WO2021206036A1 - Cold fusion device, and heat generation device and heat generation method using cold fusion - Google Patents

Cold fusion device, and heat generation device and heat generation method using cold fusion Download PDF

Info

Publication number
WO2021206036A1
WO2021206036A1 PCT/JP2021/014437 JP2021014437W WO2021206036A1 WO 2021206036 A1 WO2021206036 A1 WO 2021206036A1 JP 2021014437 W JP2021014437 W JP 2021014437W WO 2021206036 A1 WO2021206036 A1 WO 2021206036A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
metal substrate
hydrogen
counter electrode
storage metal
Prior art date
Application number
PCT/JP2021/014437
Other languages
French (fr)
Japanese (ja)
Inventor
児玉 紀行
Original Assignee
児玉 紀行
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020123285A external-priority patent/JP2020170020A/en
Priority claimed from JP2021009701A external-priority patent/JP2022007951A/en
Application filed by 児玉 紀行 filed Critical 児玉 紀行
Publication of WO2021206036A1 publication Critical patent/WO2021206036A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G7/00Conversion of chemical elements not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the present invention relates to a heat generating technique using a hydrogen storage metal.
  • Non-Patent Document 1 Non-Patent Document 1
  • Patent Document 1 describes that when the size of metal particles such as palladium is 1 nm or less, the amount of hydrogen absorbed increases sharply, and nano-sized metal particles are pressurized in a deuterium environment. Discloses a method of generating excess enthalpy in.
  • Z rO 2 zirconia (Z rO 2 ) is used as a support, palladium (Pd) nanoparticles are embedded in the support, deuterium (D 2 ) is injected, and then pressure is applied.
  • a fusion reactant (ultra-high density deuterated nanoparticles) is prepared; then a fusion reaction is carried out by applying impact energy to the fusion reactant to generate a large amount of heat and helium. It is stated that it was made.
  • Patent Document 3 it is explained that "the probability of occurrence of a tunnel fusion reaction increases” by forming a plurality of nano-sized metal nano-convex portions on the surface of a hydrogen storage metal. Further, according to Patent Document 3, by supplying deuterium gas to the reactant heated by the heater, "hydrogen atoms are occluded in the metal nanoparticles on the surface of the reactant, and the electrons in the metal nanoparticles are surrounded. It is strongly influenced by metal atoms and other electrons and acts as deuterium electrons, and as a result, the internuclear distance between hydrogen atoms in the metal nanoparticles is shortened, increasing the probability that a tunnel fusion reaction will occur. " Has been done.
  • nuclear fusion is defined as an exothermic reaction in which light elements are fused and converted into a heavy element, and a DT reaction in which deuterium (D) and tritium (T) react with each other.
  • Various fusion reactions are known, such as the DD reaction in which two deuteriums react.
  • helium (He) is produced as “ash”, but research results have shown that He is produced by cold fusion (for example, Non-Patent Document 3).
  • a technique of inserting in D 2 gas is increasing its findings it has been developed, with the basic device configuration basically FPE Therefore, the problem of reproducibility has not been solved.
  • Non-Patent Document 4 plasma is formed on the electrode surface by electrolyzing a metal cathode electrode in a liquid at a high voltage, and plasma is formed in the liquid. It is stated that plasma electrolysis observed excess heat and products that would not normally occur, proposing the hypothesis that this was the result of a "unique reaction" occurring on the cathode surface.
  • this cold fusion reactor is based on FPE, it has actually been significantly improved. Details will be described later.
  • the most important point for cold fusion is to control the surface potential of the metal.
  • Cold fusion devices using FPE clearly lack recognition of the importance of controlling the potential of this metal surface.
  • the nanostructure disclosed in the above patent document may be a nano-sized metal powder or a metal particle that happens to be generated under process conditions, and practically, the surface potential of the metal Is not supposed to be controlled with high accuracy, and it becomes an unstable factor in the reproducibility and performance improvement of cold fusion.
  • the surface of the reactant is formed in a mesh shape with fine lines, and a plurality of nano-sized metal nanoparticles (not shown) having a width of 1000 [nm] or less are formed on the surface of the fine lines.
  • a plurality of nano-sized metal nanoparticles (not shown) having a width of 1000 [nm] or less are formed on the surface of the fine lines.
  • Patent Document 3 explains that by heating the reactant, "hydrogen atoms are occluded in the metal nanoparticles, and rigid the probability that a tunnel fusion reaction occurs is increased", but the hydrogen storage metal It is considered that cold fusion cannot be reproduced with good controllability by heating.
  • a cation (Nucleon of D) D + at the T site of a hydrogen storage metal overcomes a potential barrier by hopping when the temperature rises. Te deuterium ions D - move to the adjacent T site is on, where considered fusion is triggered.
  • D + becomes more likely to be hopping, positive feedback is generated, and thermal runaway occurs in which the metal temperature cannot be controlled. The requirement for this high temperature is a serious issue for FPE.
  • the metal temperature is high, the metal lattice will be damaged, and the metal surface will be extremely rough due to local excessive heat generation.
  • the heat of the heating element is usually cooled and converted into electric power, so the metal temperature should be kept low not only to avoid the above thermal runaway but also for power generation. is required. That is, it is desirable to use a method that triggers fusion (at as low a temperature as possible) without raising the metal temperature, or a method that can maintain the self-sustaining mode of fusion at a low temperature.
  • the specific heat of D 2 O is higher than that of D 2 gas and the metal surface can be directly cooled, so that the fusion reaction can be continued and the generated heat can be efficiently performed.
  • Non-Patent Document 4 points out that it is important to increase the supply amount of D as a method of increasing the calorific value, but in a cold fusion reactor based on FPE, it was once accumulated in the metal. Since D is supplied to the metal surface by diffusion, there is a problem that the amount of D supplied cannot be controlled and therefore cannot be maximized (details will be described later).
  • FIG. 1 are diagrams for explaining the generation mechanism of cold fusion, and the ratio of the size of atoms and molecules in the drawing directly reflects the actual ratio. is not it.
  • femto D 2 molecule D 2 is compressed by the stress that the metal lattice of the expanded T-site returns to its original size, and the deuterium molecule D 2 becomes the femto deuterium molecule when the nucleons approach each other. Transition to (femto D 2 molecule) (see FIGS. 1C and 1D). 3) femto D telescopic movement femto D 2 molecules of 2 molecules spatially stable stretching vibration in within the T site reference (FIG. 1 (E)).
  • the hydrogen atoms absorbed in the palladium solid occupy the interstitial sites in the metal lattice without disturbing the arrangement of the metal lattice.
  • the face-centered cubic lattice (fcc) shown in FIG. 2 has a regular tetrahedral gap site (hereinafter referred to as T site) and a regular octahedral gap site (hereinafter referred to as O site), and a hydrogen atom is in a stable state. Then, it occupies a wider O site, and it is considered that hydrogen ions are introduced into the T site through it.
  • hydrogen ions enter the O-site, which is a wider site, and expand the surrounding atoms to expand the entire crystal lattice. Therefore, the surrounding potential changes, and the positions of the palladium and hydrogen ions and the positions of the hydrogen ions are determined so that the energy of the system becomes stable. This allows hydrogen ions at the O site to enter the T site. Hydrogen atoms that have entered the palladium lattice form a solid solution without regular arrangement. In addition, there is also a path in which D 2 is dissociated at the metal surface at the outermost T site and is directly introduced into the T site on the surface.
  • the number of sites per metal atom is one O-site and two T-sites in fcc and close-packed hexagonal lattice (hcp).
  • hcp hexagonal lattice
  • bcc body-centered cubic lattice
  • the ordered structure of hydrides generally follows the rule of thumb that the hydrogen-hydrogen atom distance does not fall below 0.2 nm, and usually only some of these sites are occupied.
  • the arrangement of T sites in the metal lattice will be schematically shown as shown in FIG. 6 in order to simplify the drawing, taking the fine packing structure of fcc as an example. That is, the lattice forming the T site in the metal lattice is indicated by a triangle.
  • FIG. 7 schematically shows the arrangement of T sites on the metal surface.
  • deuterium Duterium: D
  • D Duterium
  • H X hydrogen in a metal exists in the form of H X (x can take a value between -1 and +1), and is considered to have the duality of being H ⁇ or H +. Therefore, the present inventor considers that H ⁇ and H + can exist in the metal at the same time. If this hypothesis does not hold, cold fusion will not hold, and it can be said that it is a valid hypothesis considering the research results of hydrogen in hydrogen storage metals.
  • the internucleus distance r 1 of the hydrogen molecule H 2 is 0.74 ⁇ . Therefore, considering the radius of 1 ⁇ of the hydrogen atom H 0 , the size of the hydrogen molecule H 2 is ⁇ 2.74 ⁇ , and the size of D 2 is also ⁇ 2.74 ⁇ .
  • nucleons interval is the same size as the D is but should be zero actually not as its due Coulomb repulsion between nucleons is very large.
  • Reference 8 shows that a normal hydrogen atom has a very high Coulomb repulsive force between nucleons, and it is difficult to bring the nucleons close to the fm order.
  • the internuclear distance shorter than the fusion distance (0.1 to 1 pm (pico meter)) in order to enable fusion.
  • the Coulomb repulsive force at this time is, for example, 1. It is estimated to be 1 ⁇ 10-6 N at a fusion distance of 5 pm.
  • the elastic induced stress in Pd is estimated to be at least two orders of magnitude smaller than that based on the elastic constant of Pd.
  • the elastic induced stress is a stress generated in the metal and corresponds to a residual stress or a yield stress.
  • the femto hydrogen molecule is composed of the femto atom having an electron in the deep orbit. That is, referring to the sizes of the hydrogen molecule and the femto hydrogen molecule shown in FIG. 8, it can be understood that the spread of the electron cloud is also in the range of about several fm, so that the internuclear Coulomb repulsive force is almost completely shielded.
  • the contents of the literature on deep electron orbits will be described below.
  • the Coulomb potential is calculated as having a constant charge inside the proton and proportional to 1 / r outside the proton (curves 5a and 5c in FIG. 9).
  • the deep electron orbit DEO described above is calculated by numerically calculating the relativistic Schrodinger equation using this model. Specifically, the relativistic Schrodinger level of the hydrogen atom is calculated in TABLE I.A (page 310) of Reference 12. As shown in FIG. 10, the existence of deep electron orbitals DEO1 to DEO3 is clearly shown as a calculation result in TABLE I.A. of Reference Document 12.
  • FIG. 12A schematically shows the changes in the wave function of the S orbit and the wave function of the DEO orbit during the compression process. That is, when D 2 molecules are compressed by the compression stress from the metal T site, D2 spacing is narrowed first, whereby the electron density between the d-d is increased.
  • the density of the DEO orbit between d and d becomes high near the nucleus, and the wave function sharply decreases when the distance is several fm near the nucleus. Therefore, as shown in FIG.
  • the model in which the D atom is occupied only in the O site in) and in both the O site and the T site in the shell region (outer skin region) is the most reliable. Also, according to this model, about one-third of the occluded deuterium occupies the T site. Furthermore, the atomic displacement parameter BD (T) of the D atom (T site) shows an abnormally large value (14.1 ⁇ 2 ) only slightly from the T site (1/4, 1/4, 1/4). It is presumed that there are some stable sites at the positions shifted to, and the D atom is displaced between these sites. It is considered that these correspond to the fact that the surface T-site is easily stress-relaxed and its position is displaced.
  • T sites on its surface is capable of stress relaxation, as described above, in particular the displacement width of the two metal atoms of the surface T site is large It is considered to be.
  • the size of the inscribed sphere T site is the diameter 1.123 ⁇ , expanded by the displacement of the two metal atoms of the surface T site, D the diameter of 2 ⁇ - it is possible to enter.
  • D - unlikely enters - is entered T-sites with similar D to T sites adjacent. This is because when D ⁇ is entered and one of the lattices expands, the adjacent T site becomes narrower. Therefore, as shown in FIG. 13, if a large D ⁇ enters one of the adjacent T sites, a small D + should easily enter the other. D to the adjacent T sites + and D - that enters the structure which is the source of the flocculation system clusters in nano-structure is formed. According to Patent Document 3 and the common understanding of academic societies, cold fusion is a surface reaction, and when fusion occurs, irregularities are often observed on the electrodes in SEM (scanning microscope) observation.
  • nanostructures created in the film-forming process with irregularities, etc. are marked with parentheses, that is, “nanostructures”, and the nanostructures created in the controlled process are marked without parentheses to distinguish them.
  • the present inventor concluded that it is necessary to reduce at least the free electrons on the metal surface in order to cause cold fusion in the nanostructure on the metal surface. Further, the free electrons on the metal surface become a resistance force of the vibration motion between DD, which will be described later, and therefore have an effect of decelerating the speed, which may cause a decrease in the fusion probability. From this point of view, it was concluded that it is necessary to reduce the free electrons on the metal surface.
  • FIG. 17 (A) schematically shows a state in which D + is difficult to move to the D ⁇ side due to the shielding of this Coulomb force.
  • the potential barrier between D + and D ⁇ is high, and D + has higher energy than the potential barrier. Otherwise, it means that the probability of moving to the D-side is low.
  • D + is D - when hopping to the adjacent T sites, to form a covalent bond close within the T site.
  • Process D 2 molecules are formed by covalent bond is considered as follows.
  • the present inventor considers the process until cold fusion occurs in D 2 confined in the T site in the metal lattice as follows. a) T at site D - When the D + and become covalent state (D 2 molecules), the nature of the covalent bond, attraction 2 as between nucleons attract occurs, the compressive stress from the metal grid Receive and shrink. This reduction is described as easy to hydrogen ions is compressed with references 15 and 16 as described above, the femto D 2 molecules with DEO orbit in T sites by mechanisms described in the following 19 to 22 It is thought to be formed.
  • D 2 molecules trapped within T sites of the metal grid receives what forces lead to fusion.
  • the T-site metal lattice and the force received from the T-site metal lattice in the compression direction are schematically represented. That is, D 2 is confined in the T site 15 surrounded by four metal atoms 11 to 14, and the metal atom 14 shown by the broken line is located in front of the paper surface in the vertical direction.
  • FIG. 19 (A) it is shown that pressure F is applied to D 2 from three metal atoms 11, 12 and 13 in three directions.
  • the internuclear distance of D 2 is reduced by receiving the pressure F from different directions of the T site. More specifically, the metal atoms 11 to 14 are three-dimensionally reduced in the direction approaching D 2. Three metal atoms 11, 12 and 13 of the lower shrinking toward D 2 respectively, D 2 is a state in which rides thereon moves toward the metal atom 14 is also D 2 at the upper side of D2 Therefore, D 2 is hindered from moving upward. As a result, the nucleon spacing dd of D 2 is reduced within the T site.
  • FIG. 20 shows Fig. 20 on page 11 of Reference 7. It is the same graph as 4.
  • the potential energy is larger than the kinetic energy in the zone of ⁇ > 26.5 pm and the zone of 1 fm ⁇ ⁇ 2.8 fm. Since the DEO is in the zone of 1 fm ⁇ ⁇ 2.8 fm, it can be seen that the electrons entering the DEO remain stable.
  • D 2 molecules trapped in the cavity are considered to be vibrated by the vibration of the metal grid, the vibration in the cavity is modeled as shown in Figure 21.
  • the narrow cavity only the expansion and contraction vibration component indicated by the arrow in FIG. 21 is generated, and the dd interval may become narrower than a constant value when contracted. Since the weight of the metal atom forming the cavity is larger than that of D, it takes a long time for the vibration energy to dissipate to the metal lattice. Therefore, the oscillating motion continues in the narrow cavity, which increases the number of times the dd interval becomes smaller.
  • each nucleon As shown schematically in FIG. 21, vibrates D 2 molecules trapped within T sites, each nucleon is assumed to approach.
  • Reference 6 when the nucleons approach, as schematically shown in FIG. 22, the electrons that have transitioned to the DEO are redistributed so as to minimize the energy of the entire system. That is, when the density of each DEO electron increases on the opposite side of the two protons and the distance becomes smaller than 2.8 fm as derived in Reference 7, a covalent bond state of the femto atom is formed. it is conceivable that.
  • the femto D 2 molecule is formed in this way, the shielding effect of the Coulomb repulsive force between nucleons becomes remarkable by the mechanism described in FIG. In this way, the Coulomb repulsive force is completely shielded by the DEO electrons.
  • Femto D 2 molecule smaller than the original size of the T site ( ⁇ 1 ⁇ ), the stable oscillating motion in the T site. When this vibrational motion is large, the nucleons are tunneled closer to each other and fusion occurs. Therefore, it is important that the femtocluster molecule has a high kinetic energy.
  • Non-Patent Document 4 a device that does not consider the supply of D as in Non-Patent Document 4 can not continuous operation of the stable fusion reactions. For example, it is necessary to efficiently flow D 2 O over the surface nanostructure of a hydrogen storage metal and efficiently store hydrogen, but this has not been considered at all in the prior art. In addition, the structural strength of the hydrogen storage metal also becomes a problem in order to allow the liquid to flow. Furthermore, it is necessary to devise ways to reduce the size of cold fusion reactors.
  • FIG. 23 shows a part of the cold fusion experimental reactor described in Fig. 1 of Reference 18.
  • the experimental furnace shown in FIG. 23 is based on the current FPE (Fisherman and Pons effect).
  • a sheet-shaped Pd cathode is arranged in the center in the cold fusion reactor, and has a configuration in which the anode of the platinum Pt wire is wound around it so as to be plane-symmetric, and the voltage between the cathode and the anode is high. Is applied to electrolyze D 2 O.
  • the According to reference 18 in D 2 O electrolyte within Pd cathode and the Pt anode by switching between a predetermined low current and high current driving. Both the low current period and the high current period are in constant current mode.
  • the positional relationship between the Pd cathode and the linear Pt anode wound around the Pd cathode shall be shown.
  • the Pd cathode and linear Pt anode of the experimental apparatus references 18 are opposed with D 2 O electrolyte inside, and are driven in a constant current mode do.
  • a thin insulating film begins to be formed on the surface of the Pd cathode, but since the thickness of this insulating film depends on the electric field, the electric field on the cathode surface is strong. It is possible that an opening (a region where Pd is exposed) that is thick at a portion and thin at a weak portion and is not covered with an insulating film is partially generated.
  • D occlusion proceeds only in the opening and the resistance is increased as shown in FIG. 25 (C).
  • the insulating film starts to be formed from the initial state where the entire surface of the Pd cathode electrode is the current path, the area of the current path is limited to only the opening without the insulating film, and that portion is further increased in resistance.
  • Non-Patent Document 4 that is, the hypothesis that a "unique reaction” is generated on the cathode surface by plasma electrolysis in a liquid is basically wrong. It is the inventor's idea that the "unique reaction" on the cathode surface is not caused by plasma electrolysis but is caused by the application of an RF electric field.
  • hydrogen is occluded when the RF electrode has a positive potential, and therefore the potential of the hydrogen storage metal is high, and the hydrogen stored when the RF electrode has a negative potential causes a nuclear fusion reaction.
  • the RF electrode negative voltages the surface of the hydrogen-absorbing metal is free electrons becomes depleted, the vibration energy of the femto D 2 molecules in T sites of the metal surface is maintained sufficiently high Because.
  • Non-Patent Document 4 erroneously raises the hypothesis that the cause of the "unique reaction" that occurs when an RF voltage is applied is plasma electrolysis. Stable and continuous cold fusion reactions are becoming increasingly difficult to experiment with based on false hypotheses.
  • an object of the present invention is to provide a novel cold fusion device, a heat generating method, and a heat generating device capable of stably and continuously realizing a heat generation phenomenon using a hydrogen storage metal.
  • a counter electrode for controlling the surface potential of the hydrogen storage metal substrate is provided in the reaction furnace, and the counter electrode is set to a positive voltage based on the hydrogen storage metal substrate.
  • This causes hydrogen storage in which debris moves into the hydrogen storage metal substrate, and by setting the voltage to negative, the deuterium diffused from the inside to the surface of the hydrogen storage metal substrate causes an excessive exothermic reaction.
  • hydrogen storage and excessive exothermic reaction are temporally switched and separated by switching the voltage of the counter electrode.
  • a counter electrode to which a positive voltage is applied and a counter electrode to which a negative voltage is applied are provided on both sides of the hydrogen storage metal substrate, respectively, and the hydrogen storage and the excessive exothermic reaction are spatially separated.
  • the room temperature nuclear fusion device is provided in the reaction furnace with a hydrogen storage metal substrate made of a metal that stores heavy hydrogen and the hydrogen storage metal substrate facing the hydrogen storage metal substrate.
  • a flat plate-shaped counter electrode for controlling the surface potential of the metal substrate is provided, and if the counter electrode is a counter electrode to which a positive voltage is applied with reference to the hydrogen storage metal substrate, heavy hydrogen is contained in the hydrogen storage metal substrate. It is characterized in that moving hydrogen storage occurs, and in the case of a counter electrode to which a negative voltage is applied, normal temperature nuclear fusion occurs due to heavy hydrogen diffused from the inside to the surface of the hydrogen storage metal substrate.
  • the heat generation method is provided in the reaction furnace with a hydrogen storage metal substrate made of a metal that stores heavy hydrogen and the hydrogen storage metal substrate facing the hydrogen storage metal substrate.
  • a flat plate-shaped counter electrode for controlling the surface potential of the hydrogen storage metal substrate is provided, and by applying a positive voltage with the hydrogen storage metal substrate as a reference potential to the counter electrode, heavy hydrogen is generated by the hydrogen storage metal substrate.
  • the room temperature generated by the heavy hydrogen diffused from the inside to the surface of the hydrogen storage metal substrate It is characterized by generating heat by nuclear fusion.
  • the deuterium oxide between the counter electrode and the hydrogen absorbing metal substrate (D 2 O) supply port for forming a flow of the electrolyte is provided in the reaction chamber, the surface of the hydrogen-absorbing metal substrate in the direction of the flow It may be composed of an elongated nano-structured heating element. Heating element nanostructure becomes possible deuterium efficient storage by forming the flow direction of D 2 O electrolyte.
  • the first reaction chamber and the second reaction chamber provided in the reaction furnace are spatially separated by the hydrogen storage metal substrate, and the first reaction chamber faces the first surface of the hydrogen storage metal substrate.
  • 1 counter electrode is provided, and a second counter electrode facing the second surface of the hydrogen storage metal substrate is provided in the second reaction chamber, and a positive voltage is applied to the first counter electrode and a negative voltage is applied to the second counter electrode.
  • the hydrogen storage metal substrate can be formed of a metal having a property that deuterium stored on the first surface diffuses into the second surface through the hydrogen storage metal substrate. If a porous metal is used for the hydrogen storage metal substrate, for example, a single metal substrate can be used.
  • Deuterium oxide (D 2 O) electrolyte between the second surface of the hydrogen absorbing metal substrate and between the second counter electrode of the first surface of the hydrogen absorbing metal substrate and the first counter electrode It may have a supply port for forming each of the above flows.
  • a first supply port for forming a flow of deuterium oxide (D 2 O) electrolyte between the first surface of the hydrogen absorbing metal substrate and the first counter electrode, and the second counter electrode wherein It may have a second supply port that forms a flow of cooling water with the second surface of the hydrogen storage metal substrate.
  • D 2 O electrolytic solution it is possible to perform safe and inexpensive D occlusion and efficient cooling as compared with the gas system, and the development becomes easy.
  • a holding frame may be provided on the first surface of the hydrogen storage metal substrate, and openings in which the metal on the first surface is exposed may be arranged in the holding frame. The holding frame can prevent a decrease in the mechanical strength of the hydrogen storage metal substrate.
  • the hydrogen storage metal substrate may have a hydrogen separation membrane on the first surface side for selectively permeating deuterium.
  • deuterium can be selectively stored in the hydrogen storage metal substrate.
  • a first supply port that forms a flow of deuterium (D 2 ) gas between the first counter electrode and the first surface of the hydrogen storage metal substrate, and the second counter electrode and the hydrogen storage metal substrate. It may have a second supply port that forms a flow of cooling water between the second surface and the second surface.
  • the heat generating device is provided in the reaction furnace with a hydrogen storage metal substrate made of a metal that stores heavy hydrogen and the hydrogen storage metal substrate facing the hydrogen storage metal substrate.
  • a flat plate-shaped counter electrode for controlling the surface potential of the hydrogen storage metal substrate is provided, and if the counter electrode has a positive potential with the hydrogen storage metal substrate as a reference potential, heavy hydrogen moves into the hydrogen storage metal substrate.
  • a supply port for forming a flow of an electrolytic solution is provided in the reaction furnace, and the surface of the hydrogen storage metal substrate is composed of a heating element having a nanostructure extending in the direction of the flow.
  • a first reaction chamber and a second reaction chamber are provided in the reaction furnace, and a hydrogen storage metal substrate made of a metal that stores heavy hydrogen is the first reaction.
  • the chamber and the second reaction chamber are spatially separated, a flat plate-shaped first counter electrode facing the first surface of the hydrogen storage metal substrate is provided in the first reaction chamber, and the second reaction chamber is provided with the said provided a plate-shaped second counter electrode facing the second surface of the hydrogen storage metal substrate, deuterium oxide (D 2 O) electrolyte between the first surface of the hydrogen absorbing metal substrate and the first counter electrode
  • a first supply port for forming a flow of liquid or heavy hydrogen (D 2 ) gas is provided in the first reaction chamber, and cooling water is provided between the second counter electrode and the second surface of the hydrogen storage metal substrate.
  • a second supply port for forming the flow of the hydrogen storage metal substrate is provided in the second reaction chamber, and a positive voltage is applied to the first counter electrode and a negative voltage is applied to the second counter electrode to obtain the hydrogen storage metal substrate.
  • the first surface is characterized by causing hydrogen storage
  • the second surface is characterized in that an excessive exothermic reaction is caused by heavy hydrogen diffused from the inside to the surface of the hydrogen storage metal substrate. Efficient and continuous heat generation is possible by causing hydrogen storage and excessive exothermic reaction in parallel in separate reaction chambers that are spatially separated, and by using D 2 gas on the hydrogen storage side, under high pressure. It is possible to avoid the formation of an insulating film in the above, and by using cooling water on the excessive exothermic reaction side, inexpensive and efficient cooling becomes possible.
  • the hydrogen storage metal substrate can be formed of a metal having a property that deuterium stored on the first surface diffuses into the second surface through the hydrogen storage metal substrate. If a porous metal is used for the hydrogen storage metal substrate, for example, a single metal substrate can be used.
  • the hydrogen storage metal substrate may be provided with a hydrogen separation membrane on the first surface side for selectively permeating deuterium. As a result, deuterium can be selectively stored in the hydrogen storage metal substrate.
  • an excessive exothermic reaction using a hydrogen storage metal can be stably and continuously generated.
  • the case where it is located at the O site, the T site, and the O site of the core part is shown respectively. It is a figure which shows typically the arrangement of the T site illustrated in FIG. It is a figure which shows typically the arrangement of T sites in a metal lattice on a metal surface. It is a figure which shows typically the size of hydrogen, a hydrogen ion and a hydrogen molecule. It is a graph which shows typically the relationship between the distance between nucleons and the force acting between nucleons. It is a calculation result of the relativistic Schrodinger equation and Dirac equation for a hydrogen atom, and is a table showing the existence of a deep electron orbital (DEO) in the relativistic Schrodinger level.
  • DEO deep electron orbital
  • D + is D in potential is high - potential diagram schematically showing a process of being drawn into the adjacent T sites with (A), the potential is the D + at a low state D - is drawn into the adjacent T sites with It is a potential figure (B) which shows the process schematically. It is a figure which shows typically how the cation (D + ) is drawn into the anion (D ⁇ ) of deuterium.
  • B) It is a graph which shows the change of the kinetic energy and potential energy with respect to a radius ⁇ .
  • FIG. 28 It is a figure which shows typically the He eviction process at the surface T site in Pd for explaining the conventional fusion generation mechanism from the viewpoint of this invention. It is a schematic diagram explaining the schematic structure of the cold fusion apparatus by 1st Embodiment of this invention, and the cold fusion generation process. It is a time chart which shows the operation of the cold fusion apparatus by 1st Embodiment. It is a schematic diagram explaining the state of the metal surface in the hydrogen storage stage in FIG. 28. It is a schematic diagram explaining the movement of deuterium ion (D + ) at the T site of the metal surface in the cold fusion stage in FIG. 28.
  • FIG. 3 is a schematic cross-sectional view for explaining the mechanism of volume expansion in the heating element illustrated in FIG. 32.
  • FIG. 3 is a schematic cross-sectional view for explaining the mechanism of volume expansion in the heating element illustrated in FIG. 32.
  • It is a schematic block diagram of the cold fusion apparatus according to Example 1.2 of this invention.
  • It is a schematic block diagram of the cold fusion apparatus according to Example 1.3 of this invention.
  • It is a process drawing which shows the manufacturing method of the heating element shown in FIG. 35.
  • FIG. 35 It is a process drawing which shows the manufacturing method of the heating element following FIG. 35.
  • FIG. 38 It is a figure which shows the schematic side structure of the cold fusion apparatus by 2nd Embodiment of this invention. It is a figure which shows the schematic front structure of the cold fusion apparatus shown in FIG. 38. It is a time chart which shows the operation of the cold fusion apparatus by 2nd Embodiment. It is a schematic diagram explaining the state of the T site of the metal surface from hydrogen storage to the occurrence of cold fusion in the cold fusion apparatus according to the second embodiment. It is a schematic plan view (A) of the surface nanostructure of the heating element in the cold fusion apparatus according to Example 2.1 of this invention, and FIG.
  • FIG. 1 It is a schematic plan view (A) of the surface nanostructure of the heating element in the cold fusion apparatus according to Example 2.2 of this invention, and the sectional view (B) of the line II-II. It is a figure which shows the schematic front structure of the cold fusion apparatus by Example 2.3 of this invention. It is a figure which shows the schematic front structure of the cold fusion apparatus according to Example 2.4 of this invention. It is a schematic cross-sectional view of the surface nanostructure of the heating element in the cold fusion apparatus according to Example 2.5 of this invention. It is a figure which shows typically the D occlusion and He eviction process of the surface nanostructure of the heating element in Example 2.5.
  • FIG. 1 It is a top view (A) which shows the schematic structure of the hydrogen storage metal substrate assembly in the cold fusion apparatus according to Example 4.2 of this invention, and FIG. It is a top view (A) which shows the schematic structure of the hydrogen storage metal substrate in the cold fusion apparatus according to Example 4.3 of this invention, and FIG. It is a top view (A) and the sectional view (B) which shows the schematic structure of the hydrogen storage metal substrate in the cold fusion apparatus according to Example 4.4 of this invention. It is sectional drawing which shows typically the hydrogen storage region of the hydrogen storage metal substrate in the cold fusion apparatus according to Examples 4.3 and 4.4 of this invention. It is a top view which shows typically the hydrogen storage region of the hydrogen storage metal substrate in the cold fusion apparatus according to Example 4.3 of this invention.
  • the hydrogen storage stage of the hydrogen storage metal and the cold fusion stage are separated temporally or spatially by controlling the potential of the counter electrode facing the hydrogen storage metal.
  • the hydrogen storage stage and the cold fusion stage are temporally switched and separated by switching the polarity of the potential of the counter electrode.
  • a hydrogen storage metal substrate is arranged at the boundary between the two reaction chambers, and the potentials of the counter electrodes provided in the reaction chambers on both sides are set to positive potential and negative potential, respectively. By doing so, the hydrogen storage stage and the cold fusion stage are spatially separated.
  • hydrogen (including hydrogen) stored from the surface of the hydrogen storage metal at the hydrogen storage stage diffuses from the inside of the metal to the surface, causing an excessive heat generation phenomenon.
  • hydrogen (including hydrogen) stored from one surface of the hydrogen storage metal substrate in the hydrogen storage stage diffuses inside the metal, and an excessive heat generation phenomenon occurs on the other surface.
  • the cold fusion stage by the free electrons lowers the surface potential of the hydrogen-absorbing metal depleted, narrow space (diameter ⁇ about 1 ⁇ inscribed sphere) within the metal lattice in a D - and D + maintaining the oscillating motion of the D 2 molecules bound with bets, cold fusion in the surface of the hydrogen-absorbing metal can be generated stably. Based on the above considerations, cold fusion can occur with high probability by satisfying the following conditions.
  • a narrow space in the metal lattice is T site shown in FIG. 3 is a typical example, but the invention is not limited to this, a space in the metal lattice of the same order of magnitude D - occlusion it may be a space of the metal grid that expanded force to reduce the D 2 molecules and acts.
  • the metal surface of the heating element has a nanostructure or a "nanostructure". This D - is likely to enter the T site. Cold fusion occurs when the D filling factor is high in the surface nanostructure of the metal. That D as described above - occurs when contained in T site.
  • the hydrogen storage metal is palladium Pd
  • the bulk ratio is small and the deuterium storage rate (D / Pd ratio) increases at an early stage.
  • the metal surface has a controlled nanostructure rather than a “nanostructure” that is naturally formed in the film formation process.
  • D - supplying the D + T-site are present.
  • the deuterium molecule D 2 is confined in the T site, and the D 2 molecule is transferred to the femto D 2 molecule by shrinking the T site.
  • the femto D2 molecule expands and contracts and vibrates in the T site. As a result, the nucleons of the femto D 2 molecules approach each other periodically, and the probability of fusion is improved.
  • the DEO electrons between dd at this time shield the Coulomb repulsive force between nucleons and improve the probability of fusion.
  • the DEO electrons between dd shield the internuclear Coulomb repulsive force, and as shown in the curve 5d, even if the internuclear distance dd becomes 2.8 fm or less, Coulomb Repulsive force is suppressed and fusion can occur with less energy.
  • D 2 O electrolyte system cold fusion device as an example of the first embodiment of the present invention.
  • D 2 O is deuterium oxide, and the D 2 O electrolyte system has the advantages of being safer, cheaper, and easier to develop than the gas system.
  • the hydrogen storage stage and the cold fusion stage are temporally separated by controlling the potential of the counter electrode.
  • the room temperature nuclear fusion apparatus 100 has a plate-shaped hydrogen storage metal 101 as a heating element and a surface 101a of the hydrogen storage metal 101.
  • the counter electrode 102 has a flat plate-like surface, and is arranged so as to face parallel to the surface 101a of the hydrogen storage metal 101.
  • a heater 105 is provided as a heating means for heating at least the surface of the hydrogen storage metal 101 to a predetermined temperature.
  • the surface 101a of the hydrogen storage metal 101 has a nanostructure, and various materials such as palladium Pd and nickel Ni can be used as the hydrogen storage metal. Ni undergoes transmutation to Cu by the reaction, but since Cu is stable, there is an advantage that no radioactive substance remains after the reaction.
  • the nanostructure of the hydrogen storage metal 101 can be formed by semiconductor process, nanoimprint lithography or existing methods. Details will be described later.
  • the hydrogen storage metal 101 and the counter electrode 102 in the reaction furnace are arranged in the D 2 O electrolytic solution, and the counter electrode 102 is set to a positive potential so that the hydrogen storage metal 101 stores D in the hydrogen storage stage.
  • the counter electrode 102 is set to a positive potential so that the hydrogen storage metal 101 stores D in the hydrogen storage stage.
  • a voltage lower than that of the hydrogen storage metal 101 is applied to the counter electrode 102 to achieve a cold fusion stage.
  • the hydrogen storage metal 101 is temporarily heated to a predetermined temperature.
  • the heating temperature varies depending on the type of the hydrogen storage metal 101, but is at least 300 ° C. or higher, preferably 500 ° C. or higher, and more preferably 600 ° C. or higher.
  • the surface 101a of the hydrogen storage metal 101 is hydrogenated by switching the potential of the counter electrode 102 between a positive potential and a negative potential with respect to the hydrogen storage metal 101. Switch between the storage stage and the room temperature fusion stage and separate them in time.
