとして取得しておき、実際の処理におけるこれら情報から上記データを参照して過硫酸濃度を推定し上記電解処理の停止判断を行ってもよい。   Moreover, the solution in which the concentration of persulfuric acid is reduced by the self-decomposition of persulfate ions in the cleaning device is sent to the electrolytic reaction device through the circulation line after the cleaning is completed. In an electrolytic reaction apparatus, an anode and a cathode are immersed in a solution containing sulfate ions, and current is passed between the electrodes to perform electrolysis. As a result, sulfate ions in the solution are oxidized to produce persulfate ions, and a persulfate solution having a sufficiently high persulfate concentration is regenerated. The solution with increased persulfuric acid concentration is sent to the cleaning device through the circulation line. Then, by circulating the solution between the cleaning device and the electrolytic reaction device and repeating the above operation, the concentration of persulfuric acid in the solution can be further increased. In the electrolytic reaction, a target value of persulfuric acid concentration is determined in advance, and the regeneration can be terminated when the target value is reached. The persulfuric acid concentration can be known by measuring the concentration itself. In addition to this, the persulfuric acid concentration at the end of cleaning, the relationship between the electrolysis conditions (electrolysis current, electrolysis time) and the amount of persulfate ions generated in the electrolytic reaction apparatus are acquired in advance as data. The persulfate concentration may be estimated from these pieces of information in the process with reference to the data, and the electrolytic process may be stopped.

また電解反応において目標とする過硫酸濃度は、洗浄装置によって洗浄する被洗浄材の汚染物量を考慮して定めることができる。この汚染物量としては、洗浄装置において洗浄の結果生成される全有機性炭素濃度(TOC)を用いることができる。そして目標とする過硫酸濃度は、上記TOC濃度を示す汚染物を酸化分解するために、過硫酸濃度〔g/l〕/TOC濃度〔g/l〕=10〜1000の条件を満たすものとするのが望ましい。なお、同様の理由で下限を20、上限を500とするのが望ましい。したがって、過硫酸の必要量とTOC濃度との割合が上記条件を満たすように過硫酸含有溶液を製造するのが望ましい。上記TOC濃度は、被洗浄材におけるTOC濃度の情報を予め得ておき、同種の被洗浄材において該情報を用いて上記過硫酸濃度目標を定めることができる。   Further, the target persulfuric acid concentration in the electrolytic reaction can be determined in consideration of the amount of contaminants of the cleaning material to be cleaned by the cleaning device. As this amount of contaminants, the total organic carbon concentration (TOC) produced | generated as a result of washing | cleaning in a washing | cleaning apparatus can be used. The target persulfuric acid concentration satisfies the condition of persulfuric acid concentration [g / l] / TOC concentration [g / l] = 10 to 1000 in order to oxidatively decompose the contaminants showing the TOC concentration. Is desirable. For the same reason, it is desirable to set the lower limit to 20 and the upper limit to 500. Therefore, it is desirable to produce a persulfuric acid-containing solution so that the ratio between the required amount of persulfuric acid and the TOC concentration satisfies the above conditions. For the TOC concentration, information on the TOC concentration in the material to be cleaned can be obtained in advance, and the persulfuric acid concentration target can be determined using the information in the same type of material to be cleaned.

また、本発明は、一つの電解反応装置に対し、複数の洗浄装置を循環ラインで接続してシステムを構築したり、複数の電解反応装置に対し、それ以上の数の複数の洗浄装置を循環ラインで接続してシステムを構築することができる。
電解反応装置の数(一つの場合も含む)以上に洗浄装置を接続するものでは、被洗浄材の洗浄を行っている洗浄装置では、電解反応装置との間で溶液の循環を行わず、被洗浄材の洗浄を行っていない少なくとも一つの洗浄装置と電解反応装置との間で溶液の循環を行いつつ前記電解反応装置で電解を行って過硫酸溶液の再生を行い、過硫酸濃度を高める。
この酸化処理を行っている間に、電解反応装置を別の洗浄槽につないで、溶液を循環させて過硫酸含有溶液を製造するものである。
過硫酸濃度が所定濃度にまで高められた洗浄装置では、該過硫酸溶液を洗浄液として被洗浄材の洗浄に供することができる。過硫酸イオンの酸化力は強いので、溶液を洗浄槽内でのみ滞留させるだけで汚染物の酸化分解処理が行える。一方、洗浄処理を終えた洗浄装置では、電解反応装置との間で溶液を循環させるとともに電解反応装置で電解を行って上記と同様に過硫酸溶液の再生を行う。上記動作を繰り返すことで、1台の電解反応装置に対して複数の洗浄装置をメリーゴーランド式に一定の時間間隔でつないでウエハ洗浄することができる。なお、2台以上の電解反応装置に対してそれ以上の台数の洗浄装置を備えるものでも良い。
In the present invention, a system is constructed by connecting a plurality of cleaning devices to one electrolytic reaction device through a circulation line, or a plurality of cleaning devices of a larger number are circulated to a plurality of electrolytic reaction devices. A system can be constructed by connecting with a line.
In the case where the cleaning device is connected to more than the number of electrolytic reaction devices (including one case), the cleaning device cleaning the material to be cleaned does not circulate the solution between the electrolytic reaction devices, While the solution is circulated between at least one cleaning device that has not cleaned the cleaning material and the electrolytic reaction device, electrolysis is performed in the electrolytic reaction device to regenerate the persulfuric acid solution, thereby increasing the persulfuric acid concentration.
During this oxidation treatment, the electrolytic reaction apparatus is connected to another washing tank, and the solution is circulated to produce a persulfuric acid-containing solution.
In a cleaning apparatus in which the persulfuric acid concentration is increased to a predetermined concentration, the persulfuric acid solution can be used as a cleaning liquid for cleaning the material to be cleaned. Since the oxidizing power of persulfate ions is strong, the oxidative decomposition treatment of contaminants can be performed only by retaining the solution only in the washing tank. On the other hand, in the cleaning apparatus that has completed the cleaning process, the solution is circulated between the electrolytic reaction apparatus and electrolysis is performed in the electrolytic reaction apparatus to regenerate the persulfuric acid solution in the same manner as described above. By repeating the above operation, wafer cleaning can be performed by connecting a plurality of cleaning devices in a merry-go-round manner at a constant time interval to one electrolytic reaction device. Note that two or more electrolytic reaction apparatuses may be provided with more cleaning apparatuses.

本発明では、電解反応装置での電解処理や洗浄装置での洗浄処理を長い時間に亘って中断する必要がなく、また、電解処理と洗浄処理に要する時間のバランスによっては連続処理が可能になり、処理効率が大幅に向上する。
なお、電解反応装置と接続する循環ラインと洗浄装置の選択は、適宜の選択切替手段を用いて行うことができる。選択切替手段としては、切替弁や開閉弁などの弁装置などを用いることができる。
In the present invention, it is not necessary to interrupt the electrolytic treatment in the electrolytic reaction device or the cleaning treatment in the cleaning device for a long time, and continuous processing is possible depending on the balance between the time required for the electrolytic treatment and the cleaning treatment. , Processing efficiency is greatly improved.
The circulation line connected to the electrolytic reaction device and the cleaning device can be selected using appropriate selection switching means. As the selection switching means, a valve device such as a switching valve or an on-off valve can be used.

なお、過硫酸は、温度が高い程、自己分解速度が速くなり高い剥離洗浄作用が得られる。130℃といった高温では半減期が5分程度と自己分解速度が非常に速くなる。一方、電解反応装置では、溶液温度が低いほど過硫酸の生成効率が良く、また電極の損耗も小さくなる。本発明では、洗浄装置と電解反応装置とを分離することから、電解反応装置で電解される溶液の温度を、洗浄液の温度よりも低く保持することが可能になり、洗浄装置および電解反応装置での効率を上げることができる。   Note that persulfuric acid has a higher self-decomposition rate and a higher peeling cleaning action as the temperature is higher. At a high temperature such as 130 ° C., the self-decomposition rate becomes very fast with a half-life of about 5 minutes. On the other hand, in the electrolytic reaction apparatus, the lower the solution temperature, the better the efficiency of producing persulfuric acid and the smaller the wear of the electrode. In the present invention, since the cleaning device and the electrolytic reaction device are separated, the temperature of the solution electrolyzed in the electrolytic reaction device can be kept lower than the temperature of the cleaning solution. Can increase the efficiency.

洗浄液は、適宜の加熱手段により加熱して適温にすることができる。加熱手段としてはヒータや熱水、蒸気などとの熱交換を利用した加熱器などが例示されるが本発明としては特定のものに限定されない。洗浄液の適温としては、例えば100℃〜150℃を示すことができる。該温度範囲を下回ると、過硫酸による剥離洗浄効果が低下する。一方、160℃を超えると、過硫酸の自己分解速度が極めて大きくなり、レジストなどを十分に酸化できないので、洗浄液の適温を上記範囲に定めた。   The cleaning liquid can be heated to an appropriate temperature by appropriate heating means. Examples of the heating means include a heater, a heater utilizing heat exchange with hot water, steam, and the like, but the present invention is not limited to a specific one. The appropriate temperature of the cleaning liquid can be, for example, 100 ° C. to 150 ° C. Below this temperature range, the effect of stripping and cleaning with persulfuric acid decreases. On the other hand, when the temperature exceeds 160 ° C., the rate of self-decomposition of persulfuric acid becomes extremely high, and the resist and the like cannot be sufficiently oxidized.