  • the period when the counter electrode 102 is at a positive potential that is, the duration of the hydrogen storage stage is T1
  • the period when the counter electrode 102 is at a negative potential that is, the duration of the cold fusion stage is T2
  • T1> T2 is set. Has been done.
  • the hydrogen storage efficiency and the stored hydrogen can be adjusted by adjusting the respective lengths (or duty cycles) of T1 and T2 and the positive / negative voltage applied to the counter electrode 102.
  • the consumption efficiency can be maximized.
  • the counter electrode 102 is set to a positive potential and an electric field E is applied from the counter electrode 102 toward the surface (nanostructure) 101a of the hydrogen storage metal 101.
  • the free electrons in the metal move to the surface side, and the adjacent T sites are also filled with the free electrons 101b.
  • the electron concentration near the surface of the metal 101 becomes significantly higher than that in the bulk, and the Coulomb force between D + and D ⁇ occupying the adjacent T sites is shielded.
  • the probability that the thermally excited D + pops the potential barrier between the T sites and moves to the D ⁇ of the adjacent T site is increased, thereby increasing the probability.
  • the probability of cold fusion can be increased.
  • the free electron concentration is high on the metal surface and D storage occurs.
  • the counter electrode 102 is switched to a negative potential to become a cold fusion stage. That is, as the metal surface potential decreases, the free electrons on the metal surface become depleted, and the thermally excited D + pops the potential barrier between the T sites, or the D occluded in the metal tunnels. D - to move to the surface T site with.
  • D 2 molecule as described trapped within T site, stretching vibration in the T site, fusion occurs by a Coulomb shielding by DEO electrons.
  • D is occluded on the metal surface in a hydrogen storage stage in which the counter electrode 102 is set to a positive potential, and then free electrons are stored in a room temperature fusion stage in which the counter electrode 102 is set to a negative potential. Decrease the concentration.
  • the Coulomb attraction shielding thereby hopping to the adjacent T site D + thermally excited D - bound easily as, or D 2 in the T site occluded D is tunneled into the metal
  • the gas can be contained efficiently.
  • the stretching movement of the femto D 2 molecules in the T site, the distance between the nucleons is considered as the distance when the closest approach shrinks until fusion possible position when fusion occurs.
  • Example 1.1 As the nanostructure of the metal surface, a nanodot array in which the dot size and spacing are controlled to several nm to several hundred nm can be used.
  • a method for producing nanodots and nanodot arrays whose size and density can be preferably controlled is disclosed.
  • Example 1.1 of the present invention a cold fusion device using nanodots as a heating element will be described.
  • the cold fusion device has a configuration in which an array of hemispherical (hereinafter referred to as dome-shaped) nanodomes 201 is formed on the surface of the hydrogen storage metal 101 as a heating element.
  • the nanodome shape is enlarged and described for the sake of explanation, and a large number of nanodomes 201 controlled by the nanoorder are formed on the entire surface of the hydrogen storage metal 101.
  • the nanodome 201 is made of a hydrogen storage metal, for example palladium (Pd).
  • a metal material having a slow hydrogen diffusion rate and a high thermal conductivity for example, iron (Fe) can be used.
  • a counter electrode 102 for controlling the surface potential is provided at a position separated from the surface of the hydrogen storage metal 101 by a predetermined distance g, and the polarity switchable power supply 103 makes hydrogen with respect to the hydrogen storage metal 101 on which the nanodome array is formed.
  • the counter electrode 102 applies a positive potential, and in the room temperature fusion stage, a negative potential is applied.
  • the nanodome 201 may be heated to a predetermined temperature by a heating means (heater 105) (not shown).
  • each nanodome 201 has the following advantages. Since there are no metal atoms on the upper side of the surface of the nanodome 201, stress relaxation is possible even if D ⁇ enters the T site. For this reason, the increase in the energy of the system due to the expansion of the lattice is reduced, the expansion width is increased, and D ⁇ is likely to enter the T site.
  • the dome-shaped nanodome 201 is hemispherical and has a positive and large surface curvature. For this reason, even if the grid expands outward (opposite the bulk) from the original nanodome 201a to the nanodome 201b, the original volume 210a per unit grid can easily increase to a larger volume 210b. At that time, it is less likely to receive stress from other lattices. That is, expansion is facilitated on an outer surface having a positive curvature and a large shape such as a sphere. Thus there is room to expand the domed Nanodomu 201 at T site, D - is a very suitable shape to occlude.
  • the conditions of isotropic etching are changed stepwise in the depth direction to change the lateral etching rate in the depth direction. It can be formed.
  • the potential of the counter electrode 102 is made higher than that of the hydrogen storage metal 101 so that the hydrogen storage metal 101 stores hydrogen. Subsequently, by applying a negative potential to the hydrogen storage metal 101, the electron concentration of the nanostructure composed of the nanodome 201 is significantly reduced as described above, and the thermally excited D + is the potential barrier between the T sites. the to D of adjacent T sites popping - easily move to or occluded D in the metal tends to tunneling to the surface T site. Thus D 2 molecules transitions to femto D 2 molecule by reduction of the T sites as described above, the higher the probability of occurrence of cold fusion by oscillatory motion is sustained.
  • Example 1.2 The nanostructure of the metal surface in Example 1.1 is not limited to the dome shape.
  • Example 1.2 of the present invention a cold fusion device using a nanocone as a heating element will be described.
  • Example 1.2 the same surface potential control as in Example 1.1 described above is performed.
  • the cold fusion device according to Example 1.2 has a configuration in which an array of nanocorns 301 is formed on the surface of the hydrogen storage metal 101 as a heating element.
  • the nanocone 301 has a conical shape with a hemispherical tip, and is made of a hydrogen storage metal such as palladium (Pd).
  • a counter electrode 102 for controlling the surface potential is provided at a position separated from the surface of the hydrogen storage metal 101 by a predetermined distance g, and the polarity switchable power supply 103 has a positive potential or a negative potential with respect to the array of the nanocones 301.
  • a voltage is applied.
  • the nanocone 301 may be heated to a predetermined temperature by providing a heating means (not shown) as in Example 1.1.
  • the tip of the nanocone 301 is hemispherical, it is suitable for occlusion of D ⁇ as in Example 1.1 above. Further, since an electric field is applied to the hemispherical tip portion and the conical side surface of the nanocone 301, it is possible to avoid concentration of the electric field on the tip portion, and a uniform electric field can be applied to the entire array of the nanocone 301. As a result, cold fusion with even better controllability can be realized.
  • the hydrogen storage metal 101 is made to store hydrogen by making the potential of the counter electrode 102 higher than that of the hydrogen storage metal 101. Subsequently, by applying a negative potential to the hydrogen storage metal 101 to the counter electrode 102, the electron concentration of the nanostructure composed of the nanocone 301 is significantly reduced as described above, and thermal excitation or transfer from inside the metal to the surface is performed.
  • diffusion D + is D in the surface T site by - combined with transitions to femto D 2 molecule D 2 molecule by reduction of the T site, the higher the probability of occurrence of cold fusion by oscillatory motion is sustained.
  • Example 1.3 Another variation is possible for the nanocone 301 as a nanostructure on the metal surface.
  • the nanocone used for the heating element according to Example 1.3 of the present invention and a method for producing the same will be described. Note that Example 1.3 is also applicable to Examples 1.1 and 1.2 described above.
  • the heating element of the cold fusion device according to Example 1.3 of the present invention is composed of nanocones 301 having the same shape as that of Example 1.2, and each nanocone 301 has a metal layer. It is laminated on the nanopillar 302a formed in 302.
  • Such nanostructures are, for example, the biotemplate used in the Tohoku University press release (“Observing the InGaAs nanodisk structure by realizing the formation of a three-dimensional quantum dot structure for the first time in the world” announced on September 2, 1945). It can be manufactured by applying a manufacturing technique using a neutral particle beam. An example of the manufacturing method is shown below.
  • the metal layer 402 is laminated on the support substrate 403, and the hydrogen storage alloy layer 401 having the required film thickness d is further laminated on the metal layer 402.
  • a film forming method such as CVD can be used.
  • the protein 502 containing the iron core 501 is arranged on the hydrogen storage alloy layer 401.
  • FIG. 37 by removing the protein 502, the iron core 501 remains on the hydrogen storage alloy layer 401 at regular intervals (step A). Subsequently, a part of the hydrogen storage alloy layer 401 and the metal layer 402 is removed by etching with the neutral particle beam using the iron core 501 as a mask, and the metal layer 402 and the hydrogen storage alloy layer 401 having a conical side surface are further formed by etching. (Step B). Finally, by removing the iron core 501, nanocorns 301 arranged at predetermined intervals can be formed (steps C and D). Note that FIG. 37 (C) is a cross-sectional view taken along the line AA of the plan view shown in FIG. 37 (D).
  • the ratio of surface area becomes overwhelmingly large in terms of the ratio of bulk to surface area. Since the nanocone 301 is formed on the metal layer 402 having a high thermal conductivity, the heat exchange efficiency is good, and energy can be efficiently extracted from the nanocone 301 which is a heating element.
  • the D 2 O electrolytic solution flows between the surface of the hydrogen storage metal and the counter electrode while switching the surface potential of the hydrogen storage metal as in the first embodiment. It is configured as follows.
  • the heating element of the hydrogen absorbing surface is designed in a shape that can efficiently store hydrogen and easily stream D 2 O electrolyte.
  • the members having the same functions as those in the first embodiment of FIG. 27 will be assigned the same reference numbers, and detailed description thereof will be omitted.
  • the cold fusion apparatus is configured by arranging a hydrogen storage metal 101 and a counter electrode 102 for controlling the surface potential in the reactor 601. NS.
  • a plurality of supply pipes 602 for supplying the D 2 O electrolytic solution between the hydrogen storage metal 101 and the counter electrode 102 are provided at the lowermost portion of the reactor 601 and a gas discharge port 603 is provided on the upper surface of the reactor 601. Is provided.
  • the hydrogen storage metal 101 has a wafer shape and is fixedly held in the reaction furnace 601 by a plurality of slot-shaped holding portions 604. As typically shown in FIG. 39, the wafer-shaped hydrogen storage metal 101 is inserted and held in the slots of the plurality of holding portions 604. With the four holding portions 604 shown in FIG. 39, the hydrogen storage metal 101 can be fixedly held regardless of whether it is a circular wafer or a rectangular wafer.
  • the plurality of holding portions 604 also serve as the same heating means as the heater 105 in the first embodiment.
  • a flat plate-shaped counter electrode 102 is fixedly arranged parallel to the surface of the hydrogen storage metal 101 and separated by a predetermined distance g.
  • the D 2 O electrolytic solution F1 flows into the supply pipe 602 from the outside of the reactor 601 and forms a flow of the D 2 O electrolytic solution F2 between the hydrogen storage metal 101 and the counter electrode 102.
  • heating element 701 of nanostructures extending along a direction F2 of the flow of D 2 O electrolyte are arranged in a direction perpendicular to the direction F2, the adjacent heating valley between the body 701 forms a flow path of D 2 O electrolyte.
  • the nano-structured heating element 701 may be formed by etching the surface of the hydrogen storage metal 101, or a metal having a small hydrogen storage rate and a hydrogen diffusion coefficient is used as a support substrate, and a hydrogen storage metal is formed and etched on the support substrate. It may be formed by. The contact area between the heating element 701 and the D 2 O electrolyte is increased by this structure, storage and cold fusion reaction of hydrogen is more efficient.
  • the polarity switchable power supply 103 switches the potential of the counter electrode 102 with respect to the hydrogen storage metal 101 between a positive potential and a negative potential.
  • the holding portion 604 that also serves as a heater can heat at least the surface of the hydrogen storage metal 101 to a predetermined temperature.
  • the surface nanostructure of the hydrogen storage metal 101 is changed by switching the potential of the counter electrode 102 between the positive potential and the negative potential with respect to the hydrogen storage metal 101. It is possible to switch between the hydrogen storage stage and the room temperature fusion stage. Similar to the first embodiment, the period when the counter electrode 102 is at a positive potential, that is, the duration of the hydrogen storage stage is T1, and the period when the counter electrode 102 is at a negative potential, that is, the duration of the cold fusion stage is T2. T1> T2 is set. That is, by lengthening the duration T1 of the hydrogen storage stage, a sufficient amount of D can be occluded, and the calorific value in the cold fusion stage can be increased.
  • a stage switching period is provided. Generates heat by cold fusion reaction in cold fusion stage, its heat is utilized downstream of the generator as D 2 O vapor is recovered by evaporation of the cooling by the flow of D2O electrolyte F2 D 2 O electrolyte. By switching the potential of the counter electrode 102 in this way, the cycle in which D stored in the hydrogen storage metal 101 in the hydrogen storage stage is consumed in the cold fusion stage can be maintained.
  • the heating element 701 is designed so that it can be manufactured by using the 12-inch silicon wafer process apparatus of the semiconductor process apparatus as an example.
  • a nanostructure is formed on the substrate by a self-alignment process or a process such as that used in semiconductor device manufacturing. You can also.
  • Nanoimprint lithography is a technology that can produce a fine pattern of about 10 nm with high cost performance by pressing a mold with a fine pattern against the resin, irradiating it with ultraviolet rays, etc. to cure the resin, and then peeling off the mold.
  • the free electron concentration is high on the metal surface and only D storage occurs.
  • the counter electrode 102 is switched to a negative potential to become a cold fusion stage. That is, the decrease in the metal surface potential depletes the free electrons on the metal surface, and the thermally excited D + pops the potential barrier between the T sites and easily moves to the D ⁇ of the adjacent T site, or the metal.
  • the D stored inside can be easily tunneled to the surface T site.
  • already D 2 molecule as described trapped within T site, stretching vibration in the T site, fusion occurs by a Coulomb shielding by DEO electrons.
  • hydrogen is occluded and occluded in the hydrogen storage stage by alternately switching the counter electrode 102 between the positive potential and the negative potential as in the first embodiment.
  • the cycle of consuming the hydrogen in the cold fusion stage can be repeated, and stable cold fusion can be continuously generated on the metal surface.
  • the D 2 O electrolytic solution is configured to flow between the hydrogen storage metal surface and the counter electrode, and the heating element on the hydrogen storage surface is formed into a shape that allows the D 2 O electrolytic solution to easily flow and makes hydrogen storage efficient. As a result, more efficient room temperature fusion can be continuously generated.
  • the surface nanostructure (heating element 701) of the hydrogen storage metal 101 and the reactor in the cold fusion device to which the present embodiment is applied will be described.
  • the polarity switchable power supply 103 since the potential of the counter electrode 102 with respect to the hydrogen storage metal 101 is switched between the positive potential and the negative potential as in the first embodiment, the description thereof will be omitted in the following examples. Further, since the probability of cold fusion occurring by heating the hydrogen storage metal 101 to a predetermined temperature is increased as described in the first embodiment, the description thereof will be omitted.
  • Example 2.1 As illustrated in FIG. 42 (A), according to Example 2.1 of the invention, the surface of the counter electrode 102 side of the hydrogen storage metal 101, extends along a direction F2 of the flow of D 2 O electrolyte
  • the striped heating elements 801 are arranged in a direction orthogonal to the direction F2.
  • the heating element 801 is an example of the heating element 701 described above.
  • the width L of the striped upper surface 801a is the minimum value, and in reality, random irregularities having a radius of curvature r 0 or less are formed on the upper surface 801a of the width L. Such unevenness is also formed on the side surface 802 of each heating element 801. However, the unevenness is averaged toward the lower side of the upper surface.
  • the radius of curvature r 0 of the unevenness is a random value smaller than 2 nm.
  • Such an uneven shape can be formed as follows.
  • a striped resist pattern having a width L having random irregularities having a radius of curvature r 0 or less is formed on the upper surface of the hydrogen storage metal 101, and dry etching is performed using the resist pattern having the irregular edges as a mask.
  • the etched edges near the upper surface faithfully reflect the resist shape and become random irregularities with a radius of curvature r 0 or less, but are averaged as they go downward.
  • the unevenness of the side surface 802 as shown in FIG. 42 can be formed.
  • a striped heating element 801 having a random uneven edge with a radius of curvature r 0 or less on the surface of the hydrogen storage metal 101 By forming a striped heating element 801 having a random uneven edge with a radius of curvature r 0 or less on the surface of the hydrogen storage metal 101, the contact area with the D 2 O electrolytic solution flowing in the arrow F2 direction is increased, and the efficiency is increased. Hydrogen storage and cold fusion reaction can be realized.
  • Example 2.2> The present invention is not limited to the embodiment of Example 2.1 above, and a hydrogen storage metal may be formed in another nanostructure on a support substrate described later.
  • the surface of the counter electrode 102 side of the supporting substrate which will be described later, extend along a direction F2 of the flow of D 2 O electrolyte
  • the striped heating elements 900.1 and 900.2 are arranged in a direction orthogonal to the direction F2.
  • the striped heating elements 900.1 and 900.2 are examples of the above-mentioned heating elements 701.
  • the upper surface of the striped heating element 900.1 has a shape in which circles 901a having a radius r are arranged in contact with each other along a central stripe having a width d, and a boundary portion 901b of adjacent circles 901a has a width d of the central stripe.
  • the upper surface of the striped heating element 900.2 has a shape in which the phase of the upper surface of the striped heating element 900.1 is shifted along the direction F2 by a distance r. Therefore, the II-II line cross sections of the striped heating elements 900.1 and 900.2 in FIG. 43 (A) have different trapezoids as shown in FIG. 43 (B).
  • the edge of the circle 901a of the upper surface which are arranged in stripes may be formed random unevenness of curvature radius r 0 of 2nm or less.
  • Such irregularities may be formed on the side surfaces of the heating elements 900.1 and 900.2, but the irregularities are averaged downward from the upper surface by the etching described above.
  • etching needs to be stopped at a depth of Dp. Therefore, in this embodiment, the surface of the copper Cu metal substrate 110 is covered with the etching stop film 111 as the support substrate.
  • the etching stop film 111 is preferably a metal having a small hydrogen storage rate and a hydrogen diffusivity, and platinum Pt can be used, for example. Further, it is desirable to use platinum Pt for the counter electrode 102 in consideration of ionization tendency.
  • Example 2.3> Another present invention is not limited to the above examples 2.1 and 2.2, the hydrogen storage metal 101 the wafer holding means as long as circular wafers Considering the flow of D 2 O electrolyte Can also be structured.
  • cold fusion device is 38 and the basic configuration is the same, the structure of the supply pipe of the wafer holder and the D 2 O electrolyte is different. That is, a pair of slot-shaped holding portions 604a are arranged so as to support the circular wafer-shaped hydrogen storage metal 101a from both the left and right sides. The pair of holding portions 604a also serve as the same heating means as the heater 105 in the first embodiment. Further, similarly to the first embodiment, the plate-shaped counter electrode 102 is fixedly arranged parallel to the surface of the hydrogen storage metal 101a and separated by a predetermined distance g.
  • a plurality of supply pipes 602a are arranged in the lower part of the reactor 601 so as to be along the lower edge of the circular wafer-shaped hydrogen storage metal 101a. Spout for the entire surface forming a flow of D 2 O electrolyte F2 between the hydrogen storage metal 101a and the counter electrode 102 in each of the supply pipe 602a is provided. Note that the surface of the counter electrode 102 side of the hydrogen storage metal 101a and the heating element 701 of nanostructures extending along a direction F2 of the flow of D 2 O electrolyte are arranged in a direction perpendicular to the direction F2, the adjacent valley between the heating element 701 forms a flow path of D 2 O electrolyte.
  • Example 2.4> The present invention is not limited to the above examples 2.1-2.3, hydrogen storage metal 101 the wafer holding means as long as rectangular wafers another considering the flow of D 2 O electrolyte It can also be structured.
  • a pair of slot-shaped holding portions 604b are arranged so as to support the rectangular wafer-shaped hydrogen storage metal 101b from both the left and right sides.
  • the pair of holding portions 604b also serve as the same heating means as the heater 105 in the first embodiment.
  • a rectangular plate-shaped counter electrode 102b (not shown) is fixedly arranged parallel to the surface of the rectangular hydrogen storage metal 101b at a predetermined distance g. The potential of the counter electrode 102b is switched between positive and negative with respect to the hydrogen storage metal 101b as in the first embodiment.
  • a plurality of supply pipes 602b are arranged in the lower part of the reactor 601 so as to be along the lower edge of the rectangular wafer-shaped hydrogen storage metal 101b. Spout for the entire surface forming a flow of D 2 O electrolyte F2 between the hydrogen storage metal 101b and the counter electrode 102 in each of the supply pipe 602b is provided. Note that the surface of the counter electrode 102 side of the hydrogen storage metal 101b and the heating element 701 of nanostructures extending along a direction F2 of the flow of D 2 O electrolyte are arranged in a direction perpendicular to the direction F2, the adjacent valley between the heating element 701 forms a flow path of D 2 O electrolyte.
  • Example 2.5 The present invention is not limited to the striped heating element exemplified in Examples 2.1 to 2.4, and the nanocone-shaped heating element exemplified in Examples 1.1 to 1.3 is D 2. O The form may be arranged so as to form a flow path of the electrolytic solution.
  • an array of nanocone 301a as heating element along the direction of flow of D 2 O electrolyte on the surface of the counter electrode 102 side of the supporting substrate It is arranged.
  • each nanocone 301a in fact may be formed random unevenness of curvature radius r 0 of 2nm or less. Such unevenness may be formed on the side surface of each heating element 301a, but the unevenness is averaged as it goes below the upper surface by the etching described above.
  • the front surface of the copper Cu metal substrate 101a is covered with a metal for preventing hydrogen diffusion (here, platinum Pt), and the back surface is also covered with the same Pt.
  • a metal for preventing hydrogen diffusion here, platinum Pt
  • the back surface is also covered with the same Pt.
  • hydrogen diffusion and metal elution can be prevented, and when the nanocone 301a is formed by etching, the etching can be stopped at a depth of Dp.
  • the potential of the corresponding electrode 102 is switched between positive and negative with respect to the nanocone 301a as described above. Therefore, the hydrogen storage and cold fusion reactions described above proceed as follows on the surface of each nanocone 301a according to the potential switching of the counter electrode.
  • D 0 is tunneled as D + by diffusion from the O site, and a fusion reaction occurs subsequently.
  • a fusion reaction occurs subsequently.
  • the surface potential of the hydrogen storage metal arranged in the reaction furnace is switched by the counter electrode as in the second embodiment, and the surface potential of the hydrogen storage metal is switched between the surface of the hydrogen storage metal and the counter electrode.
  • D 2 O electrolyte is configured to flow, but is different in the following points.
  • the insulating wafer is provided with hydrogen storage metals on both sides, and the surface potential of each hydrogen storage metal is switched and controlled by the corresponding counter electrodes.
  • the hydrogen storage metals 101.1 and 101.2 are formed on both sides of the insulating wafer 101.3, respectively, and the hydrogen storage metals 101.1 and 101.2.
  • Opposing electrodes 102.1 and 102.2 are provided opposite to each other.
  • the substrate configuration including the hydrogen storage metals 101.1 and 101.2 and the insulating wafer 101.3 will be referred to as a double-sided metal substrate Sc.
  • the hydrogen storage metal 101.1 is formed on one surface of the first insulating wafer
  • the hydrogen storage metal 101.2 is formed on one surface of the second insulating wafer
  • the first and second insulating wafers are formed. It can be manufactured by laminating the other surfaces of the insulating wafers of the above.
  • the double-sided metal substrate Sc is arranged in the reaction furnace by a plurality of holding portions 604 that also serve as a heater and a holder, and counter electrodes 102.1 and 102.2 are arranged on both sides thereof with a distance g, respectively.
  • the polarity switchable power supply 103 switches the potentials of the counter electrodes 102.1 and 102.2 to positive or negative potentials with respect to the potentials of the hydrogen storage metals 101.1 and 101.2 (see FIG. 40).
  • a plurality of supply pipes 602 are provided at the lowermost portion of the reactor 601 (not shown), and a gas discharge port 603 is provided on the upper surface of the reactor 601.
  • Supply pipe 602 forms a flow F2.1 of D 2 O electrolyte between the hydrogen storage metal 101.1 and the counter electrode 102.1, between the hydrogen storage metal 101.2 and a counter electrode 102.2 It can be configured to form a D 2 O electrolyte flow F2.2.
  • the nanostructures described in the second embodiment can be adopted for the surfaces of the hydrogen storage metals 101.1 and 101.2.
  • the reaction furnace 601 has an electrode structure composed of counter electrodes 102.1 and 102.2 shown in FIG. 48 and a double-sided metal substrate Sc. A plurality of electrodes are arranged, and counter electrodes having adjacent electrode structures are shared. In other words, in FIG. 49, the counter electrode E and the double-sided metal substrate Sc are alternately arranged at predetermined intervals g so that the hydrogen storage metals 101.1 and 101.2 of each double-sided metal substrate Sc are respectively arranged. On the other hand, the counter electrodes E are arranged at predetermined intervals g.
  • a supply pipe 602 is piped so that the D 2 O electrolytic solution flows over the entire surface between the hydrogen storage metals 101.1 and 101.2 of each double-sided metal substrate Sc and the counter electrode E.
  • Two exhaust gas valves 605 and 606 are provided in the gas discharge port 603 provided on the upper surface of the reaction furnace 601.
  • the exhaust gas valves 605 and 606 in this embodiment are controlled to open and close so that the D 2 O steam generated in the cold fusion stage is discharged from the exhaust gas valve 605 and the O 2 gas generated in the hydrogen storage stage is discharged from the exhaust gas valve 606.
  • Double-metal substrate Sc in the present embodiment the wafer holding means as long as circular wafers can also be another structure in consideration of the flow of D 2 O electrolyte.
  • the cold fusion apparatus has the same basic configuration as that of Example 2.3 in FIG. 44, but is provided with two exhaust gas valves 605 and 606 at the discharge port 603. The point is different.
  • the pair of slot-shaped holding portions 604a are arranged so as to support the circular wafer-shaped double-sided metal substrate Sc from both the left and right sides as in the second embodiment.
  • a plurality of supply pipes 602a are arranged in the lower part of the reactor 601 so as to be along the lower edge of the circular wafer-shaped double-sided metal substrate Sc.
  • Each supply pipe 602a and spout for forming a flow of the entire surface D 2 O electrolyte F2 between the opposite sides of the counter electrode 102 of the double-sided metal substrate Sc is provided.
  • heating element 701 of nanostructures on the surface of both surfaces of the hydrogen storage metal double-sided metal substrate Sc extending along the direction F2 of the flow of D 2 O electrolyte is arranged in a direction perpendicular to the direction F2, adjacent valley between the heating element 701 which is to form the flow path of D 2 O electrolyte.
  • Example 3.3 The present invention is not limited to the embodiment of Example 3.2, and if the double-sided metal substrate Sc is a rectangular wafer, the wafer holding means may have another structure in consideration of the flow of the D 2 O electrolytic solution. can.
  • a pair of slot-shaped holding portions 604b are arranged so as to support the rectangular wafer-shaped double-sided metal substrate Sc from both the left and right sides.
  • a rectangular plate-shaped counter electrode 102 (not shown) is fixedly arranged parallel to the surface of the rectangular double-sided metal substrate Sc at a predetermined distance g. The potential of the counter electrode 102 is switched between positive and negative with respect to the hydrogen storage metal 101b as in the first embodiment.
  • a plurality of supply pipes 602b are arranged in the lower part of the reactor 601 so as to be along the lower edge of the rectangular wafer-shaped double-sided metal substrate Sc.
  • Spout for the entire surface forming a flow of D 2 O electrolyte F2 between the hydrogen storage metal 101b and the counter electrode 102 in each of the supply pipe 602b is provided.
  • the surface of the counter electrode 102 side of the hydrogen storage metal 101b and the heating element 701 of nanostructures extending along a direction F2 of the flow of D 2 O electrolyte are arranged in a direction perpendicular to the direction F2, the adjacent valley between the heating element 701 forms a flow path of D 2 O electrolyte.
  • the hydrogen storage metal substrate is composed of a metal that occludes hydrogen on one surface and diffuses the stored hydrogen to the other surface inside the substrate, and nickel (Ni) can be used as the metal having such a property. can. Therefore, by arranging a positive potential counter electrode in one reaction chamber and a negative potential counter electrode in the other reaction chamber, one reaction chamber side of the hydrogen storage metal substrate is placed in the hydrogen storage stage and the other reaction is carried out.
  • the chamber side can be a normal temperature fusion stage, and these can be spatially separated.
  • a cold fusion device using such a hydrogen storage metal substrate will be described.
  • reaction chambers 601.1 and 601.2 are provided in the reaction furnace 601 and these reaction chambers are separated by a hydrogen storage metal substrate M.
  • the hydrogen storage metal substrate M is fixedly held by the holding portion 604 that also serves as a heating means, and the ground potential V0 is applied from the DC power supply 103a.
  • the counter electrode 102 (E +) is arranged on the D storage surface (Md) side of the hydrogen storage metal substrate M at a predetermined distance g1 and has a constant positive voltage V + (> V0) from the DC power supply 103a. Is applied.
  • counter electrodes 102 (E ⁇ ) are arranged on the cold fusion surface (Mf) side of the hydrogen storage metal substrate M by a predetermined distance g2, and a constant negative voltage V— ( ⁇ V0) is applied.
  • the counter electrode 102 (E +) for storing D and the counter electrode 102 (E ⁇ ) for cold fusion are arranged on both sides of the hydrogen storage metal substrate M at predetermined distances g1 and g2, respectively. ..
  • the counter electrodes 102 (E +) and 102 (E ⁇ ) are placed from the hydrogen storage metal substrate M, etc.
  • the DC power supply 103a can be used, and the first to third embodiments can be used. It is not necessary to switch between the positive potential and the negative potential unlike the polarity switchable power supply 103 of the form.
  • D 2 O electrolyte from the supply port 602.1 as described above is supplied to the reaction chamber 601.1, D 2 O between the D-absorbing surface Md and the counter electrode 102 of the hydrogen storage metal substrate M (E +)
  • the flow F2 of the electrolytic solution is formed.
  • the D 2 gas and the O 2 gas after hydrogen storage in the reaction chamber 601.1 recombine and return to D 2 O (D 2 + 1 / 2O 2 ⁇ D 2 O).
  • the reaction chamber 601.2 H 2 O cooling liquid is supplied from the supply port 602.2, H 2 O coolant between the cold fusion surface Mf and the counter electrode 102 of the hydrogen storage metal substrate M (E-) Flow F4 is formed.
  • the H 2 O vapor vaporized by heat generated by the cold fusion in the reaction chamber 601.2 is discharged from the discharge port 603.1 is utilized downstream of the generator. Further, the hot H 2 O is discharged from the discharge port 603.2.
  • the D 2 O electrolytic solution flows from the lower side to the upper side between the D storage surface Md of the hydrogen storage metal substrate M and the counter electrode 102 (E +), so that a sufficient amount of D is efficiently stored.
  • D diffused in the hydrogen storage metal substrate M can cause a stable and continuous fusion reaction on the cold fusion surface Mf. Further, since the reaction chambers of the D occlusion and the cold fusion are separated and the respective exhaust gases are discharged from the separate discharge ports 603.1 and 603.2, the safety can be enhanced.
  • the hydrogen storage metal substrate M for example, a nickel (Ni) porous body called Celmet (registered trademark) manufactured by Toyama Sumitomo Electric Co., Ltd. can be used. Porous body of the hydrogen-absorbing metal machining is D 2 O deep well is easy because it is possible to hydrogen supply penetration, are suitable for hydrogen storage metal substrate M in the present embodiment.
  • the thickness of the hydrogen storage metal substrate M is formed to be about 1 mm, the hydrogen stored on the D storage surface Md side of the hydrogen storage metal substrate M diffuses in the porous metal and becomes the room temperature fusion surface Mf on the opposite side. When it reaches, normal temperature fusion becomes possible. At that time, a large amount of hydrogen reached by diffusion expels He generated by nuclear fusion to the outside, so that a continuous nuclear fusion reaction becomes possible.
  • the mechanism of He eviction and continuous fusion reaction will be described below.
  • the T-site having a side of about 2.75 ⁇ is represented by an equilateral triangle (A), and the state in which the surface metal atom of the T-site is displaced and the T-site is expanded is expanded. It shall be expressed as an equilateral triangle (B).
  • A equilateral triangle
  • B equilateral triangle
  • Hydrogen is usually a molecule rather than an atomic state, and it is thought that hydrogen exhibits high quantumness when it exists stably at a high density in the atomic state.
  • hydrogen storage metals such as Pd
  • hydrogen can exist in the atomic state between the lattices of Pd ("Study of PdHx system by thermal conductivity measurement" Ryota Nakatsuji (Graduate School of Frontier Sciences, University of Tokyo) Basic Science Research Department of Systems and Materials; 2007 Master's Thesis). Since hydrogen can be both positive and negative ions and has high quantum properties, the following process can be considered when interpreted in terms of quantum mechanics. First, O-site.
  • D 0 is tunneled as D + from the O site to the T site where He is expelled and expanded by D ⁇ ((3) in FIG. 55).
  • the femto D 2 molecules reduced under compressive stress from the metal grid is formed, the fusion reaction occurs (in FIG. 55 (5)).
  • He generated by fusion remains at the T site ((6) in FIG. 55), returning to (1) described above, D tunnels from the O site to the surface T site and enters.
  • the following steps (1) to (6) are repeated, and reactions occur continuously in the order of supply of D, expulsion of He, and occurrence of nuclear fusion.
  • the supply amount of D to the surface of the cathode metal utilizes the phenomenon that D is occluded in the bulk from the surface and the stored D is diffused to the surface. Becomes difficult to maximize. Further, when RF voltage is applied to perform D occlusion from the surface, the He concentration on the metal surface becomes high, so that the D occlusion efficiency decreases.
  • D is stored on the back surface (D storage surface Md) of the hydrogen storage metal substrate M, and the stored D is supplied to the front side (cold fusion surface Mf) by diffusion.
  • D storage surface Md back surface
  • Mf front side
  • the cold fusion reactor according to the present embodiment is different from the conventional cold fusion reactor composed of a Pd cathode and a linear Pt anode, and has flat counter electrodes on both sides of a flat hydrogen storage metal substrate. Has a configuration provided with. By applying a positive voltage for D storage to one counter electrode and a negative voltage for cold fusion to the other counter electrode, D was occluded and stored on one surface of the hydrogen storage metal substrate. D is supplied to the other surface by diffusion, which allows the fusion reaction to occur continuously on the other surface, and the D supply amount can be easily maximized.
  • hydrogen storage metal substrates M (i) and M (i + 1) are arranged at equal distances on both sides of the arbitrary electrode 102, and if the arbitrary counter electrode 102 is the counter electrode 102 (E +), hydrogen storage is performed.
  • the surfaces of the metal substrates M (i) and M (i + 1) facing each other are on the D storage side, and if the counter electrode 102 (E ⁇ ) is used, the hydrogen storage metal substrates M (i) and M (i + 1) face each other.
  • the surface is the normal temperature nuclear fusion side.
  • a reaction chamber 601.1 in which the counter electrode 102 (E +) is arranged and a reaction chamber 601.2 in which the counter electrode 102 (E ⁇ ) is arranged are alternately provided in the reaction furnace 601, and their reactions are performed.
  • a hydrogen storage metal substrate M is provided so as to partition the chamber.
  • the D 2 O electrolytic solution is supplied to each reaction chamber 601.1 from the supply port 602.1, and the D 2 O electrolyte is supplied to each reaction chamber 601.1 with the D storage surface Md of the corresponding hydrogen storage metal substrate M.
  • a flow of D 2 O electrolytic solution is formed between the counter electrode 102 (E +). Further, the D 2 gas and the O 2 gas after hydrogen storage in each reaction chamber 601.1 are recombined as described above and returned to D 2 O (D 2 + 1 / 2O 2 ⁇ D 2 O).