また、電解反応装置で電解される溶液は、適宜の冷却手段で冷却して適温にすることができる。冷却手段としては空冷、水冷などの冷却器を例示することができる。電解される溶液としての適温は、10〜90℃の範囲を示すことができる。上記温度範囲を超えると、電解効率が低下し、電極の損耗も大きくなる。一方、上記温度範囲を下回ると、洗浄装置内温度を130℃まで加熱するための熱エネルギーが莫大になるとともに、熱交換のための配管経路が大幅に長くなり実用的でない。なお、同様の理由により、下限を40℃、上限を80℃とするのが一層望ましい。
上記した加熱手段や冷却手段は、洗浄装置や電解反応装置に付設してもよく、また、循環ラインに設けても良い。さらに洗浄装置や電解反応装置に別ラインを設けて溶液の加熱や冷却を行うようにしてもよい。
Moreover, the solution electrolyzed by the electrolytic reaction apparatus can be cooled to an appropriate temperature by an appropriate cooling means. Examples of the cooling means include air coolers and water coolers. The appropriate temperature as the solution to be electrolyzed can be in the range of 10 to 90 ° C. When the temperature range is exceeded, the electrolysis efficiency decreases and the wear of the electrode also increases. On the other hand, if the temperature is below the above temperature range, the heat energy for heating the cleaning apparatus internal temperature to 130 ° C. becomes enormous, and the piping path for heat exchange becomes significantly longer, which is not practical. For the same reason, it is more desirable to set the lower limit to 40 ° C. and the upper limit to 80 ° C.
The heating means and cooling means described above may be attached to a cleaning device or an electrolytic reaction device, or may be provided in a circulation line. Further, another line may be provided in the cleaning device or the electrolytic reaction device to heat or cool the solution.

また、電解される溶液の温度調整は、溶液を循環ラインで洗浄装置と電解反応装置との間で送液する際に互いに熱交換することにより行うことができる。すなわち、相対的に温度が高くされ、洗浄装置から電解反応装置に送液する過硫酸溶液(戻り液)と、相対的に温度が低くされ、電解反応装置から洗浄装置に送液する過硫酸溶液(送り液)とを互いに熱交換すると、温度の高い戻り液は、熱交換によって熱が奪われることで温度が低下し、電解反応装置の電解用の溶液として望ましい温度調整がなされる。熱交換は、熱交換器等の適宜の熱交換手段により行うことができる。熱交換器の流路を含めて循環ラインにおける流路材料には、過硫酸による損傷を受けにくい石英やテトラフルオロエチレンが望ましい。なお、上記熱交換に加えて電解される溶液を冷却する手段を付設することも可能である。   The temperature of the solution to be electrolyzed can be adjusted by exchanging heat with each other when the solution is sent between the cleaning device and the electrolytic reaction device through a circulation line. That is, a persulfuric acid solution (return solution) that is relatively heated and sent from the cleaning device to the electrolytic reaction device, and a persulfuric acid solution that is relatively lowered in temperature and sent from the electrolytic reaction device to the cleaning device When the (feed liquid) is heat-exchanged with each other, the return liquid having a high temperature is deprived of heat by heat exchange, and the temperature is lowered, so that temperature adjustment desirable as an electrolysis solution of the electrolytic reaction apparatus is performed. The heat exchange can be performed by an appropriate heat exchange means such as a heat exchanger. Quartz and tetrafluoroethylene, which are not easily damaged by persulfuric acid, are desirable for the flow path material in the circulation line including the flow path of the heat exchanger. In addition to the heat exchange, it is possible to provide a means for cooling the solution to be electrolyzed.

上記システムでは、電解反応装置で電解される溶液は、硫酸イオンを含むものであり、電解反応装置における過硫酸イオンの生成効率は、硫酸濃度に大きく影響される。具体的には硫酸濃度が低いほど過硫酸発生効率は大きくなる。一方で、硫酸濃度を低くすると、レジスト等の有機化合物の溶解度が低くなり、被洗浄材から剥離しにくくなる。これらの観点から、システムに用いられる溶液の硫酸濃度は、例えば8M〜18Mの範囲が望ましい。同様の理由で、下限は12M、上限は17Mであるのが一層望ましい。   In the above system, the solution electrolyzed in the electrolytic reaction apparatus contains sulfate ions, and the production efficiency of persulfate ions in the electrolytic reaction apparatus is greatly influenced by the sulfuric acid concentration. Specifically, the persulfuric acid generation efficiency increases as the sulfuric acid concentration decreases. On the other hand, when the sulfuric acid concentration is lowered, the solubility of an organic compound such as a resist is lowered, and it is difficult to peel off the material to be cleaned. From these viewpoints, the sulfuric acid concentration of the solution used in the system is preferably in the range of 8M to 18M, for example. For the same reason, it is more desirable that the lower limit is 12M and the upper limit is 17M.

電解反応装置では、陽極と陰極とを対にして電解がなされる。これら電極の材質は、本発明としては特定のものに限定はしない。しかし、電極として一般に広く利用されている白金を本発明の電解反応装置の陽極として使用した場合、過硫酸イオンを効率的に製造することができず、白金が溶出するという問題がある。これに対し、ダイヤモンド電極は、過硫酸イオンの生成を効率よく行えるとともに、電極の損耗が小さい。したがって、電解反応装置の電極のうち、少なくとも、硫酸イオンの生成がなされる陽極をダイヤモンド電極で構成するのが望ましく、陽極、陰極ともにダイヤモンド電極で構成するのが一層望ましい。   In the electrolytic reaction apparatus, electrolysis is performed by pairing an anode and a cathode. The material of these electrodes is not limited to a specific one in the present invention. However, when platinum, which is widely used as an electrode, is used as the anode of the electrolytic reaction apparatus of the present invention, there is a problem that persulfate ions cannot be produced efficiently and platinum is eluted. On the other hand, the diamond electrode can efficiently generate persulfate ions and has little electrode wear. Therefore, among the electrodes of the electrolytic reaction apparatus, it is desirable that at least the anode that generates sulfate ions is composed of a diamond electrode, and it is more desirable that both the anode and the cathode are composed of diamond electrodes.

導電性ダイヤモンド電極は、シリコンウエハ等の半導体材料を基盤とし、このウエハ表面に導電性ダイヤモンド薄膜を合成させた後に、ウエハを溶解させたものや、基盤を用いない条件で板状に析出合成したセルフスタンド型導電性多結晶ダイヤモンドを挙げることができる。また、Nb,W,Tiなどの金属基板上に積層したものも利用できるが、電流密度を大きくした場合には、ダイヤモンド膜が基板から剥離するという問題が生じやすい。   The conductive diamond electrode is based on a semiconductor material such as a silicon wafer, and after synthesizing a conductive diamond thin film on the surface of the wafer, the wafer is melted or deposited and synthesized in a plate shape without using the base. Mention may be made of self-standing conductive polycrystalline diamond. In addition, a laminate formed on a metal substrate such as Nb, W, or Ti can be used. However, when the current density is increased, there is a problem that the diamond film is peeled off from the substrate.

導電性ダイヤモンド電極によって、硫酸イオンから過硫酸イオンを製造することは、電流密度を0.2A/cm程度にした場合については報告されている(Ch.Comninellis et al.,Electrochemical and Solid−State Letters,Vol.3(2)77−79(2000),特表2003−511555号)。しかし、金属基板にダイヤモンド薄膜を担持した電極ではダイヤモンド膜の剥離が生じて、作用効果が短期間で消失するという問題がある。よって、基板上に析出させた後に基板を取り去った自立型導電性ダイヤモンド電極が望ましい。 Production of persulfate ions from sulfate ions using a conductive diamond electrode has been reported for a current density of about 0.2 A / cm 2 (Ch. Cominellis et al., Electrochemical and Solid-State). Letters, Vol. 3 (2) 77-79 (2000), Special Table 2003-511555). However, an electrode having a diamond thin film supported on a metal substrate has a problem that the diamond film is peeled off and the effect disappears in a short period of time. Therefore, a self-supporting conductive diamond electrode in which the substrate is removed after being deposited on the substrate is desirable.

なお、導電性ダイヤモンド薄膜は、ダイヤモンド薄膜の合成の際にボロンまたは窒素の所定量をドープして導電性を付与したものであり、通常はボロンドープしたものが一般的である。これらのドープ量は、少なすぎると技術的意義が発生せず、多すぎてもドープ効果が飽和するため、ダイヤモンド薄膜の炭素量に対して、50〜20,000ppmの範囲のものが適している。
本発明において、導電性ダイヤモンド電極は、通常は板状のものを使用するが、網目構造物を板状にしたものも使用できる。すなわち、本発明としては、電極の形状や数は特に限定されるものではない。
The conductive diamond thin film is a conductive thin film that is doped with a predetermined amount of boron or nitrogen during the synthesis of the diamond thin film, and is generally boron-doped. If the doping amount is too small, the technical significance does not occur. If the doping amount is too large, the doping effect is saturated. Therefore, a doping amount in the range of 50 to 20,000 ppm with respect to the carbon amount of the diamond thin film is suitable. .
In the present invention, the conductive diamond electrode is usually a plate-like one, but a network structure having a plate-like shape can also be used. That is, in the present invention, the shape and number of electrodes are not particularly limited.

この導電性ダイヤモンド電極を用いて行う電解処理は、導電性ダイヤモンド電極表面の電流密度を10〜100,000A/mとし、硫酸イオンを含む溶液をダイヤモンド電極面と平行方向に、通液線速度を1〜10,000m/hで接触処理させることが望ましい。 In the electrolytic treatment performed using the conductive diamond electrode, the current density on the surface of the conductive diamond electrode is set to 10 to 100,000 A / m 2, and a solution containing sulfate ions is parallel to the diamond electrode surface and the liquid passage speed is set. It is desirable to perform contact treatment at 1 to 10,000 m / h.

なお、本発明の洗浄システムでは、種々の被洗浄材を対象にして洗浄処理を行うことができるが、シリコンウエハ、液晶用ガラス基板、フォトマスク基板などの電子材料基板を対象にして洗浄処理をする用途に好適である。さらに具体的には、半導体基板上に付着したレジスト残渣などの有機化合物の剥離プロセスに利用することができる。また、半導体基板上に付着した微粒子、金属などの異物除去プロセスに利用することができる。
なお、従来、半導体基板の処理プロセスなどでは、洗浄処理に先立って、通常、前処理工程としてドライエッチングやアッシングプロセスを利用して有機物であるレジストを予め酸化して灰化する工程が組み込まれている。この工程は、装置コストや処理コストを高価にするという問題を有している。ところで、本発明のシステムでは、優れた洗浄効果が得られることから、上記したドライエッチングやアッシングプロセスなどの前処理工程を組み込むことなく洗浄処理を行った場合にも、十分にレジストなどの除去効果が得られる。すなわち、本発明は、これらの前処理工程を省略したプロセスを確立することも可能にする。
In the cleaning system of the present invention, cleaning processing can be performed on various materials to be cleaned, but cleaning processing is performed on electronic material substrates such as silicon wafers, glass substrates for liquid crystals, and photomask substrates. It is suitable for the use to do. More specifically, it can be used for a peeling process of an organic compound such as a resist residue attached on a semiconductor substrate. Further, it can be used for a foreign matter removing process such as fine particles and metal adhering to the semiconductor substrate.
Conventionally, prior to a cleaning process, a process for processing a semiconductor substrate usually includes a step of pre-oxidizing and ashing an organic resist using a dry etching or ashing process as a pre-processing step. Yes. This process has a problem of increasing the apparatus cost and the processing cost. By the way, in the system of the present invention, an excellent cleaning effect can be obtained. Therefore, even when a cleaning process is performed without incorporating a pretreatment process such as the above-described dry etching or ashing process, the resist is sufficiently removed. Is obtained. That is, the present invention makes it possible to establish a process in which these pretreatment steps are omitted.

以上説明したように、本発明の硫酸リサイクル型洗浄システムの運転方法によれば、電解反応により、溶液に含まれる硫酸イオンから過硫酸イオンを生成して過硫酸溶液を再生する電解反応装置と、過硫酸溶液を洗浄液として被洗浄材を洗浄する洗浄装置と、前記電解反応装置と前記洗浄装置との間で、前記過硫酸溶液を循環させる循環ラインとを備える硫酸リサイクル型洗浄システムの運転方法であって、前記洗浄装置で被洗浄材を洗浄する際に、前記循環ラインにおける過硫酸溶液の循環を停止しておき、前記洗浄装置で被洗浄材の洗浄を行っていないときに、前記電解反応装置で電解反応により過硫酸溶液の前記再生を行うとともに循環ラインによって電解反応装置と洗浄装置との間で過硫酸溶液の循環を行うので、洗浄液に移行した汚染物によって電解反応装置の電極が消耗するのを回避することができる。これにより電極の交換が不要になったり、交換時期を遅らせることができる。   As described above, according to the operation method of the sulfuric acid recycling type cleaning system of the present invention, an electrolytic reaction device that generates persulfate ions from sulfate ions contained in the solution and regenerates the persulfate solution by an electrolytic reaction; A method for operating a sulfuric acid recycle type cleaning system comprising: a cleaning device for cleaning a material to be cleaned using a persulfuric acid solution as a cleaning liquid; and a circulation line for circulating the persulfuric acid solution between the electrolytic reaction device and the cleaning device. When cleaning the material to be cleaned by the cleaning device, the circulation of the persulfuric acid solution in the circulation line is stopped, and the electrolytic reaction is performed when the material to be cleaned is not cleaned by the cleaning device. Since the persulfuric acid solution was regenerated by electrolytic reaction in the apparatus, and the persulfuric acid solution was circulated between the electrolytic reaction apparatus and the cleaning apparatus by the circulation line, it was transferred to the cleaning liquid. Dyeing by can electrode of the electrolytic reactor to avoid the wasting. This eliminates the need for electrode replacement and delays the replacement time.

さらに、電解反応により、溶液に含まれる硫酸イオンから過硫酸イオンを生成して過硫酸溶液を再生する電解反応装置と、過硫酸溶液を洗浄液として被洗浄材を洗浄する複数の洗浄装置と、前記電解反応装置と前記複数の洗浄装置とを個々に接続して前記過硫酸溶液をそれぞれ循環可能とする複数の循環ラインとを備える硫酸リサイクル型洗浄システムの運転方法であって、被洗浄材の洗浄を行っている洗浄装置では、前記電解反応装置との間で過硫酸溶液の循環を停止しておき、前記被洗浄材の洗浄を行っていない洗浄装置の少なくとも一つで、電解反応により過硫酸溶液の再生を行っている前記電解反応装置との間で循環ラインによって過硫酸溶液の循環を行うものとすれば、洗浄装置で被洗浄材の洗浄を行っている際に、他の洗浄装置と電解反応装置との間で溶液を循環させて電解を行うことで過硫酸溶液の再生を行うことができ、前記効果に加えて処理効率を向上させる効果がある。   Furthermore, by electrolytic reaction, an electrolytic reaction device that generates persulfate ions from sulfate ions contained in the solution to regenerate the persulfate solution, a plurality of cleaning devices that clean the material to be cleaned using the persulfate solution as a cleaning solution, An operation method of a sulfuric acid recycle type cleaning system comprising a plurality of circulation lines that individually connect an electrolytic reaction device and the plurality of cleaning devices to allow the persulfuric acid solution to circulate, respectively. In the cleaning device, the circulation of the persulfuric acid solution is stopped between the electrolytic reaction device, and at least one of the cleaning devices that does not clean the material to be cleaned is persulfuric acid by electrolytic reaction. If the persulfuric acid solution is circulated by a circulation line with the electrolytic reaction apparatus that is regenerating the solution, another cleaning apparatus can be used when cleaning the material to be cleaned by the cleaning apparatus. The solution is circulated between the electrolytic reaction apparatus can be reproduced persulfate solution by performing electrolysis, the effect of improving the processing efficiency in addition to the effect.

また、本発明の硫酸リサイクル型洗浄システムによれば、電解反応により、溶液に含まれる硫酸イオンから過硫酸イオンを生成して過硫酸溶液を再生する電解反応装置と、過硫酸溶液を洗浄液として被洗浄材を洗浄する複数の洗浄装置と、前記電解反応装置と前記複数の洗浄装置とを個々に接続して前記過硫酸溶液をそれぞれ循環可能とする複数の循環ラインと、前記電解反応装置と接続する循環ラインおよび洗浄装置を選択切替する選択切替手段とを備えるので、上記運転方法を確実かつ容易に実行して上記効果を得ることができる。   In addition, according to the sulfuric acid recycling type cleaning system of the present invention, an electrolytic reaction device that generates persulfate ions from sulfate ions contained in the solution by an electrolytic reaction to regenerate the persulfate solution, and the persulfate solution as a cleaning solution. A plurality of cleaning devices for cleaning the cleaning material, a plurality of circulation lines that individually connect the electrolytic reaction device and the plurality of cleaning devices to allow the persulfuric acid solution to circulate, and a connection to the electrolytic reaction device Since the circulation line and the selection switching means for selectively switching the cleaning device are provided, the above-described operation method can be executed reliably and easily to obtain the above-described effect.

参考形態
以下に、本発明に対する参考形態を図1に基づいて説明する。
本発明でいう洗浄装置に相当する洗浄槽1には、電解反応装置10を構成する電解反応槽10a、10bが戻り管4と送り管5とによって接続されている。戻り管4および送り管5は、それぞれ少なくとも内面がテトラフルオロエチレンで構成されており、戻り管4には過硫酸溶液を送液するための送液ポンプ6が介設されている。また、戻り管4、送り管5にはそれぞれ開閉弁40、50が設けられており、これら開閉弁40、50は連動して開または閉動作をする。上記戻り管4、送り管5、送液ポンプ6によって循環ラインが構成されている。また、戻り管4と送り管5との間には熱交換手段に相当する熱交換器7が介設されており、該熱交換器7によって戻り管4を流れる溶液と送り管5を流れる溶液とが互いに熱交換可能になっている。なお、熱交換器7内の流路(図示しない)も少なくとも内面がテトラフルオロエチレンで構成されている。上記のように戻り管4、送り管5、熱交換器7の流路を過硫酸に対し耐性のあるテトラフルオロエチレンなどで構成することで、過硫酸による損耗を回避することができる。
( Reference form )
Below, the reference form with respect to this invention is demonstrated based on FIG.
In the cleaning tank 1 corresponding to the cleaning apparatus in the present invention, electrolytic reaction tanks 10 a and 10 b constituting the electrolytic reaction apparatus 10 are connected by a return pipe 4 and a feed pipe 5. The return pipe 4 and the feed pipe 5 each have at least an inner surface made of tetrafluoroethylene, and a liquid feed pump 6 for feeding a persulfuric acid solution is interposed in the return pipe 4. The return pipe 4 and the feed pipe 5 are provided with on / off valves 40 and 50, respectively, and these on / off valves 40 and 50 open or close in conjunction with each other. The return pipe 4, feed pipe 5, the liquid feed pump 6, the circulation line is constituted. Between the return pipe 4 and the feed pipe 5, the heat exchanger 7, which corresponds to the heat exchange means is interposed, through the feed tube 5 with a solution flowing through the return pipe 4 by the heat exchanger 7 Heat exchange with the solution is possible. Note that at least the inner surface of the flow path (not shown) in the heat exchanger 7 is made of tetrafluoroethylene. As described above, the flow path of the return pipe 4, the feed pipe 5, and the heat exchanger 7 is made of tetrafluoroethylene or the like that is resistant to persulfuric acid, so that wear due to persulfuric acid can be avoided.