  • H 2 O coolant is supplied to each reaction chamber 601.2 from the supply port 602.2, and the cold fusion surface Mf of the corresponding hydrogen storage metal substrate M is supplied. flow of H 2 O coolant is formed between the counter electrode 102 and the (E-).
  • the H 2 O vapor vaporized by heat generated by the cold fusion in the reaction chamber 601.2 is discharged from the discharge port 603.1 is utilized downstream of the generator. Further, the hot H 2 O is discharged from a discharge port 603.2 (not shown).
  • D The occlusion and cold fusion reaction chambers are separated, and the respective exhaust gases are discharged from separate outlets 603.1 and 603.3, respectively, so that safety can be enhanced.
  • Each hydrogen storage metal substrate M is fixedly held by a wafer holding portion that also serves as a heating means, as in the structure shown in FIG. 52.
  • the specific configuration of the hydrogen storage metal substrate M will be described in Examples 4.2 to 4.4 below.
  • a DC power supply 103a is used as the power source, and the positive voltage V +, the negative voltage V-, and the ground potential V0 are used, respectively. It may be applied to the counter electrode 102 (E +), the counter electrode 102 (E ⁇ ), and the hydrogen storage metal substrate M.
  • D is efficiently occluded from the D 2 O electrolytic solution on the first surface of the hydrogen storage metal substrate M facing the counter electrode 102 (E +) in each reaction chamber 601.1, and is occluded.
  • D diffuses in the hydrogen storage metal substrate M, and a nuclear fusion reaction occurs due to D diffused on the second surface of the hydrogen storage metal substrate M facing the counter electrode 102 (E +) in the adjacent reaction chamber 601.2. do.
  • a large number of hydrogen storage metal substrates M and counter electrodes 102 (E +) and 102 (E ⁇ ) can be compactly arranged in the reactor 601 to achieve extremely efficient and continuous cold fusion. It is possible to cause a reaction.
  • reaction chambers for D occlusion and cold fusion are separated, and in the reaction chamber 601.1, the D 2 gas and O 2 gas after D occlusion recombine and return to D 2 O, and H 2 after cold fusion.
  • O Steam and hot cooling water are discharged from separate outlets 603.1 and 603.3, respectively, so that safety can be enhanced. Separation of the reaction chambers 601.1 and 601.2 by the hydrogen storage metal substrate M can be realized as shown in FIG. 58, for example.
  • the hydrogen storage metal substrate M is fixed between the reaction chambers 601.1 and 601.2 by a plurality of holding portions 604. That is, the end of the hydrogen storage metal substrate M is sandwiched between the recesses of each holding portion 604, and the hydrogen storage metal substrate M is pressed and securely held by tightening the screw 604a, and the liquid (D 2 O) in the adjacent reaction chamber is held. And H 2 O) are surely separated.
  • the hydrogen storage metal substrate M in the cold fusion device shown in FIG. 52 uses nickel (Ni) as the hydrogen storage metal, and the nickel plate 1000 is It has a configuration held by a holding frame 1001.
  • the thickness of the nickel plate 1000 is set to about 1 mm
  • the holding frame 1001 is fixed to the back side (D storage surface Md) of the nickel plate 1000 to mechanically hold the nickel plate 1000.
  • the holding frame 1001 is made of platinum Pt-plated copper Cu.
  • the above-mentioned D 2 O electrolytic solution is supplied from the back side of the D storage surface (holding frame 1001 side) of the nickel plate 1000, and the occluded D is diffused to the front side (cold fusion surface Mf) of the nickel plate 1000 to surface.
  • a fusion reaction occurs at the T site of.
  • the nickel plate 1000 is known to be fragile due to hydrogen storage and cold fusion, and holding by the holding frame 1001 is indispensable for thinning the nickel plate 1000.
  • the thickness of the nickel plate 1000 needs to be determined in consideration of both the surface arrival time of D and the mechanical strength. In this embodiment, the thickness is approximately 1 mm.
  • the nickel plate 1000 14 cm ⁇ 14 cm (inscribed square of 6 inch ⁇ ) can be used as long as it is a metal plate having a nanostructure, but generally it is 100 cm ⁇ 100 cm, or up to 5 m in width and 20 m in length. It is also possible with the size of. Therefore, by combining a plurality of modules of 1 m ⁇ 1 m, it is possible to manufacture up to the same size as the current nuclear reactor.
  • He generated at the surface T site of the nickel plate 1000 is eliminated by D supplied from the back side, so cold fusion is continuously performed using the nickel plate 1000 having a large area. It becomes possible to generate a reaction, and a large calorific value can be obtained.
  • the hydrogen storage metal substrate M in the cold fusion apparatus shown in FIG. 52 holds a nickel (Ni) plate 1000 having a thickness of d1 and a nickel (Ni) plate 1000 thereof. It is composed of a holding frame 1001b having a thickness d2.
  • the holding frame 1001b forms an array of a plurality of tapered openings Oexpc in a holding material layer having a thickness of 6 mm, and exposes the nickel surface of the nickel plate 1000.
  • Each tapered opening Oexp-c has an inverted truncated cone shape with a narrow bottom surface and a wide top surface, and the bottom surface is a nickel exposed surface, which is the D storage surface Md described above.
  • the exposed nickel surface on the bottom surface of each tapered opening Oexp-c has a diameter of d3, and the distance between adjacent nickel exposed surfaces is d4.
  • circular nickel exposed surfaces having a diameter of d3 are arranged in a grid pattern at intervals of a distance d4 on all sides.
  • the hydrogen storage metal has the property that the electrical resistivity increases and the mechanical strength also decreases as the hydrogen concentration increases. Therefore, as described later, the thickness d1 of the nickel plate 1000 and the exposed nickel surface It is desirable that the diameter d3 and the distance d4 between the exposed nickel surfaces are set to predetermined ratios in order to ensure the potential controllability and mechanical strength of the nickel plate 1000.
  • Example 4.4 The tapered opening Oexp-c in Example 4.3 described above had an inverted truncated cone shape, but this embodiment is not limited to this shape, and the nickel exposed surface is a D storage of the nickel plate 1000. It suffices if it is uniformly dispersed on the side of the surface Md.
  • Example 4.4 another shape of the tapered opening Oexp will be illustrated.
  • the hydrogen storage metal substrate M in the cold fusion apparatus shown in FIG. 52 holds a nickel (Ni) plate 1000 having a thickness of d1 and a nickel (Ni) plate 1000 thereof. It is composed of a holding frame 1001c having a thickness d2.
  • the holding frame 1001c forms an array of a plurality of tapered openings Oexp-s in a holding material layer having a thickness of 6 mm to expose the nickel surface of the nickel plate 1000.
  • Each tapered opening Oexp-s has an inverted quadrangular pyramid shape with a narrow bottom surface and a wide top surface, and the bottom surface is a nickel exposed surface, which is the D storage surface Md described above.
  • the nickel exposed surface which is the bottom surface of each tapered opening Oexp-s is a square having a side of d3, and the distance between adjacent nickel exposed surfaces is d4.
  • square nickel exposed surfaces having a side d3 are arranged in a grid pattern at intervals of a distance d4 on all sides.
  • the hydrogen storage metal has the property that the electrical resistivity increases and the mechanical strength also decreases as the hydrogen concentration increases. Therefore, as described later, the thickness d1 of the nickel plate 1000 and the exposed nickel surface It is desirable that the diameter d3 and the distance d4 between the exposed nickel surfaces are set to predetermined ratios in order to ensure the potential controllability and mechanical strength of the nickel plate 1000.
  • the holding frames 1001b and 1001c in Examples 4.3 and 4.4 can be formed by patterning a holding frame material (metal, ceramic, etc.) on the nickel plate 1000.
  • a holding frame material metal, ceramic, etc.
  • precious metal such Cu is not dissolved into D 2 O electrolyte is plated.
  • metal it is desirable to use metal as a material and form the holding frames 1001b and 1001c in the following dimensional ratios in order to ensure the potential controllability of the nickel plate 1000.
  • the inverted cone-shaped opening Oexp-c or the inverted quadrangular cone-shaped opening Oexp-s will be collectively referred to as "tapered opening Oexp".
  • the thickness of the nickel plate 1000 is d1
  • the diameter / side length of the nickel exposed surface which is the bottom surface of each tapered opening Oexp is d3
  • the distance between adjacent nickel exposed surfaces is d4.
  • d1 d3 for the sake of simplicity. That is, it is assumed that each tapered opening Oexp is formed so that the thickness of the nickel plate 1000 and the diameter of the exposed nickel surface / the length of one side match.
  • the positive potential counter electrode 102 (E +) is provided so as to face the D storage surface Md of the nickel plate 1000 (that is, on the holding frame 1001b / c side), and the D 2 O electrolytic solution is placed between them. It flows.
  • D is occluded on the nickel exposed surface of the tapered opening Oexp and diffuses in the nickel plate 1000 from the nickel exposed surface in the vertical direction (direction orthogonal to the surface) and the horizontal direction (plane direction). Therefore, when D diffused in the vertical direction reaches the cold fusion surface Mf, D diffuses in the horizontal direction by the same distance, and a high concentration D region (Ni ⁇ ) is present in the vicinity of the tapered opening Oexp in the nickel plate 1000. D) 1000d is diffusely formed. That is, D diffused in the lateral direction extends below the holding frame 1001b / c by d1 from the edge of the nickel exposed surface.
  • the electrical resistivity of the high concentration D region 1000d is high, in order to ensure the potential controllability of the nickel plate 1000, the low resistance portion of the nickel metal is substantially placed between the adjacent high concentration D regions 1000d. That is, it is necessary that the adjacent high-concentration D region 1000d does not come into contact with each other.
  • FIG. 63 is a plan view schematically showing the spread of the high concentration D region 1000d in the case of Example 4.3.
  • a portion where D is not diffused remains between the adjacent high-concentration D regions 1000d, and the potential controllability of the nickel plate 1000 is ensured. Further, since the nickel portion is hard to be brittle, the mechanical strength of the nickel plate 1000 can be maintained.
  • the high-concentration D region is diffusely formed from the edge of the square nickel exposed surface, so that the same effect is obtained.
  • the holding frame 1001b / c can also be formed of a material other than metal such as ceramic.
  • reaction chambers are provided in the reaction furnace, these reaction chambers are separated by a hydrogen storage metal substrate, and one reaction is carried out as in the fourth embodiment.
  • a positive potential counter electrode in the chamber and a negative potential counter electrode in the other reaction chamber one reaction chamber side of the hydrogen storage metal substrate is the hydrogen storage stage and the other reaction chamber side is cold fusion. It can be a fusion stage and these can be spatially separated.
  • it differs from the fourth embodiment in the following points.
  • D 2 gas is used for D storage instead of the D 2 O electrolytic solution, and the hydrogen storage metal substrate is provided on a metal substrate having a property of storing and diffusing hydrogen and its hydrogen storage surface. It is composed of the hydrogen separation membrane obtained.
  • D in the electrolysis using 2 O electrolyte it is necessary to apply a high voltage in order to increase the absorption amount, the region where the insulating film growth at a high electric field is not current flows going to the There was a problem that occurred. In this embodiment, such a problem is solved by using D 2 gas for D occlusion.
  • nickel (Ni) similar to that in the fourth embodiment can be used.
  • the hydrogen separation membrane will be described in detail later.
  • a cold fusion device using such a hydrogen storage metal substrate will be described.
  • reaction chambers 601.1 and 601.2 are provided in the reaction furnace 601 and these reaction chambers are separated by a hydrogen storage metal substrate Mc.
  • the hydrogen storage metal substrate Mc has a configuration in which a hydrogen separation membrane is formed on the hydrogen storage metal substrate, but in FIG. 64, the metal substrate and the hydrogen separation membrane are formed so that the characteristic configuration becomes clear. Has been expanded and, needless to say, does not reflect the actual thickness ratio.
  • the hydrogen storage metal substrate Mc is fixedly held by the holding portion 604 that also serves as a heating means, and the ground potential V0 is applied from the DC power supply 103a.
  • the counter electrodes 102 (E +) are arranged on the hydrogen separation membrane side of the hydrogen storage metal substrate Mc at a predetermined distance g1, and a constant positive voltage V + (> V0) is applied from the DC power supply 103a.
  • NS counter electrodes 102 (E ⁇ ) are arranged on the cold fusion surface (Mf) side of the hydrogen storage metal substrate Mc at a predetermined distance g2, and a constant negative voltage V— ( ⁇ V0) is applied.
  • the configuration of the hydrogen storage metal substrate Mc will be described later.
  • the hydrogen storage metal substrate Mc is set to the reference voltage V0, and the counter electrodes 102 (E +) and 102 (E ⁇ ) have constant positive voltages V + and 102 (E ⁇ ), respectively. It is only necessary to apply a negative voltage V ⁇ , and it is not necessary to switch the polarity.
  • the reaction chamber 601.1 D 2 gas is supplied from the supply port 602.1A, flow F2 of D 2 gas formed between the hydrogen storage metal substrate Mc of D-absorbing-side surface and the opposite electrode 102 (E +) Will be done. Further, the D 2 gas after hydrogen storage in the reaction chamber 601.1 is discharged from the discharge port 603.3a.
  • the reaction chamber 601.2 H 2 O cooling liquid is supplied from the supply port 602.2, H 2 O coolant between the cold fusion surface Mf and the counter electrode 102 of the hydrogen storage metal substrate M (E-) Flow F4 is formed.
  • the H 2 O vapor vaporized by heat generated by the cold fusion in the reaction chamber 601.2 is discharged from the discharge port 603.1 is utilized downstream of the generator. Further, the high temperature H 2 O is discharged from the discharge port 603.2.
  • the D 2 gas flows from the bottom to the top between the surface of the hydrogen storage metal substrate Mc on the hydrogen separation film side and the counter electrode 102 (E +), and D is stored in the hydrogen storage metal through the hydrogen separation film described later.
  • a sufficient amount of D can be efficiently occluded.
  • the occluded D can diffuse in the hydrogen storage metal and generate a stable and continuous fusion reaction on the cold fusion surface Mf. Further, since the reaction chambers of the D occlusion and the cold fusion are separated and the respective exhaust gases are discharged from the separate discharge ports 603.1 and 603.3a, the safety can be enhanced.
  • the hydrogen storage metal substrate Mc is a metal having a property of storing and diffusing hydrogen (hereinafter referred to as nickel substrate 1000a) and a hydrogen separation film formed on the D storage surface Md thereof. It is composed of 1002 and 1002.
  • the hydrogen separation membrane 1002 has a hole pattern 1002d in which a large number of nano-level through holes are arranged in an array by a production method described later, and thereby functions as a separation membrane having hydrogen permeation performance. That is, by flowing D 2 gas between the hydrogen separation membrane 1002 and the counter electrode 102 (E +), D is occluded in the nickel plate from the D occlusal surface Md of the nickel substrate 1000a through the hydrogen separation membrane 1002.
  • a defect-free nickel layer having a predetermined thickness is formed on the substrate 1003 for forming the hydrogen separation film 1002 by an electrolytic method or a sputtering method, and this nickel layer is designated as a nickel substrate 1000a. (Fig. 66 (A)).
  • a mask 1004 for forming the hole pattern 1002d on the substrate 1003 is formed by nanoimprint lithography or the like (FIG. 66 (B)), and nanoholes are formed by etching through the mask 1004 (FIG. 66 (C)).
  • a hydrogen separation film 1002 made of the substrate 1003a is formed on the nickel substrate 1000a (FIG. 66 (D)).
  • a defect-free nickel layer can be easily coated on the smooth substrate 1003 by an electrolytic method or a sputtering method, and then fine holes (nanoholes) are formed in the substrate 1003 by etching to make the substrate 1003 porous.
  • the hydrogen separation membrane 1002 can be formed.
  • a hole pattern 1002d having a diameter of about 500 nm is formed.
  • the distance between the nanoholes is set to about 10 times the diameter of the nanoholes, for example, about 1 to 5 ⁇ m.
  • the D 2 gas supplied to the reaction chamber 601.1 from the supply port 602.1a flows between the hydrogen separation membrane 1002 of the hydrogen storage metal substrate Mc and the counter electrode 102 (E +), and passes through the hydrogen separation membrane 1002.
  • D reaches the D storage surface Md of the nickel substrate 1000a, where it is occluded in the nickel substrate 1000a. Since D storage is performed using D 2 gas, an insulating film is not formed on the surface of the hydrogen storage metal substrate M even if a high voltage is applied to the counter electrode 102 (E +).
  • the occluded D sequentially tunnels and diffuses the O-site and the T-site in the nickel substrate 1000a, and continues to be supplied to the cold fusion surface Mf side.

Abstract

The present invention addresses the problem of providing a novel cold fusion device, heat generation method, and heat generation device that can stably and continuously achieve a heat generation phenomenon using a hydrogen-storing metal. In this cold fusion device, a hydrogen-storing metal substrate and a flat plate-shaped counter electrode are provided in a reactor, said hydrogen-storing metal substrate comprising a metal that occludes deuterium, and said counter electrode being provided facing the hydrogen-storing metal substrate and being for controlling the surface potential of the hydrogen-storing metal substrate. Treating the hydrogen-storing metal substrate as a reference, when a positive voltage is applied to the counter electrode, hydrogen occlusion in which the deuterium moves into the hydrogen-storing metal substrate occurs, and when a negative voltage is applied to the counter electrode, cold fusion occurs due to the deuterium that has diffused from the interior of the hydrogen-storing metal substrate to the surface.

Description

常温核融合装置、常温核融合による発熱方法および発熱装置Cold fusion device, heat generation method and heat generation device by cold fusion
 本発明は水素吸蔵金属を用いた発熱技術に関する。 The present invention relates to a heat generating technique using a hydrogen storage metal.
 フライシュマンとポンズ(Fleischmann and Pons)は、室温で核融合反応が発生するという衝撃的な論文を1989年3月に発表し世界中で注目を浴びたが、再現性の問題があり、当初、主流学会では認められなかった。それでも一部の研究者の地道な研究により現象の再現性が改善され、多くの実験事実の蓄積に基づいて、今では、常温核融合(Cold Fusion)や低エネルギ核反応(LENR:Low Energy Nuclear Reaction)等と呼ばれ、活発な研究が続けられている。この彼らの研究対象は常温核融合の一部であり、現在ではFPE(Fleischmann and Pons Effect)と呼ばれている。後述するようにFPEは常温核融合の一部ではあるが、大きな欠点もあるために以下分けて説明する。現在の実験結果は、一つの例外を除いてほとんどがFPEに基づいている。 Fleischmann's and Pons published a shocking paper in March 1989 that a fusion reaction occurs at room temperature, which attracted worldwide attention, but due to reproducibility problems, initially It was not recognized in mainstream academic societies. Nevertheless, the steady research of some researchers has improved the reproducibility of the phenomenon, and based on the accumulation of many experimental facts, cold fusion (Cold Fusion) and low energy nuclear reaction (LENR) are now available. It is called Reaction), and active research is continuing. The subject of their research is part of cold fusion, and is now called FPE (Fleischmann and Pons Effect). As will be described later, FPE is a part of cold fusion, but it also has major drawbacks, so it will be described separately below. Most of the current experimental results are based on FPE with one exception.
 常温核融合およびFPEのメカニズムは解明されたとは言えず、理論的には昏迷状態が続いているのが現状である。これまでの実験結果から、重水素吸蔵率(D/Pd比)が体積平均で0.85を超すと過剰熱が発生し、指数関数的に増大することが分かっており(非特許文献1)、このことから、常温核融合には水素吸蔵合金の重水素密度が一定以上が必要であり、また種々の実験で、表面反応であることや、特に表面のナノサイズの構造が非常に重要であると考えられている(非特許文献1、非特許文献2)。 It cannot be said that the mechanism of cold fusion and FPE has been elucidated, and the current situation is that the stupor state continues theoretically. From the experimental results so far, it has been found that when the deuterium storage rate (D / Pd ratio) exceeds 0.85 on a volume average, excess heat is generated and increases exponentially (Non-Patent Document 1). For this reason, cold fusion requires that the deuterium density of the hydrogen storage alloy be above a certain level, and in various experiments, it is very important that it is a surface reaction and that the nano-sized structure of the surface is particularly important. It is believed that there are (Non-Patent Document 1, Non-Patent Document 2).
 たとえば、特許文献1には、パラジウム等の金属粒子のサイズを1nm以下にすると、水素吸収量が急激に増大することが記載されており、ナノサイズの金属粒子を重水素環境下で加圧することで過剰エンタルピーを発生させる方法が開示されている。 For example, Patent Document 1 describes that when the size of metal particles such as palladium is 1 nm or less, the amount of hydrogen absorbed increases sharply, and nano-sized metal particles are pressurized in a deuterium environment. Discloses a method of generating excess enthalpy in.
 また、特許文献2によれば、支持体としてジルコニア( Z r O  ) を用い、この支持体にパラジウム(Pd)ナノ超微粒子を埋め込み、重水素( D  ) を注入の後、加圧によりこれを吸蔵させることで核融合反応体(超高密度重水素化ナノ粒子)を調製する;次いで衝撃エネルギを核融合反応体に加えることにより核融合反応を行い、多量の発熱とヘリウムとを生成させたことが記載されている。 Further, according to Patent Document 2, zirconia (Z rO 2 ) is used as a support, palladium (Pd) nanoparticles are embedded in the support, deuterium (D 2 ) is injected, and then pressure is applied. By occluding this, a fusion reactant (ultra-high density deuterated nanoparticles) is prepared; then a fusion reaction is carried out by applying impact energy to the fusion reactant to generate a large amount of heat and helium. It is stated that it was made.
 さらに、特許文献3によれば、水素吸蔵金属の表面にナノサイズの複数の金属ナノ凸部を形成することで「トンネル核融合反応の発生確率が上昇する」と説明されている。さらに特許文献3によれば、ヒータで加熱した反応体に重水素ガスを供給することで、反応体表面にある「金属ナノ粒子内に水素原子が吸蔵され、当該金属ナノ粒子内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ粒子内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げる」と説明されている。 Further, according to Patent Document 3, it is explained that "the probability of occurrence of a tunnel fusion reaction increases" by forming a plurality of nano-sized metal nano-convex portions on the surface of a hydrogen storage metal. Further, according to Patent Document 3, by supplying deuterium gas to the reactant heated by the heater, "hydrogen atoms are occluded in the metal nanoparticles on the surface of the reactant, and the electrons in the metal nanoparticles are surrounded. It is strongly influenced by metal atoms and other electrons and acts as deuterium electrons, and as a result, the internuclear distance between hydrogen atoms in the metal nanoparticles is shortened, increasing the probability that a tunnel fusion reaction will occur. " Has been done.
 なお、一般に、「核融合」とは軽い元素同士が融合して重い元素に変換する発熱反応と定義されており、二重水素(D)と三重水素(T)とが反応するD-T反応、2つの二重水素が反応するD-D反応など種々の核融合反応が知られている。D-D反応では“灰”としてヘリウム(He)が生成されるが、Heが常温核融合で生成されるとする研究結果が出てきている(たとえば非特許文献3)。またFPEを基にした常温核融合炉ではその低い再現性の欠点から、D ガスで吸蔵する技術が開発されてその研究結果が増えているが、基本的にFPEの装置構成を基本にしているので再現性の課題は解決はされていない。 In general, "nuclear fusion" is defined as an exothermic reaction in which light elements are fused and converted into a heavy element, and a DT reaction in which deuterium (D) and tritium (T) react with each other. Various fusion reactions are known, such as the DD reaction in which two deuteriums react. In the DD reaction, helium (He) is produced as "ash", but research results have shown that He is produced by cold fusion (for example, Non-Patent Document 3). Also from the lower reproducibility of the disadvantages in cold nuclear fusion reactor based on a FPE, a technique of inserting in D 2 gas is increasing its findings it has been developed, with the basic device configuration basically FPE Therefore, the problem of reproducibility has not been solved.
 FPEの常温核融合炉でも、改良は進んでいて、たとえば非特許文献4によれば、液体内の金属カソード電極を高い電圧で電気分解することで電極表面にプラズマが形成され、この液体内のプラズマ電気分解により、通常では生じ得ない過剰な熱と生成物が観測されたと記載されており、これはカソード表面で「ユニークな反応」が発生した結果であるとの仮説を提案している。ただし、この常温核融合炉はFPEを基本にしているが、実際は大幅に改良がなされている。詳しくは後述する。 Improvements are also progressing in FPE cold fusion furnaces. For example, according to Non-Patent Document 4, plasma is formed on the electrode surface by electrolyzing a metal cathode electrode in a liquid at a high voltage, and plasma is formed in the liquid. It is stated that plasma electrolysis observed excess heat and products that would not normally occur, proposing the hypothesis that this was the result of a "unique reaction" occurring on the cathode surface. However, although this cold fusion reactor is based on FPE, it has actually been significantly improved. Details will be described later.
米国特許第9182365B2号明細書U.S. Pat. No. 9,182,365B2 特開2008-261868号公報Japanese Unexamined Patent Publication No. 2008-261868 国際公開第2015/008859号International Publication No. 2015/008859
 後述する常温核融合の原理(A1.常温核融合の原理的説明)からみて、常温核融合にとって最も重要な点は金属の表面電位を制御することである。FPEを用いた常温核融合装置には、この金属表面の電位制御の重要性の認識が明らかに欠けている。この点に関しては例えば、上記特許文献に開示されたナノ構造は、ナノサイズの金属粉体であったり、プロセス条件でたまたま発生した金属粒子であったりするものであり、実用上、金属の表面電位を高い精度で制御することを想定しておらず、常温核融合の再現性や性能向上における不安定要因となる。 From the principle of cold fusion described later (A1. Explanation of the principle of cold fusion), the most important point for cold fusion is to control the surface potential of the metal. Cold fusion devices using FPE clearly lack recognition of the importance of controlling the potential of this metal surface. Regarding this point, for example, the nanostructure disclosed in the above patent document may be a nano-sized metal powder or a metal particle that happens to be generated under process conditions, and practically, the surface potential of the metal Is not supposed to be controlled with high accuracy, and it becomes an unstable factor in the reproducibility and performance improvement of cold fusion.
 また、特許文献3では、反応体の表面が細線で網目状に形成されており、さらに幅が1000[nm]以下のナノサイズの複数の金属ナノ粒子(図示せず)が細線の表面に形成されている。つまり、ナノ構造体は細線の表面に形成されているので、その過剰熱を取り出すには、その熱伝導率の低い細線からか、あるいは雰囲気の水素を取り出して熱交換する方法しかない。このために極めて熱交換効率が低くなる。さらに、特許文献3には、反応体を加熱することで「金属ナノ粒子内に水素原子が吸蔵され、(中略)トンネル核融合反応の起こる確率を上げる」と説明されているが、水素吸蔵金属を加熱して常温核融合を制御性良く再現することはできないと考える。 Further, in Patent Document 3, the surface of the reactant is formed in a mesh shape with fine lines, and a plurality of nano-sized metal nanoparticles (not shown) having a width of 1000 [nm] or less are formed on the surface of the fine lines. Has been done. That is, since the nanostructure is formed on the surface of the thin wire, the only way to extract the excess heat is from the thin wire having low thermal conductivity or by extracting hydrogen from the atmosphere and exchanging heat. Therefore, the heat exchange efficiency becomes extremely low. Further, Patent Document 3 explains that by heating the reactant, "hydrogen atoms are occluded in the metal nanoparticles, and (...) the probability that a tunnel fusion reaction occurs is increased", but the hydrogen storage metal It is considered that cold fusion cannot be reproduced with good controllability by heating.
 詳しくは後述するが、本発明者の考えによれば、通常の常温核融合メカニズムでは、水素吸蔵金属のTサイトにある陽イオン(Dの核子)Dが温度上昇時にホッピングによりポテンシャル障壁を乗り越えて重水素イオンDが入っている隣接Tサイトに移動し、そこで核融合がトリガされると考える。しかしながら、この場合、核融合の発生により金属の温度が上昇すると、さらにDがホッピングしやすくなり、正のフィードバックが発生して金属温度が制御できない熱暴走を生じる。この高温を必要とする点がFPEの重大な課題である。 Although details will be described later, according to the idea of the present inventor, in a normal cold fusion mechanism, a cation (Nucleon of D) D + at the T site of a hydrogen storage metal overcomes a potential barrier by hopping when the temperature rises. Te deuterium ions D - move to the adjacent T site is on, where considered fusion is triggered. However, in this case, when the temperature of the metal rises due to the occurrence of nuclear fusion, D + becomes more likely to be hopping, positive feedback is generated, and thermal runaway occurs in which the metal temperature cannot be controlled. The requirement for this high temperature is a serious issue for FPE.
 また金属温度が高いと金属格子にダメージを与えたり、局所的な過剰の熱発生で金属表面が非常に荒れるという問題も知られている。さらに、常温核融合を発電に使う場合には、通常、発熱体の熱を冷却して電力に変換するので、上記熱暴走を回避するだけでなく発電のためにも、金属温度を低く保つことが必要である。すなわち、金属温度を高くすることなく(できるだけ低温で)核融合をトリガする方法、または低温で核融合の自立モードを維持できる方法を用いることが望ましい。 It is also known that if the metal temperature is high, the metal lattice will be damaged, and the metal surface will be extremely rough due to local excessive heat generation. Furthermore, when cold fusion is used for power generation, the heat of the heating element is usually cooled and converted into electric power, so the metal temperature should be kept low not only to avoid the above thermal runaway but also for power generation. is required. That is, it is desirable to use a method that triggers fusion (at as low a temperature as possible) without raising the metal temperature, or a method that can maintain the self-sustaining mode of fusion at a low temperature.
 非特許文献4および5に記載されているDO系では、DOの比熱がDガスよりも高く金属表面を直接冷却可能なので、核融合反応の継続、発生した熱の効率的な取り出しの点でDガス系よりも遙かに有利である。 In the D 2 O system described in Non-Patent Documents 4 and 5, the specific heat of D 2 O is higher than that of D 2 gas and the metal surface can be directly cooled, so that the fusion reaction can be continued and the generated heat can be efficiently performed. advantageously much than D 2 gas system in terms of extraction.
 また、非特許文献4には発熱量を増加させる方法としてDの供給量を増やすことが重要だとの指摘がされているが、FPEに基づいた常温核融合炉では金属内にいったん蓄積させたDを拡散で金属表面に供給するのでD供給量が制御できず、したがって最大化もできないという課題がある(詳しくは後述する)。 In addition, Non-Patent Document 4 points out that it is important to increase the supply amount of D as a method of increasing the calorific value, but in a cold fusion reactor based on FPE, it was once accumulated in the metal. Since D is supplied to the metal surface by diffusion, there is a problem that the amount of D supplied cannot be controlled and therefore cannot be maximized (details will be described later).
 以下、図1を参照しながら、本発明者が提案する常温核融合発生のメカニズムについて説明し、上記背景技術が常温核融合を安定的に再現できない理由について詳細に説明する。なお、言うまでもないが、図1をはじめとする模式図は常温核融合の発生メカニズムを説明するための図であり、図面上の原子や分子の大きさの比率は実際の比率を直接反映したものではない。 Hereinafter, the mechanism of cold fusion generation proposed by the present inventor will be described with reference to FIG. 1, and the reason why the above background technology cannot stably reproduce cold fusion will be described in detail. Needless to say, the schematic diagrams such as FIG. 1 are diagrams for explaining the generation mechanism of cold fusion, and the ratio of the size of atoms and molecules in the drawing directly reflects the actual ratio. is not it.
A1.常温核融合の原理的説明
 本発明者は常温核融合が次のようなプロセスで発生すると考える。常温核融合のプロセス考察なので、金属内にDが核融合が起きる程度の高濃度に吸蔵された状態から始める。なお、図1に示す金属格子内のTサイト、水素分子およびフェムト水素分子については後述する。
 1)DとDの接近
 金属表面の膨張した格子内の空間(Tサイト)に陰イオンDが入り、その近傍の陽イオン(Dの核子)Dと結合して重水素分子Dを形成する(図1(A)および(B)参照)。
 2)フェムトD分子の形成
 膨張したTサイトの金属格子が元のサイズに戻ろうとする応力を受けてDが圧縮され、核子間が接近することで重水素分子Dがフェムト重水素分子(フェムトD分子)に遷移する(図1(C)および(D)参照)。
 3)フェムトD分子の伸縮運動
 フェムトD分子がTサイト内の空間で安定的に伸縮振動する(図1(E)参照)。後述するように、Tサイト内接球の直径1Å、フェムト水素分子は大きさ6fm(femto meter)程度なので、フェムトD分子はTサイト内でほぼ自由振動をする。その伸縮運動により核子間距離が非常に狭くなる可能性が高くなる。
 4)核融合
 フェムトD分子の振動運動により核子間の最近接距離が十分狭くなったときに核融合を起こし、核融合によりTサイト内にヘリウムHeが生成される(図1(E)および(F)参照)。
 5)Dの供給
 Heが生成されたTサイトには、金属内に吸蔵されたDがOサイトからトンネリングし、その際、詳しくは後述するがDがDとしてTサイトに移動する(図1(G))。
 6)ヘリウムの追い出し
 HeのいるTサイトにDが入ると、後述するように、電気陰性度的に金属から電子を受け取って陰イオンDになり、Dはサイズが相当に大きいので、Heが存在するTサイトを押し広げ、HeをTサイトから追い出す(図1(H))。こうして表面Tサイトは上記図1(A)の状態に戻り、以下Dが供給されながら核融合が連続的に生起する。
A1. Principle of Cold Fusion The inventor considers cold fusion to occur in the following process. Since the process of cold fusion is considered, we will start from the state where D is occluded at a high concentration that causes fusion in the metal. The T sites, hydrogen molecules, and femto hydrogen molecules in the metal lattice shown in FIG. 1 will be described later.
1) D + and D - space (T site) to the anion D of the expanded lattice of approaching metal surfaces - enters, deuterium molecules D bound to nucleons) D + cations (D in the vicinity thereof 2 is formed (see FIGS. 1 (A) and 1 (B)).
2) Formation of femto D 2 molecule D 2 is compressed by the stress that the metal lattice of the expanded T-site returns to its original size, and the deuterium molecule D 2 becomes the femto deuterium molecule when the nucleons approach each other. Transition to (femto D 2 molecule) (see FIGS. 1C and 1D).
3) femto D telescopic movement femto D 2 molecules of 2 molecules spatially stable stretching vibration in within the T site reference (FIG. 1 (E)). As will be described later, since the diameter of the inscribed sphere at the T site is 1 Å and the femto hydrogen molecule is about 6 fm (femto meter) in size, the femto D 2 molecule vibrates almost freely in the T site. The stretching motion is likely to result in a very narrow internuclear distance.
4) Fusion Fusion When the closest contact distance between nucleons becomes sufficiently narrow due to the vibrational motion of two femto D molecules, fusion occurs, and fusion produces helium He in the T site (Fig. 1 (E) and). (F)).
5) At the T site where the supply He of D is generated, D 0 occluded in the metal is tunneled from the O site, and at that time, D 0 moves to the T site as D +, which will be described in detail later (. FIG. 1 (G).
When 6) D + T-sites are of expelling He helium entering, as described later, the anion D receives electrons from electronegativity of metal - becomes, D - since the considerably large size, The T-site where He is present is expanded, and He is expelled from the T-site (Fig. 1 (H)). In this way, the surface T-site returns to the state shown in FIG. 1 (A), and nuclear fusion continuously occurs while D is supplied.
A2.常温核融合のメカニズム
 上記常温核融合のメカニズムについて、これまでの知見(参照文献1~16)を参照しながら詳細に説明する。なお、参照文献1~17は本項「発明が解決しようとする課題」の最後に列挙する。
A2. Mechanism of Cold Fusion The mechanism of cold fusion will be described in detail with reference to the findings so far (References 1 to 16). References 1 to 17 are listed at the end of this section "Problems to be Solved by the Invention".