上記電解反応槽10a、10bは、直列に接続されており、電解反応槽10aに前記戻り管4が接続され、電解反応槽10bに前記送り管5が接続されている。電解反応槽10aと電解反応槽10bとの間には、連結管15が連結されている。すなわち、戻り管4、電解反応槽10a、連結管15、電解反応槽10b、送り管5の順に通液する。
電解反応槽10aには、陽極11a、陰極12a、電解反応槽10bには陽極11b、陰極12bとが配置され、さらに陽極11aと陰極12aとの間に所定の間隔をおいてバイポーラ電極13a…13aが配置され、陽極11bと陰極12bとの間に所定の間隔をおいてバイポーラ電極13b…13bが配置されている。なお電解槽は、バイポーラ式ではなく、陽極と陰極のみを電極として備えるものであってもよい。この参考形態では、これら電極11a、11b、12a、12b、13a、13bは、直径15cmのダイヤモンド電極によって構成され、各電解反応槽において10枚で一組となっている。該ダイヤモンド電極は、基板状にダイヤモンド薄膜を形成するとともに、該ダイヤモンド薄膜の炭素量に対して、好適には50〜20,000ppmの範囲でボロンをドープすることにより製造したものである。また、薄膜形成後に基板を取り去って自立型としたものであってもよい。上記陽極11aと陰極12aおよび陽極11bと陰極12bは、直流電源14に並列状態で接続されており、これにより電解反応槽10a、10bでの直流電解が可能になっている。ここで、陽極11aと陰極12aおよび陽極11bと陰極12bは直流電源14と直列状態で接続しても良い。
また上記洗浄槽1は、収容された過硫酸溶液2を加熱するヒータ21を備えており、さらに、過硫酸溶液2に超純水を補給する超純水補給ライン25を備えている。
The electrolytic reaction tanks 10a and 10b are connected in series, the return pipe 4 is connected to the electrolytic reaction tank 10a, and the feed pipe 5 is connected to the electrolytic reaction tank 10b. A connecting pipe 15 is connected between the electrolytic reaction tank 10a and the electrolytic reaction tank 10b. That is, the return pipe 4, the electrolytic reaction tank 10 a, the connecting pipe 15, the electrolytic reaction tank 10 b, and the feed pipe 5 are passed in this order.
The electrolytic reaction tank 10a is provided with an anode 11a and a cathode 12a, and the electrolytic reaction tank 10b is provided with an anode 11b and a cathode 12b. Further, bipolar electrodes 13a... 13a are provided at a predetermined interval between the anode 11a and the cathode 12a. And the bipolar electrodes 13b... 13b are arranged at a predetermined interval between the anode 11b and the cathode 12b. Note that the electrolytic cell is not a bipolar type, and may include only an anode and a cathode as electrodes. In this reference form , these electrodes 11a, 11b, 12a, 12b, 13a, and 13b are constituted by diamond electrodes having a diameter of 15 cm, and each electrode is a set of 10 in each electrolytic reaction tank. The diamond electrode is manufactured by forming a diamond thin film on a substrate and doping boron in a range of preferably 50 to 20,000 ppm with respect to the carbon content of the diamond thin film. Further, it may be a self-supporting type by removing the substrate after forming the thin film. The anode 11a and the cathode 12a, and the anode 11b and the cathode 12b are connected in parallel to the DC power source 14, thereby enabling DC electrolysis in the electrolytic reaction tanks 10a and 10b. Here, the anode 11a and the cathode 12a, and the anode 11b and the cathode 12b may be connected to the DC power source 14 in series.
The washing tank 1 includes a heater 21 that heats the persulfuric acid solution 2 accommodated therein, and further includes an ultrapure water replenishment line 25 that replenishes the persulfuric acid solution 2 with ultrapure water.

次に、上記構成よりなる硫酸リサイクル型洗浄システムの作用について説明する。
上記洗浄槽1内に、98%濃硫酸40l、超純水10lの割合で調整した高濃度硫酸溶液を収容し、ヒータ21によって加熱し、130℃に保持する。
電解反応槽10a、10bでは、陽極11a、11bおよび陰極12a、12bに直流電源14によって通電すると、バイポーラ電極13a…13a、13b…13bが分極し、所定の間隔で陽極、陰極が出現する。電解反応槽10a、10bに送液される溶液は、これら電極間に通水される。この際に通液線速度が1〜10,000m/hとなるように送液ポンプ6の出力を設定するのが望ましい。なお、上記通電では、ダイヤモンド電極表面での電流密度が10〜100,000A/mとなるように通電制御するのが望ましい。
Next, the operation of the sulfuric acid recycling type cleaning system having the above configuration will be described.
A high concentration sulfuric acid solution adjusted at a rate of 40 l of 98% concentrated sulfuric acid and 10 l of ultrapure water is accommodated in the washing tank 1, heated by the heater 21, and maintained at 130 ° C.
In the electrolytic reaction tanks 10a and 10b, when the anodes 11a and 11b and the cathodes 12a and 12b are energized by the DC power source 14, the bipolar electrodes 13a to 13b are polarized, and the anode and the cathode appear at predetermined intervals. The solution sent to the electrolytic reaction tanks 10a and 10b is passed between these electrodes. At this time, it is desirable to set the output of the liquid feed pump 6 so that the liquid flow rate is 1 to 10,000 m / h. In the above energization, it is desirable to control the energization so that the current density on the diamond electrode surface is 10 to 100,000 A / m 2 .

電解反応槽10a、10bで溶液に対し通電されると、溶液中の硫酸イオンが酸化反応して過硫酸イオンが生成される。この過硫酸溶液2は、送り管5から洗浄槽1へと送液され、洗浄槽1内において高濃度の過硫酸溶液2が得られる。洗浄槽1では、電解反応槽10a、10bとの間で溶液が循環し、電解反応槽10a、10bにおいて電解されて過硫酸イオンが生成されることから、高い過硫酸イオン濃度が得られる。なお、この参考形態では、立ち上げ時に硫酸から過硫酸を製造する過程について説明したが当初から過硫酸が用意されているものであってもよい。ただし、オンサイトで過硫酸を製造するという点では、電解反応装置を用いて過硫酸を製造することが有利である。 When electricity is supplied to the solution in the electrolytic reaction tanks 10a and 10b, sulfate ions in the solution are oxidized to generate persulfate ions. The persulfuric acid solution 2 is fed from the feed pipe 5 to the washing tank 1, and a high-concentration persulfuric acid solution 2 is obtained in the washing tank 1. In the washing tank 1, since the solution circulates between the electrolytic reaction tanks 10a and 10b and is electrolyzed in the electrolytic reaction tanks 10a and 10b to generate persulfate ions, a high persulfate ion concentration is obtained. In addition, although this reference form demonstrated the process which manufactures persulfuric acid from a sulfuric acid at the time of starting, persulfuric acid may be prepared from the beginning. However, in terms of producing persulfuric acid on-site, it is advantageous to produce persulfuric acid using an electrolytic reactor.

洗浄槽1における洗浄液が洗浄に供するものとして過硫酸濃度が十分に高くなった後、送液ポンプ6の停止、開閉弁40、50の閉動作を行い、洗浄液となる過硫酸溶液2の温度が、洗浄槽1内において130℃程度になった状態で、被洗浄材である半導体ウエハ30を洗浄槽1内に浸漬して洗浄を開始する。すると、洗浄槽1内では、過硫酸イオンの自己分解によって高い酸化作用が得られ、半導体ウエハ30上の汚染物などが効果的に剥離除去され、過硫酸溶液2中に移行する。また、過硫酸溶液2に移行した汚染物は、さらに過硫酸の酸化作用によって分解される。洗浄を継続すると、半導体ウエハ30の汚染物は次第に除去され、さらに過硫酸中の汚染物も次第に分解される。これらの除去および分解が十分になされた段階で洗浄槽1における洗浄処理を停止する。   After the persulfuric acid concentration becomes sufficiently high as the cleaning liquid in the cleaning tank 1 is used for cleaning, the liquid feed pump 6 is stopped and the opening / closing valves 40 and 50 are closed, and the temperature of the persulfuric acid solution 2 serving as the cleaning liquid is increased. In a state where the temperature in the cleaning tank 1 is about 130 ° C., the semiconductor wafer 30 as a material to be cleaned is immersed in the cleaning tank 1 and cleaning is started. Then, in the cleaning tank 1, a high oxidation action is obtained by the self-decomposition of persulfate ions, and contaminants and the like on the semiconductor wafer 30 are effectively peeled off and transferred to the persulfate solution 2. Further, the contaminants transferred to the persulfuric acid solution 2 are further decomposed by the oxidizing action of persulfuric acid. If the cleaning is continued, the contaminants of the semiconductor wafer 30 are gradually removed, and the contaminants in persulfuric acid are gradually decomposed. The cleaning process in the cleaning tank 1 is stopped when these removals and decompositions are sufficiently performed.

上記洗浄によって洗浄槽1内の過硫酸は、自己分解によって過硫酸濃度が低下しており、上記洗浄処理後、開閉弁40、50を開き、送液ポンプ6によって電解反応槽10a、10bに送液して電解反応に供する。なお、洗浄処理の終了は、実質的に終了していると見なせる状態であればよく、洗浄槽1から被洗浄材を取り除く前に上記処理を開始しても良い。電解反応槽10a、10bでは、電解反応によって硫酸イオンから過硫酸イオンが生成されて、自己分解によって低下した過硫酸濃度を高めて過硫酸溶液を再生する。再生された過硫酸溶液2は、送り管5によって洗浄槽1に送液して、洗浄槽1と電解反応槽10a、10bとの間で過硫酸溶液2を循環させつつ電解を行うことで、過硫酸溶液2の過硫酸濃度を次第に高くすることができる。   The persulfuric acid concentration in the washing tank 1 is reduced by self-decomposition by the above washing, and after the washing treatment, the on-off valves 40 and 50 are opened and sent to the electrolytic reaction tanks 10a and 10b by the liquid feed pump 6. The solution is subjected to an electrolytic reaction. Note that the end of the cleaning process may be in a state that can be regarded as substantially ended, and the above process may be started before the material to be cleaned is removed from the cleaning tank 1. In the electrolytic reaction tanks 10a and 10b, persulfate ions are generated from sulfate ions by the electrolytic reaction, and the concentration of persulfuric acid decreased by autolysis is increased to regenerate the persulfate solution. The regenerated persulfuric acid solution 2 is fed to the washing tank 1 through the feed pipe 5 and electrolyzed while circulating the persulfuric acid solution 2 between the washing tank 1 and the electrolytic reaction tanks 10a and 10b. The persulfuric acid concentration of the persulfuric acid solution 2 can be gradually increased.

また、過硫酸溶液2が洗浄槽1から電解反応槽10aに向けて上記戻り管4を移動する際に、電解反応槽10bにおいて電解処理がなされて送り管5を移動する過硫酸溶液2との間で、熱交換器7において熱交換がなされる。洗浄槽1から送液される過硫酸溶液2は、洗浄に好適なように130℃程度に加熱されている。一方、電解反応槽10bから洗浄槽1に送液される過硫酸溶液2は、40℃程度の温度を有している。これら過硫酸溶液2が熱交換されることによって戻り管4を移動する過硫酸溶液2は40℃に近い温度に低下し、一方、送り管5を移動する過硫酸溶液2は、130℃に近い温度にまで加熱される。熱交換器7で熱交換され、戻り管4を移動する過硫酸溶液2は、その後、自然冷却によって次第に降温し、電解反応に好適な40℃程度の温度となる。なお、確実に温度を低下させるため、電解槽を水冷、空冷するなどして強制的に冷却する冷却手段を付設する。熱交換器7で熱交換され、送り管5を移動する過硫酸溶液2は、洗浄槽1に送られ、洗浄槽1内に残存する過硫酸溶液2に混合される。洗浄槽1内の過硫酸溶液2の温度が低下してしまった場合には、前記ヒータ21での加熱によって洗浄に最適な温度に昇温させることができる。上記のように、高濃度硫酸溶液は洗浄槽1から電解反応槽10aへ送られる際に冷却され、電解された後、電解反応槽10bから洗浄槽1へ戻される際に加温される。この1サイクルの中で冷却される熱量と加温される熱量はほぼ等しいため、高効率の熱交換器7を組み込み、放熱分程度について外部から熱エネルギーを加えることで、効率的に過硫酸溶液の温度調整を行うことができる。なお、上記のように、電解時に洗浄装置1内の溶液温度を高く維持しておくことで、過硫酸溶液2の再生を終えた後に、速やかに洗浄に供することができる。
上記硫酸リサイクル型洗浄システムによって半導体ウエハ30の洗浄を行うことで、過酸化水素水やオゾンの添加を必要とすることなく、硫酸溶液を繰り返し使用して過硫酸溶液2を再生しつつ効果的な洗浄を継続することができる。また、電解反応装置における電極の消耗も小さなものにすることができる。
Further, when the persulfuric acid solution 2 moves from the washing tank 1 toward the electrolytic reaction tank 10a, the persulfate solution 2 is moved in the electrolytic reaction tank 10b and moved through the feed pipe 5 when the return pipe 4 is moved. In the meantime, heat exchange is performed in the heat exchanger 7. The persulfuric acid solution 2 fed from the washing tank 1 is heated to about 130 ° C. so as to be suitable for washing. On the other hand, the persulfuric acid solution 2 fed from the electrolytic reaction tank 10b to the washing tank 1 has a temperature of about 40 ° C. When these persulfuric acid solutions 2 are heat-exchanged, the persulfuric acid solution 2 moving through the return pipe 4 is lowered to a temperature close to 40 ° C., whereas the persulfuric acid solution 2 moving through the feed pipe 5 is close to 130 ° C. Heated to temperature. The persulfuric acid solution 2 that is heat-exchanged by the heat exchanger 7 and moves through the return pipe 4 is then gradually cooled by natural cooling to a temperature of about 40 ° C. suitable for the electrolytic reaction. Incidentally, surely because lowering the temperature, water-cooling the electrolytic cell and attaching a cooling means for forcibly cooling such as by air cooling. The persulfuric acid solution 2 that is heat-exchanged by the heat exchanger 7 and moves through the feed pipe 5 is sent to the washing tank 1 and mixed with the persulfuric acid solution 2 remaining in the washing tank 1. When the temperature of the persulfuric acid solution 2 in the cleaning tank 1 has decreased, the temperature can be raised to an optimum temperature for cleaning by heating with the heater 21. As described above, the high-concentration sulfuric acid solution is cooled when being sent from the washing tank 1 to the electrolytic reaction tank 10a, and after being electrolyzed, it is heated when being returned from the electrolytic reaction tank 10b to the washing tank 1. The amount of heat that is cooled in this one cycle is almost equal to the amount of heat that is heated, so a highly efficient heat exchanger 7 is incorporated, and heat energy is applied from the outside for the amount of heat release, so that the persulfuric acid solution is efficiently Temperature adjustment can be performed. Note that, as described above, by maintaining the solution temperature in the cleaning device 1 high during electrolysis, after the regeneration of the persulfuric acid solution 2 is completed, the solution can be promptly used for cleaning.
By cleaning the semiconductor wafer 30 by the sulfuric acid recycling type cleaning system, it is effective to regenerate the persulfuric acid solution 2 by repeatedly using the sulfuric acid solution without the need for adding hydrogen peroxide or ozone. Washing can be continued. In addition, the consumption of electrodes in the electrolytic reaction apparatus can be reduced.

(実施形態)
次に、本発明の実施形態について図2に基づいて説明する。なお、参考形態と同様の構成については同一の符号を付してその説明を省略または簡略化する。
この実施形態では、洗浄装置としての洗浄槽1a、1bと、電解反応装置10とを有しており、電解反応装置10と洗浄槽1aとは、戻り管4aと送り管5aとによって連結され、電解反応装置10と洗浄槽1bとは、戻り管4bと送り管5bとによって連結されている。洗浄槽1a、1bは、前記実施形態1の洗浄槽1と同様の構成を有しており、それぞれ過硫酸溶液を加熱するヒータ(図示しない)、過硫酸溶液に超純水を補給する超純水補給ライン(図示しない)を備えている。
(Working-shaped state)
Next, an embodiment of the present invention will be described with reference to FIG. In addition, about the structure similar to a reference form , the same code | symbol is attached | subjected and the description is abbreviate | omitted or simplified.
In this embodiment, it has washing tanks 1a and 1b as washing apparatuses and an electrolytic reaction apparatus 10, and the electrolytic reaction apparatus 10 and the washing tank 1a are connected by a return pipe 4a and a feed pipe 5a, The electrolytic reaction apparatus 10 and the cleaning tank 1b are connected by a return pipe 4b and a feed pipe 5b. The cleaning tanks 1a and 1b have the same configuration as that of the cleaning tank 1 of the first embodiment, respectively, a heater (not shown) for heating the persulfuric acid solution, and an ultrapure for replenishing the persulfuric acid solution with ultrapure water. A water supply line (not shown) is provided.

電解反応装置10は、実施形態1で示したものと同様に2槽の電解反応槽を直列に接続して構成されており、該2槽の電解反応槽には図示しない直流電源が接続されて直流電解可能になっている。   The electrolytic reaction apparatus 10 is configured by connecting two electrolytic reaction tanks in series in the same manner as shown in the first embodiment, and a DC power source (not shown) is connected to the two electrolytic reaction tanks. DC electrolysis is possible.

戻り管4a、4bには、過硫酸溶液2を送液するための送液ポンプ6a、6bが介設されている。また、戻り管4a、送り管5aにはそれぞれ開閉弁40a、50aが設けられ、戻り管4b、送り管5bには開閉弁40b、50bが設けられており、これら開閉弁40aと開閉弁50aおよび開閉弁40bと開閉弁50bとはそれぞれ連動して開または閉動作をする。上記戻り管4a、送り管5a、送液ポンプ6aによって、一つの循環ラインが構成され、戻り管4b、送り管5b、送液ポンプ6bによって、他の循環ラインが構成されている。なお、上記開閉弁40a、40b、50a、50bは、電解反応装置と循環ラインおよび洗浄槽とを選択して接続可能にする選択切替手段を構成している。
また、戻り管4aと送り管5aとの間、戻り管4bと送り管5bとの間には、それぞれ本発明の熱交換手段に相当する熱交換器7a、7bが介設されている。該熱交換器7aによって戻り管4aを流れる溶液と送り管5aを流れる溶液とが互いに熱交換可能になっており、該熱交換器7bによって戻り管4bを流れる溶液と送り管5bを流れる溶液とが互いに熱交換可能になっておりいる。
In the return pipes 4a and 4b, liquid feed pumps 6a and 6b for feeding the persulfuric acid solution 2 are interposed. The return pipe 4a and the feed pipe 5a are provided with on-off valves 40a and 50a, respectively, and the return pipe 4b and the feed pipe 5b are provided with on-off valves 40b and 50b. The on-off valve 40b and the on-off valve 50b open or close in conjunction with each other. The return pipe 4a, the feed pipe 5a, and the liquid feed pump 6a constitute one circulation line, and the return pipe 4b, the feed pipe 5b, and the liquid feed pump 6b constitute another circulation line. The on-off valves 40a, 40b, 50a, 50b constitute selection switching means for selecting and connecting the electrolytic reaction device, the circulation line, and the washing tank.
Further, heat exchangers 7a and 7b corresponding to the heat exchanging means of the present invention are interposed between the return pipe 4a and the feed pipe 5a and between the return pipe 4b and the feed pipe 5b, respectively. The solution flowing in the return pipe 4a and the solution flowing in the feed pipe 5a can exchange heat with each other by the heat exchanger 7a, and the solution flowing in the return pipe 4b and the solution flowing in the feed pipe 5b by the heat exchanger 7b Can exchange heat with each other.