 A2.1)水素原子の金属内での挙動
 参照文献1によれば、パラジウム固体内に吸収された水素原子は金属格子の配列を乱すことなく格子中の間隙サイトを占める。たとえば、図2に示す面心立方格子(fcc)には正四面体間隙サイト(以下、Tサイトという。)と正八面体間隙サイト(以下、Oサイトという。)とがあり、水素原子は安定状態ではより広いOサイトを占め、それを経てTサイトに水素イオンが導入されると考えられる。つまり、最初に、より広いサイトであるOサイトに水素イオンが入り周囲の原子を押し広げて結晶格子全体を膨張させる。そのために周囲のポテンシャルが変化して、このパラジウムと水素イオンの位置とその系のエネルギが安定になるように水素イオンの位置が決定される。これが原因でOサイトの水素イオンがTサイトに入ることができるようになる。パラジウム格子内に侵入した水素原子は規則配列せずに固溶体を形成する。なお、最表面のTサイトにはDが金属表面で乖離し、そのまま表面のTサイトに直接導入される経路もある。
A2.1) Behavior of hydrogen atoms in metal According to Reference 1, the hydrogen atoms absorbed in the palladium solid occupy the interstitial sites in the metal lattice without disturbing the arrangement of the metal lattice. For example, the face-centered cubic lattice (fcc) shown in FIG. 2 has a regular tetrahedral gap site (hereinafter referred to as T site) and a regular octahedral gap site (hereinafter referred to as O site), and a hydrogen atom is in a stable state. Then, it occupies a wider O site, and it is considered that hydrogen ions are introduced into the T site through it. That is, first, hydrogen ions enter the O-site, which is a wider site, and expand the surrounding atoms to expand the entire crystal lattice. Therefore, the surrounding potential changes, and the positions of the palladium and hydrogen ions and the positions of the hydrogen ions are determined so that the energy of the system becomes stable. This allows hydrogen ions at the O site to enter the T site. Hydrogen atoms that have entered the palladium lattice form a solid solution without regular arrangement. In addition, there is also a path in which D 2 is dissociated at the metal surface at the outermost T site and is directly introduced into the T site on the surface.
 図3に示すように、参照文献2によれば、金属原子1個あたりのサイトの数は、fccおよび最密六方格子(hcp)ではOサイトが1個、Tサイトが2個であり、体心立方格子(bcc)ではOサイトが3個、Tサイトが6個である。水素化物の規則構造については、一般的に水素-水素原子間距離が0.2nm以下にはならないという経験則に従うことが分かっており、通常はこれらのサイトの一部だけが占有されている。 As shown in FIG. 3, according to Reference 2, the number of sites per metal atom is one O-site and two T-sites in fcc and close-packed hexagonal lattice (hcp). In the body-centered cubic lattice (bcc), there are 3 O-sites and 6 T-sites. It has been found that the ordered structure of hydrides generally follows the rule of thumb that the hydrogen-hydrogen atom distance does not fall below 0.2 nm, and usually only some of these sites are occupied.
 参照文献17によれば、ほとんどの常温核融合がfccおよびhcp格子構造の水素化および重水素化遷移金属において観察されており、fccおよびhcpは細密充填構造である。また、図4および図5に示すように、参照文献3によれば、Dは金属表面のTサイトに優先的に吸蔵されることが分かっている。これらのことから常温核融合が金属表面Tサイトで発生していると推定できる。 According to Reference 17, most cold fusion is observed in hydrogenated and deuterated transition metals in the fcc and hcp lattice structures, where fcc and hcp are close-packed structures. Further, as shown in FIGS. 4 and 5, according to Reference Document 3, it is known that D is preferentially occluded at the T site on the metal surface. From these facts, it can be estimated that cold fusion occurs at the T site on the metal surface.
 以下、fccの細密充填構造を一例として、図面を簡略化するために、金属格子内のTサイトの配置を図6のように模式的に示すものとする。すなわち、金属格子内のTサイトを形成する格子を三角形で示す。 Hereinafter, the arrangement of T sites in the metal lattice will be schematically shown as shown in FIG. 6 in order to simplify the drawing, taking the fine packing structure of fcc as an example. That is, the lattice forming the T site in the metal lattice is indicated by a triangle.
 図7は、金属表面のTサイトの配列を模式的に示したものである。後述するように、金属表面のTサイトを占有する二重水素(デューテリウム: D)が本発明の主役である。 FIG. 7 schematically shows the arrangement of T sites on the metal surface. As will be described later, deuterium (Duterium: D), which occupies the T site on the metal surface, is the main component of the present invention.
 参照文献5によれば、金属中に存在する水素の電子状態については、完全に水素原子は電子を放しH状態になるというプロトンモデルと、逆に電子を余分に1個取り込みH状態になるというアニオン・モデルの両者が従来は考えられていて、水素吸収による電気抵抗・帯磁率・電子比熱の変化などがその場に応じて都合のよい方のモデルによって説明されてきた。ところが、近年のSwitendickを開祖とする金属水素化物の電子構造の理論計算の結果によって、上記の2つのモデルはどちらも事実の一面だけを捕えていることに過ぎないことが判った。つまり金属中の水素はHの形態(xは-1から+1の間の値をとりうる。)で存在し、HであったりHであったりという二面性を持つと考えられる。そこで、本発明者はHおよびHが同時に金属内に存在できると考える。この仮説が成り立たないと常温核融合は成立しないし、水素吸蔵金属中の水素の研究結果から考えると妥当な仮説だといえる。 According to Reference Document 5, regarding the electronic state of hydrogen existing in a metal, a proton model in which a hydrogen atom completely releases an electron and becomes an H + state, and conversely, an extra electron is taken in to an H - state. Both of the anion model of becoming are conventionally considered, and changes in electric resistance, magnetism coefficient, electron specific heat, etc. due to hydrogen absorption have been explained by the model that is more convenient according to the situation. However, recent theoretical calculations of the electronic structure of metal hydrides, founded by Switendick, have shown that both of the above two models capture only one aspect of the facts. That is, hydrogen in a metal exists in the form of H X (x can take a value between -1 and +1), and is considered to have the duality of being H or H +. Therefore, the present inventor considers that H and H + can exist in the metal at the same time. If this hypothesis does not hold, cold fusion will not hold, and it can be said that it is a valid hypothesis considering the research results of hydrogen in hydrogen storage metals.
 図8に示すように、水素原子Hの半径を1×10-10m=1Åとすれば、負に帯電したヒドリドHの半径は、電子がE以上の高いエネルギ準位を埋めているので、約2倍の2×10-10m=2Åとなる。言うまでもなく、図8は模式的に描かれており、実際には、水素原子核Hの荷電半径Rが0.87×10-15m=0.87fmであるから、Hの半径上の電子は水素原子核Hの半径Rを基準にすれば9万倍近く離れた位置にある。ちなみに、水素分子Hの原子核間距離rは0.74Åである。したがって、水素原子Hの半径1Åを考慮すれば、水素分子Hのサイズは~2.74Å、Dのサイズも~2.74Åとなる。 As shown in FIG. 8, if the radius of the hydrogen atom H 0 and 1 × 10 -10 m = 1Å, negatively charged hydride H - radii, electrons fill the high energy level above E F because there becomes 2 × 10 -10 m = 2Å about twice. Needless to say, FIG. 8 is depicted schematically, in fact, since hydrogen nuclei H + charge radius R is 0.87 × 10 -15 m = 0.87fm, the radius on the electron H 0 Is located nearly 90,000 times away from the radius R of the hydrogen nucleus H +. Incidentally, the internucleus distance r 1 of the hydrogen molecule H 2 is 0.74 Å. Therefore, considering the radius of 1 Å of the hydrogen atom H 0 , the size of the hydrogen molecule H 2 is ~ 2.74 Å, and the size of D 2 is also ~ 2.74 Å.
 Tサイトのサイズは内接球が1Åなので、Tサイトには単一のDが収納できる程度である。ここにD分子が入ると、Dと同じ大きさになって核子間隔がゼロになるはずであるが、実際は核子間のクーロン斥力が非常に大きいためにそのようにはならない。通常の水素原子では、その核子間クーロン斥力が非常に高く、核子間をfmオーダまで接近させることは困難であることが参考文献8で示されている。 Since the inscribed sphere is 1 Å in size of the T site, a single D can be stored in the T site. If goes here D 2 molecules, nucleons interval is the same size as the D is but should be zero actually not as its due Coulomb repulsion between nucleons is very large. Reference 8 shows that a normal hydrogen atom has a very high Coulomb repulsive force between nucleons, and it is difficult to bring the nucleons close to the fm order.
 具体的に検算すると、核融合を可能にするには核子間距離を核融合距離(0.1~1pm(pico meter))より短くする必要であるが、このときのクーロン斥力は、たとえば1.5pmの核融合距離の時に1×10-6Nと推定される。しかしながら、Pdにおける弾性誘導応力はPdの弾性定数に基づくものより少なくとも2桁小さいものと推定される。ここで弾性誘導応力とは金属内での発生する応力であり、残留応力あるいは降伏応力に相当する。たとえば金属における典型的な内部応力が10GPaのオーダであるとすれば、水素原子に加えられる圧力は1GPa=10N/m=1×10-9N/nm=1×10-11N/Åであると推定されうる。したがって、核融合を生起させるために必要な1×10-6Nの力は、金属の内部応力である1×10-8N/nmあるいは1×10-10N/Åよりも2桁~4桁大きい値となる。 Specifically, it is necessary to make the internuclear distance shorter than the fusion distance (0.1 to 1 pm (pico meter)) in order to enable fusion. The Coulomb repulsive force at this time is, for example, 1. It is estimated to be 1 × 10-6 N at a fusion distance of 5 pm. However, the elastic induced stress in Pd is estimated to be at least two orders of magnitude smaller than that based on the elastic constant of Pd. Here, the elastic induced stress is a stress generated in the metal and corresponds to a residual stress or a yield stress. For example, if the typical internal stress in a metal is on the order of 10 GPa, the pressure applied to the hydrogen atom is 1 GPa = 10 9 N / m 2 = 1 × 10-9 N / nm 2 = 1 × 10-11 N. It can be estimated to be / Å 2. Therefore, the force of 1 × 10 -6 N required to cause fusion is two orders of magnitude higher than the internal stress of the metal, 1 × 10 -8 N / nm 2 or 1 × 10 -10 N / Å 2. The value is up to 4 orders of magnitude larger.
 A2.2)水素原子の深い電子軌道
 上述したように、通常の金属格子からの応力では、核子間クーロン斥力がその応力より勝るので、核融合は発生しない。しかしながら、核融合が発生するためには、この核子間クーロン斥力が何らかの理由で想定より小さいと考えざるを得ず、その理由があるはずである。そこで、水素原子の電子軌道計算の精度、クーロン斥力計算の精度に何らかの問題があると考えた。
A2.2) Deep electron orbit of hydrogen atom As described above, in the stress from a normal metal lattice, the Coulomb repulsive force between nucleons exceeds the stress, so fusion does not occur. However, in order for fusion to occur, it must be considered that this internucleon coulomb repulsive force is smaller than expected for some reason, and there must be a reason. Therefore, it was considered that there was some problem in the accuracy of the electron orbital calculation of the hydrogen atom and the accuracy of the Coulomb repulsion calculation.
 特に、核間距離がfmオーダでのクーロン力の計算を考えると、クーロン力はr=0で発散するのでr=0近傍の精度が低いはずである。これに関して文献調査を行ったところ、水素原子には深い電子軌道が存在することが理論的に予言されており、その実証が従来の物理学での課題となっていること、その深い軌道が常温核融合の原因であると考える先行文献を発見した(参照文献10、11、12など)。 In particular, considering the calculation of the Coulomb force when the internuclear distance is on the order of fm, the Coulomb force diverges at r = 0, so the accuracy near r = 0 should be low. As a result of a literature search on this, it is theoretically predicted that a hydrogen atom has a deep electron orbit, and its proof is a problem in conventional physics, and the deep orbit is at room temperature. We have found prior literature that is believed to be the cause of nuclear fusion ( references 10, 11, 12, etc.).
 核子間クーロン斥力の遮蔽は、水素原子の電子軌道がより深い軌道を持つと考えることで解決できる。核子間クーロン斥力遮蔽の観点から考えると、通常の水素分子では、その軌道電子の共有結合部分が核子間クーロン斥力を遮蔽する可能性はある。しかしながら、共有結合時の核子間距離が0.74Å=7.4x10-11m=74000fmの距離で、その軌道が1Å程度の範囲に広がっているとすれば、この核子間距離が数10fm程度になると、その軌道の広がりは核子間以外の部分にまであることになる。このために、核子間距離が狭くなると核子間に電子が存在しなくなり、その共有結合電子の遮蔽効果は高々数分の一程度の遮蔽効果となって核融合を起こすまでの遮蔽効果を期待できない。 The shielding of the Coulomb repulsive force between nucleons can be solved by considering that the electron orbit of the hydrogen atom has a deeper orbit. From the viewpoint of internucleon Coulomb repulsion shielding, in a normal hydrogen molecule, the covalent bond portion of its orbital electron may shield the nucleon Coulomb repulsion. However, if the nucleon distance at the time of covalent bond is 0.74 Å = 7.4 x 10 -11 m = 74000 fm and the orbit extends to a range of about 1 Å, this nucleon distance is about several tens of fm. Then, the spread of the orbit extends to the part other than between the nucleons. For this reason, when the distance between nucleons becomes narrow, electrons do not exist between nucleons, and the shielding effect of the covalently bonded electrons becomes at most a fraction of the shielding effect, and the shielding effect until nuclear fusion cannot be expected. ..
 これに対して水素原子の深い電子軌道を考慮に入れると、深い軌道に電子をもつフェムト原子でフェムト水素分子を構成すると考えることができる。すなわち、図8に示す水素分子およびフェムト水素分子のサイズを参照すると、電子雲の広がりも数fm程度の範囲なので、核子間クーロン斥力をほぼ完全に遮蔽するということが理解できる。以下、深い電子軌道に関する文献内容を説明する。 On the other hand, if the deep electron orbit of the hydrogen atom is taken into consideration, it can be considered that the femto hydrogen molecule is composed of the femto atom having an electron in the deep orbit. That is, referring to the sizes of the hydrogen molecule and the femto hydrogen molecule shown in FIG. 8, it can be understood that the spread of the electron cloud is also in the range of about several fm, so that the internuclear Coulomb repulsive force is almost completely shielded. The contents of the literature on deep electron orbits will be described below.
 水素(HあるいはD)の原子核の周りには電子の深い軌道の存在が理論的に知られており(参照文献6および7)、その半径rは数fm(たとえば約1.4fm)であると計算されている。この深い電子軌道は、DDL(Deep Dirac Level)、DEO(Deep Electron Orbit)と略記されるが、本明細書ではDEOと記すものとする。後述するように、本発明者はDEOに遷移した電子が常温核融合の理解に必須であると考えるので、以下、深い電子軌道DEOについて図9および図10を参照して説明する。 The existence of deep electron orbits around the nucleus of hydrogen (H or D) is theoretically known (references 6 and 7), and its radius r 0 is several fm (for example, about 1.4 fm). Is calculated. This deep electron orbit is abbreviated as DDL (Deep Dirac Level) and DEO (Deep Electron Orbit), but is referred to as DEO in the present specification. As will be described later, the present inventor considers that the electrons that have transitioned to DEO are essential for understanding cold fusion, and therefore, the deep electron orbital DEO will be described below with reference to FIGS. 9 and 10.
 上述したように、水素原子の電子軌道では深い軌道の存在が理論的に予測されていたが、水素原子の電子遷移スペクトルからはその軌道が実証されていなかったために深い軌道の存在は肯定はされていなかった。しかしながら、常温核融合が発生していることを考えると、この深い電子軌道の存在なしには常温核融合を説明できない。 As mentioned above, the existence of deep orbitals was theoretically predicted in the electron orbits of hydrogen atoms, but the existence of deep orbitals was affirmed because the orbitals were not demonstrated from the electron transition spectrum of hydrogen atoms. I wasn't. However, considering that cold fusion is occurring, cold fusion cannot be explained without the existence of this deep electron orbit.
 図9を参照して、従来の量子力学的理論では、クーロンポテンシャルが核子間距離rに反比例するモデルを用いてシュレディンガー方程式を計算しており、r=0で特異点をもつ(図9の曲線5a・5b)。常温核融合には核子間クーロン斥力遮蔽が必要であるという理論的前提では、約15fmまで核子間を接近させる必要があると計算されている。 With reference to FIG. 9, in the conventional quantum mechanical theory, the Schrodinger equation is calculated using a model in which the Coulomb potential is inversely proportional to the internucleon distance r, and has a singular point at r = 0 (curve in FIG. 9). 5a ・ 5b). Under the theoretical premise that cold fusion requires internuclear Coulomb repulsion shielding, it is calculated that nucleons need to be brought close to each other up to about 15 fm.
 DEO理論は古くから、物理学会内で浮かんでは消えてゆくという過程を繰り返していたが、近年、r=0で特異点をもたない新たなモデルを採用することで新たな展開を見せ始めた(参照文献13)。このモデルでは、クーロンポテンシャルが、陽子内は一定電荷を有するものとして計算され、陽子外は1/rに比例するとモデル化される(図9の曲線5a・5c)。このモデルを用いて相対論的なシュレディンガー方程式を数値計算することで、上述した深い電子軌道DEOが算出される。具体的には、参照文献12のTABLE I.A(310ページ)に水素原子の相対論的シュレーディンガーレベルが計算されている。図10に示すように、参照文献12のTABLE I.Aには深い電子軌道DEO1~DEO3の存在が計算結果として明らかに示されている。 The DEO theory has been repeating the process of floating and disappearing within the Physical Society of Japan for a long time, but in recent years, it has begun to show new development by adopting a new model with r = 0 and no singularity. (Reference 13). In this model, the Coulomb potential is calculated as having a constant charge inside the proton and proportional to 1 / r outside the proton (curves 5a and 5c in FIG. 9). The deep electron orbit DEO described above is calculated by numerically calculating the relativistic Schrodinger equation using this model. Specifically, the relativistic Schrodinger level of the hydrogen atom is calculated in TABLE I.A (page 310) of Reference 12. As shown in FIG. 10, the existence of deep electron orbitals DEO1 to DEO3 is clearly shown as a calculation result in TABLE I.A. of Reference Document 12.
 DEO理論が広く認められていないのは、その軌道が水素の電子軌道遷移のスぺクトルで発見されていないからである。しかしながら、次に述べるように参照文献15および16の実験結果を合理的に説明するのはDEO理論であると考える。 The DEO theory is not widely accepted because its orbital has not been found in the electron orbit transition spectrum of hydrogen. However, it is considered that it is the DEO theory that rationally explains the experimental results of References 15 and 16 as described below.
 参照文献15は、負の電荷を持つ水素イオンH(ヒドリド)が圧縮されやすいという研究報告であり、また参照文献16では層状物質にかけられた圧力が52GPa から49GPaに低下していることが観測されている。このことは圧力により急激な体積変化が生じたこと、つまり、相変化して密度の高い状態になったことを示している。この点は常温核融合の原理に関係するので、以下考察する。 References 15, hydrogen ions H negatively charged - observed that (hydride) is report that tends to be compressed, and the pressure exerted on the layered material in reference 16 is lowered to 49GPa from 52GPa Has been done. This indicates that the pressure caused a rapid volume change, that is, the phase changed to a high density state. Since this point is related to the principle of cold fusion, it will be considered below.
 参照文献16の実験では層状物質の上下方向から圧縮応力をかけて、物性定数を計測している。その計測では圧力が52GPaから49GPaに減少していることが述べられており、それは相変化をして層が密度の高い層に変化したことと解釈されている。参照文献16に示された例によれば、図11Aに示すストロンチウム(Sr)・バナジウム(V)・酸水素化物SrVOHのペロブスカイト型の結晶構造においてHはVと結合している。このH-V結合間隔が図11Bおよび図11Cに示すように圧縮応力により縮小し密度の高い層に変化したと考えることができる。参照文献16の3ページFIG.2のbおよびcから引用した図11Dおよび図11Eを参照すると、破線矢印で示すように圧力が52GPaから49GPaへ減少し、より密度の高い相に相変化したことを示している。このH-V結合間隔の縮小はVO層間に挟まれたHの縮小により生じ、Hの縮小はHのS軌道の電子がDEO軌道に遷移した結果であると解釈するのが合理的である。すなわち、H-V間隔が縮小すると、Hの深い電子軌道とVに結合している電子軌道とが接近し、基底状態の電子が深い軌道に遷移することで水素のサイズが縮小する。 In the experiment of Reference Document 16, compressive stress is applied from the vertical direction of the layered substance to measure the physical property constants. The measurement states that the pressure has decreased from 52 GPa to 49 GPa, which is interpreted as a phase change that changed the layer into a denser layer. According to the example shown in Reference 16, H is bound to V in the perovskite-type crystal structure of strontium (Sr), vanadium (V), and hydride SrVO 2 H shown in FIG. 11A. It can be considered that the HV coupling interval was reduced by the compressive stress and changed to a dense layer as shown in FIGS. 11B and 11C. See page 16 of Reference 16 FIG. With reference to FIGS. 11D and 11E taken from 2b and c, it is shown that the pressure decreased from 52 GPa to 49 GPa as indicated by the dashed arrow, and the phase changed to a denser phase. This reduction in H-V binding interval H sandwiched between VO 2 layers - caused by shrinking, H - reduction is reasonable to interpret to be the result of electron S orbit H transitions to DEO track Is. That is, when the HV interval is reduced, the deep electron orbitals of H and the electron orbitals bonded to V approach each other, and the electrons in the ground state transition to the deep orbitals, so that the size of hydrogen is reduced.
 これと同様のサイズ縮小が重水素ガスの場合にも生じると考える。D分子でのDEO軌道への電子の遷移は次のように説明できる。すなわち、圧縮応力でD分子が圧縮されると、共有結合部分が狭くなり電子密度が高くなる。すなわち、共有結合の電子軌道が水素の深い電子軌道の波動関数の位置に接近し、これによりS軌道とDEO軌道との間でトンネリングにより電子が遷移する確率が高くなる。 It is considered that the same size reduction will occur in the case of deuterium gas. Electronic transitions to DEO trajectory in D 2 molecules can be described as follows. That is, if D 2 molecules are compressed by the compression stress, the electron density is increased becomes narrower covalent binding moiety. That is, the covalently bonded electron orbital approaches the position of the wave function of the deep electron orbital of hydrogen, which increases the probability that the electron will transition between the S orbital and the DEO orbital by tunneling.
 より詳しくは、図12(A)に圧縮過程でのS軌道の波動関数とDEO軌道の波動関数の変化を模式的に示す。すなわち金属Tサイトからの圧縮応力でD分子が圧縮されるときには、まずD2間隔が狭くなり、これによってd-d間の電子密度が高くなる。図12(B)に示す参照文献7のFig.3のグラフによれば、d-d間のDEO軌道が原子核近傍で密度が高くなり、原子核近傍の数fmを離れると急激に波動関数が低くなる。したがって図12(A)に示すように、d-d間の距離がこの通常のクーロン斥力に逆らって金属格子からの応力で接近できる最小距離の場合に、S軌道の波動関数とDEO軌道の波動関数との重なりCが広くなり、S軌道の電子がDEO軌道にトンネルして遷移する確率が高くなると解釈できる。 More specifically, FIG. 12A schematically shows the changes in the wave function of the S orbit and the wave function of the DEO orbit during the compression process. That is, when D 2 molecules are compressed by the compression stress from the metal T site, D2 spacing is narrowed first, whereby the electron density between the d-d is increased. Fig. 7 of Reference Document 7 shown in FIG. 12 (B). According to the graph of No. 3, the density of the DEO orbit between d and d becomes high near the nucleus, and the wave function sharply decreases when the distance is several fm near the nucleus. Therefore, as shown in FIG. 12 (A), when the distance between d and d is the minimum distance that can be approached by the stress from the metal lattice against this normal Coulomb repulsive force, the wave function of the S orbital and the wave function of the DEO orbital. It can be interpreted that the overlap C with the function becomes wider and the probability that the electron in the S orbital tunnels to the DEO orbital and transitions increases.
 A2.3)ナノ金属粒子の水素吸蔵サイトの分析と「ナノ構造」の解釈
 図13は金属格子内の2つの隣接するTサイトにそれぞれDとDとが入った状態を模式的に示している。パラジウムナノ粒子に吸蔵された重水素がOサイトおよびTサイトを占有するモデルについては参照文献3に記載されている。参照文献3では金属水素化物のナノサイズ化および表面効果の重要性が指摘されており、97ページ「4.Pdナノ粒子中の重水素原子位置」の項では、ナノ粒子のコア領域(内部領域)ではOサイトのみ、シェル領域(外皮領域)ではOサイトおよびTサイトの両方にD原子が占有されるモデルが最も信頼性が高いと結論づけられている。また、このモデルによれば、吸蔵された重水素の約1/3はTサイトを占有している。さらに、D原子(Tサイト)の原子変位パラメータBD(T)が異常に大きい値(14.1Å)を示すのは、Tサイト(1/4, 1/4, 1/4)からわずかにずれた位置にいくつかの安定サイトがあり、D原子がこれらのサイト間でdisorderしているため、と推測されている。これらは、表面Tサイトが応力緩和しやすくその位置がずれることに対応していると考える。
A2.3) Interpretation Figure 13 "nanostructure" and analysis of hydrogen storage sites of the nano metal particles of two respectively adjacent T site D in the metal grid - a state in which the D + and enters schematically shown ing. A model in which deuterium occluded in palladium nanoparticles occupies O-sites and T-sites is described in Reference 3. Reference 3 points out the importance of nanosizing and surface effects of metal hydrides, and in the section “4. Deuterium atom positions in Pd nanoparticles” on page 97, the core region (internal region) of the nanoparticles. It is concluded that the model in which the D atom is occupied only in the O site in) and in both the O site and the T site in the shell region (outer skin region) is the most reliable. Also, according to this model, about one-third of the occluded deuterium occupies the T site. Furthermore, the atomic displacement parameter BD (T) of the D atom (T site) shows an abnormally large value (14.1 Å 2 ) only slightly from the T site (1/4, 1/4, 1/4). It is presumed that there are some stable sites at the positions shifted to, and the D atom is displaced between these sites. It is considered that these correspond to the fact that the surface T-site is easily stress-relaxed and its position is displaced.
 なお、既に述べたように、常温核融合における表面Tサイトの重要性については参照文献17にも示されており、fcc、hcpが細密充填構造であること、および重水素が表面のTサイトに優先的に吸蔵されること(参照文献3)から核融合は表面Tサイト内で発生すると推定される。 As already mentioned, the importance of face-centered T-site in cold fusion is also shown in Reference 17, that fcc and hcp have a finely packed structure, and deuterium is present in the surface T-site. It is presumed that fusion occurs in the surface T-site from the preferential occlusion (Reference 3).
 参照文献2によれば、金属格子中に水素原子が1個入ると、隣接した水素原子と金属原子の間に斥力ポテンシャルが働き、全系のエネルギが高くなる。他方、金属原子が水素原子から遠方に押しやられる変位(格子の膨張)による基底エネルギの減少と、ほぼ原子の変位の2乗に比例する格子歪みエネルギ増加とのバランスにより全系のエネルギを最小にする原子の変位が決まる。これにより、水素の固溶により水素原子周囲の金属原子が膨張する。膨張する体積の大きさは金属と格子間位置の種類によって異なるが、遷移金属であればほぼ一定で0.0026±0.0005nmの範囲に入ることが分かっている。 According to Reference Document 2, when one hydrogen atom enters the metal lattice, a repulsive force potential acts between the adjacent hydrogen atom and the metal atom, and the energy of the whole system becomes high. On the other hand, the energy of the whole system is minimized by balancing the decrease in ground energy due to the displacement (expansion of the lattice) in which the metal atom is pushed away from the hydrogen atom and the increase in the lattice strain energy that is almost proportional to the square of the displacement of the atom. The displacement of the atom to be used is determined. As a result, the metal atoms around the hydrogen atom expand due to the solid solution of hydrogen. The magnitude of the expanding volume differs depending on the type of metal and interstitial position, but it is known that transition metals are almost constant and fall within the range of 0.0026 ± 0.0005 nm 3.
 上述したDのサイズとTサイトのサイズを考慮すると、DがTサイトに入りにくいが、実際は、金属表面では上側に金属原子がないために、TサイトにDが入っても応力緩和が可能であり、そのため格子が膨張して空隙が広くなる。言い換えれば、格子の膨張による系のエネルギの増加が少ないので膨張幅が大きくなり、バルクよりも表面のTサイトにDが入りやすくなる。これが常温核融合が表面反応たる理由である。 Considering the size of D − and the size of T site described above , it is difficult for D − to enter the T site, but in reality, since there are no metal atoms on the upper side of the metal surface, stress relaxation is performed even if D − enters the T site. Is possible, which causes the grid to expand and widen the voids. In other words, since the increase in the energy of the system due to the expansion of the lattice is small, the expansion width becomes large, and D is more likely to enter the T site on the surface than the bulk. This is the reason why cold fusion is a surface reaction.
 図14に模式的に示すように、金属表面Sを想定すると、その表面にあるTサイトは上述したように応力緩和が可能であり、特に表面Tサイトの2つの金属原子の変位幅が大きくなると考えられる。Tサイトの内接球のサイズは直径1.123Åであるが、表面Tサイトの2つの金属原子の変位により膨張し、直径2ÅのDが入ることが可能となる。 As shown schematically in Figure 14, assuming the metal surface S M, T sites on its surface is capable of stress relaxation, as described above, in particular the displacement width of the two metal atoms of the surface T site is large It is considered to be. The size of the inscribed sphere T site is the diameter 1.123Å, expanded by the displacement of the two metal atoms of the surface T site, D the diameter of 2 Å - it is possible to enter.
 しかしながら、Dが入ったTサイトと隣接するTサイトに同様のDが入るとは考えにくい。Dが入って一方の格子が膨張すると、その隣接Tサイトは狭くなるからである。したがって、図13に示すように、隣接するTサイトの一方に大きなDが入ると、他方には小さなDが入りやすくなるはずである。隣接するTサイトにDとDが入ることで、ナノ構造における凝集系クラスタの元となる構造が形成される。特許文献3や学会の共通認識では、常温核融合は表面反応であり、核融合が発生している場合、SEM(走査顕微鏡)観察では電極に凹凸が観察されている場合が大半であるから、これらの凹凸などの「ナノ構造」で核融合が発生していると認識されている。すなわち、正負(DとD)の両方のイオンが隣接するTサイトに存在すること、これが常温核融合を発生させる基本的な「ナノ構造」である。なお、OサイトのDが移動することも否定はしえないが、上記説明が可能性としては高いと考える。 However, D - unlikely enters - is entered T-sites with similar D to T sites adjacent. This is because when D − is entered and one of the lattices expands, the adjacent T site becomes narrower. Therefore, as shown in FIG. 13, if a large D enters one of the adjacent T sites, a small D + should easily enter the other. D to the adjacent T sites + and D - that enters the structure which is the source of the flocculation system clusters in nano-structure is formed. According to Patent Document 3 and the common understanding of academic societies, cold fusion is a surface reaction, and when fusion occurs, irregularities are often observed on the electrodes in SEM (scanning microscope) observation. It is recognized that fusion occurs in "nanostructures" such as these irregularities. That is, the positive and negative (D + and D -) be present in both the T site ions adjacent, which is the basic "nano structure" to generate a cold fusion. It cannot be denied that D + on the O site moves, but the above explanation is highly possible.
 なお、凹凸などが製膜プロセスにおいて作成されたナノ構造を括弧付き、すなわち「ナノ構造」と記し、制御されたプロセスで作成したナノ構造を括弧なしで記して区別するものとする。 Note that the nanostructures created in the film-forming process with irregularities, etc. are marked with parentheses, that is, "nanostructures", and the nanostructures created in the controlled process are marked without parentheses to distinguish them.
 A2.4)金属内の自由電子の影響
 隣接するTサイトにDとDが入るとクーロン力により両者が引き合うので、たとえば熱励起によりポテンシャルを超えて小さなDが大きなD側へ移動すれば核融合が発生する確率が高くなると考えられる。しかしながら、実際には、必ずしも、そのようにはならない。その理由は、金属内の自由電子の存在がクーロン力を遮蔽するように作用するからである。以下、金属内の自由電子の影響について図15を参照しながら説明する。
Since the entering both attract each other by Coulomb force, for example beyond the potential by thermal excitation small D + large D - - A2.4) to free electrons affect neighboring T sites in the metal D + and D move to the side If this is done, the probability of nuclear fusion will increase. However, in practice this is not always the case. The reason is that the presence of free electrons in the metal acts to shield the Coulomb force. Hereinafter, the influence of free electrons in the metal will be described with reference to FIG.
 参照文献4によれば、金属を自由電子の海のように近似するジェリウムモデルを用いて、金属中に水素を入れた時のH-H間距離に対するエネルギの変化が図15のグラフで示されている。すなわち、電子密度が小さい(rが大きい)Naでは2つのHは結合状態であるが、電子密度が大きい(rが小さい)Alでは2つのHは全ての距離で反発しあい原子状になっている。この理由は、金属の伝導電子がH分子の反結合軌道に入り、結合を切るからである。さらに、金属中ではプロトンの電荷がわずか0.6Åで遮蔽されることも記載されている。この理由は簡単で、その狭い空間には計算上、自由電子数はゼロになるからである。 According to Reference 4, the change in energy with respect to the distance between H and H when hydrogen is put into the metal is shown in the graph of FIG. 15 using a jellium model that approximates the metal like a sea of free electrons. Has been done. That is, the electron density is small (r s is large) although the two H the Na is bound state, the electron density is large (r s is small) two in Al of H is turned all the atomic repel a distance ing. This is because the metal conduction electrons enters the antibonding orbital of the H 2 molecule, because cutting the binding. It is also stated that in metals, the charge of protons is shielded by only 0.6 Å. The reason for this is simple: the number of free electrons is calculated to be zero in that narrow space.
 このように、金属内の自由電子の存在はクーロン力を遮蔽するように作用するために、たとえ図13に示すように隣接するTサイトにDとDとがそれぞれ入ったとしても、DがD側へ移動しにくいので、核融合を起こす確率は低下する。 Thus, the presence of free electrons in the metal in order to act to shield the Coulomb force, D + and D to T sites adjacent even as shown in FIG. 13 - even and enters respectively, D Since it is difficult for + to move to the D - side, the probability of nuclear fusion decreases.
 本発明者は、以上の知見に基づいて、金属表面のナノ構造において常温核融合を生じさせるには、少なくとも金属表面の自由電子を減少させることが必要であると結論した。さらに、金属表面の自由電子は、後述するD-D間振動運動の抵抗力になるために、その速度が減速させる効果があり、核融合確率が低下する原因となりうる。この観点からも金属表面の自由電子を減少させることが必要であると結論した。 Based on the above findings, the present inventor concluded that it is necessary to reduce at least the free electrons on the metal surface in order to cause cold fusion in the nanostructure on the metal surface. Further, the free electrons on the metal surface become a resistance force of the vibration motion between DD, which will be described later, and therefore have an effect of decelerating the speed, which may cause a decrease in the fusion probability. From this point of view, it was concluded that it is necessary to reduce the free electrons on the metal surface.
 A2.5)ホッピングによる水素イオンの移動
 図16に示すように水素吸蔵金属の表面にDとDがそれぞれ入った隣接Tサイトが生成されている場合、上述したように金属内の自由電子の存在はDとDとの間のクーロン力を遮蔽するように作用する。このクーロン力の遮蔽によりDがD側へ移動しにくい状態を図17(A)に模式的に示す。図17(A)に示すように、DがD側へ移動しにくい状態は、言い換えれば、DとDとの間のポテンシャル障壁が高く、Dがポテンシャル障壁より高いエネルギを持っていないとD側へ移動する確率が低いことを意味する。
A2.5) on the surface of the hydrogen-absorbing metal as shown in the movement 16 of the hydrogen ions D + and D by hopping - if a neighboring T site is generated that contains each free electrons in the metal, as described above the presence of the D + and D - acts to shield the Coulomb force between the. FIG. 17 (A) schematically shows a state in which D + is difficult to move to the D − side due to the shielding of this Coulomb force. As shown in FIG. 17 (A), in the state where D + is difficult to move to the D − side, in other words, the potential barrier between D + and D is high, and D + has higher energy than the potential barrier. Otherwise, it means that the probability of moving to the D-side is low.
 これに対して、図17(B)に示すように、金属表面の自由電子を減少させると、DとDとの間のクーロン引力の遮蔽が弱くなり、等価的にポテンシャル障壁が低くなって低いエネルギのDであってもD側へ移動する確率が高くなる。したがって、自由電子が減少した状態で加熱によりDが熱励起すると、DはDの存在する隣接Tサイトへホッピングにより移動する確率が高くなる。Tサイト内にDとDとが閉じ込められると、DとDとが結合してDガス状の凝集系クラスタを形成する。 In contrast, as shown in FIG. 17 (B), decreasing the free electrons of the metal surface, D + and D - shielding Coulomb attraction between weakens, equivalently potential barrier becomes lower even Te a low energy D + D - probability of moving to the side increases. Therefore, when D + is thermally excited by heating while the number of free electrons is reduced, the probability that D + will move to the adjacent T site where D − exists by hopping increases. When a is confined, D + and D - - D + and D in the T site and are combined to form a D 2 gaseous aggregation system cluster.
 このように、DがDの存在する隣接Tサイトへホッピングにより移動することが常温核融合に関する重要なパラメータである。すなわちDとDとの間のクーロン引力がポテンシャル障壁を低下させることで大きくなり、それによってホッピング確率が高くなる。つまり、常温核融合を効率的に発生させるためには、このクーロン引力を大きくすることが重要である。しかしながら、従来の常温核融合炉では、金属表面に電子が誘導されて自由電子密度が金属表面で高くなる場合があり、この自由電子の存在がDとDとの間のクーロン引力を遮蔽して常温核融合確率が低くなるという課題があった。 Thus, it is an important parameter for cold fusion that D + moves to the adjacent T site where D − exists by hopping. That is, the Coulomb attraction between D + and D increases by lowering the potential barrier, which increases the hopping probability. That is, in order to efficiently generate cold fusion, it is important to increase this Coulomb attraction. However, in the conventional cold nuclear fusion reactor, may free electron density is induced electrons on the metal surface becomes high at the metal surface, the free presence of electrons D + and D - shielding the Coulomb attraction between the Therefore, there is a problem that the cold fusion probability becomes low.
 A2.6)共有結合によるD分子の形成
 図16に模式的に示すように、DがDの隣接Tサイトへホッピングすると、そのTサイト内で接近して共有結合を形成する。共有結合によりD分子が形成される過程は次のような考えられる。
A2.6) As schematically shown in formation 16 of D 2 molecules by covalent bond, D + is D - when hopping to the adjacent T sites, to form a covalent bond close within the T site. Process D 2 molecules are formed by covalent bond is considered as follows.
 図18において、DにDが十分近くなると、DはDのS軌道の電子を共有する状態になり、DとDとの間の電子雲1を共有する共有結合的な構造となる。Dの正電荷とDの負電荷とを考えると、本来的に共有結合的な状態を取るはずである。すなわち、DとDとの間で共有結合によりD分子が形成されると、その結合は引力2となり、DとDとの間に共有されている電子雲1は、両方の原子核に対して、水素原子核間のクーロン斥力に対するクーロン遮蔽の効果を発揮し、D側の原子核にDの原子核が極めて近距離に接近するまで共有結合の軌道は維持される。 In Figure 18, D - to the D + is sufficiently close, D + is D - ready to share electrons S orbit, D - a covalent sharing the electron cloud 1 between D + It becomes a structure. D + of the positive charges and D - Given the negative charge should take inherently covalent states. That, D - and the D 2 molecule is formed by covalent bonds between the D +, the binding attraction becomes 2, D - the electron cloud 1 that is shared between the D +, both relative nuclei, and exhibit the effect of Coulomb blockade against the Coulomb repulsion between the hydrogen nuclei, D - orbit covalent up nuclei D + nuclei side is very close to the short distance is maintained.
 しかしながら、図8に示す水素分子(H)のサイズから分かるように、核子間隔が数10fm程度の接近すると、上述したように核子間の電子がなくなり、核子間クーロン斥力を十分に遮蔽できなくなる。そこで、本発明者は、核子間クーロン斥力の完全な遮蔽にはフェムトD分子の存在が不可欠であると考えた。フェムトD分子は、参照文献15および16で述べられている圧縮されやすい水素イオンと同じ原理で生成されると考えられる。以下、本発明者による理論的考察を詳細に述べる。 However, as can be seen from the size of the hydrogen molecule (H 2 ) shown in FIG. 8, when the nucleon spacing is close to several tens of fm, the electrons between the nucleons disappear as described above, and the internuclear Coulomb repulsive force cannot be sufficiently shielded. .. The present inventors, the presence of the femto D 2 molecules to complete shielding nucleons between Coulomb repulsion is considered essential. Femto D 2 molecule is thought to be generated in the same principle as compressed susceptible proton are discussed in references 15 and 16. Hereinafter, the theoretical consideration by the present inventor will be described in detail.
 A2.7)フェムトD分子の形成
 従来では、上述した図9の曲線5aおよび5bに示すように、静電的斥力は原子核距離が小さくなると急激に増大すると考えられてきた。たとえば、2個の原子核が融合するためには、トンネリングで核融合する可能性が高くなる程度の距離~10fm程度まで、クーロン力に逆らって2個の原子核を近づけなければならない。そのために必要なエネルギは0.1MeV(10eV)程度である(上述したA2.1項の「水素原子の金属内での挙動」の最後の段落に記載された核融合に必要な力の一例を参照)。このために、本発明者は、当初、プロトン同士の相互作用を全てn=1軌道のクーロン遮蔽を行う方向で常温核融合の原理であると考察していた。なお、上述したように、曲線5a、5bはプロトンを点電荷として扱っているために、核子間距離r=0で発散してしまうが、核子内部が均一に帯電した球として扱うことで発散を回避できる。この結果が、図9の曲線5cである。
A2.7) femto D 2 forming molecules prior art, as shown in curves 5a and 5b of FIG. 9 described above, the electrostatic repulsion has been considered rapidly increases as the nucleus distance decreases. For example, in order for two nuclei to fuse, the two nuclei must be brought close to each other against the Coulomb force to a distance of about 10 fm, which increases the possibility of fusion by tunneling. Energy required therefor is about 0.1MeV (10 5 eV) (for A2.1 Section described above the final force required for nuclear fusion which is described in the paragraph "behavior in a metal hydrogen atom" See an example). For this reason, the present inventor initially considered that all interactions between protons are the principle of cold fusion in the direction of coulomb shielding with n = 1 orbitals. As described above, since the curves 5a and 5b treat the protons as point charges, they diverge at the internucleon distance r = 0, but the divergence is caused by treating the inside of the nucleons as a uniformly charged sphere. It can be avoided. The result is the curve 5c in FIG.
 しかしながら、図8に示す水素分子(H)のサイズから分かるように、n=1の電子軌道はÅ程度と非常に大きいために、核子間を15fm程度まで接近させることはできない。したがって、より効率的に核子間クーロン斥力を遮蔽するためにはその電子分布がより小さく、fm程度になっている必要がある。この点について過去の研究結果を調査したところ、原子にはより深い軌道が存在する可能性があるという理論が議論されていることを発見した(参照文献10、11、12)。このより深い軌道(DEO)がフェムト原子、フェムト分子の存在を理論的に示しており、その研究者等もフェムト原子が常温核融合の原因となっていることを主張している。 However, as can be seen from the size of the hydrogen molecule (H 2 ) shown in FIG. 8, since the electron orbit of n = 1 is as large as about Å, the nucleons cannot be brought close to each other to about 15 fm. Therefore, in order to shield the Coulomb repulsive force between nucleons more efficiently, the electron distribution needs to be smaller, about fm. As a result of investigating the results of past studies on this point, it was found that the theory that an atom may have a deeper orbit is being discussed ( References 10, 11, 12). This deeper orbit (DEO) theoretically indicates the existence of femto atoms and femto molecules, and their researchers also claim that femto atoms are the cause of cold fusion.
 本発明者は、金属格子内のTサイト内に閉じ込められたDが常温核融合を起こすまでの過程を次のように考える。
 a) Tサイト内でDとDとが共有結合的な状態(D分子)になると、共有結合の性質上、核子間が引き合うような引力2が発生し、金属格子から圧縮応力を受けて縮小する。この縮小は、上述したように参照文献15および16で圧縮されやすい水素イオンとして説明されており、以下の図19~図22で説明するメカニズムによりTサイト内にDEO軌道を持つフェムトD分子が形成されると考えられる。さらにDEOの理論的考察から、距離数10fm以内になると、電子がn=1の軌道からDEO軌道(n=0)に遷移し、D分子がフェムトD分子に遷移する。
 b) Tサイト内に閉じ込められたフェムトD分子が伸縮振動することでd-d間の距離が最短から最長の間で変化する。これにより、d-d間距離の最短時にトンネリングが発生し、それによって核融合が発生する確率が高くなる。
The present inventor considers the process until cold fusion occurs in D 2 confined in the T site in the metal lattice as follows.
a) T at site D - When the D + and become covalent state (D 2 molecules), the nature of the covalent bond, attraction 2 as between nucleons attract occurs, the compressive stress from the metal grid Receive and shrink. This reduction is described as easy to hydrogen ions is compressed with references 15 and 16 as described above, the femto D 2 molecules with DEO orbit in T sites by mechanisms described in the following 19 to 22 It is thought to be formed. Further theoretical considerations DEO, becomes within a distance number 10 fM, electron transitions from the track of the n = 1 to DEO orbit (n = 0), D 2 molecules transitions to femto D 2 molecule.
b) The distance between d and d changes from the shortest to the longest due to the expansion and contraction vibration of two femto D molecules trapped in the T site. As a result, tunneling occurs at the shortest distance between d and d, which increases the probability that nuclear fusion will occur.
 以下、金属格子のTサイト内に閉じ込められたD分子がどのような力を受けて核融合に至るかを詳しく説明する。 Hereinafter, or will be described in detail D 2 molecules trapped within T sites of the metal grid receives what forces lead to fusion.
 <金属格子からの圧縮応力>
 まず、Tサイトの金属格子は4個の金属原子に囲まれた立体構造を有し、その中にDとDとの共有結合Dが形成されているものとする。図14に模式的に示すように、金属原子が四面体の中心に向かって正四面体を縮小するような、変位の二乗に比例する復元力がDにかかると考えられる。
<Compressive stress from metal lattice>
First, it is assumed that the metal lattice of the T site has a three-dimensional structure surrounded by four metal atoms, in which a covalent bond D 2 of D − and D + is formed. As schematically shown in FIG. 14, it is considered that D 2 is subjected to a restoring force proportional to the square of the displacement such that the metal atom shrinks the regular tetrahedron toward the center of the tetrahedron.
 図19に示すように、Tサイト金属格子とそこから受ける圧縮方向の力を模式化して表すものとする。すなわち、4つの金属原子11~14で囲まれたTサイト15内にDが閉じ込められており、破線で示す金属原子14は紙面に垂直方向の手前に位置する。図19(A)では、Dには3つの金属原子11、12および13から3方向の圧力Fが掛っている様子が図示されている。 As shown in FIG. 19, the T-site metal lattice and the force received from the T-site metal lattice in the compression direction are schematically represented. That is, D 2 is confined in the T site 15 surrounded by four metal atoms 11 to 14, and the metal atom 14 shown by the broken line is located in front of the paper surface in the vertical direction. In FIG. 19 (A), it is shown that pressure F is applied to D 2 from three metal atoms 11, 12 and 13 in three directions.
 図19(A)に示すように、Tサイトの異なる方向から圧力Fを受けることで、Dの核子間はクーロン斥力により反発しても物理的に圧縮される。すでに述べたように、金属格子中に水素原子が1個入ると隣接した水素原子と金属原子の間に斥力ポテンシャルが働くために、全系のエネルギが高くなる。格子の膨張による基底エネルギの減少と、ほぼ原子の変位の2乗に比例する格子歪みエネルギ増加のバランスとにより全系のエネルギを最小にする原子の変位が決まる。つまり、このシミュレーションで核子間ポテンシャルをいれて計算すると核子間距離がどの程度まで近くなるかを知ることができる。 As shown in FIG. 19 (A), by receiving the pressure F from different directions T sites between nucleons of D 2 is also physically compressed repelled by Coulomb repulsion. As already mentioned, when one hydrogen atom enters the metal lattice, the repulsive potential acts between the adjacent hydrogen atom and the metal atom, so that the energy of the whole system becomes high. The balance between the decrease in basal energy due to the expansion of the lattice and the increase in lattice strain energy, which is approximately proportional to the square of the displacement of the atom, determines the displacement of the atom that minimizes the energy of the entire system. In other words, it is possible to know how close the nucleon distance is by calculating the internucleon potential in this simulation.
 図19(B)に示すように、Tサイトの異なる方向から圧力Fを受けることでDの核間距離は縮小する。より詳しくは、金属原子11~14はDに接近する方向に3次元的に縮小する。下側の3つの金属原子11、12および13はそれぞれDへ向けて縮小し、Dはその上に乗り上げる状態となるが、D2の上側にある金属原子14もDへ向けて移動するので、Dは上側への移動が妨げられる。これによりDの核子間隔d-dはTサイト内で縮小する。 As shown in FIG. 19 (B), the internuclear distance of D 2 is reduced by receiving the pressure F from different directions of the T site. More specifically, the metal atoms 11 to 14 are three-dimensionally reduced in the direction approaching D 2. Three metal atoms 11, 12 and 13 of the lower shrinking toward D 2 respectively, D 2 is a state in which rides thereon moves toward the metal atom 14 is also D 2 at the upper side of D2 Therefore, D 2 is hindered from moving upward. As a result, the nucleon spacing dd of D 2 is reduced within the T site.
 参照文献8によれば、一般的にはd-d間隔は15fm程度まで接近することが理論上要求されているが、金属内の応力でd-d間隔をこの程度まで接近させることはできないとされている。なぜならば、この核子間斥力の値は概算で1x10-6Nであるが、Pd原子の弾性定数はこの値に比して2桁小さいからである(上述したA2.1項の「水素原子の金属内での挙動」の最後の段落に記載された核融合に必要な力の一例を参照)。 According to Reference Document 8, it is theoretically required that the dd interval is close to about 15 fm, but it is not possible to make the dd interval close to this degree due to the stress in the metal. Has been done. Because the value of the nucleons between repulsion is 1x10 -6 N at approximate, elastic constant of Pd atoms is because two orders of magnitude smaller than this value (for A2.1 Section described above of "hydrogen atom See an example of the force required for fusion described in the last paragraph of "Behavior in Metals").
 しかしながら、膨張したTサイト内に封じ込められたD分子は、その圧縮応力とD分子の圧縮によるポテンシャル上昇との間で系全体のポテンシャルが最小化する時に安定する。当然その位置ではd-d間距離が核融合を起こすほど接近できないのであるが、d-d間の電子雲は、図11A~11Eおよび図12で説明したフェムトD分子が形成される程度の距離には接近していると考える。これによりクーロン斥力がほぼ完全に遮蔽されるので、通常のフェムトD分子の振動運動の範囲内でd-d間距離が核融合を起こす程度、15fm程度には接近すると考える。 However, the expanded T site D 2 molecules confined in the stable when minimizing the potential of the entire system with the potential increase due to the compression of the compressive stress and the D 2 molecule. Of course at that position is not inaccessible enough dd distance causes fusion, electron cloud between dd is approaching the distance to the extent that the femto D 2 molecule described in FIG. 11A ~ 11E and 12 are formed I think I'm doing it. Since the Coulomb repulsive force is almost completely shielded by this, it is considered that the distance between dds approaches about 15 fm within the range of the vibrational motion of the normal femto D 2 molecule to the extent that nuclear fusion occurs.
 A2.8)DEO電子によるクーロン斥力の遮蔽
 以下、図20~図22を参照してDEO電子によるクーロン斥力の遮蔽について説明する。
A2.8) Shielding of Coulomb repulsive force by DEO electrons Hereinafter, shielding of Coulomb repulsive force by DEO electrons will be described with reference to FIGS. 20 to 22.
 参照文献10、11および12によれば、水素原子(DあるいはH)の深い電子軌道が常温核融合の理解に重要であると指摘されている。また、上述したように、図10における参照文献12のTABLE I.A(310ページ)には深い電子軌道DEO(DDL)の存在が計算結果として明らかに示されている。 According to References 10, 11 and 12, it is pointed out that the deep electron orbit of a hydrogen atom (D or H) is important for understanding cold fusion. Further, as described above, the existence of a deep electron orbit DEO (DDL) is clearly shown as a calculation result in TABLE I.A (page 310) of Reference Document 12 in FIG.
 通常、深い電子軌道に電子は存在しないが、参照文献7によれば、DEOに電子が入ると、安定的に留まることが示されている。図20は参照文献7の11ページにあるFig.4と同じグラフである。図20において、横軸は陽子(半径R=0.87fm)の中心からの距離(すなわち半径)ρであり、縦軸はエネルギである。図20に示すように、ρ>26.5pmのゾーンと1fm<ρ<2.8fmのゾーンではポテンシャルエネルギが運動エネルギより大きくなっている。DEOは1fm<ρ<2.8fmのゾーンにあるので、DEOに入った電子は安定的に留まることが分かる。すなわち、DEOに電子が遷移すると、図8で説明したように、半径約0.87fmの陽子は半径約1.4fmのDEO電子に覆われ、ひとつの原子の構造(以下、フェムト原子という。)となる。参照文献6によれば、DEO電子は光速に近い速度で移動しており、また陽子がDEO電子で覆われることで全体を一つの「中性子」のように扱うことができるので、DEO電子はクーロン斥力を非常に効率よく遮蔽することができると指摘されている。このクーロン遮蔽は次のように説明することができる。 Normally, there are no electrons in the deep electron orbit, but according to Reference 7, it is shown that when an electron enters the DEO, it stays stable. FIG. 20 shows Fig. 20 on page 11 of Reference 7. It is the same graph as 4. In FIG. 20, the horizontal axis is the distance (that is, radius) ρ from the center of the proton (radius R = 0.87fm), and the vertical axis is energy. As shown in FIG. 20, the potential energy is larger than the kinetic energy in the zone of ρ> 26.5 pm and the zone of 1 fm <ρ <2.8 fm. Since the DEO is in the zone of 1 fm <ρ <2.8 fm, it can be seen that the electrons entering the DEO remain stable. That is, when an electron transitions to DEO, as described in FIG. 8, a proton having a radius of about 0.87 fm is covered with a DEO electron having a radius of about 1.4 fm, and the structure of one atom (hereinafter referred to as a femto atom). It becomes. According to Reference 6, the DEO electron is moving at a speed close to the speed of light, and the proton is covered with the DEO electron so that the whole can be treated as one "neutron". It has been pointed out that the repulsive force can be shielded very efficiently. This Coulomb shielding can be explained as follows.
 参照文献9によれば、空洞内に閉じ込められたD分子は金属格子の振動により振動していると考えられ、空洞内の振動が図21に示すようにモデル化されている。狭い空洞内では、図21の矢印で示す伸縮振動成分のみが発生し、縮んだときにd-d間隔が一定値より狭くなり得る。空洞を形成する金属原子の重量はDと比べて大きいので、金属格子に振動エネルギが散逸するには長時間を要する。したがって、狭い空洞内で振動運動が継続し、それによってd-d間隔が小さくなる回数が多くなる。 According to reference 9, D 2 molecules trapped in the cavity are considered to be vibrated by the vibration of the metal grid, the vibration in the cavity is modeled as shown in Figure 21. In the narrow cavity, only the expansion and contraction vibration component indicated by the arrow in FIG. 21 is generated, and the dd interval may become narrower than a constant value when contracted. Since the weight of the metal atom forming the cavity is larger than that of D, it takes a long time for the vibration energy to dissipate to the metal lattice. Therefore, the oscillating motion continues in the narrow cavity, which increases the number of times the dd interval becomes smaller.
 図21に模式的に示すように、Tサイト内に閉じ込められたD分子が振動し、それぞれの核子が接近するものとする。参照文献6によれば、核子が接近すると、図22に模式的に示すように、DEOに遷移した電子が系全体のエネルギを最小にするように再分布する。すなわち、2つの陽子の向かい合った側でそれぞれのDEO電子の密度が大きくなり、さらに、参照文献7で導出されているように距離が2.8fmより小さくなるとフェムト原子の共有結合状態が形成されると考えられる。このようにフェムトD分子が形成されると、図18で説明したメカニズムにより核子間クーロン斥力の遮蔽効果が顕著に現れる。こうしてDEO電子によりクーロン斥力が完全に遮蔽される。 As shown schematically in FIG. 21, vibrates D 2 molecules trapped within T sites, each nucleon is assumed to approach. According to Reference 6, when the nucleons approach, as schematically shown in FIG. 22, the electrons that have transitioned to the DEO are redistributed so as to minimize the energy of the entire system. That is, when the density of each DEO electron increases on the opposite side of the two protons and the distance becomes smaller than 2.8 fm as derived in Reference 7, a covalent bond state of the femto atom is formed. it is conceivable that. When the femto D 2 molecule is formed in this way, the shielding effect of the Coulomb repulsive force between nucleons becomes remarkable by the mechanism described in FIG. In this way, the Coulomb repulsive force is completely shielded by the DEO electrons.
 A2.9)フェムトD分子の伸縮振動
 フェムトD分子は、図8に示すように、その幅が6fm(6x10-15m)程度に小さくなる。Tサイトの大きさは1Å(10-10m)程度なので、フェムトD分子はTサイトに比較して遙かに小さい。したがって、フェムトD分子に遷移した後は、フェムトD分子の振動運動のエネルギが高くなるに従ってd-d間の最接近距離が小さくなり、その最接近状態が伸縮振動により複数回繰り返されることとなる。DEO電子によりクーロン斥力が完全に遮蔽されているので、図9の曲線5dに示すように、従来の説明より遙かに小さなエネルギを与えることで核子間がトンネリングするほどに近接することができ、その結果、核融合発生の確率が大幅に向上する。
A2.9) stretching vibration femto D 2 molecules of femto D 2 molecules, as shown in FIG. 8, the width becomes smaller to the extent 6fm (6x10 -15 m). Since the size of the T sites degree 1Å (10 -10 m), the femto D 2 molecules much smaller compared to the T site. Thus, after the transition to the femto D 2 molecules closest distance between d-d according to the energy of the oscillating movement of the femto D 2 molecules is increased it is reduced, that the closest state is repeated a plurality of times by stretching vibration It becomes. Since the Coulomb repulsive force is completely shielded by the DEO electrons, as shown in the curve 5d of FIG. 9, by applying much smaller energy than the conventional explanation, the nucleons can be brought close to each other so as to tunnel. As a result, the probability of fusion occurrence is greatly improved.
A3.常温核融合発生のプロセス
 以上まとめると、上述したDEOの理論的考察は自由なフェムト水素分子についてだが、後述するように、実際にはDイオンで拡張したTサイトにDが入って、そこで水素分子を形成し振動運動する。そのTサイトは本来のサイズ(内接径~1Å)まで縮小する応力があり、その縮小応力が水素分子間の斥力よりは高い範囲で水素分子は縮小される。これによって、Tサイト内のD分子がフェムトD分子に遷移する。
A3. Process of Cold Fusion Generation To summarize the above, the theoretical consideration of DEO mentioned above is about free femto hydrogen molecules, but as will be described later , D + actually enters the T-site extended with D- ion, and there. It forms hydrogen molecules and vibrates. The T-site has a stress that shrinks to its original size (inscribed diameter to 1 Å), and hydrogen molecules are shrunk in the range where the shrinking stress is higher than the repulsive force between hydrogen molecules. Thus, D 2 molecules in the T site transitions to femto D 2 molecule.
 フェムトD分子はTサイトの本来のサイズ(~1Å)よりも小さく、Tサイト内で安定した振動運動をする。この振動運動が大きな場合に核子間がトンネリングするほど近接し核融合が発生するので、そのフェムトクラスタ分子の運動エネルギが高いことが重要である。 Femto D 2 molecule smaller than the original size of the T site (~ 1 Å), the stable oscillating motion in the T site. When this vibrational motion is large, the nucleons are tunneled closer to each other and fusion occurs. Therefore, it is important that the femtocluster molecule has a high kinetic energy.
 A3.1)自由電子の存在
 しかしながら、上述したように金属内には自由電子が存在するために、Tサイト内でフェムトD分子の振動エネルギを十分に高く維持することができない。特許文献3に記載された加熱方法では振動エネルギを十分に高く維持するには制限がある上に、エネルギ分布が広いために十分な制御性が得られない難点がある。
A3.1) The presence of free electrons, however, in order to free electrons are present in the metal as described above, can not be maintained sufficiently high vibration energy of the femto D 2 molecules in T site. The heating method described in Patent Document 3 has a limitation in maintaining a sufficiently high vibration energy, and also has a drawback that sufficient controllability cannot be obtained due to a wide energy distribution.
 A3.2)水素の供給
 また、常温核融合を継続的・安定的に発生させるためには、水素分子、水素イオン(軽水素H、重水素Dを含む。)の濃度を一定値以上に保つ必要がある。すなわち、発熱量は金属に吸収されるDの流入量とそれが核融合する量に依存するので、消費された量のDを供給する必要がある。しかしながら従来のガス系の装置では基板温度が数百度と高いために水素分子、水素イオンが外方拡散する。そこで、従来例では水素吸蔵金属内の水素濃度を一定値以上に保持するために真空チャンバにガス状態の水素で供給しており、基板面での濃度分布、温度分布を補正できないという課題があった。
A3.2) Supply of hydrogen In addition, in order to generate cold fusion continuously and stably, the concentration of hydrogen molecules and hydrogen ions (including light hydrogen H and deuterium D) should be kept above a certain value. There is a need. That is, since the calorific value depends on the inflow amount of D absorbed by the metal and the amount of fusion of the D, it is necessary to supply the consumed amount of D. However, in a conventional gas-based device, hydrogen molecules and hydrogen ions diffuse outward because the substrate temperature is as high as several hundred degrees. Therefore, in the conventional example, hydrogen in a gas state is supplied to the vacuum chamber in order to maintain the hydrogen concentration in the hydrogen storage metal above a certain value, and there is a problem that the concentration distribution and temperature distribution on the substrate surface cannot be corrected. rice field.
 またDO系の装置でも、非特許文献4のようにDの供給を考慮しない装置では、安定した核融合反応の連続運転ができない。たとえば水素吸蔵金属の表面ナノ構造の上にDOを効率的に流し、かつ効率的に水素を吸蔵させる必要があるが、従来技術では全く考慮されていない。また液体を流すために水素吸蔵金属の構造上の強度も問題となる。さらに常温核融合炉のサイズを縮小するための工夫も必要である。 Also in D 2 O system of the apparatus, a device that does not consider the supply of D as in Non-Patent Document 4 can not continuous operation of the stable fusion reactions. For example, it is necessary to efficiently flow D 2 O over the surface nanostructure of a hydrogen storage metal and efficiently store hydrogen, but this has not been considered at all in the prior art. In addition, the structural strength of the hydrogen storage metal also becomes a problem in order to allow the liquid to flow. Furthermore, it is necessary to devise ways to reduce the size of cold fusion reactors.
 A3.3)FPEに基づいた常温核融合発生メカニズムの誤解
 図23は参照文献18のFig. 1に記載されている常温核融合実験炉の一部を示す。図23に示す実験炉は、現行のFPE(Fisherman and Pons効果)に基づいている。それによれば常温核融合炉内にはシート状のPdカソードが中央に配置され、その周りを白金Ptワイヤのアノードが面対称となるように巻回した構成を有し、カソードとアノード間に電圧を印加することでDOを電気分解する。参照文献18によればDO電解液内でPdカソードとPtアノードとを所定の低電流と高電流との間で切り替えて駆動する。低電流期間および高電流期間のいずれも定電流モードである。以下、図23における模式的拡大断面図に示すように、Pdカソードとその周りに巻回した線状のPtアノードとの位置関係を示すものとする。
A3.3) Misunderstanding of cold fusion generation mechanism based on FPE Fig. 23 shows a part of the cold fusion experimental reactor described in Fig. 1 of Reference 18. The experimental furnace shown in FIG. 23 is based on the current FPE (Fisherman and Pons effect). According to this, a sheet-shaped Pd cathode is arranged in the center in the cold fusion reactor, and has a configuration in which the anode of the platinum Pt wire is wound around it so as to be plane-symmetric, and the voltage between the cathode and the anode is high. Is applied to electrolyze D 2 O. The According to reference 18 in D 2 O electrolyte within Pd cathode and the Pt anode by switching between a predetermined low current and high current driving. Both the low current period and the high current period are in constant current mode. Hereinafter, as shown in the schematic enlarged cross-sectional view in FIG. 23, the positional relationship between the Pd cathode and the linear Pt anode wound around the Pd cathode shall be shown.
 図23の模式的拡大断面図に示す電極配置では、アノードからカソードへ向けた電界の強さはカソード表面で均一にならない。参照文献18のFig. 10によれば、印加電圧に依存してPdカソード表面に薄い絶縁膜が「ブロッキング層」として形成され、この絶縁膜での発熱量が非常に大きくなることが判明している。以下、この異常な発熱現象について図24~図26を参照しながら本発明者の観点から説明する。 In the electrode arrangement shown in the schematic enlarged cross-sectional view of FIG. 23, the strength of the electric field from the anode to the cathode is not uniform on the cathode surface. According to Fig. 10 of Reference Document 18, it has been found that a thin insulating film is formed as a "blocking layer" on the surface of the Pd cathode depending on the applied voltage, and the amount of heat generated by this insulating film becomes very large. There is. Hereinafter, this abnormal heat generation phenomenon will be described from the viewpoint of the present inventor with reference to FIGS. 24 to 26.
 まず、参照文献19の実験結果(Fig.2)を参照する。このグラフ(Fig.2)を図24に転載する。図24から分かるように、Pdへの水素吸蔵が進行すると、Pd-Dの割合が高くなり、それに伴って金属の抵抗率が上昇する。この抵抗率の上昇により参照文献18のPdカソード表面で次の現象が生じていると考えられる。 First, refer to the experimental result (Fig. 2) of Reference Document 19. This graph (Fig. 2) is reproduced in FIG. 24. As can be seen from FIG. 24, as hydrogen storage in Pd progresses, the proportion of Pd-D increases, and the resistivity of the metal increases accordingly. It is considered that the following phenomenon occurs on the surface of the Pd cathode of Reference 18 due to this increase in resistivity.
 図25(A)に模式的に示すように、参照文献18の実験装置のPdカソードと線状のPtアノードとがDO電解液内で対向配置され、定電流モードで駆動されるものとする。図25(B)に示すように、参照文献18によればPdカソード表面上に薄い絶縁膜が形成され始めるが、この絶縁膜の厚さは電界依存性があるので、カソード表面の電界が強い箇所で厚く、弱い箇所で薄く生成され、絶縁膜に覆われていない開口部(Pdが露出している領域)が部分的に発生しうる。このように絶縁膜のない開口部ではPdが露出し、この露出部分が電流パスとなると、図25(C)に示すように開口部だけでD吸蔵が進行し高抵抗化する。言い換えれば、Pdカソード電極の表面全体が電流パスであった初期状態から絶縁膜が形成され始めると電流パスの面積が絶縁膜のない開口部のみに限定され、さらにその部分が高抵抗化する。 As shown schematically in FIG. 25 (A), the Pd cathode and linear Pt anode of the experimental apparatus references 18 are opposed with D 2 O electrolyte inside, and are driven in a constant current mode do. As shown in FIG. 25 (B), according to Reference 18, a thin insulating film begins to be formed on the surface of the Pd cathode, but since the thickness of this insulating film depends on the electric field, the electric field on the cathode surface is strong. It is possible that an opening (a region where Pd is exposed) that is thick at a portion and thin at a weak portion and is not covered with an insulating film is partially generated. When Pd is exposed in the opening without the insulating film and the exposed portion becomes a current path, D occlusion proceeds only in the opening and the resistance is increased as shown in FIG. 25 (C). In other words, when the insulating film starts to be formed from the initial state where the entire surface of the Pd cathode electrode is the current path, the area of the current path is limited to only the opening without the insulating film, and that portion is further increased in resistance.
 上述したように定電流モードで動作している場合、電流パス面積の縮小と高抵抗化が進むと、電流を一定に維持するために電圧が上昇する。電圧が高くなると、電流パスとなる開口部の電流密度が高くなり、さらにPd-D化が進行して開口部の表面近傍の抵抗値が高くなる。消費電力はIRで求まるのでRの上昇に比例して局所的に発熱量が上昇し、これによる温度上昇が金属の抵抗値を更に高くし、発熱量が多くなる。結果、この熱によりDが表面Tサイトへホッピングし易くなりDと結合して上述したように核融合がトリガされる。核融合により温度が上昇すると、さらにDのホッピングが生じて正のフィードバックが発生する。 When operating in the constant current mode as described above, as the current path area is reduced and the resistance is increased, the voltage rises in order to maintain the current constant. When the voltage becomes high, the current density of the opening which becomes the current path becomes high, and the Pd-D conversion progresses, and the resistance value near the surface of the opening becomes high. Since the power consumption is obtained by I 2 R, the calorific value rises locally in proportion to the rise in R, and the temperature rise due to this further raises the resistance value of the metal and increases the calorific value. Result, D + is easily hop to the surface T site D by the heat - and combined with a fusion as described above is triggered. When the temperature rises due to fusion, further D + hopping occurs and positive feedback is generated.
 ここで注目すべきは、図25(C)に示すように、Pdカソード電極の開口部直下部分には高濃度D領域(Pd-D)が深く形成されているために、そこからPdカソードの表面へDが供給される状態になっていることである。このようにPdカソード電極の奥側から表面へDが供給される状態になると、図26に示すようにDの供給およびHeの追い出しが生じ、後述する常温核融合が発生して多量の発熱が生じ得る(詳しいメカニズムは図55で述べる。)。これこそが参照文献18のPdカソード表面で散発的に生じる異常な発熱現象の合理的な説明であると考える。 It should be noted here that, as shown in FIG. 25 (C), since the high concentration D region (Pd-D) is deeply formed in the portion immediately below the opening of the Pd cathode electrode, the Pd cathode is formed from there. It means that D is supplied to the surface. When D is supplied from the back side of the Pd cathode electrode to the surface in this way, as shown in FIG. 26, D is supplied and He is expelled, cold fusion occurs, which will be described later, and a large amount of heat is generated. It can occur (detailed mechanism is described in FIG. 55). It is considered that this is a rational explanation of the abnormal heat generation phenomenon that occurs sporadically on the surface of the Pd cathode of Reference Document 18.
 また、非特許文献4に記載されている仮説、すなわち液体内のプラズマ電気分解によりカソード表面で「ユニークな反応」が発生したとの仮説も基本的に誤っていると考える。カソード表面での「ユニークな反応」は、プラズマ電気分解により発生するのではなくRF電界を印加した結果として発生している、というのが本発明者の考えである。本発明の観点によれば、RF電極が正電位、したがって水素吸蔵金属の電位が高くなっている時に水素を吸蔵し、RF電極が負電位の時に吸蔵した水素により核融合反応が発生する、と考えることができる。上述したように、RF電極が負電圧の時、水素吸蔵金属の表面は自由電子が空乏状態となっており、金属表面のTサイト内でフェムトD分子の振動エネルギが十分に高く維持されるからである。 Further, it is considered that the hypothesis described in Non-Patent Document 4, that is, the hypothesis that a "unique reaction" is generated on the cathode surface by plasma electrolysis in a liquid is basically wrong. It is the inventor's idea that the "unique reaction" on the cathode surface is not caused by plasma electrolysis but is caused by the application of an RF electric field. According to the viewpoint of the present invention, hydrogen is occluded when the RF electrode has a positive potential, and therefore the potential of the hydrogen storage metal is high, and the hydrogen stored when the RF electrode has a negative potential causes a nuclear fusion reaction. I can think. As described above, when the RF electrode negative voltages, the surface of the hydrogen-absorbing metal is free electrons becomes depleted, the vibration energy of the femto D 2 molecules in T sites of the metal surface is maintained sufficiently high Because.