次に、上記洗浄システムの動作について説明する。
立ち上げ時に、洗浄槽1a、1b内に、98%濃硫酸40l、超純水10lの割合で調整した高濃度硫酸溶液を収容し、ヒータによって加熱し、130℃に保持する。そして、開閉弁40a、50aを開き、送液ポンプ6aを動作させて電解反応装置10との間で溶液の循環を行う。一方、洗浄槽1b側では開閉弁40b、50bを閉じ、送液ポンプ6bを停止させて溶液の循環を停止しておく。
電解反応装置10では、溶液に対し通電されると、溶液中の硫酸イオンが酸化反応して過硫酸イオンが生成される。この過硫酸溶液2は、送り管5aから洗浄槽1aへと送液され、洗浄槽1a内において高濃度の過硫酸溶液2が得られる。洗浄槽1aでは、電解反応槽10a、10bとの間で溶液が循環し、電解反応装置10において電解されて過硫酸イオンが生成されることから、高い過硫酸イオン濃度が得られる(図2(a))。
この際には、過硫酸溶液2が洗浄槽1aから電解反応装置10に向けて上記戻り管4aを移動する際に、電解反応装置10において電解処理がなされて送り管5aを移動する過硫酸溶液2との間で、熱交換器7aにおいて前記実施形態1と同様に熱交換がなされる。
この実施形態においてもこの1サイクルの中で冷却される熱量と加温される熱量はほぼ等しいため、効率的に過硫酸溶液2の温度調整を行うことができる。
なお、上記のように、電解時に洗浄槽1内の温度を高く維持しておくことで、過硫酸溶液2の濃度を高めた後に、速やかに洗浄に供することができる。
Next, the operation of the cleaning system will be described.
At startup, a high concentration sulfuric acid solution adjusted at a ratio of 40 l of 98% concentrated sulfuric acid and 10 l of ultrapure water is accommodated in the washing tanks 1a and 1b, heated by a heater, and maintained at 130 ° C. Then, the on-off valves 40 a and 50 a are opened, and the solution pump 6 a is operated to circulate the solution between the electrolytic reaction device 10. On the other hand, on the washing tank 1b side, the on-off valves 40b and 50b are closed, and the solution feed pump 6b is stopped to stop the solution circulation.
In the electrolytic reaction device 10, when energized to the solution, sulfate ions in the solution undergo an oxidation reaction to generate persulfate ions. The persulfuric acid solution 2 is fed from the feed pipe 5a to the cleaning tank 1a, and a high-concentration persulfuric acid solution 2 is obtained in the cleaning tank 1a. In the washing tank 1a, the solution circulates between the electrolytic reaction tanks 10a and 10b and is electrolyzed in the electrolytic reaction apparatus 10 to generate persulfate ions, so that a high persulfate ion concentration is obtained (FIG. 2 ( a)).
In this case, when the persulfuric acid solution 2 moves from the washing tank 1a to the electrolytic reaction device 10 through the return pipe 4a, the persulfuric acid solution that is subjected to electrolytic treatment in the electrolytic reaction device 10 and moves through the feed pipe 5a. 2, heat exchange is performed in the heat exchanger 7 a as in the first embodiment.
Also in this embodiment, the amount of heat to be cooled and the amount of heat to be heated in this one cycle are substantially equal, so that the temperature of the persulfuric acid solution 2 can be adjusted efficiently.
In addition, as mentioned above, by maintaining the temperature in the washing tank 1 high during electrolysis, the concentration of the persulfuric acid solution 2 can be increased, and then the washing tank 1 can be quickly washed.

洗浄に適した濃度にまで高過硫酸化された洗浄槽1aでは、被洗浄材である半導体ウエハ30の洗浄を開始する。この際には、開閉弁40a、50aを閉じ、送液ポンプ6aを停止させておく。一方、洗浄槽1b側では開閉弁40b、50bを開き、送液ポンプ6bを動作させて溶液の循環を開始する。電解反応装置10では、上記と同様に溶液中の硫酸イオンが酸化反応して過硫酸イオンが生成される。この過硫酸溶液2は、送り管5bから洗浄槽1bへ送液され、洗浄槽1b内において高濃度の過硫酸溶液2が得られる。(図2(b))。したがって、洗浄槽1bにおいて、既に半導体ウエハ30の洗浄が行われていて過硫酸濃度が低下した溶液が収容されている場合にも、過硫酸溶液2として再生し、洗浄に適した過硫酸濃度にまで高めることができる。また、上記戻り管4bと送り管5bとの間においても上記と同様に熱交換器7bによって熱交換がされて過硫酸溶液2の適切な温度調整がなされている。   In the cleaning tank 1a that has been highly persulfated to a concentration suitable for cleaning, cleaning of the semiconductor wafer 30 that is a material to be cleaned is started. At this time, the on-off valves 40a and 50a are closed and the liquid feed pump 6a is stopped. On the other hand, on the cleaning tank 1b side, the on-off valves 40b and 50b are opened, and the liquid feed pump 6b is operated to start solution circulation. In the electrolytic reaction apparatus 10, the sulfate ions in the solution are oxidized to generate persulfate ions as described above. The persulfuric acid solution 2 is fed from the feed pipe 5b to the cleaning tank 1b, and a high-concentration persulfuric acid solution 2 is obtained in the cleaning tank 1b. (FIG. 2 (b)). Therefore, even when the semiconductor wafer 30 has already been cleaned in the cleaning tank 1b and a solution with a reduced persulfuric acid concentration is stored, the solution is regenerated as the persulfuric acid solution 2 to a persulfuric acid concentration suitable for cleaning. Can be increased up to. In addition, heat exchange is also performed between the return pipe 4b and the feed pipe 5b by the heat exchanger 7b in the same manner as described above, so that an appropriate temperature adjustment of the persulfuric acid solution 2 is performed.

次いで、洗浄槽1aにおける洗浄処理が終了すると、半導体ウエハ30を洗浄槽1aから取り出すとともに、開閉弁40b、50bを閉じて送液ポンプ6bを停止し、その一方で開閉弁40a、50aを開いて送液ポンプ6aを動作させて洗浄槽1aと電解反応装置10との間で溶液を循環させる。洗浄槽1bでは、溶液の循環が停止されており、新たな半導体ウエハ30を浸漬して洗浄を開始する。洗浄槽1aでは、電解反応装置10による電解反応によって洗浄に適した過硫酸濃度に至るまで再生処理が行われる(図2(c))。図2(b)に示す処理ステップと、図2(c)に示す処理ステップとは、交互に繰り返すことで被洗浄材の洗浄と過硫酸溶液の再生とが効率的に行われる。   Next, when the cleaning process in the cleaning tank 1a is completed, the semiconductor wafer 30 is taken out from the cleaning tank 1a, and the on-off valves 40b and 50b are closed to stop the liquid feed pump 6b, while the on-off valves 40a and 50a are opened. The liquid feed pump 6a is operated to circulate the solution between the cleaning tank 1a and the electrolytic reaction apparatus 10. In the cleaning tank 1b, the circulation of the solution is stopped, and cleaning is started by immersing a new semiconductor wafer 30. In the washing tank 1a, the regeneration treatment is performed until the persulfuric acid concentration suitable for washing is obtained by the electrolytic reaction by the electrolytic reaction apparatus 10 (FIG. 2C). The processing step shown in FIG. 2 (b) and the processing step shown in FIG. 2 (c) are repeated alternately, whereby the cleaning of the cleaning material and the regeneration of the persulfuric acid solution are performed efficiently.