 本発明者は、非特許文献4に記載されている常温核融合実験の制御が困難である原因を次のように考える。まず、RF電圧であるために水素吸蔵金属の表面電位が対向電極に対して正と負の間で高い周波数で変化する。金属表面の電位が正である時には金属表面の自由電子密度が高くなり常温核融合の発生確率が低下する。その一方で金属表面の電位が正であることが水素吸蔵金属への水素吸蔵に必要であるを見逃している。このために、非特許文献4ではRF電圧を印加したときに発生する「ユニークな反応」の原因がプラズマ電気分解であると誤った仮説を提起している。誤った仮説に基づいて実験するために安定した連続的な常温核融合反応がますます困難となっている。 The present inventor considers the cause of difficulty in controlling the cold fusion experiment described in Non-Patent Document 4 as follows. First, because of the RF voltage, the surface potential of the hydrogen storage metal changes at a high frequency between positive and negative with respect to the counter electrode. When the potential of the metal surface is positive, the free electron density of the metal surface increases and the probability of cold fusion decreases. On the other hand, it is overlooked that the positive potential of the metal surface is necessary for hydrogen storage in the hydrogen storage metal. For this reason, Non-Patent Document 4 erroneously raises the hypothesis that the cause of the "unique reaction" that occurs when an RF voltage is applied is plasma electrolysis. Stable and continuous cold fusion reactions are becoming increasingly difficult to experiment with based on false hypotheses.
A4.課題
 上述したように、FPEに基づく核融合炉では、水素吸蔵金属に印加する電界を均一化して制御しておらず、さらにアノードからカソードへ電界が生じているために、カソードの金属表面に自由電子が存在し、それによりクーロン引力を遮蔽されている。このために非常に高い温度でしか核融合がトリガせず、自律モードを持続させることができない。またDのカソード金属表面への供給は、その前段階でバルク内に吸蔵させたDが拡散する現象を利用するのでDの供給量を最大化することが困難となる。
A4. Issues As described above, in a fusion reactor based on FPE, the electric field applied to the hydrogen storage metal is not uniformly controlled, and an electric field is generated from the anode to the cathode, so that the metal surface of the cathode is free. There are electrons, which shield the Coulomb attraction. For this reason, fusion can only be triggered at very high temperatures and the autonomous mode cannot be sustained. Further, since the supply of D to the surface of the cathode metal utilizes the phenomenon that the D stored in the bulk in the previous stage is diffused, it becomes difficult to maximize the supply amount of D.
 このような課題を解決して発熱量を多くするには、次の条件を満たすことが望ましい:
・金属表面にナノ構造を多数形成して、核融合の発生しうるサイトを増やすこと;
・金属表面の電位を正に制御すること;
・D供給量を増加させること(D吸蔵速度を高くすること);および
・発熱面の冷却効率を高くすること(金属表面を液体が効率的に流れるナノ構造を設計すること)。
 上述したFPEに基づく従来の常温核融合炉では上記条件を満たすことはできない。
In order to solve these problems and increase the calorific value, it is desirable to meet the following conditions:
-Forming a large number of nanostructures on the metal surface to increase the number of sites where fusion can occur;
-Positive control of metal surface potential;
-Increasing the amount of D supplied (increasing the D storage rate); and-Increasing the cooling efficiency of the heat generating surface (designing a nanostructure in which the liquid efficiently flows on the metal surface).
The above-mentioned FPE-based conventional cold fusion reactor cannot satisfy the above conditions.
 そこで本発明の目的は水素吸蔵金属を用いた発熱現象を安定的かつ連続的に実現できる新規な常温核融合装置、発熱方法および発熱装置を提供することにある。 Therefore, an object of the present invention is to provide a novel cold fusion device, a heat generating method, and a heat generating device capable of stably and continuously realizing a heat generation phenomenon using a hydrogen storage metal.
<参照文献>
(1)「パラジウムによる水素吸収と水素化反応」有賀哲也(日本表面科学会誌「表面科学」Vol.27, No.6, pp.341-347, 2006、公益社団法人 日本表面科学会発行)
(2)「中性子散乱による原子・分子のダイナミクスの観測」大友季哉、池田一貴(日本アイソトープ協会学術誌「RADIOISOTOPES」Vol.63, No.10, pp.489-500, Oct 2014、公益社団法人 日本アイソトープ協会発行)
(3)「パラジウムナノ粒子の特異な水素吸蔵」秋葉宙、古府麻衣子、山室修(日本中性子科学会誌「波紋」Vol.27, No.3, pp.95-98, 2017、日本中性子科学会発行)
(4)「金属における吸着水素と吸蔵水素の電子状態と反応性」福西快文、波田雅彦、中辻博(触媒学会会誌「触媒(Catalysits and Catalysis)」 Vol.33, No.4, pp.270-277, 1991、一般社団法人 触媒学会発行)
(5)「金属水素化物の応用物性」山口益弘(水素エネルギ協会(HESS)協会誌「水素エネルギシステム」1986 vol.11, No.2, pp.30-41)
(6)A. Meulenberg and K.P. Sinha,“Deep-electron Orbits in Cold Fusion” Journal of Condensed Matter Nuclear Science 13 (2014) pp. 368-377
(7)Jean-Luc Paillet and Andrew Meulenberg,“Highly relativistic deep electrons and the Dirac equation”(22nd International Conference on Condensed Matter Science ICCF-22, at Assisi (Italy), September 8-13, 2019)
(8)「「常温核融合」昨今」深井 有(日本物理学会誌 Vol. 48, No. 5, 1993, pp.354-360)
(9)Jozsef Garai “Physical Model for Lattice Assisted Nuclear Reactions”
 (https://vixra.org/pdf/1901.0262v2.pdf) 
(10)J. L. Paillet and A. Meulenberg, “Relativity and Electron Deep Orbits of the Hydrogen Atom” Journal of Condensed Matter Nuclear Science 21 (2016) pp. 40-58
(11)J. L. Paillet and A. Meulenberg, “Arguments for the Anomalous Solutions of the Dirac Equations”Journal of Condensed Matter Nuclear Science 18 (2016) pp. 50-75
(12)Jaromir A. Maly and Jaroslav Vavra,“Electron Transitions on Deep Dirac Levels I”FUSION TECHNOLOGY Vo. 24, Nov. 1993, pp. 307-318
(13)Andrew Meulenberg and Jean-Luc Paillet“Nature of the Deep-Dirac Levels” Journal of Condensed Matter Nuclear Science 19 (2016) pp. 192-201
(14)X.P.Zhang, C.B. Fu and D.C.Dai“Experimentally Study the Deep Dirac Levels with High-Intensity Lasers” Nuclear Experiment (arXiv:1703.07837 Submitted on 22 Mar 2017 (v1), last revised 24 Mar 2017 (this version, v2))
(15)「負電荷をもつ水素の新たな性質を発見~圧縮しやすく、金属原子間の相互作用をブロック~」(京都大学と科学技術振興機構(JST)の共同発表(平成29年10月31日)、
https://www.jst.go.jp/pr/announce/20171031/index.html)
(16)Takafumi Yamamoto, Dihao Zeng, Takateru Kawakami, Vaida Arcisauskaite, Kanami Yata, Midori Amano Patino, Nana Izumo, John E. McGrady, Hiroshi Kageyama & Michael A. Hayward “The role of π-blocking hydride ligands in a pressure-induced insulator-to-metal phase transition in SrVO2H”Nature Communications 8, Article number: 1217 (2017)
(17)H. Kozima “PHYSICS OF THE COLD FUSION PHENOMENON”Proc. ICCF13, Sochi, Russia, 2007 (to be published),ResearchGate publication, January 2008
(18)Takahashi. A et al.“Anomalous Excess Heat by D2O/Pd Cell under L-H Mode Electrolysis”(in Third International Conference on Cold Fusion, "Frontiers of Cold Fusion". 1992. Nagoya Japan: Universal Academy Press, Inc., Tokyo, Japan)
(19)荒井修等「電気抵抗測定によるパラジウム中の水素と重水素の析出挙動の解明」(日本金属学会誌 第55巻 第3号(1991) pp.254-259)
<References>
(1) "Hydrogen absorption and hydrogenation reaction by palladium" Tetsuya Ariga (Journal of the Surface Science Society of Japan, "Surface Science" Vol.27, No.6, pp.341-347, 2006, published by the Japan Surface Science Society)
(2) "Observation of atomic and molecular dynamics by neutron scattering" Kiya Otomo, Kazutaka Ikeda (Japan Radioisotope Association academic journal "RADIOISOTOPES" Vol.63, No.10, pp.489-500, Oct 2014, Public Interest Incorporated Association Published by Japan Radioisotope Association)
(3) "Unique hydrogen storage of palladium nanoparticles" Sora Akiba, Maiko Kobu, Osamu Yamamuro (Journal of the Japanese Society of Neutron Sciences "Ripples" Vol.27, No.3, pp.95-98, 2017, published by the Japanese Society of Neutron Sciences )
(4) "Electronic states and reactivity of adsorbed hydrogen and stored hydrogen in metals" Yoshifumi Fukunishi, Masahiko Hata, Hiroshi Nakatsuji (Journal of the Society of Catalysis "Catalysits and Catalysis" Vol.33, No.4, pp.270 -277, 1991, published by the Catalysis Society)
(5) "Applied Physical Properties of Metal Hydride" Masuhiro Yamaguchi (Hydrogen Energy Association (HESS) Journal "Hydrogen Energy System" 1986 vol.11, No.2, pp.30-41)
(6) A. Meulenberg and KP Sinha, “Deep-electron Orbits in Cold Fusion” Journal of Condensed Matter Nuclear Science 13 (2014) pp. 368-377
(7) Jean-Luc Paillet and Andrew Meulenberg, “Highly relativistic deep electrons and the Dirac equation” (22nd International Conference on Condensed Matter Science ICCF-22, at Assisi (Italy), September 8-13, 2019)
(8) "" Cold fusion "recently" Yuh Fukai (Journal of the Physical Society of Japan Vol. 48, No. 5, 1993, pp.354-360)
(9) Jozsef Garai “Physical Model for Lattice Assisted Nuclear Reactions”
(https://vixra.org/pdf/1901.0262v2.pdf)
(10) J. L. Paillet and A. Meulenberg, “Relativity and Electron Deep Orbits of the Hydrogen Atom” Journal of Condensed Matter Nuclear Science 21 (2016) pp. 40-58
(11) J. L. Paillet and A. Meulenberg, “Arguments for the Anomalous Solutions of the Dirac Equations” Journal of Condensed Matter Nuclear Science 18 (2016) pp. 50-75
(12) Jaromir A. Maly and Jaroslav Vavra, “Electron Transitions on Deep Dirac Levels I” FUSION TECHNOLOGY Vo. 24, Nov. 1993, pp. 307-318
(13) Andrew Meulenberg and Jean-Luc Paillet “Nature of the Deep-Dirac Levels” Journal of Condensed Matter Nuclear Science 19 (2016) pp. 192-201
(14) XPZhang, CB Fu and DCDai “Experimentally Study the Deep Dirac Levels with High-Intensity Lasers” Nuclear Experiment (arXiv: 1703.07837 Submitted on 22 Mar 2017 (v1), last revised 24 Mar 2017 (this version, v2))
(15) "Discovering new properties of negatively charged hydrogen-easy to compress and block interactions between metal atoms-" (Kyoto University and Japan Science and Technology Agency (JST) joint presentation (October 2017) 31st),
https://www.jst.go.jp/pr/announce/20171031/index.html)
(16) Takafumi Yamamoto, Dihao Zeng, Takateru Kawakami, Vaida Arcisauskaite, Kanami Yata, Midori Amano Patino, Nana Izumo, John E. McGrady, Hiroshi Kageyama & Michael A. Hayward “The role of π-blocking hydride ligands in a pressure- induced insulator-to-metal phase transition in SrVO2H ”Nature Communications 8, Article number: 1217 (2017)
(17) H. Kozima “PHYSICS OF THE COLD FUSION PHENOMENON” Proc. ICCF13, Sochi, Russia, 2007 (to be published), ResearchGate publication, January 2008
(18) Takahashi. A et al. “Anomalous Excess Heat by D 2 O / Pd Cell under LH Mode Electrolysis” (in Third International Conference on Cold Fusion, “Frontiers of Cold Fusion”. 1992. Nagoya Japan: Universal Academy Press, Inc., Tokyo, Japan)
(19) Osamu Arai et al. "Elucidation of the precipitation behavior of hydrogen and deuterium in palladium by measuring electrical resistance" (Journal of the Japan Institute of Metals, Vol. 55, No. 3 (1991), pp.254-259)
 上記目的を達成するために、本発明によれば、反応炉内に水素吸蔵金属基板の表面電位を制御するための対向電極を設け、対向電極を水素吸蔵金属基板を基準とした正電圧にすることで重水素が水素吸蔵金属基板内に移動する水素吸蔵を生起させ、負電圧にすることで水素吸蔵金属基板の内部から表面へ拡散した重水素により過剰発熱反応を生起させる。一態様として、対向電極の電圧を切り替えることで水素吸蔵と過剰発熱反応とを時間的に切り替えて分離する。また他の態様として、水素吸蔵金属基板の両側に正電圧が印加された対向電極と負電圧が印加された対向電極とをそれぞれ設け、水素吸蔵と過剰発熱反応と空間的に分離する。 In order to achieve the above object, according to the present invention, a counter electrode for controlling the surface potential of the hydrogen storage metal substrate is provided in the reaction furnace, and the counter electrode is set to a positive voltage based on the hydrogen storage metal substrate. This causes hydrogen storage in which debris moves into the hydrogen storage metal substrate, and by setting the voltage to negative, the deuterium diffused from the inside to the surface of the hydrogen storage metal substrate causes an excessive exothermic reaction. As one aspect, hydrogen storage and excessive exothermic reaction are temporally switched and separated by switching the voltage of the counter electrode. As another embodiment, a counter electrode to which a positive voltage is applied and a counter electrode to which a negative voltage is applied are provided on both sides of the hydrogen storage metal substrate, respectively, and the hydrogen storage and the excessive exothermic reaction are spatially separated.
 本発明の第1の態様によれば、常温核融合装置は、反応炉内に、重水素を吸蔵する金属からなる水素吸蔵金属基板と、前記水素吸蔵金属基板に対向して設けられ前記水素吸蔵金属基板の表面電位を制御するための平板状の対向電極と、が設けられ、前記水素吸蔵金属基板を基準として正電圧が印加された対向電極であれば重水素が前記水素吸蔵金属基板内に移動する水素吸蔵が生起し、負電圧が印加された対向電極であれば前記水素吸蔵金属基板の内部から表面へ拡散した重水素により常温核融合が生起する、ことを特徴とする。
 本発明の第2の態様によれば、発熱方法は、反応炉内に、重水素を吸蔵する金属からなる水素吸蔵金属基板と、前記水素吸蔵金属基板に対向して設けられ前記水素吸蔵金属基板の表面電位を制御するための平板状の対向電極と、が設けられ、前記対向電極に対して前記水素吸蔵金属基板を基準電位とした正電圧を印加することで重水素が前記水素吸蔵金属基板内に移動する水素吸蔵を生起させ、前記対向電極に対して前記水素吸蔵金属基板を基準電位とした負電圧を印加することで前記水素吸蔵金属基板の内部から表面へ拡散した重水素により生じる常温核融合により熱を生成する、ことを特徴とする。
 このように対向電極の印加電圧により水素吸蔵金属基板の表面電位を制御することにより水素吸蔵と常温核融合とを安定的かつ連続的に生起させることが可能となる。
 前記対向電極を前記水素吸蔵金属基板に対して正電圧と負電圧との間で切り替えることで水素吸蔵と常温核融合とを時間的に交互に生起させることができる。水素吸蔵と常温核融合とを交互に生起させることで連続運転が可能となる。
 前記対向電極と前記水素吸蔵金属基板との間に酸化重水素(DO)電解液のフローを形成する供給口が反応室に設けられ、前記水素吸蔵金属基板の表面を前記フローの方向に延びたナノ構造の発熱体で構成してもよい。ナノ構造の発熱体をDO電解液のフロー方向に形成することで重水素の効率的な吸蔵が可能となる。
 前記反応炉内に設けられた第1反応室と第2反応室とを前記水素吸蔵金属基板により空間的に分離し、前記第1反応室に前記水素吸蔵金属基板の第1面に対向した第1対向電極を設け、前記第2反応室に前記水素吸蔵金属基板の第2面に対向した第2対向電極を設け、 前記第1対向電極に正電圧を、前記第2対向電極に負電圧をそれぞれ印加することで、前記水素吸蔵金属基板の前記第1面で水素吸蔵を、前記第2面で常温核融合をそれぞれ生起させることができる。水素吸蔵と常温核融合とを空間的に分離して並行して生起させることで効率的かつ連続的な発熱が可能となる。
 前記水素吸蔵金属基板は前記第1面で吸蔵された重水素が前記水素吸蔵金属基板内を通して前記第2面に拡散する性質を有する金属から形成され得る。水素吸蔵金属基板にたとえば多孔質金属を用いれば単一の金属基板で構成可能である。
 前記第1対向電極と前記水素吸蔵金属基板の前記第1面との間および前記第2対向電極と前記水素吸蔵金属基板の前記第2面との間に酸化重水素(DO)電解液のフローをそれぞれ形成する供給口を有してもよい。また、前記第1対向電極と前記水素吸蔵金属基板の前記第1面との間に酸化重水素(DO)電解液のフローを形成する第1供給口と、前記第2対向電極と前記水素吸蔵金属基板の前記第2面との間に冷却水のフローを形成する第2供給口と、を有してもよい。DO電解液を用いることでガス系に比較して安全かつ安価なD吸蔵と効率的な冷却が可能となり開発が容易になる。
 前記水素吸蔵金属基板の前記第1面に保持枠が設けられ、前記保持枠には前記第1面の金属が露出した開口部が配列形成されてもよい。保持枠により水素吸蔵金属基板の機械的強度の低下を抑止できる。
 前記水素吸蔵金属基板は前記第1面側に重水素を選択的に透過させる水素分離膜を有してもよい。これにより重水素を選択的に水素吸蔵金属基板に吸蔵させることができる。
 前記第1対向電極と前記水素吸蔵金属基板の前記第1面との間に重水素(D)ガスのフローを形成する第1供給口と、前記第2対向電極と前記水素吸蔵金属基板の前記第2面との間に冷却水のフローを形成する第2供給口と、を有してもよい。水素吸蔵側にDガスを用いることで高圧下での絶縁膜の生成を回避でき、また常温核融合側では冷却水を用いることで安価で効率的な冷却が可能となる。
According to the first aspect of the present invention, the room temperature nuclear fusion device is provided in the reaction furnace with a hydrogen storage metal substrate made of a metal that stores heavy hydrogen and the hydrogen storage metal substrate facing the hydrogen storage metal substrate. A flat plate-shaped counter electrode for controlling the surface potential of the metal substrate is provided, and if the counter electrode is a counter electrode to which a positive voltage is applied with reference to the hydrogen storage metal substrate, heavy hydrogen is contained in the hydrogen storage metal substrate. It is characterized in that moving hydrogen storage occurs, and in the case of a counter electrode to which a negative voltage is applied, normal temperature nuclear fusion occurs due to heavy hydrogen diffused from the inside to the surface of the hydrogen storage metal substrate.
According to the second aspect of the present invention, the heat generation method is provided in the reaction furnace with a hydrogen storage metal substrate made of a metal that stores heavy hydrogen and the hydrogen storage metal substrate facing the hydrogen storage metal substrate. A flat plate-shaped counter electrode for controlling the surface potential of the hydrogen storage metal substrate is provided, and by applying a positive voltage with the hydrogen storage metal substrate as a reference potential to the counter electrode, heavy hydrogen is generated by the hydrogen storage metal substrate. By causing hydrogen storage that moves inward and applying a negative voltage with the hydrogen storage metal substrate as a reference potential to the counter electrode, the room temperature generated by the heavy hydrogen diffused from the inside to the surface of the hydrogen storage metal substrate It is characterized by generating heat by nuclear fusion.
By controlling the surface potential of the hydrogen storage metal substrate by the applied voltage of the counter electrode in this way, hydrogen storage and cold fusion can occur stably and continuously.
By switching the counter electrode between a positive voltage and a negative voltage with respect to the hydrogen storage metal substrate, hydrogen storage and cold fusion can occur alternately in time. Continuous operation is possible by alternately causing hydrogen storage and cold fusion.
The deuterium oxide between the counter electrode and the hydrogen absorbing metal substrate (D 2 O) supply port for forming a flow of the electrolyte is provided in the reaction chamber, the surface of the hydrogen-absorbing metal substrate in the direction of the flow It may be composed of an elongated nano-structured heating element. Heating element nanostructure becomes possible deuterium efficient storage by forming the flow direction of D 2 O electrolyte.
The first reaction chamber and the second reaction chamber provided in the reaction furnace are spatially separated by the hydrogen storage metal substrate, and the first reaction chamber faces the first surface of the hydrogen storage metal substrate. 1 counter electrode is provided, and a second counter electrode facing the second surface of the hydrogen storage metal substrate is provided in the second reaction chamber, and a positive voltage is applied to the first counter electrode and a negative voltage is applied to the second counter electrode. By applying each of them, hydrogen storage can occur on the first surface of the hydrogen storage metal substrate, and normal temperature nuclear fusion can occur on the second surface. Efficient and continuous heat generation is possible by spatially separating hydrogen storage and cold fusion and causing them to occur in parallel.
The hydrogen storage metal substrate can be formed of a metal having a property that deuterium stored on the first surface diffuses into the second surface through the hydrogen storage metal substrate. If a porous metal is used for the hydrogen storage metal substrate, for example, a single metal substrate can be used.
Deuterium oxide (D 2 O) electrolyte between the second surface of the hydrogen absorbing metal substrate and between the second counter electrode of the first surface of the hydrogen absorbing metal substrate and the first counter electrode It may have a supply port for forming each of the above flows. Further, a first supply port for forming a flow of deuterium oxide (D 2 O) electrolyte between the first surface of the hydrogen absorbing metal substrate and the first counter electrode, and the second counter electrode wherein It may have a second supply port that forms a flow of cooling water with the second surface of the hydrogen storage metal substrate. By using the D 2 O electrolytic solution, it is possible to perform safe and inexpensive D occlusion and efficient cooling as compared with the gas system, and the development becomes easy.
A holding frame may be provided on the first surface of the hydrogen storage metal substrate, and openings in which the metal on the first surface is exposed may be arranged in the holding frame. The holding frame can prevent a decrease in the mechanical strength of the hydrogen storage metal substrate.
The hydrogen storage metal substrate may have a hydrogen separation membrane on the first surface side for selectively permeating deuterium. As a result, deuterium can be selectively stored in the hydrogen storage metal substrate.
A first supply port that forms a flow of deuterium (D 2 ) gas between the first counter electrode and the first surface of the hydrogen storage metal substrate, and the second counter electrode and the hydrogen storage metal substrate. It may have a second supply port that forms a flow of cooling water between the second surface and the second surface. By using D 2 gas on the hydrogen storage side, it is possible to avoid the formation of an insulating film under high pressure, and on the cold fusion side, using cooling water enables inexpensive and efficient cooling.
 本発明の第3の態様によれば、発熱装置は、反応炉内に、重水素を吸蔵する金属からなる水素吸蔵金属基板と、前記水素吸蔵金属基板に対向して設けられ前記水素吸蔵金属基板の表面電位を制御するための平板状の対向電極と、が設けられ、前記水素吸蔵金属基板を基準電位として、正電位の対向電極であれば重水素が前記水素吸蔵金属基板内に移動する水素吸蔵が生起し、負電位の対向電極であれば前記水素吸蔵金属基板の内部から表面へ拡散した重水素により過剰発熱反応が生起する発熱装置であって、前記対向電極を前記水素吸蔵金属基板に対して正電圧と負電圧との間で切り替えることで水素吸蔵と過剰発熱反応とを時間的に交互に生起させ、前記対向電極と前記水素吸蔵金属基板との間に酸化重水素(DO)電解液のフローを形成する供給口が前記反応炉に設けられ、前記水素吸蔵金属基板の表面が前記フローの方向に延びたナノ構造の発熱体からなることを特徴とする。
 このように対向電極を水素吸蔵金属基板に対して正電圧と負電圧との間で切り替えることで水素吸蔵と過剰発熱反応とを時間的に交互に生起させることができ連続運転が可能となる。またナノ構造の発熱体をDO電解液のフロー方向に形成することで重水素の効率的な吸蔵が可能となる。
According to the third aspect of the present invention, the heat generating device is provided in the reaction furnace with a hydrogen storage metal substrate made of a metal that stores heavy hydrogen and the hydrogen storage metal substrate facing the hydrogen storage metal substrate. A flat plate-shaped counter electrode for controlling the surface potential of the hydrogen storage metal substrate is provided, and if the counter electrode has a positive potential with the hydrogen storage metal substrate as a reference potential, heavy hydrogen moves into the hydrogen storage metal substrate. A heating device in which storage occurs and an excessive exothermic reaction occurs due to heavy hydrogen diffused from the inside to the surface of the hydrogen storage metal substrate if it is a negative potential counter electrode, and the counter electrode is attached to the hydrogen storage metal substrate. On the other hand, by switching between a positive voltage and a negative voltage, hydrogen storage and an excessive exothermic reaction occur alternately in time, and heavy hydrogen oxide (D 2 O) is generated between the counter electrode and the hydrogen storage metal substrate. ) A supply port for forming a flow of an electrolytic solution is provided in the reaction furnace, and the surface of the hydrogen storage metal substrate is composed of a heating element having a nanostructure extending in the direction of the flow.
By switching the counter electrode between the positive voltage and the negative voltage with respect to the hydrogen storage metal substrate in this way, the hydrogen storage and the excessive exothermic reaction can occur alternately in time, and continuous operation becomes possible. The efficient storage of deuterium is possible by forming the heating elements of the nanostructure in the flow direction of D 2 O electrolyte.
 本発明の第4の態様によれば、発熱装置は、反応炉内に第1反応室と第2反応室とが設けられ、重水素を吸蔵する金属からなる水素吸蔵金属基板が前記第1反応室と前記第2反応室とを空間的に分離し、前記第1反応室に前記水素吸蔵金属基板の第1面に対向した平板状の第1対向電極を設け、前記第2反応室に前記水素吸蔵金属基板の第2面に対向した平板状の第2対向電極を設け、前記第1対向電極と前記水素吸蔵金属基板の前記第1面との間に酸化重水素(DO)電解液あるいは重水素(D)ガスのフローを形成する第1供給口が前記第1反応室に設けられ、前記第2対向電極と前記水素吸蔵金属基板の前記第2面との間に冷却水のフローを形成する第2供給口が前記第2反応室に設けられ、前記第1対向電極に正電圧を、前記第2対向電極に負電圧をそれぞれ印加することで、前記水素吸蔵金属基板の前記第1面で水素吸蔵を生起させ、前記第2面で前記水素吸蔵金属基板の内部から表面へ拡散した重水素により過剰発熱反応を生起させる、ことを特徴とする。
 水素吸蔵と過剰発熱反応とを空間的に分離した別々の反応室で並行して生起させることで効率的かつ連続的な発熱が可能となり、さらに水素吸蔵側にDガスを用いることで高圧下での絶縁膜の生成を回避でき、また過剰発熱反応側では冷却水を用いることで安価で効率的な冷却が可能となる。
 前記水素吸蔵金属基板は前記第1面で吸蔵された重水素が前記水素吸蔵金属基板内を通して前記第2面に拡散する性質を有する金属から形成され得る。水素吸蔵金属基板にたとえば多孔質金属を用いれば単一の金属基板で構成可能である。
 前記水素吸蔵金属基板は前記第1面側に重水素を選択的に透過させる水素分離膜を設けることができる。これにより重水素を選択的に水素吸蔵金属基板に吸蔵させることができる。
According to the fourth aspect of the present invention, in the heating apparatus, a first reaction chamber and a second reaction chamber are provided in the reaction furnace, and a hydrogen storage metal substrate made of a metal that stores heavy hydrogen is the first reaction. The chamber and the second reaction chamber are spatially separated, a flat plate-shaped first counter electrode facing the first surface of the hydrogen storage metal substrate is provided in the first reaction chamber, and the second reaction chamber is provided with the said provided a plate-shaped second counter electrode facing the second surface of the hydrogen storage metal substrate, deuterium oxide (D 2 O) electrolyte between the first surface of the hydrogen absorbing metal substrate and the first counter electrode A first supply port for forming a flow of liquid or heavy hydrogen (D 2 ) gas is provided in the first reaction chamber, and cooling water is provided between the second counter electrode and the second surface of the hydrogen storage metal substrate. A second supply port for forming the flow of the hydrogen storage metal substrate is provided in the second reaction chamber, and a positive voltage is applied to the first counter electrode and a negative voltage is applied to the second counter electrode to obtain the hydrogen storage metal substrate. The first surface is characterized by causing hydrogen storage, and the second surface is characterized in that an excessive exothermic reaction is caused by heavy hydrogen diffused from the inside to the surface of the hydrogen storage metal substrate.
Efficient and continuous heat generation is possible by causing hydrogen storage and excessive exothermic reaction in parallel in separate reaction chambers that are spatially separated, and by using D 2 gas on the hydrogen storage side, under high pressure. It is possible to avoid the formation of an insulating film in the above, and by using cooling water on the excessive exothermic reaction side, inexpensive and efficient cooling becomes possible.
The hydrogen storage metal substrate can be formed of a metal having a property that deuterium stored on the first surface diffuses into the second surface through the hydrogen storage metal substrate. If a porous metal is used for the hydrogen storage metal substrate, for example, a single metal substrate can be used.
The hydrogen storage metal substrate may be provided with a hydrogen separation membrane on the first surface side for selectively permeating deuterium. As a result, deuterium can be selectively stored in the hydrogen storage metal substrate.
 以上述べたように、本発明によれば水素吸蔵金属を用いた過剰発熱反応を安定的かつ連続的に生起させることができる。 As described above, according to the present invention, an excessive exothermic reaction using a hydrogen storage metal can be stably and continuously generated.
金属格子内で発生する常温核融合の過程を説明するための模式的状態遷移図である。It is a schematic state transition diagram for explaining the process of cold fusion occurring in a metal lattice. fcc金属格子におけるOサイトおよびTサイトを模式的に示す図である。It is a figure which shows typically the O site and the T site in the fcc metal lattice. fcc、hcpおよびbcc金属格子における金属原子1個あたりのサイトの数を模式的に示す図である。It is a figure which shows typically the number of sites per metal atom in the fcc, hcp and bcc metal lattices. PdDナノ粒子の観測された回折パターンと計算された回折パターンを示すグラフであり、(a)はD原子がOサイトに均一に位置する場合を、(b)はシェル部のみのOサイトに位置する場合をそれぞれ示す。It is a graph which shows the observed diffraction pattern and the calculated diffraction pattern of PdD nanoparticles. Each case is shown. PdDナノ粒子の観測された回折パターンと計算された回折パターンを示すグラフであり、(c)はD原子がOサイトおよびTサイトの両方に均一に位置する場合を、(d)はシェル部のOサイトおよびTサイトとコア部のOサイトに位置する場合をそれぞれ示す。It is a graph which shows the observed diffraction pattern and the calculated diffraction pattern of PdD nanoparticles, (c) is the case where D atom is uniformly located at both O site and T site, (d) is the shell part. The case where it is located at the O site, the T site, and the O site of the core part is shown respectively. 図2に例示するTサイトの配置を模式的に示す図である。It is a figure which shows typically the arrangement of the T site illustrated in FIG. 金属表面における金属格子中のTサイトの配列を模式的に示す図である。It is a figure which shows typically the arrangement of T sites in a metal lattice on a metal surface. 水素、水素イオンおよび水素分子のサイズを模式的に示す図である。It is a figure which shows typically the size of hydrogen, a hydrogen ion and a hydrogen molecule. 核子間距離と核子間で働く力との関係を模式的に示すグラフである。It is a graph which shows typically the relationship between the distance between nucleons and the force acting between nucleons. 水素原子に対する相対論的シュレディンガー方程式とディラック方程式の計算結果であって、相対論的シュレディンガーレベルのなかに深い電子軌道(DEO)の存在を示すテーブルである。It is a calculation result of the relativistic Schrodinger equation and Dirac equation for a hydrogen atom, and is a table showing the existence of a deep electron orbital (DEO) in the relativistic Schrodinger level. SrVOHの結晶構造を模式的に示す図である。It is a figure which shows typically the crystal structure of SrVO 2 H. VO層とHとの位置関係を模式的に示す図である。The positional relationship between the VO 2 layer and H is a diagram schematically illustrating. 上下方向(一方向)から応力が掛かり上下方向に圧縮された場合のVO層とHとの位置関係を模式的に示す図である。The positional relationship between the VO 2 layer and H when the stress in the vertical direction (one direction) is takes compressed in the vertical direction is a diagram schematically illustrating. 圧力に対する格子パラメータの変化を示すグラフである。It is a graph which shows the change of the lattice parameter with respect to pressure. 圧力に対する相対的格子パラメータの変化を示すグラフである。It is a graph which shows the change of the relative lattice parameter with respect to pressure. D2分子の圧縮過程における波動関数の分布変化を模式的に示す図(A)、正規化された確率密度分布を示すグラフ(B)である。It is a figure (A) which shows typically the distribution change of a wave function in the compression process of a D2 molecule, and the graph (B) which shows a normalized probability density distribution. 金属表面における金属格子中のTサイトに二重水素が入った状態を模式的に示す図である。It is a figure which shows typically the state which deuterium is contained in the T site in the metal lattice on the metal surface. 金属表面におけるTサイトの膨張を模式的に示す図である。It is a figure which shows typically the expansion of T site on a metal surface. 自由水素とジェリウムモデルでの水素における水素間距離に対する結合エネルギの変化を示すグラフである。It is a graph which shows the change of the binding energy with respect to the distance between hydrogen in free hydrogen and hydrogen in the jellium model. 二重水素の陽イオン(D)が陰イオン(D)のある隣接Tサイトに引き込まれてD2分子を形成する過程を模式的に示す図である。Deuterium cations (D +) is an anion (D -) a process of forming a D2 molecule is drawn to the adjacent T sites with a view schematically showing. ポテンシャルが高い状態でのDがDのある隣接Tサイトに引き込まれる過程を模式的に示すポテンシャル図(A)、ポテンシャルが低い状態でのDがDのある隣接Tサイトに引き込まれる過程を模式的に示すポテンシャル図(B)である。D + is D in potential is high - potential diagram schematically showing a process of being drawn into the adjacent T sites with (A), the potential is the D + at a low state D - is drawn into the adjacent T sites with It is a potential figure (B) which shows the process schematically. 二重水素の陰イオン(D)に陽イオン(D)が引き込まれる様子を模式的に示す図である。It is a figure which shows typically how the cation (D + ) is drawn into the anion (D −) of deuterium. Tサイトの金属格子に挟まれた二重水素を模式的に示す図(A)と、二重水素に働く力によりTサイトに入った二重水素が縮小された状態を模式的に示す図(B)である。A diagram schematically showing deuterium sandwiched between metal lattices of T-site (A) and a diagram schematically showing a state in which deuterium entering the T-site is reduced by the force acting on the deuterium (A). B). 半径ρに対する運動エネルギおよびポテンシャルエネルギの変化を示すグラフである。It is a graph which shows the change of the kinetic energy and potential energy with respect to a radius ρ. TサイトのDにDが注入されて二重結合の状態D2を形成した時のサイト内での振動状態を説明するための模式図である。It is a schematic diagram for demonstrating the vibration state in a site when D + is injected into D − of a T site, and the state D2 of a double bond is formed. DEOの存在によりクーロン遮蔽が有効になることを説明するための電子分布の変化を示す図である。It is a figure which shows the change of the electron distribution for explaining that the Coulomb occlusion is effective by the presence of DEO. 従来の核融合発生メカニズムを本発明の観点から説明するための反応炉およびカソード・アノード電極の配置を模式的に示す図である。It is a figure which shows typically the arrangement of the reactor and the cathode / anode electrode for explaining the conventional fusion generation mechanism from the viewpoint of this invention. 従来の核融合発生メカニズムを本発明の観点から説明するための水素吸蔵と抵抗値との関係を示すグラフである。It is a graph which shows the relationship between the hydrogen storage and the resistance value for explaining the conventional fusion generation mechanism from the viewpoint of this invention. 従来の核融合発生メカニズムを本発明の観点から説明するためのPdにおける高抵抗領域の生成過程を模式的に示す図である。It is a figure which shows typically the formation process of the high resistance region in Pd for explaining the conventional fusion generation mechanism from the viewpoint of this invention. 従来の核融合発生メカニズムを本発明の観点から説明するためのPdにおける表面TサイトにおけるHe追い出し過程を模式的に示す図である。It is a figure which shows typically the He eviction process at the surface T site in Pd for explaining the conventional fusion generation mechanism from the viewpoint of this invention. 本発明の第1実施形態による常温核融合装置の概略的構成と常温核融合発生過程を説明する模式図である。It is a schematic diagram explaining the schematic structure of the cold fusion apparatus by 1st Embodiment of this invention, and the cold fusion generation process. 第1実施形態による常温核融合装置の動作を示すタイムチャートである。It is a time chart which shows the operation of the cold fusion apparatus by 1st Embodiment. 図28における水素吸蔵ステージでの金属表面の状態を説明する模式図である。It is a schematic diagram explaining the state of the metal surface in the hydrogen storage stage in FIG. 28. 図28における常温核融合ステージでの金属表面のTサイトでの二重水素イオン(D)の移動を説明する模式図である。It is a schematic diagram explaining the movement of deuterium ion (D + ) at the T site of the metal surface in the cold fusion stage in FIG. 28. 第1実施形態による常温核融合装置における水素吸蔵から常温核融合発生までの金属表面のTサイトの状態を説明する模式図である。It is a schematic diagram explaining the state of the T site of the metal surface from hydrogen storage to the occurrence of cold fusion in the cold fusion apparatus according to the first embodiment. 本発明の実施例1.1による常温核融合装置の概略的構成を示す図である。It is a figure which shows the schematic structure of the cold fusion apparatus by Example 1.1 of this invention. 図32に例示する発熱体における体積膨張のメカニズムを説明するための模式的断面図である。FIG. 3 is a schematic cross-sectional view for explaining the mechanism of volume expansion in the heating element illustrated in FIG. 32. 本発明の実施例1.2による常温核融合装置の概略的構成図である。It is a schematic block diagram of the cold fusion apparatus according to Example 1.2 of this invention. 本発明の実施例1.3による常温核融合装置の概略的構成図である。It is a schematic block diagram of the cold fusion apparatus according to Example 1.3 of this invention. 図35に示す発熱体の製造方法を示す工程図である。It is a process drawing which shows the manufacturing method of the heating element shown in FIG. 35. 図35に続く発熱体の製造方法を示す工程図である。It is a process drawing which shows the manufacturing method of the heating element following FIG. 35. 本発明の第2実施形態による常温核融合装置の概略的側面構成を示す図である。It is a figure which shows the schematic side structure of the cold fusion apparatus by 2nd Embodiment of this invention. 図38に示す常温核融合装置の概略的正面構成を示す図である。It is a figure which shows the schematic front structure of the cold fusion apparatus shown in FIG. 38. 第2実施形態による常温核融合装置の動作を示すタイムチャートである。It is a time chart which shows the operation of the cold fusion apparatus by 2nd Embodiment. 第2実施形態による常温核融合装置における水素吸蔵から常温核融合発生までの金属表面のTサイトの状態を説明する模式図である。It is a schematic diagram explaining the state of the T site of the metal surface from hydrogen storage to the occurrence of cold fusion in the cold fusion apparatus according to the second embodiment. 本発明の実施例2.1による常温核融合装置における発熱体の表面ナノ構造の模式的平面図(A)、そのI-I線断面図(B)である。It is a schematic plan view (A) of the surface nanostructure of the heating element in the cold fusion apparatus according to Example 2.1 of this invention, and FIG. 本発明の実施例2.2による常温核融合装置における発熱体の表面ナノ構造の模式的平面図(A)、そのII-II線断面図(B)である。It is a schematic plan view (A) of the surface nanostructure of the heating element in the cold fusion apparatus according to Example 2.2 of this invention, and the sectional view (B) of the line II-II. 本発明の実施例2.3による常温核融合装置の概略的正面構成を示す図である。It is a figure which shows the schematic front structure of the cold fusion apparatus by Example 2.3 of this invention. 本発明の実施例2.4による常温核融合装置の概略的正面構成を示す図である。It is a figure which shows the schematic front structure of the cold fusion apparatus according to Example 2.4 of this invention. 本発明の実施例2.5による常温核融合装置における発熱体の表面ナノ構造の模式的断面図である。It is a schematic cross-sectional view of the surface nanostructure of the heating element in the cold fusion apparatus according to Example 2.5 of this invention. 実施例2.5における発熱体の表面ナノ構造のD吸蔵およびHe追い出し過程を模式的に示す図である。It is a figure which shows typically the D occlusion and He eviction process of the surface nanostructure of the heating element in Example 2.5. 本発明の第3実施形態による常温核融合装置の概略的側面構成を示す図である。It is a figure which shows the schematic side structure of the cold fusion apparatus by 3rd Embodiment of this invention. 本発明の実施例3.1による常温核融合装置の概略的側面構成を示す図である。It is a figure which shows the schematic side structure of the cold fusion apparatus by Example 3.1 of this invention. 本発明の実施例3.2による常温核融合装置の概略的正面構成を示す図である。It is a figure which shows the schematic front structure of the cold fusion apparatus by Example 3.2 of this invention. 本発明の実施例3.3による常温核融合装置の概略的正面構成を示す図である。It is a figure which shows the schematic front structure of the cold fusion apparatus by Example 3.3 of this invention. 本発明の第4実施形態による常温核融合装置の概略的側面構成を示す図である。It is a figure which shows the schematic side structure of the cold fusion apparatus by 4th Embodiment of this invention. Pdの格子定数、重水素D、重水素イオンD、DおよびヘリウムHeのサイズを模式的に示す図である。Pd lattice constant of deuterium D x, deuterium ions D -, is a diagram schematically showing the size of the D + and helium He. 第4実施形態における核融合反応の発生過程を説明するための金属表面におけるTサイトの膨張を模式的に示す図である。It is a figure which shows typically the expansion of the T site on the metal surface for demonstrating the generation process of the fusion reaction in 4th Embodiment. 第4実施形態における核融合反応の発生過程を説明するための金属表面におけるTサイトの状態変化を模式的に示す図である。It is a figure which shows typically the state change of the T site on the metal surface for demonstrating the generation process of the fusion reaction in 4th Embodiment. 本発明の実施例4.1による常温核融合装置の概略的側面構成を示す図である。It is a figure which shows the schematic side structure of the cold fusion apparatus by Example 4.1 of this invention. 実施例4.1による常温核融合装置のD吸蔵側の概略的正面構成を示す図(A)、常温核融合側の概略的正面構成を示す図(B)である。It is a figure (A) which shows the schematic front structure of the D storage side of the cold fusion apparatus by Example 4.1, and the figure (B) which shows the schematic front structure of a cold fusion side. 実施例4.1による常温核融合装置の反応炉内における水素吸蔵金属基板のウエハ保持部の一例を示す模式的構成図である。It is a schematic block diagram which shows an example of the wafer holding part of the hydrogen storage metal substrate in the reaction furnace of the cold fusion apparatus by Example 4.1. 本発明の実施例4.2による常温核融合装置における水素吸蔵金属基板組立体の概略的構成を示す平面図(A)およびそのI-I線断面図(B)である。It is a top view (A) which shows the schematic structure of the hydrogen storage metal substrate assembly in the cold fusion apparatus according to Example 4.2 of this invention, and FIG. 本発明の実施例4.3による常温核融合装置における水素吸蔵金属基板の概略的構成を示す平面図(A)およびそのI-I線断面図(B)である。It is a top view (A) which shows the schematic structure of the hydrogen storage metal substrate in the cold fusion apparatus according to Example 4.3 of this invention, and FIG. 本発明の実施例4.4による常温核融合装置における水素吸蔵金属基板の概略的構成を示す平面図(A)およびそのI-I線断面図(B)である。It is a top view (A) and the sectional view (B) which shows the schematic structure of the hydrogen storage metal substrate in the cold fusion apparatus according to Example 4.4 of this invention. 本発明の実施例4.3および4.4による常温核融合装置における水素吸蔵金属基板の水素吸蔵領域を模式的に示す断面図である。It is sectional drawing which shows typically the hydrogen storage region of the hydrogen storage metal substrate in the cold fusion apparatus according to Examples 4.3 and 4.4 of this invention. 本発明の実施例4.3による常温核融合装置における水素吸蔵金属基板の水素吸蔵領域を模式的に示す平面図である。It is a top view which shows typically the hydrogen storage region of the hydrogen storage metal substrate in the cold fusion apparatus according to Example 4.3 of this invention. 本発明の第5実施形態による常温核融合装置の概略的側面構成を模式的に示す図である。It is a figure which shows typically the schematic side structure of the cold fusion apparatus by 5th Embodiment of this invention. 第5実施形態における水素吸蔵金属基板の断面構成を模式的に示す図である。It is a figure which shows typically the cross-sectional structure of the hydrogen storage metal substrate in 5th Embodiment. 第5実施形態における水素吸蔵金属基板の製造過程の一例を示す工程図(A)~(D)である。It is a process diagram (A)-(D) which shows an example of the manufacturing process of the hydrogen storage metal substrate in 5th Embodiment.
<実施形態の概要>
 本発明の実施形態によれば、水素吸蔵金属に対向した対向電極の電位を制御することで水素吸蔵金属の水素吸蔵ステージと常温核融合ステージとを時間的または空間的に分離する。以下詳述するように、本発明の第1~第3実施形態では対向電極の電位の極性を切り替えることで水素吸蔵ステージと常温核融合ステージとを時間的に切り替えて分離する。また本発明の第4および第5実施形態では、2つの反応室の境界に水素吸蔵金属基板を配置し、両側の反応室にそれぞれ設けられた対向電極の電位を正電位および負電位にそれぞれ設定することで、水素吸蔵ステージと常温核融合ステージとを空間的に分離する。
<Outline of Embodiment>
According to the embodiment of the present invention, the hydrogen storage stage of the hydrogen storage metal and the cold fusion stage are separated temporally or spatially by controlling the potential of the counter electrode facing the hydrogen storage metal. As will be described in detail below, in the first to third embodiments of the present invention, the hydrogen storage stage and the cold fusion stage are temporally switched and separated by switching the polarity of the potential of the counter electrode. Further, in the fourth and fifth embodiments of the present invention, a hydrogen storage metal substrate is arranged at the boundary between the two reaction chambers, and the potentials of the counter electrodes provided in the reaction chambers on both sides are set to positive potential and negative potential, respectively. By doing so, the hydrogen storage stage and the cold fusion stage are spatially separated.
 時間分離方式では、水素吸蔵ステージで水素吸蔵金属の表面から吸蔵された水素(重水素を含む)が金属内部から表面へ拡散し過剰発熱現象が生じる。空間分離方式では、水素吸蔵ステージで水素吸蔵金属基板の一方の面から吸蔵された水素(重水素を含む)が金属内部を拡散して他方の面で過剰発熱現象が生じる。 In the time separation method, hydrogen (including hydrogen) stored from the surface of the hydrogen storage metal at the hydrogen storage stage diffuses from the inside of the metal to the surface, causing an excessive heat generation phenomenon. In the space separation method, hydrogen (including hydrogen) stored from one surface of the hydrogen storage metal substrate in the hydrogen storage stage diffuses inside the metal, and an excessive heat generation phenomenon occurs on the other surface.
 常温核融合ステージでは、水素吸蔵金属の表面電位を低下させて自由電子を空乏状態にすることにより、金属格子内の狭い空間(内接球の直径が~1Å程度)内でDとDとを結合させたD分子の振動運動を維持し、水素吸蔵金属の表面で常温核融合を安定的に生じさせることができる。上述した考察に基づけば、以下の条件を満たすことで常温核融合を高い確率で生起させることができる。なお、金属格子内の狭い空間としては図3に示すTサイトが典型例であるが、これに限定されるものではなく、同程度の大きさの金属格子内の空間であってDを吸蔵して膨張しD分子を縮小させる力が働く金属格子の空間であればよい。 The cold fusion stage, by the free electrons lowers the surface potential of the hydrogen-absorbing metal depleted, narrow space (diameter ~ about 1Å inscribed sphere) within the metal lattice in a D - and D + maintaining the oscillating motion of the D 2 molecules bound with bets, cold fusion in the surface of the hydrogen-absorbing metal can be generated stably. Based on the above considerations, cold fusion can occur with high probability by satisfying the following conditions. Although a narrow space in the metal lattice is T site shown in FIG. 3 is a typical example, but the invention is not limited to this, a space in the metal lattice of the same order of magnitude D - occlusion it may be a space of the metal grid that expanded force to reduce the D 2 molecules and acts.
(1)発熱体の金属表面がナノ構造あるいは「ナノ構造」であること。これによりDがTサイトに入りやすくなる。金属の表面ナノ構造において、Dの充填率が高い場合に常温核融合が起きる。つまり上述したようにDがTサイトに入っている場合に起きる。たとえば水素吸蔵金属がパラジウムPdの場合、重水素吸蔵率(D/Pd比)が0.85を超すと発生する。ナノ粒子の場合はバルクの割合が小さく早期に重水素吸蔵率(D/Pd比)が高くなる。
(2)金属表面の電位制御により、少なくとも金属表面の自由電子を減少させること。ただし、金属表面の電位を正確に制御するには、金属表面が成膜プロセスで自然に形成される「ナノ構造」ではなく、制御されたナノ構造であることが望ましい。
(3)Dが存在するTサイト内にDを供給すること。これによりTサイト内に重水素分子Dを閉じ込め、Tサイトの縮小によってD分子をフェムトD分子に遷移させる。
(4)Tサイト内でフェムトD2分子が伸縮振動すること。これによりフェムトD分子の核子間が周期的に接近して核融合の確率が向上する。すでに説明したように、フェムト陽子は、そのDEO軌道が非常に深いので(すなわちプロトン表面のfmオーダの近傍なので)、クーロン斥力遮蔽がほぼ完璧となり、実質的には中性子として扱える。したがって、このときのd-d間のDEO電子が核子間クーロン斥力を遮蔽し、核融合の発生確率を向上させると考えられる。図9のグラフを参照すれば、d-d間のDEO電子が核子間クーロン斥力を遮蔽することで、曲線5dに示すように、核子間距離d-dが2.8fm以下になってもクーロン斥力が抑制され、より小さなエネルギで核融合が発生し得る。
(1) The metal surface of the heating element has a nanostructure or a "nanostructure". This D - is likely to enter the T site. Cold fusion occurs when the D filling factor is high in the surface nanostructure of the metal. That D as described above - occurs when contained in T site. For example, when the hydrogen storage metal is palladium Pd, it occurs when the deuterium storage rate (D / Pd ratio) exceeds 0.85. In the case of nanoparticles, the bulk ratio is small and the deuterium storage rate (D / Pd ratio) increases at an early stage.
(2) To reduce at least free electrons on the metal surface by controlling the potential on the metal surface. However, in order to accurately control the potential of the metal surface, it is desirable that the metal surface has a controlled nanostructure rather than a “nanostructure” that is naturally formed in the film formation process.
(3) D - supplying the D + T-site are present. As a result, the deuterium molecule D 2 is confined in the T site, and the D 2 molecule is transferred to the femto D 2 molecule by shrinking the T site.
(4) The femto D2 molecule expands and contracts and vibrates in the T site. As a result, the nucleons of the femto D 2 molecules approach each other periodically, and the probability of fusion is improved. As explained above, femto protons have a very deep DEO orbit (that is, near the fm order of the proton surface), so that the Coulomb repulsion shielding is almost perfect, and they can be treated as neutrons in substance. Therefore, it is considered that the DEO electrons between dd at this time shield the Coulomb repulsive force between nucleons and improve the probability of fusion. With reference to the graph of FIG. 9, the DEO electrons between dd shield the internuclear Coulomb repulsive force, and as shown in the curve 5d, even if the internuclear distance dd becomes 2.8 fm or less, Coulomb Repulsive force is suppressed and fusion can occur with less energy.
 本発明によれば、水素吸蔵ステージで吸蔵された水素(HあるいはD)を供給することで常温核融合ステージで核融合を安定的かつ持続的に発生させることが可能となる。以下、本発明の実施形態および実施例について図面を参照しながら詳細に説明する。 According to the present invention, by supplying hydrogen (H or D) stored in the hydrogen storage stage, fusion can be stably and continuously generated in the cold fusion stage. Hereinafter, embodiments and examples of the present invention will be described in detail with reference to the drawings.
1.第1実施形態
 以下、本発明の第1実施形態の一例としてDO電解液系の常温核融合装置について説明する。DOは酸化重水素(deuterium oxide)であり、DO電解液系はガス系に比較して安全かつ安価であり開発が容易になるという利点がある。第1実施形態によれば、対向電極の電位を制御することで水素吸蔵ステージと常温核融合ステージとを時間的に分離する。
1. 1. The first embodiment will be described below D 2 O electrolyte system cold fusion device as an example of the first embodiment of the present invention. D 2 O is deuterium oxide, and the D 2 O electrolyte system has the advantages of being safer, cheaper, and easier to develop than the gas system. According to the first embodiment, the hydrogen storage stage and the cold fusion stage are temporally separated by controlling the potential of the counter electrode.
 1.1)構成
 図27に例示するように、本発明の第1実施形態による常温核融合装置100は、発熱体としての平板状の水素吸蔵金属101と、水素吸蔵金属101の表面101aに対して所定距離gを隔てて設けられた表面電位制御用の対向電極102と、水素吸蔵金属101に対する対向電極102の電位を正電位と負電位との間で切り替えることができる極性切替可能電源103とを有する。対向電極102は平板状の面を有し、水素吸蔵金属101の表面101aと平行に対向配置されている。また、水素吸蔵金属101の少なくとも表面を所定温度まで加熱する加熱手段としてヒータ105が設けられている。
1.1) Configuration As illustrated in FIG. 27, the room temperature nuclear fusion apparatus 100 according to the first embodiment of the present invention has a plate-shaped hydrogen storage metal 101 as a heating element and a surface 101a of the hydrogen storage metal 101. A counter electrode 102 for controlling the surface potential provided at a predetermined distance g, and a polarity switchable power supply 103 capable of switching the potential of the counter electrode 102 with respect to the hydrogen storage metal 101 between a positive potential and a negative potential. Has. The counter electrode 102 has a flat plate-like surface, and is arranged so as to face parallel to the surface 101a of the hydrogen storage metal 101. Further, a heater 105 is provided as a heating means for heating at least the surface of the hydrogen storage metal 101 to a predetermined temperature.
 水素吸蔵金属101の表面101aはナノ構造を有し、水素吸蔵金属としては、種々の材料、たとえばパラジウムPd、ニッケルNi等を用いることができる。Niは反応によりCuへの核種変換が起こるが、Cuは安定しているので反応後に放射性物質が残らない利点がある。水素吸蔵金属101のナノ構造は半導体プロセス、ナノインプリントリソグラフィーあるいは既存の方法で形成することができる。詳しくは後述する。 The surface 101a of the hydrogen storage metal 101 has a nanostructure, and various materials such as palladium Pd and nickel Ni can be used as the hydrogen storage metal. Ni undergoes transmutation to Cu by the reaction, but since Cu is stable, there is an advantage that no radioactive substance remains after the reaction. The nanostructure of the hydrogen storage metal 101 can be formed by semiconductor process, nanoimprint lithography or existing methods. Details will be described later.
 反応炉内の水素吸蔵金属101および対向電極102はDO電解液内に配置され、対向電極102を正電位にすることで水素吸蔵ステージにおいて水素吸蔵金属101にDを吸蔵させる。これにより、上述したように水素吸蔵金属101の表面ナノ構造にDとDがそれぞれ入った隣接Tサイトが生成される。 The hydrogen storage metal 101 and the counter electrode 102 in the reaction furnace are arranged in the D 2 O electrolytic solution, and the counter electrode 102 is set to a positive potential so that the hydrogen storage metal 101 stores D in the hydrogen storage stage. As a result, as described above, adjacent T sites containing D + and D in the surface nanostructure of the hydrogen storage metal 101 are generated.
 続いて、対向電極102に対して水素吸蔵金属101より低い電圧を印加することで常温核融合ステージとなる。その際、水素吸蔵金属101を所定温度まで一時的に加熱する。加熱温度は、水素吸蔵金属101の種類により異なるが、少なくとも300℃以上、好ましくは500℃以上、さらに好ましくは600℃以上である。 Subsequently, a voltage lower than that of the hydrogen storage metal 101 is applied to the counter electrode 102 to achieve a cold fusion stage. At that time, the hydrogen storage metal 101 is temporarily heated to a predetermined temperature. The heating temperature varies depending on the type of the hydrogen storage metal 101, but is at least 300 ° C. or higher, preferably 500 ° C. or higher, and more preferably 600 ° C. or higher.
 対向電極102に負電圧を印加する常温核融合ステージにおいて、金属内の自由電子が水素吸蔵金属101の表面側からバルク側へ移動し、水素吸蔵金属101の表面101aのナノ構造において電子の濃度が低下する。それに伴いDとDとの間のクーロン力を遮蔽する効果も低下するので、Tサイトを占有しているDは熱励起により隣接するTサイトのDへ容易に移動することができる。 In a cold fusion stage in which a negative voltage is applied to the counter electrode 102, free electrons in the metal move from the surface side of the hydrogen storage metal 101 to the bulk side, and the concentration of electrons in the nanostructure of the surface 101a of the hydrogen storage metal 101 increases. descend. Along with this, the effect of shielding the Coulomb force between D + and D - is also reduced, so that D + occupying the T site can be easily moved to D − of the adjacent T site by thermal excitation. ..
 TサイトにDとDが入ることで、図1で説明したメカニズム(A)~(H)により共有結合を通して核融合が発生すると考えられる。この核融合により、供給されたエネルギ(たとえばヒータ105および極性切替可能電源103により供給されたエネルギなど)を超える熱エネルギが発生すると考えられる。このようにDO電解液を用いたDO系の常温核融合装置では、初期のトリガにヒータ105による加熱を使用するが、自律運転モードになるとヒータ105を切っても長時間核融合を継続させることができる。 T site D + and D - that enters, fusion is thought to occur through covalent bonds by a mechanism described in FIG. 1 (A) ~ (H) . It is believed that this fusion produces thermal energy that exceeds the supplied energy (eg, the energy supplied by the heater 105 and the polarity switchable power supply 103). In this way, D 2 O-based cold fusion device using D 2 O electrolyte solution is to use the heating by the heater 105 to the initial trigger for a long time by turning off the heater 105 becomes the autonomous operation mode Fusion Can be continued.
 1.2)表面電位制御
 図28に例示するように、対向電極102の電位を水素吸蔵金属101に対して正電位と負電位との間で切り替えることにより、水素吸蔵金属101の表面101aを水素吸蔵ステージと常温核融合ステージとの間で切り替え、これらを時間的に分離する。ここでは、対向電極102が正電位である期間、すなわち水素吸蔵ステージの持続時間をT1、対向電極102が負電位である期間、すなわち常温核融合ステージの持続時間をT2とし、T1>T2に設定されている。発熱量はDの供給量でほぼ決まるので、T1およびT2のそれぞれの長さ(あるいはデューティサイクル)および対向電極102に印加する正/負電圧を調整することで水素吸蔵効率、吸蔵された水素の消費効率を最大化することができる。このように対向電極102の電位を切り替えることで、水素吸蔵ステージで水素吸蔵金属101に吸蔵されたDが常温核融合ステージで消費されるサイクルを持続することができる。
1.2) Surface potential control As illustrated in FIG. 28, the surface 101a of the hydrogen storage metal 101 is hydrogenated by switching the potential of the counter electrode 102 between a positive potential and a negative potential with respect to the hydrogen storage metal 101. Switch between the storage stage and the room temperature fusion stage and separate them in time. Here, the period when the counter electrode 102 is at a positive potential, that is, the duration of the hydrogen storage stage is T1, and the period when the counter electrode 102 is at a negative potential, that is, the duration of the cold fusion stage is T2, and T1> T2 is set. Has been done. Since the calorific value is almost determined by the supply amount of D, the hydrogen storage efficiency and the stored hydrogen can be adjusted by adjusting the respective lengths (or duty cycles) of T1 and T2 and the positive / negative voltage applied to the counter electrode 102. The consumption efficiency can be maximized. By switching the potential of the counter electrode 102 in this way, the cycle in which D stored in the hydrogen storage metal 101 in the hydrogen storage stage is consumed in the cold fusion stage can be maintained.
 <水素吸蔵ステージ>
 図29に模式的に示すように、対向電極102を正電位にして対向電極102から水素吸蔵金属101の表面(ナノ構造)101aへ向かう電界Eを印加する。この場合、図29に示すように、金属内の自由電子は表面側へ移動し、隣接するTサイト間も自由電子101bに満たされた状態となる。これにより、金属101の表面近傍の電子濃度がバルク内より大幅に高くなり、隣接するTサイトを占有するDとDとの間のクーロン力が遮蔽される。参照文献4によれば、金属中ではプロトン間の距離がわずか0.6Åでクーロン力が遮蔽されるので、対向電極102に正電圧を印加した場合、Dが隣接するTサイトのDへ移動する確率は極めて小さくなる。この状態では核融合は発生せず、DO電解液からDが吸蔵され続ける。
<Hydrogen storage stage>
As schematically shown in FIG. 29, the counter electrode 102 is set to a positive potential and an electric field E is applied from the counter electrode 102 toward the surface (nanostructure) 101a of the hydrogen storage metal 101. In this case, as shown in FIG. 29, the free electrons in the metal move to the surface side, and the adjacent T sites are also filled with the free electrons 101b. As a result, the electron concentration near the surface of the metal 101 becomes significantly higher than that in the bulk, and the Coulomb force between D + and D − occupying the adjacent T sites is shielded. According to Reference 4, since the Coulomb force is shielded by a distance between protons of only 0.6 Å in a metal, when a positive voltage is applied to the counter electrode 102, D + goes to D − of the adjacent T site. The probability of moving is extremely small. Fusion is not generated in this state, D continues to be occluded from the D 2 O electrolyte.
 <常温核融合ステージ>
 これに対して、図30に示すように、対向電極102の負電位にして水素吸蔵金属101の表面ナノ構造から対向電極102へ向かう電界Eを印加した場合、金属内の自由電子が水素吸蔵金属101の表面側からバルク側へ移動する。これにより、水素吸蔵金属101の表面近傍のナノ構造の電子濃度がバルク内より大幅に低くなり、自由電子のクーロン引力の遮蔽効果が小さくなり、隣接するTサイトを占有するDとDとの間のクーロン力が十分大きくなる。本実施形態では水素吸蔵金属101を所定温度に加熱することで、熱励起されたDがTサイト間の電位障壁をポッピングして隣接TサイトのDへ移動する確率が高くなり、それによって常温核融合の発生確率を高くすることができる。
<Cold fusion stage>
On the other hand, as shown in FIG. 30, when an electric field E is applied from the surface nanostructure of the hydrogen storage metal 101 toward the counter electrode 102 at a negative potential of the counter electrode 102, the free electrons in the metal become the hydrogen storage metal. It moves from the surface side of 101 to the bulk side. Thus, the electron density of the nanostructures in the vicinity of the surface of the hydrogen-absorbing metal 101 is significantly lower than the bulk, reduces the shielding effect of Coulomb attraction of the free electrons occupy adjacent T site D + and D - and The Coulomb force between them becomes large enough. In the present embodiment, by heating the hydrogen storage metal 101 to a predetermined temperature, the probability that the thermally excited D + pops the potential barrier between the T sites and moves to the D − of the adjacent T site is increased, thereby increasing the probability. The probability of cold fusion can be increased.
 図31にまとめて示すように、対向電極102が正電位である水素吸蔵ステージでは、金属表面に自由電子濃度が高くなりDの吸蔵が生じる。Dが吸蔵された後、対向電極102を負電位に切り替えることで常温核融合ステージとなる。すなわち、金属表面電位が低下することで金属表面の自由電子が空乏化し、熱励起されたDがTサイト間の電位障壁をポッピングして、あるいは金属内に吸蔵されたDがトンネリングして、Dのある表面Tサイトへ移動する。これにより、既に述べたようにD分子がTサイト内に閉じ込められ、Tサイト内で伸縮振動し、DEO電子によるクーロン遮蔽により核融合が発生する。 As shown collectively in FIG. 31, in the hydrogen storage stage where the counter electrode 102 has a positive potential, the free electron concentration is high on the metal surface and D storage occurs. After D is occluded, the counter electrode 102 is switched to a negative potential to become a cold fusion stage. That is, as the metal surface potential decreases, the free electrons on the metal surface become depleted, and the thermally excited D + pops the potential barrier between the T sites, or the D occluded in the metal tunnels. D - to move to the surface T site with. Thus, already D 2 molecule as described trapped within T site, stretching vibration in the T site, fusion occurs by a Coulomb shielding by DEO electrons.
 1.3)効果
 本実施形態によれば、対向電極102を正電位にする水素吸蔵ステージで金属表面にDを吸蔵させ、続いて対向電極102を負電位にする常温核融合ステージで自由電子の濃度を低下させる。これによりクーロン引力遮蔽を低減でき、それによって熱励起によりDが隣接TサイトへホッピングしてDと結合しやすくなり、あるいは金属内に吸蔵されたDがトンネリングしてTサイト内にDガスを効率的に封じ込めることができる。すでに述べたように、Tサイト内のフェムトD分子の伸縮運動において、核子間の距離が最接近した時の距離が核融合可能な位置まで縮まると核融合が生じると考えられる。ここで、フェムトD分子の周辺に自由電子が存在すると、自由電子がフェムトD分子の運動の抵抗となり、徐々に運動速度が低下して最接近時の間隔が遠ざかる。これに対して、Tサイト内のフェムトD分子の振動が長期で継続すると、振動による核子間の最接近回数が多くなり、それによって核子間距離が核融合可能距離まで接近する確率も大きくなる。したがって、フェムトD分子周辺の自由電子濃度を低減することは、常温核融合の発生確率を上げることになるという利点がある。
1.3) Effect According to the present embodiment, D is occluded on the metal surface in a hydrogen storage stage in which the counter electrode 102 is set to a positive potential, and then free electrons are stored in a room temperature fusion stage in which the counter electrode 102 is set to a negative potential. Decrease the concentration. Thus it is possible to reduce the Coulomb attraction shielding, thereby hopping to the adjacent T site D + thermally excited D - bound easily as, or D 2 in the T site occluded D is tunneled into the metal The gas can be contained efficiently. As already mentioned, the stretching movement of the femto D 2 molecules in the T site, the distance between the nucleons is considered as the distance when the closest approach shrinks until fusion possible position when fusion occurs. Here, if free electrons are present around the femto D 2 molecule, the free electrons become resistance to the movement of the femto D 2 molecule, and the movement speed gradually decreases and the interval at the time of closest approach increases. In contrast, when the vibration of the femto D 2 molecules in the T site continues long term, increases the closest approach number between nucleons due to vibration, the greater the probability that thereby approaching nucleons distance until fusion distance .. Therefore, reducing the free electron concentration around the femto D 2 molecule has the advantage of increasing the probability of cold fusion.
 さらに本実施形態によれば、対向電極102を正電位と負電位との間で交互に切り替えることにより、水素吸蔵ステージで水素を吸蔵させ、吸蔵された水素を常温核融合ステージで消費するというサイクルを繰り返すことができ、安定した常温核融合を金属表面で連続して発生させることが可能となる。このサイクルについては後に詳述する。 Further, according to the present embodiment, by alternately switching the counter electrode 102 between the positive potential and the negative potential, hydrogen is occluded in the hydrogen storage stage and the stored hydrogen is consumed in the cold fusion stage. Can be repeated, and stable cold fusion can be continuously generated on the metal surface. This cycle will be described in detail later.
 以下、本実施形態を適用した常温核融合装置における水素吸蔵金属101の表面ナノ構造の実施例について説明する。 Hereinafter, examples of the surface nanostructure of the hydrogen storage metal 101 in the cold fusion device to which the present embodiment is applied will be described.
 <実施例1.1>
 金属表面のナノ構造としては、ドット寸法および間隔が数nm~数100nmに制御されたナノドットアレイを使用することができる。たとえば特許第5652817号(ナノドット形成方法)や特許第5875066号(ナノドットアレイ板製造方法)によれば、大きさや密度を所望に制御可能なナノドットおよびナノドットアレイの製法が開示されている。以下、本発明の実施例1.1として、ナノドットを発熱体として用いた常温核融合装置について説明する。
<Example 1.1>
As the nanostructure of the metal surface, a nanodot array in which the dot size and spacing are controlled to several nm to several hundred nm can be used. For example, according to Japanese Patent No. 5652817 (method for forming nanodots) and Japanese Patent No. 5875066 (method for manufacturing nanodot array plates), a method for producing nanodots and nanodot arrays whose size and density can be preferably controlled is disclosed. Hereinafter, as Example 1.1 of the present invention, a cold fusion device using nanodots as a heating element will be described.
 図32に例示するように、本実施例による常温核融合装置は、発熱体として半球状(以下、ドーム状という。)のナノドーム201のアレイが水素吸蔵金属101の表面上に形成された構成を有する。言うまでもなく図32では説明のためにナノドーム形状が拡大して記載されており、ナノオーダに制御された多数のナノドーム201が水素吸蔵金属101の表面全体に形成されている。ナノドーム201は水素吸蔵金属からなり、たとえばパラジウム(Pd)である。水素吸蔵金属101の代わりに水素拡散速度が遅く且つ熱伝導率の高い金属材料、たとえば鉄(Fe)を用いることもできる。 As illustrated in FIG. 32, the cold fusion device according to the present embodiment has a configuration in which an array of hemispherical (hereinafter referred to as dome-shaped) nanodomes 201 is formed on the surface of the hydrogen storage metal 101 as a heating element. Have. Needless to say, in FIG. 32, the nanodome shape is enlarged and described for the sake of explanation, and a large number of nanodomes 201 controlled by the nanoorder are formed on the entire surface of the hydrogen storage metal 101. The nanodome 201 is made of a hydrogen storage metal, for example palladium (Pd). Instead of the hydrogen storage metal 101, a metal material having a slow hydrogen diffusion rate and a high thermal conductivity, for example, iron (Fe) can be used.