図2に示すシステムを用いて、2槽の洗浄槽1a、1bに、98%濃硫酸40l、超純水10lの割合で調整した高濃度硫酸溶液を130℃に加熱保持した。電解反応装置10内には、直径15cm、厚さ1mmのSi基板上にボロンドープ(5,000ppm)した導電性ダイヤモンド電極を10枚組み込んだ槽を2槽直列に配列させた。2つの洗浄槽と電解反応装置とは溶液を循環させたり止めたりすることができるように設置している。電解のための有効陽極面積は30(dm)であり、電流密度を30A/(dm)に設定して、40℃で電解し、洗浄槽1aと電解反応装置との間で溶液循環を2l/min(通液線速度160m/h)の流量で実施した。10分間電解を実施した後に、洗浄槽1a内の過硫酸濃度が1.5g/lに達したことを確認したので、溶液循環を止めて、洗浄槽1bと電解反応装置10との間で溶液循環を行い、洗浄槽1aでは、レジスト付きの5インチウエハ50枚(TOC濃度:10〔mg/枚〕×50〔枚〕/50〔l〕=10〔mg/l〕)を浸漬させた。ウエハ浸漬直後のみ薄い茶色に溶液が着色したが、すぐに透明になり、TOC濃度も検出限界以下となった。洗浄槽1bについても10分間電解を実施した後に洗浄槽内の過硫酸濃度が1.5g/lに達したので、溶液循環を止めて、洗浄槽1aと電解反応装置10との間で溶液循環を再度開始した。洗浄槽1bでは、レジスト付きの5インチウエハ50枚を浸漬させた。ウエハ浸漬直後のみ薄い茶色に溶液が着色したが、すぐに透明になり、TOC濃度も検出限界以下となった。上記の手順で、洗浄槽1aと洗浄槽1bとを交互に電解反応装置10と接続して溶液循環を行い、10分を1サイクルとして、洗浄槽を切り替えながらレジスト付きウエハ50枚/サイクルの洗浄を繰り返した。32時間(洗浄ウエハ枚数は9,600枚)継続したが、高濃度硫酸溶液のレジスト剥離溶解効果は良好であり、TOC濃度についても検出限界以下を維持した。 Using the system shown in FIG. 2, high-concentration sulfuric acid solution adjusted at a ratio of 40 l of 98% concentrated sulfuric acid and 10 l of ultrapure water was heated and maintained at 130 ° C. in two cleaning tanks 1a and 1b. In the electrolytic reaction apparatus 10, two tanks incorporating 10 conductive diamond electrodes doped with boron (5,000 ppm) on a Si substrate having a diameter of 15 cm and a thickness of 1 mm were arranged in series. The two washing tanks and the electrolytic reaction apparatus are installed so that the solution can be circulated and stopped. The effective anode area for electrolysis is 30 (dm) 2 , the current density is set to 30 A / (dm) 2 , electrolysis is performed at 40 ° C., and the solution is circulated between the washing tank 1 a and the electrolysis reactor. It was carried out at a flow rate of 2 l / min (liquid passage speed 160 m / h). After carrying out the electrolysis for 10 minutes, it was confirmed that the persulfuric acid concentration in the washing tank 1a reached 1.5 g / l. Therefore, the solution circulation was stopped and the solution between the washing tank 1b and the electrolytic reaction apparatus 10 was stopped. In the cleaning tank 1a, 50 5-inch wafers with resist (TOC concentration: 10 [mg / sheet] × 50 [sheet] / 50 [l] = 10 [mg / l]) were immersed in the cleaning tank 1a. Although the solution was colored light brown only immediately after immersion in the wafer, it became transparent immediately and the TOC concentration was below the detection limit. Since the persulfuric acid concentration in the cleaning tank reached 1.5 g / l after electrolysis for 10 minutes in the cleaning tank 1b, the solution circulation was stopped and the solution circulation between the cleaning tank 1a and the electrolytic reaction apparatus 10 was performed. Started again. In the cleaning tank 1b, 50 5-inch wafers with resist were immersed. Although the solution was colored light brown only immediately after immersion in the wafer, it became transparent immediately and the TOC concentration was below the detection limit. In the above procedure, the washing tank 1a and the washing tank 1b are alternately connected to the electrolytic reaction apparatus 10 to circulate the solution, and 10 minutes is one cycle, and the wafers with resist are washed 50 cycles / cycle while switching the washing tank. Was repeated. Although it continued for 32 hours (the number of washed wafers was 9,600), the resist stripping dissolution effect of the high-concentration sulfuric acid solution was good, and the TOC concentration was kept below the detection limit.

(比較例1)
単独の洗浄槽に、98%濃硫酸40lを入れて、35%過酸化水素水10lを添加した溶液を130℃に加熱保持した。この溶液に実施例1と同様の浸漬サイクルでレジスト付きウエハを浸漬させて、レジスト溶解を行った。最初の6サイクル(洗浄ウエハ枚数は300枚)までは、ウエハ浸漬直後に溶液が茶褐色に着色するが、10分弱で無色透明となり、TOC濃度についても検出限界となった。しかし、次の50枚については、浸漬直後から10分経過しても溶液は茶褐色を呈したままで、TOC濃度として10mg/lの残存が認められた。そこで、洗浄槽内の溶液10lを引き抜き、過酸化水素水10lを追加添加し、溶液を130℃に加熱保持した。再びウエハ浸漬を継続した。最初の2サイクル(洗浄ウエハ枚数は100枚)までは、ウエハ浸漬直後に溶液が茶褐色に着色するが、10分弱で無色透明となり、TOC濃度についても検出限界となった。しかし、次の50故については、浸漬直後から10分経過しても溶液は茶褐色を呈したままで、TOC濃度として10mg/lの残存が認められた。再度、洗浄槽内の溶液10lを引き抜いて、過酸化水素水10lを追加添加した。ウエハ浸漬を継続したが、50枚のウエハを浸漬したところで、レジスト剥離溶解効果が悪く10分経過してもレジストがウエハに残存した。ウエハの総処理枚数は、400枚のところで、全体の溶液の交換が必要となった。
(Comparative Example 1)
A solution containing 40 l of 98% concentrated sulfuric acid and 10 l of 35% hydrogen peroxide was heated and maintained at 130 ° C. in a single washing tank. The resist-coated wafer was immersed in this solution in the same immersion cycle as in Example 1 to perform resist dissolution. Up to the first 6 cycles (300 wafers to be cleaned), the solution turned brown immediately after immersion in the wafer, but became colorless and transparent in less than 10 minutes, and the TOC concentration was also a detection limit. However, for the next 50 sheets, the solution remained brown even after 10 minutes immediately after immersion, and a residual TOC concentration of 10 mg / l was observed. Therefore, 10 l of the solution in the washing tank was pulled out, 10 l of hydrogen peroxide solution was added, and the solution was heated and maintained at 130 ° C. The wafer immersion was continued again. Up to the first 2 cycles (100 wafers to be cleaned), the solution was colored brown immediately after immersion in the wafer, but became colorless and transparent in a little less than 10 minutes, and the TOC concentration became the detection limit. However, for the next 50 reasons, even after 10 minutes passed immediately after immersion, the solution remained brown and a residual TOC concentration of 10 mg / l was observed. Again, 10 l of the solution in the washing tank was withdrawn, and 10 l of hydrogen peroxide solution was additionally added. Although the wafer immersion was continued, when 50 wafers were immersed, the resist peeling dissolution effect was poor and the resist remained on the wafer even after 10 minutes. When the total number of processed wafers was 400, the entire solution had to be replaced.

本発明に対する参考形態における洗浄システムを示す図である。It is a figure which shows the washing | cleaning system in the reference form with respect to this invention. 本発明の一実施形態における洗浄システムにおける動作状態を示す図である。It is a figure which shows the operation state in the washing | cleaning system in one Embodiment of this invention .

符号の説明Explanation of symbols

1、1a、1b 洗浄槽
2 過硫酸溶液
4、4a、4b 戻り管
5、5a、5b 送り管
6、6a、6b 送液ポンプ
7、7a、7b 熱交換器
10 電解反応装置
10a、10b 電解反応槽
11、11a、11b 陽極
12、12a、12b 陰極
13 バイポーラ電極
14 直流電源
21 ヒータ
25 超純水補給ライン
30 半導体ウエハ
1, 1a, 1b Washing tank 2 Persulfate solution 4, 4a, 4b Return pipe 5, 5a, 5b Feed pipe 6, 6a, 6b Liquid feed pump 7, 7a, 7b Heat exchanger 10 Electrolytic reactor 10a, 10b Electrolytic reaction Tank 11, 11a, 11b Anode 12, 12a, 12b Cathode 13 Bipolar electrode 14 DC power supply 21 Heater 25 Ultrapure water supply line 30 Semiconductor wafer

Claims (7)