 また、水素吸蔵金属101の表面から所定距離gを隔てた位置に表面電位制御用の対向電極102が設けられ、極性切替可能電源103がナノドームアレイが形成された水素吸蔵金属101に対して水素吸蔵ステージでは対向電極102が正電位、常温核融合ステージでは負電位となる電圧を印加する。ナノドーム201は図示しない加熱手段(ヒータ105)によって所定温度まで加熱されてもよい。 Further, a counter electrode 102 for controlling the surface potential is provided at a position separated from the surface of the hydrogen storage metal 101 by a predetermined distance g, and the polarity switchable power supply 103 makes hydrogen with respect to the hydrogen storage metal 101 on which the nanodome array is formed. In the storage stage, the counter electrode 102 applies a positive potential, and in the room temperature fusion stage, a negative potential is applied. The nanodome 201 may be heated to a predetermined temperature by a heating means (heater 105) (not shown).
 各ナノドーム201がドーム状であることは次の利点を有する。ナノドーム201の表面では上側に金属原子がないためにTサイトにDが入っても応力緩和が可能である。このために格子の膨張による系のエネルギの増加が少なくなり、膨張幅が大きくなってTサイトにDが入りやすくなる。 The dome shape of each nanodome 201 has the following advantages. Since there are no metal atoms on the upper side of the surface of the nanodome 201, stress relaxation is possible even if D − enters the T site. For this reason, the increase in the energy of the system due to the expansion of the lattice is reduced, the expansion width is increased, and D is likely to enter the T site.
 より詳しくは、図33に模式的に示すように、ドーム状のナノドーム201は半球状であり、表面の曲率が正で大きい。このために、元のナノドーム201aからナノドーム201bへ格子が外側(バルクとは反対側)に膨張しても、元の単位格子当たりの体積210aはより大きい体積210bへと容易に大きくなることができ、その際に他格子から応力を受けにくい。すなわち、球体のような曲率が正で大きな外面では膨張が容易になる。このようにドーム状のナノドーム201ではTサイトに膨張する余地があり、Dの吸蔵に極めて適した形状である。 More specifically, as schematically shown in FIG. 33, the dome-shaped nanodome 201 is hemispherical and has a positive and large surface curvature. For this reason, even if the grid expands outward (opposite the bulk) from the original nanodome 201a to the nanodome 201b, the original volume 210a per unit grid can easily increase to a larger volume 210b. At that time, it is less likely to receive stress from other lattices. That is, expansion is facilitated on an outer surface having a positive curvature and a large shape such as a sphere. Thus there is room to expand the domed Nanodomu 201 at T site, D - is a very suitable shape to occlude.
 上述したドーム状のナノドーム201は、水素吸蔵金属層を形成した後、等方性エッチングの条件を深さ方向で段階的に変化させエッチングの横方向の進行速度を深さ方向で変更することにより形成可能である。 In the above-mentioned dome-shaped nanodome 201, after forming a hydrogen storage metal layer, the conditions of isotropic etching are changed stepwise in the depth direction to change the lateral etching rate in the depth direction. It can be formed.
 本実施例によれば、対向電極102の電位を水素吸蔵金属101より高くすることで水素吸蔵金属101に水素を吸蔵させる。続いて、水素吸蔵金属101に対して負電位を印加することで、上述したようにナノドーム201からなるナノ構造の電子濃度を大幅に低下させ、熱励起されたDがTサイト間の電位障壁をポッピングして隣接TサイトのDへ移動しやすくなり、あるいは金属内に吸蔵されたDが表面Tサイトへトンネリングしやすくなる。こうして上述したようにTサイトの縮小によりD分子がフェムトD分子に遷移し、振動運動が持続することにより常温核融合の発生確率が高くなる。 According to this embodiment, the potential of the counter electrode 102 is made higher than that of the hydrogen storage metal 101 so that the hydrogen storage metal 101 stores hydrogen. Subsequently, by applying a negative potential to the hydrogen storage metal 101, the electron concentration of the nanostructure composed of the nanodome 201 is significantly reduced as described above, and the thermally excited D + is the potential barrier between the T sites. the to D of adjacent T sites popping - easily move to or occluded D in the metal tends to tunneling to the surface T site. Thus D 2 molecules transitions to femto D 2 molecule by reduction of the T sites as described above, the higher the probability of occurrence of cold fusion by oscillatory motion is sustained.
 <実施例1.2>
 上記実施例1.1における金属表面のナノ構造は上記ドーム状に限定されるものではない。以下、本発明の実施例1.2として、ナノコーンを発熱体として用いた常温核融合装置について説明する。なお、実施例1.2は、上述した実施例1.1と同様の表面電位制御が行われる。
<Example 1.2>
The nanostructure of the metal surface in Example 1.1 is not limited to the dome shape. Hereinafter, as Example 1.2 of the present invention, a cold fusion device using a nanocone as a heating element will be described. In Example 1.2, the same surface potential control as in Example 1.1 described above is performed.
 図34に例示するように、本実施例1.2による常温核融合装置は、発熱体としてナノコーン301のアレイが水素吸蔵金属101の表面上に形成された構成を有する。ナノコーン301は先端が半球状の円錐形状を有し、たとえばパラジウム(Pd)等の水素吸蔵金属からなる。水素吸蔵金属101の表面から所定距離gを隔てた位置に表面電位制御用の対向電極102が設けられ、極性切替可能電源103がナノコーン301のアレイに対して対向電極102が正電位あるいは負電位となる電圧を印加する。なお、実施例1.1のように加熱手段(図示せず)を設けてナノコーン301を所定温度まで加熱してもよい。 As illustrated in FIG. 34, the cold fusion device according to Example 1.2 has a configuration in which an array of nanocorns 301 is formed on the surface of the hydrogen storage metal 101 as a heating element. The nanocone 301 has a conical shape with a hemispherical tip, and is made of a hydrogen storage metal such as palladium (Pd). A counter electrode 102 for controlling the surface potential is provided at a position separated from the surface of the hydrogen storage metal 101 by a predetermined distance g, and the polarity switchable power supply 103 has a positive potential or a negative potential with respect to the array of the nanocones 301. A voltage is applied. The nanocone 301 may be heated to a predetermined temperature by providing a heating means (not shown) as in Example 1.1.
 ナノコーン301は先端部が半球状であるから、上記実施例1.1と同様にDの吸蔵に適している。さらに、ナノコーン301の半球状の先端部と円錐状の側面に電界がかかるために、電界の先端部への集中を避けることができ、ナノコーン301のアレイ全体に均一な電界かけることができる。これにより、さらに制御性の良い常温核融合を実現できる。 Since the tip of the nanocone 301 is hemispherical, it is suitable for occlusion of D − as in Example 1.1 above. Further, since an electric field is applied to the hemispherical tip portion and the conical side surface of the nanocone 301, it is possible to avoid concentration of the electric field on the tip portion, and a uniform electric field can be applied to the entire array of the nanocone 301. As a result, cold fusion with even better controllability can be realized.
 本発明の実施例1.2によれば、対向電極102の電位を水素吸蔵金属101より高くすることで水素吸蔵金属101に水素を吸蔵させる。続いて、対向電極102に水素吸蔵金属101に対して負電位を印加することで、上述したようにナノコーン301からなるナノ構造の電子濃度を大幅に低下させ、熱励起あるいは金属内から表面への拡散によりDが表面Tサイト内でDと結合し、Tサイトの縮小によりD分子がフェムトD分子に遷移し、振動運動が持続することにより常温核融合の発生確率が高くなる。 According to Example 1.2 of the present invention, the hydrogen storage metal 101 is made to store hydrogen by making the potential of the counter electrode 102 higher than that of the hydrogen storage metal 101. Subsequently, by applying a negative potential to the hydrogen storage metal 101 to the counter electrode 102, the electron concentration of the nanostructure composed of the nanocone 301 is significantly reduced as described above, and thermal excitation or transfer from inside the metal to the surface is performed. diffusion D + is D in the surface T site by - combined with transitions to femto D 2 molecule D 2 molecule by reduction of the T site, the higher the probability of occurrence of cold fusion by oscillatory motion is sustained.
 <実施例1.3>
 金属表面のナノ構造としてのナノコーン301には別のバリエーションも可能である。以下、本発明の実施例1.3による発熱体に用いられるナノコーンとその製造方法について説明する。なお実施例1.3は上述した実施例1.1および1.2にも適用可能である。
<Example 1.3>
Another variation is possible for the nanocone 301 as a nanostructure on the metal surface. Hereinafter, the nanocone used for the heating element according to Example 1.3 of the present invention and a method for producing the same will be described. Note that Example 1.3 is also applicable to Examples 1.1 and 1.2 described above.
 図35に例示するように、本発明の実施例1.3による常温核融合装置の発熱体は、上記実施例1.2と同形状のナノコーン301から構成されるが、各ナノコーン301は金属層302に形成されたナノピラー302aの上に積層されている。このようなナノ構造は、たとえば東北大学プレスリリース(「3次元量子ドット構造の形成実現によるInGaAsナノ円盤構造を世界で初めて観察」令和元年9月2日発表)で使用されたバイオテンプレートと中性粒子ビームを用いた製造技術を応用して製造することができる。以下、製造方法の一例を示す。 As illustrated in FIG. 35, the heating element of the cold fusion device according to Example 1.3 of the present invention is composed of nanocones 301 having the same shape as that of Example 1.2, and each nanocone 301 has a metal layer. It is laminated on the nanopillar 302a formed in 302. Such nanostructures are, for example, the biotemplate used in the Tohoku University press release (“Observing the InGaAs nanodisk structure by realizing the formation of a three-dimensional quantum dot structure for the first time in the world” announced on September 2, 1945). It can be manufactured by applying a manufacturing technique using a neutral particle beam. An example of the manufacturing method is shown below.
 図36(A)および(B)において、支持基板403上に金属層402を積層し、さらにその上に必要な膜厚dの水素吸蔵合金層401を積層する。積層方法はCVD等の成膜方法を利用できる。続いて、水素吸蔵合金層401上に、鉄コア501を内包したタンパク質502を配列する。 In FIGS. 36A and 36B, the metal layer 402 is laminated on the support substrate 403, and the hydrogen storage alloy layer 401 having the required film thickness d is further laminated on the metal layer 402. As the laminating method, a film forming method such as CVD can be used. Subsequently, the protein 502 containing the iron core 501 is arranged on the hydrogen storage alloy layer 401.
 図37において、タンパク質502を除去することで、鉄コア501が一定間隔で水素吸蔵合金層401上に残る(工程A)。続いて、中性粒子ビームエッチングにより鉄コア501をマスクとして水素吸蔵合金層401と金属層402の一部を除去し、さらにエッチングにより円錐側面を有する金属層402および水素吸蔵合金層401を形成する(工程B)。最後に、鉄コア501を除去することで、所定間隔に配列されたナノコーン301を形成することができる(工程CおよびD)。なお、図37(C)は、図37(D)に示す平面図のA-A線断面図である。 In FIG. 37, by removing the protein 502, the iron core 501 remains on the hydrogen storage alloy layer 401 at regular intervals (step A). Subsequently, a part of the hydrogen storage alloy layer 401 and the metal layer 402 is removed by etching with the neutral particle beam using the iron core 501 as a mask, and the metal layer 402 and the hydrogen storage alloy layer 401 having a conical side surface are further formed by etching. (Step B). Finally, by removing the iron core 501, nanocorns 301 arranged at predetermined intervals can be formed (steps C and D). Note that FIG. 37 (C) is a cross-sectional view taken along the line AA of the plan view shown in FIG. 37 (D).
 このようなナノコーン構造体にすることで、バルクと表面積の比では圧倒的に表面積の割合が大きくなる。ナノコーン301は熱伝導率の高い金属層402上に形成されるので、熱交換効率が良く、発熱体であるナノコーン301から効率よくエネルギを取り出すことができる。 By using such a nanocone structure, the ratio of surface area becomes overwhelmingly large in terms of the ratio of bulk to surface area. Since the nanocone 301 is formed on the metal layer 402 having a high thermal conductivity, the heat exchange efficiency is good, and energy can be efficiently extracted from the nanocone 301 which is a heating element.
2.第2実施形態
 本発明の第2実施形態によれば、第1実施形態と同様に水素吸蔵金属の表面電位を切り替えながら、水素吸蔵金属表面と対向電極との間にDO電解液が流れるように構成されている。特に水素吸蔵表面の発熱体はDO電解液が流れやすく且つ水素を効率的吸蔵できる形状に設計される。以下、図27の第1実施形態と同じ機能を有する部材には同一参照番号を付して詳細な説明は省略するものとする。
2. Second Embodiment According to the second embodiment of the present invention, the D 2 O electrolytic solution flows between the surface of the hydrogen storage metal and the counter electrode while switching the surface potential of the hydrogen storage metal as in the first embodiment. It is configured as follows. In particular the heating element of the hydrogen absorbing surface is designed in a shape that can efficiently store hydrogen and easily stream D 2 O electrolyte. Hereinafter, the members having the same functions as those in the first embodiment of FIG. 27 will be assigned the same reference numbers, and detailed description thereof will be omitted.
 2.1)構成
 図38および図39に例示するように、本実施形態による常温核融合装置は反応炉601内に水素吸蔵金属101と表面電位制御用の対向電極102とが配置されて構成される。反応炉601の最下部にはDO電解液を水素吸蔵金属101と対向電極102との間に供給するための複数の供給パイプ602が設けられ、反応炉601の上面にはガス排出口603が設けられている。水素吸蔵金属101はウエハ形状を有し、複数個のスロット状の保持部604により反応炉601内に固定保持される。図39に典型的に示すように、ウエハ状の水素吸蔵金属101は複数の保持部604のスロット部に挿入され保持される。図39に示す4カ所の保持部604であれば、水素吸蔵金属101が円形ウエハであっても矩形のウエハであっても固定保持可能である。
2.1) Configuration As illustrated in FIGS. 38 and 39, the cold fusion apparatus according to the present embodiment is configured by arranging a hydrogen storage metal 101 and a counter electrode 102 for controlling the surface potential in the reactor 601. NS. A plurality of supply pipes 602 for supplying the D 2 O electrolytic solution between the hydrogen storage metal 101 and the counter electrode 102 are provided at the lowermost portion of the reactor 601 and a gas discharge port 603 is provided on the upper surface of the reactor 601. Is provided. The hydrogen storage metal 101 has a wafer shape and is fixedly held in the reaction furnace 601 by a plurality of slot-shaped holding portions 604. As typically shown in FIG. 39, the wafer-shaped hydrogen storage metal 101 is inserted and held in the slots of the plurality of holding portions 604. With the four holding portions 604 shown in FIG. 39, the hydrogen storage metal 101 can be fixedly held regardless of whether it is a circular wafer or a rectangular wafer.
 なお、本実施形態では複数の保持部604が第1実施形態におけるヒータ105と同じ加熱手段を兼ねている。また水素吸蔵金属101の表面と平行に所定距離gだけ離れて平板状の対向電極102が固定配置されている。 In the present embodiment, the plurality of holding portions 604 also serve as the same heating means as the heater 105 in the first embodiment. Further, a flat plate-shaped counter electrode 102 is fixedly arranged parallel to the surface of the hydrogen storage metal 101 and separated by a predetermined distance g.
 供給パイプ602には反応炉601の外部からDO電解液F1が流入し、水素吸蔵金属101と対向電極102との間にDO電解液F2の流れを形成する。水素吸蔵金属101の対向電極102側の面には、DO電解液の流れる方向F2に沿って延びたナノ構造の発熱体701が方向F2と直交する方向に配列されており、隣接する発熱体701の間の谷がDO電解液の流路を成している。ナノ構造の発熱体701は水素吸蔵金属101の表面をエッチングにより形成されても良いし、水素吸蔵率および水素拡散係数が小さい金属を支持基板とし、その上に水素吸蔵金属を成膜しエッチングすることで形成しても良い。この構造により発熱体701とDO電解液との接触面積が増大し、水素の吸蔵および常温核融合反応が効率化する。 The D 2 O electrolytic solution F1 flows into the supply pipe 602 from the outside of the reactor 601 and forms a flow of the D 2 O electrolytic solution F2 between the hydrogen storage metal 101 and the counter electrode 102. On the surface of the counter electrode 102 side of the hydrogen storage metal 101, heating element 701 of nanostructures extending along a direction F2 of the flow of D 2 O electrolyte are arranged in a direction perpendicular to the direction F2, the adjacent heating valley between the body 701 forms a flow path of D 2 O electrolyte. The nano-structured heating element 701 may be formed by etching the surface of the hydrogen storage metal 101, or a metal having a small hydrogen storage rate and a hydrogen diffusion coefficient is used as a support substrate, and a hydrogen storage metal is formed and etched on the support substrate. It may be formed by. The contact area between the heating element 701 and the D 2 O electrolyte is increased by this structure, storage and cold fusion reaction of hydrogen is more efficient.
 なお、極性切替可能電源103は、第1実施形態で述べたように、水素吸蔵金属101に対する対向電極102の電位を正電位と負電位との間で切り替える。またヒータを兼ねた保持部604は水素吸蔵金属101の少なくとも表面を所定温度まで加熱することができる。 As described in the first embodiment, the polarity switchable power supply 103 switches the potential of the counter electrode 102 with respect to the hydrogen storage metal 101 between a positive potential and a negative potential. Further, the holding portion 604 that also serves as a heater can heat at least the surface of the hydrogen storage metal 101 to a predetermined temperature.
 2.2)表面電位制御
 図40に例示するように、対向電極102の電位を水素吸蔵金属101に対して正電位と負電位との間で切り替えることにより、水素吸蔵金属101の表面ナノ構造を水素吸蔵ステージと常温核融合ステージとの間で切り替えることができる。第1実施形態と同様に、対向電極102が正電位である期間、すなわち水素吸蔵ステージの持続時間をT1、対向電極102が負電位である期間、すなわち常温核融合ステージの持続時間をT2とし、T1>T2に設定されている。すなわち、水素吸蔵ステージの持続時間T1を長くすることで十分な量のDを吸蔵させることができ、常温核融合ステージでの発熱量を増大させることができる。ただし、ステージの切り替え期間を設けている点が第1実施形態と異なっている。常温核融合ステージで常温核融合反応により発熱するが、その熱はD2O電解液F2の流れにより冷却されDO電解液の気化により回収されてDO蒸気として後段の発電に利用される。このように対向電極102の電位を切り替えることで、水素吸蔵ステージで水素吸蔵金属101に吸蔵されたDが常温核融合ステージで消費されるサイクルを持続することができる。
2.2) Surface potential control As illustrated in FIG. 40, the surface nanostructure of the hydrogen storage metal 101 is changed by switching the potential of the counter electrode 102 between the positive potential and the negative potential with respect to the hydrogen storage metal 101. It is possible to switch between the hydrogen storage stage and the room temperature fusion stage. Similar to the first embodiment, the period when the counter electrode 102 is at a positive potential, that is, the duration of the hydrogen storage stage is T1, and the period when the counter electrode 102 is at a negative potential, that is, the duration of the cold fusion stage is T2. T1> T2 is set. That is, by lengthening the duration T1 of the hydrogen storage stage, a sufficient amount of D can be occluded, and the calorific value in the cold fusion stage can be increased. However, it differs from the first embodiment in that a stage switching period is provided. Generates heat by cold fusion reaction in cold fusion stage, its heat is utilized downstream of the generator as D 2 O vapor is recovered by evaporation of the cooling by the flow of D2O electrolyte F2 D 2 O electrolyte. By switching the potential of the counter electrode 102 in this way, the cycle in which D stored in the hydrogen storage metal 101 in the hydrogen storage stage is consumed in the cold fusion stage can be maintained.
 なお、本実施形態による発熱体701は、一例として半導体プロセス装置の12インチシリコンウエハプロセス装置を用いて製造可能なように設計される。つまり、12インチφの金属基板あるいは熱伝導率の高いダイアモンド基板を用いて、その基板上に水素吸蔵金属のナノ構造を自己整合プロセスあるいは半導体デバイス製造で用いるようなプロセスでナノ構造を形成することもできる。あるいは金属基板あるいは多結晶ダイアモンド基板の表面の凸凹を利用してナノ構造を形成することも可能である。このように広い12インチφ基板を用いることで、広い裏面から直接熱を水冷で冷却して効率的に熱交換が可能となる。また、基板の表面側をブラストして凸凹を形成することで、あるいは多結晶ダイヤモンド基板を用いる場合には表面を研磨せずに凸凹の状態で用いることで、安価に基板表面に凸凹のナノ構造を有する水素吸蔵金属を形成することが可能である。また、ナノインプリントリソグラフィーを用いて、安価な凹凸ナノ構造を形成することも可能である。ナノインプリントリソグラフィーは微細パターンを刻んだ金型を樹脂に押し当てて紫外線などを照射し樹脂を硬化させ、その金型を剥がすことで10nm程度の微細なパターンを高いコストパフォーマンスで製造できる技術である。 The heating element 701 according to the present embodiment is designed so that it can be manufactured by using the 12-inch silicon wafer process apparatus of the semiconductor process apparatus as an example. In other words, using a 12-inch φ metal substrate or a diamond substrate with high thermal conductivity, a nanostructure is formed on the substrate by a self-alignment process or a process such as that used in semiconductor device manufacturing. You can also. Alternatively, it is also possible to form nanostructures by utilizing the unevenness of the surface of a metal substrate or a polycrystalline diamond substrate. By using such a wide 12-inch φ substrate, heat can be cooled directly from the wide back surface by water cooling, and heat exchange can be performed efficiently. In addition, by blasting the surface side of the substrate to form irregularities, or by using a polycrystalline diamond substrate in an uneven state without polishing the surface, the nanostructure of irregularities on the substrate surface can be inexpensively used. It is possible to form a hydrogen storage metal having. It is also possible to form inexpensive concavo-convex nanostructures using nanoimprint lithography. Nanoimprint lithography is a technology that can produce a fine pattern of about 10 nm with high cost performance by pressing a mold with a fine pattern against the resin, irradiating it with ultraviolet rays, etc. to cure the resin, and then peeling off the mold.
 図41にまとめて示すように、対向電極102が正電位である水素吸蔵ステージでは、金属表面に自由電子濃度が高くなりDの吸蔵だけが生じる。Dが吸蔵された後、対向電極102を負電位に切り替えることで常温核融合ステージとなる。すなわち、金属表面電位が低下することで金属表面の自由電子が空乏化し、熱励起されたDがTサイト間の電位障壁をポッピングして隣接TサイトのDへ移動しやすくなり、あるいは金属内に吸蔵されたDが表面Tサイトへトンネリングしやすくなる。これにより、既に述べたようにD分子がTサイト内に閉じ込められ、Tサイト内で伸縮振動し、DEO電子によるクーロン遮蔽により核融合が発生する。 As shown collectively in FIG. 41, in the hydrogen storage stage where the counter electrode 102 has a positive potential, the free electron concentration is high on the metal surface and only D storage occurs. After D is occluded, the counter electrode 102 is switched to a negative potential to become a cold fusion stage. That is, the decrease in the metal surface potential depletes the free electrons on the metal surface, and the thermally excited D + pops the potential barrier between the T sites and easily moves to the D − of the adjacent T site, or the metal. The D stored inside can be easily tunneled to the surface T site. Thus, already D 2 molecule as described trapped within T site, stretching vibration in the T site, fusion occurs by a Coulomb shielding by DEO electrons.
 2.3)効果
 本実施形態によれば、第1実施形態と同様に、対向電極102を正電位と負電位との間で交互に切り替えることにより、水素吸蔵ステージで水素を吸蔵させ、吸蔵された水素を常温核融合ステージで消費するというサイクルを繰り返すことができ、安定した常温核融合を金属表面で連続して発生させることが可能となる。特に水素吸蔵金属表面と対向電極との間にDO電解液が流れるように構成され、水素吸蔵表面の発熱体をDO電解液が流れやすく且つ水素吸蔵を効率化できる形状に形成することで、更に効率的な常温融合を連続して発生させることができる。
2.3) Effect According to the first embodiment, hydrogen is occluded and occluded in the hydrogen storage stage by alternately switching the counter electrode 102 between the positive potential and the negative potential as in the first embodiment. The cycle of consuming the hydrogen in the cold fusion stage can be repeated, and stable cold fusion can be continuously generated on the metal surface. In particular, the D 2 O electrolytic solution is configured to flow between the hydrogen storage metal surface and the counter electrode, and the heating element on the hydrogen storage surface is formed into a shape that allows the D 2 O electrolytic solution to easily flow and makes hydrogen storage efficient. As a result, more efficient room temperature fusion can be continuously generated.
 以下、本実施形態を適用した常温核融合装置における水素吸蔵金属101の表面ナノ構造(発熱体701)および反応炉の実施例について説明する。なお、極性切替可能電源103については、第1実施形態と同様に水素吸蔵金属101に対する対向電極102の電位を正電位と負電位との間で切り替えるので、以下の実施例では説明を省略する。また水素吸蔵金属101を所定温度に加熱することで常温核融合の発生確率を高くすることは第1実施形態で述べた通りであるから説明は省略する。 Hereinafter, examples of the surface nanostructure (heating element 701) of the hydrogen storage metal 101 and the reactor in the cold fusion device to which the present embodiment is applied will be described. As for the polarity switchable power supply 103, since the potential of the counter electrode 102 with respect to the hydrogen storage metal 101 is switched between the positive potential and the negative potential as in the first embodiment, the description thereof will be omitted in the following examples. Further, since the probability of cold fusion occurring by heating the hydrogen storage metal 101 to a predetermined temperature is increased as described in the first embodiment, the description thereof will be omitted.
 <実施例2.1>
 図42(A)に例示するように、本発明の実施例2.1によれば、水素吸蔵金属101の対向電極102側の面には、DO電解液の流れる方向F2に沿って延びたストライプ状の発熱体801が方向F2と直交する方向に配列されている。ストライプ状の発熱体801が上述した発熱体701の一例である。発熱体801は水素吸蔵金属101の表面をナノ構造に形成したものである。また図42(B)に例示するように、ストライプ状の発熱体801の断面は台形であり、隣接する発熱体801の上面間のスペース間隔をs、ストライプ状の上面801aの幅をL、発熱体801の深さをDpとすれば、たとえばs=100nm、L=1nm、Dp=500nmである。
<Example 2.1>
As illustrated in FIG. 42 (A), according to Example 2.1 of the invention, the surface of the counter electrode 102 side of the hydrogen storage metal 101, extends along a direction F2 of the flow of D 2 O electrolyte The striped heating elements 801 are arranged in a direction orthogonal to the direction F2. The striped heating element 801 is an example of the heating element 701 described above. The heating element 801 is formed by forming the surface of the hydrogen storage metal 101 into a nanostructure. Further, as illustrated in FIG. 42 (B), the cross section of the striped heating element 801 is trapezoidal, the space spacing between the upper surfaces of the adjacent heating elements 801 is s, the width of the striped upper surface 801a is L, and heat is generated. Assuming that the depth of the body 801 is Dp, for example, s = 100 nm, L = 1 nm, and Dp = 500 nm.
 ただし、ストライプ状の上面801aの幅Lは最小値であり、実際は幅Lの上面801aに曲率半径r以下のランダムな凹凸が形成されている。このような凹凸は各発熱体801の側面802にも形成されているが、上面よりも下方にいくほど凹凸は平均化されている。凹凸の曲率半径rは2nmより小さいランダム値である。 However, the width L of the striped upper surface 801a is the minimum value, and in reality, random irregularities having a radius of curvature r 0 or less are formed on the upper surface 801a of the width L. Such unevenness is also formed on the side surface 802 of each heating element 801. However, the unevenness is averaged toward the lower side of the upper surface. The radius of curvature r 0 of the unevenness is a random value smaller than 2 nm.
 このような凹凸形状は次のようにして形成され得る。水素吸蔵金属101の上面に曲率半径r以下のランダムな凹凸を有する幅Lのストライプ状レジストパターンを形成し、この凹凸エッジを有するレジストパターンをマスクとしてドライエッチングを行う。これにより上面付近のエッチングエッジはレジスト形状を忠実に反映して曲率半径r以下のランダムな凹凸となるが、下方に行くにつれて平均化される。さらに、ドライエッチングにより深さ方向に段差を形成することで図42に示すような側面802の凹凸を形成することができる。 Such an uneven shape can be formed as follows. A striped resist pattern having a width L having random irregularities having a radius of curvature r 0 or less is formed on the upper surface of the hydrogen storage metal 101, and dry etching is performed using the resist pattern having the irregular edges as a mask. As a result, the etched edges near the upper surface faithfully reflect the resist shape and become random irregularities with a radius of curvature r 0 or less, but are averaged as they go downward. Further, by forming a step in the depth direction by dry etching, the unevenness of the side surface 802 as shown in FIG. 42 can be formed.
 曲率半径r以下のランダムな凹凸エッジを有するストライプ状の発熱体801を水素吸蔵金属101の表面に形成することで、矢印F2方向に流れるDO電解液との接触面積が増大し、効率的な水素吸蔵および常温核融合反応を実現できる。 By forming a striped heating element 801 having a random uneven edge with a radius of curvature r 0 or less on the surface of the hydrogen storage metal 101, the contact area with the D 2 O electrolytic solution flowing in the arrow F2 direction is increased, and the efficiency is increased. Hydrogen storage and cold fusion reaction can be realized.
 <実施例2.2>
 本発明は上記実施例2.1の形態に限定されるものではなく、後述する支持基板上に水素吸蔵金属を別のナノ構造で形成することもできる。
<Example 2.2>
The present invention is not limited to the embodiment of Example 2.1 above, and a hydrogen storage metal may be formed in another nanostructure on a support substrate described later.
 図43(A)に例示するように、本発明の実施例2.2によれば、後述する支持基板の対向電極102側の面には、DO電解液の流れる方向F2に沿って延びたストライプ状の発熱体900.1、900.2が方向F2と直交する方向に配列されている。ストライプ状の発熱体900.1、900.2が上述した発熱体701の一例である。ストライプ状の発熱体900.1の上面は幅dの中心ストライプに沿って半径rの円901aが互いに接して配列された形状を有し、隣接する円901aの境界部901bが中心ストライプの幅dを有する。ストライプ状の発熱体900.2の上面はストライプ状の発熱体900.1の上面を距離rだけ方向F2に沿って位相をシフトさせた形状を有する。したがって、図43(A)におけるストライプ状の発熱体900.1および900.2のII-II線断面は図43(B)に示すような異なる台形となる。 As illustrated in FIG. 43 (A), according to Example 2.2 of the invention, the surface of the counter electrode 102 side of the supporting substrate which will be described later, extend along a direction F2 of the flow of D 2 O electrolyte The striped heating elements 900.1 and 900.2 are arranged in a direction orthogonal to the direction F2. The striped heating elements 900.1 and 900.2 are examples of the above-mentioned heating elements 701. The upper surface of the striped heating element 900.1 has a shape in which circles 901a having a radius r are arranged in contact with each other along a central stripe having a width d, and a boundary portion 901b of adjacent circles 901a has a width d of the central stripe. Has. The upper surface of the striped heating element 900.2 has a shape in which the phase of the upper surface of the striped heating element 900.1 is shifted along the direction F2 by a distance r. Therefore, the II-II line cross sections of the striped heating elements 900.1 and 900.2 in FIG. 43 (A) have different trapezoids as shown in FIG. 43 (B).
 また図43(B)に例示するように、ストライプ状の発熱体900.1の上面の円901aの中心と発熱体900.2の上面901bとの間のスペース間隔をs、円901aの半径をr、発熱体900.2の円の境界部の幅をd、発熱体900.1および900.2の深さをDpとすれば、たとえばs=80nm、r=20nm、d=6nm、Dp=100nmである。 Further, as illustrated in FIG. 43 (B), the space spacing between the center of the circle 901a on the upper surface of the striped heating element 900.1 and the upper surface 901b of the heating element 900.2 is s, and the radius of the circle 901a is set. If the width of the boundary of the circle of the heating element 900.2 is d and the depths of the heating elements 900.1 and 900.2 are Dp, for example, s = 80 nm, r = 20 nm, d = 6 nm, Dp = It is 100 nm.
 ただし、ストライプ状に配列された上面の円901aのエッジは、上述した実施例2.1と同様に、実際は2nm以下の曲率半径rのランダムな凹凸が形成されてもよい。このような凹凸が各発熱体900.1および900.2の側面に形成されてもよいが、上述したエッチングにより上面よりも下方にいくほど凹凸は平均化される。 However, the edge of the circle 901a of the upper surface which are arranged in stripes, as in Example 2.1 above, in fact may be formed random unevenness of curvature radius r 0 of 2nm or less. Such irregularities may be formed on the side surfaces of the heating elements 900.1 and 900.2, but the irregularities are averaged downward from the upper surface by the etching described above.
 図43(B)に示すように、エッチングは深さDpで停止させる必要がある。そこで、本実施例では、支持基板として銅Cuの金属基板110の表面をエッチングストップ膜111で覆う。このエッチングストップ膜111は水素吸蔵率および水素拡散係数が小さい金属が望ましく、例えば白金Ptを用いることができる。また、イオン化傾向を考慮して対向電極102にも白金Ptを用いる方が望ましい。 As shown in FIG. 43 (B), etching needs to be stopped at a depth of Dp. Therefore, in this embodiment, the surface of the copper Cu metal substrate 110 is covered with the etching stop film 111 as the support substrate. The etching stop film 111 is preferably a metal having a small hydrogen storage rate and a hydrogen diffusivity, and platinum Pt can be used, for example. Further, it is desirable to use platinum Pt for the counter electrode 102 in consideration of ionization tendency.
 <実施例2.3>
 本発明は上記実施例2.1および2.2の形態に限定されるものではなく、水素吸蔵金属101が円形状のウエハであればウエハ保持手段をDO電解液の流れを考慮した別の構造することもできる。
<Example 2.3>
Another present invention is not limited to the above examples 2.1 and 2.2, the hydrogen storage metal 101 the wafer holding means as long as circular wafers Considering the flow of D 2 O electrolyte Can also be structured.
 図44に例示するように、本実施例による常温核融合装置は図38と基本的な構成は同じであるが、ウエハ保持部とDO電解液の供給パイプの構造が異なる。すなわち、一対のスロット状の保持部604aが円形ウエハ状の水素吸蔵金属101aを左右両側から支えるように配置される。一対の保持部604aは第1実施形態におけるヒータ105と同じ加熱手段を兼ねている。また第1実施形態と同様に、水素吸蔵金属101aの表面と平行に所定距離gだけ離れてプレート状の対向電極102が固定配置されている。 As illustrated in FIG. 44, cold fusion device according to this example is 38 and the basic configuration is the same, the structure of the supply pipe of the wafer holder and the D 2 O electrolyte is different. That is, a pair of slot-shaped holding portions 604a are arranged so as to support the circular wafer-shaped hydrogen storage metal 101a from both the left and right sides. The pair of holding portions 604a also serve as the same heating means as the heater 105 in the first embodiment. Further, similarly to the first embodiment, the plate-shaped counter electrode 102 is fixedly arranged parallel to the surface of the hydrogen storage metal 101a and separated by a predetermined distance g.
 本実施例では、複数本の供給パイプ602aが円形ウエハ状の水素吸蔵金属101aの下側エッジに沿うように反応炉601の下部に配置される。各供給パイプ602aには水素吸蔵金属101aと対向電極102との間の全面にDO電解液F2の流れを形成するための噴出口が設けられている。なお、水素吸蔵金属101aの対向電極102側の面にはDO電解液の流れる方向F2に沿って延びたナノ構造の発熱体701が方向F2と直交する方向に配列されており、隣接する発熱体701の間の谷がDO電解液の流路を成している。 In this embodiment, a plurality of supply pipes 602a are arranged in the lower part of the reactor 601 so as to be along the lower edge of the circular wafer-shaped hydrogen storage metal 101a. Spout for the entire surface forming a flow of D 2 O electrolyte F2 between the hydrogen storage metal 101a and the counter electrode 102 in each of the supply pipe 602a is provided. Note that the surface of the counter electrode 102 side of the hydrogen storage metal 101a and the heating element 701 of nanostructures extending along a direction F2 of the flow of D 2 O electrolyte are arranged in a direction perpendicular to the direction F2, the adjacent valley between the heating element 701 forms a flow path of D 2 O electrolyte.
 <実施例2.4>