電解反応により、溶液に含まれる硫酸イオンから過硫酸イオンを生成して過硫酸溶液を再生する電解反応装置と、過硫酸溶液を洗浄液として被洗浄材を洗浄する複数の洗浄装置と、前記電解反応装置と前記複数の洗浄装置とを個々に接続して前記過硫酸溶液をそれぞれ循環可能とする複数の循環ラインと、前記複数の洗浄装置側で洗浄液をそれぞれ加熱する加熱手段と、前記電解反応装置に送られる前記溶液を冷却する冷却手段とを備える硫酸リサイクル型洗浄システムの運転方法であって、被洗浄材の洗浄を行っている洗浄装置では、前記電解反応装置との間で過硫酸溶液の循環を停止しておき、前記被洗浄材の洗浄を行っていない洗浄装置の少なくとも一つで、電解反応により過硫酸溶液の再生を行っている前記電解反応装置との間で循環ラインによって過硫酸溶液の循環を行い、かつ該再生時に、過硫酸溶液の循環を行っている前記洗浄装置側の前記加熱手段によって前記洗浄液を高い温度に維持するとともに前記冷却手段によって該洗浄装置側から前記電解反応装置に送られる溶液の温度を低下させることを特徴とする硫酸リサイクル型洗浄システムの運転方法。   An electrolytic reaction device that regenerates a persulfate solution by generating persulfate ions from sulfate ions contained in the solution by an electrolytic reaction, a plurality of cleaning devices that wash a material to be cleaned using the persulfate solution as a cleaning solution, and the electrolytic reaction A plurality of circulation lines that allow the persulfuric acid solution to be circulated by individually connecting the apparatus and the plurality of cleaning apparatuses, a heating unit that heats the cleaning liquid on each of the plurality of cleaning apparatuses, and the electrolytic reaction apparatus A method for operating a sulfuric acid recycling type cleaning system comprising a cooling means for cooling the solution sent to a cleaning device, wherein a cleaning material is cleaned with a persulfate solution between the electrolytic reactor and the electrolytic reaction device. Circulation is stopped and at least one of the cleaning apparatuses that have not cleaned the material to be cleaned is circulated with the electrolytic reaction apparatus in which the persulfuric acid solution is regenerated by electrolytic reaction. The cleaning solution is maintained at a high temperature by the heating means on the side of the cleaning device that circulates the persulfuric acid solution by a line and at the time of regeneration, and the cooling device side by the cooling means. A method for operating a sulfuric acid recycling type cleaning system, wherein the temperature of the solution sent to the electrolytic reaction device is lowered. 前記循環ラインにおいて、前記電解反応装置からの相対的に低温な過硫酸溶液の送り液と、前記洗浄装置からの相対的に高温な過硫酸溶液の戻り液との間で熱交換を行うことを特徴とする請求項に記載の硫酸リサイクル型洗浄システムの運転方法。 In the circulation line, heat exchange is performed between a relatively low temperature persulfuric acid solution feed from the electrolytic reaction device and a relatively high temperature persulfuric acid solution return from the cleaning device. The operating method of the sulfuric acid recycle type cleaning system according to claim 1 , wherein 被洗浄材の洗浄を終えた前記洗浄装置と前記電解反応装置との間で過硫酸用溶液を循環させつつ過硫酸濃度が所定濃度に達するまで前記過硫酸溶液の再生を行うステップと、その後、電解反応装置との間で過硫酸溶液の循環を行うことなく、該洗浄装置において被洗浄材の洗浄を行うステップとを繰り返し行うことを特徴とする請求項1または2に記載の硫酸リサイクル型洗浄システムの運転方法。 Regenerating the persulfuric acid solution until the persulfuric acid concentration reaches a predetermined concentration while circulating the persulfuric acid solution between the cleaning device and the electrolytic reaction device that have finished cleaning the material to be cleaned; The sulfuric acid recycle type cleaning according to claim 1 or 2 , wherein the step of cleaning the material to be cleaned is repeatedly performed in the cleaning device without circulating the persulfuric acid solution with the electrolytic reaction device. How to operate the system. 電解反応装置に備える電極のうち、少なくとも陽極が導電性ダイヤモンド電極であることを特徴とする請求項1〜のいずれかに記載の硫酸リサイクル型洗浄システムの運転方法。 The operating method of the sulfuric acid recycle type cleaning system according to any one of claims 1 to 3 , wherein at least an anode of the electrodes provided in the electrolytic reaction apparatus is a conductive diamond electrode. 電解反応装置に備える導電性ダイヤモンド電極が、基板上に積層させた後に基板を取り去った自立型導電性ダイヤモンド電極であることを特徴とする請求項1〜のいずれかに記載の洗浄システムの運転方法。 The operation of the cleaning system according to any one of claims 1 to 4 , wherein the conductive diamond electrode provided in the electrolytic reaction device is a self-supporting conductive diamond electrode obtained by laminating the substrate and then removing the substrate. Method. 前記再生は、前記電解反応装置における電解中の過硫酸濃度が、該電解反応装置と循環接続される洗浄装置において洗浄により生成される有機性炭素濃度(TOC)に対し、過硫酸濃度〔g/l〕/TOC濃度〔g/l〕=10〜1000の条件を満たすに至るまで行うことを特徴とする請求項1〜のいずれかに記載の硫酸リサイクル型洗浄システムの運転方法。 In the regeneration, the persulfuric acid concentration during electrolysis in the electrolytic reaction device is less than the persulfuric acid concentration [g /%] with respect to the organic carbon concentration (TOC) generated by washing in the washing device circulated and connected to the electrolytic reaction device. The operation method of the sulfuric acid recycle type cleaning system according to any one of claims 1 to 5 , wherein the operation is performed until the condition of l] / TOC concentration [g / l] = 10 to 1000 is satisfied. 電解反応により、溶液に含まれる硫酸イオンから過硫酸イオンを生成して過硫酸溶液を再生する電解反応装置と、過硫酸溶液を洗浄液として被洗浄材を洗浄する複数の洗浄装置と、前記電解反応装置と前記複数の洗浄装置とを個々に接続して前記過硫酸溶液をそれぞれ循環可能とする複数の循環ラインと、前記電解反応装置と接続する循環ラインおよび洗浄装置を選択切替する選択切替手段と、前記各洗浄装置側の洗浄液を加熱する加熱手段と、前記洗浄装置から前記電解反応装置に送られる溶液を冷却する冷却手段とを備え、前記加熱手段は、前記選択切替手段で接続される前記洗浄装置側で前記洗浄液の加熱を可能にし、前記冷却手段は、前記選択切替手段で接続されて前記溶液の電解を行う電解反応装置に送られる前記溶液の冷却を可能にすることを特徴とする硫酸リサイクル型洗浄システム。   An electrolytic reaction device that regenerates a persulfate solution by generating persulfate ions from sulfate ions contained in the solution by an electrolytic reaction, a plurality of cleaning devices that wash a material to be cleaned using the persulfate solution as a cleaning solution, and the electrolytic reaction A plurality of circulation lines that individually connect the apparatus and the plurality of cleaning apparatuses to allow the persulfuric acid solution to circulate, and a selection switching unit that selectively switches between a circulation line connected to the electrolytic reaction apparatus and the cleaning apparatus. , Heating means for heating the cleaning liquid on each cleaning device side, and cooling means for cooling the solution sent from the cleaning device to the electrolytic reaction device, the heating means being connected by the selection switching means The cleaning apparatus can heat the cleaning liquid, and the cooling means can cool the solution sent to the electrolytic reaction apparatus connected by the selection switching means to electrolyze the solution. Sulfuric acid recycle type cleaning system, characterized by the.
JP2004302401A 2004-10-18 2004-10-18 Sulfuric acid recycle cleaning system and operation method thereof Expired - Fee Related JP4862981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302401A JP4862981B2 (en) 2004-10-18 2004-10-18 Sulfuric acid recycle cleaning system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302401A JP4862981B2 (en) 2004-10-18 2004-10-18 Sulfuric acid recycle cleaning system and operation method thereof

Publications (2)

Publication Number Publication Date
JP2006111943A JP2006111943A (en) 2006-04-27
JP4862981B2 true JP4862981B2 (en) 2012-01-25

Family

ID=36380702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302401A Expired - Fee Related JP4862981B2 (en) 2004-10-18 2004-10-18 Sulfuric acid recycle cleaning system and operation method thereof

Country Status (1)

Country Link
JP (1) JP4862981B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI351446B (en) 2006-06-16 2011-11-01 Toshiba Kk Cleaning system and cleaning method
JP4644170B2 (en) * 2006-09-06 2011-03-02 栗田工業株式会社 Substrate processing apparatus and substrate processing method
JP5024528B2 (en) * 2006-10-04 2012-09-12 栗田工業株式会社 Persulfuric acid supply system and persulfuric acid supply method
JP5148889B2 (en) 2007-02-09 2013-02-20 株式会社東芝 Cleaning method and electronic device manufacturing method
JP5320173B2 (en) 2008-06-30 2013-10-23 クロリンエンジニアズ株式会社 Sulfuric acid electrolysis method
JP5106523B2 (en) * 2009-12-16 2012-12-26 株式会社東芝 Etching method, microstructure manufacturing method, and etching apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3383334B2 (en) * 1992-12-16 2003-03-04 クロリンエンジニアズ株式会社 How to recycle sulfuric acid
JPH08126873A (en) * 1994-10-28 1996-05-21 Nec Corp Washing and device for electronic parts and the like
JP3259557B2 (en) * 1994-12-28 2002-02-25 栗田工業株式会社 How to remove organic matter
JP3501552B2 (en) * 1995-06-29 2004-03-02 株式会社神戸製鋼所 Diamond electrode
JP2001192874A (en) * 1999-12-28 2001-07-17 Permelec Electrode Ltd Method for preparing persulfuric acid-dissolving water

Also Published As

Publication number Publication date
JP2006111943A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
JP4462146B2 (en) Sulfuric acid recycling type cleaning system and sulfuric acid recycling type persulfuric acid supply device
JP4407529B2 (en) Sulfuric acid recycling cleaning system
JP5024528B2 (en) Persulfuric acid supply system and persulfuric acid supply method
JP4412301B2 (en) Cleaning system
JP2007059603A (en) Sulfuric acid recycling type cleaning system
JP4573043B2 (en) Sulfuric acid recycling cleaning system
WO2011155335A1 (en) Washing system and washing method
JP4605393B2 (en) Electrolytic gas treatment device and sulfuric acid recycling type cleaning system
JP5939373B2 (en) Electronic material cleaning method and cleaning apparatus
JP2007266497A (en) Semiconductor substrate cleaning system
JP4600667B2 (en) Sulfuric acid recycling type cleaning system and sulfuric acid recycling type cleaning method
JP4600666B2 (en) Sulfuric acid recycle type single wafer cleaning system
JP4862981B2 (en) Sulfuric acid recycle cleaning system and operation method thereof
JP2006278838A (en) Sulfuric acid recycling type cleaning system
JP2007266477A (en) Semiconductor substrate cleaning system
JP5751426B2 (en) Cleaning system and cleaning method
JP5024521B2 (en) Method and apparatus for producing high-temperature and high-concentration persulfuric acid solution
JP6609919B2 (en) Semiconductor substrate cleaning method
JP4771049B2 (en) Sulfuric acid recycling cleaning system
JP2007049086A (en) Sulfuric acid recycling type cleaning system
JP4557167B2 (en) Sulfuric acid recycling cleaning system
JP5126478B2 (en) Cleaning liquid manufacturing method, cleaning liquid supply apparatus and cleaning system
JP2008294020A (en) Cleaning solution supplying system, and cleaning system
JP2006278689A (en) Sulfuric-acid recycling cleaning system
JP4816888B2 (en) Sulfuric acid recycling cleaning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees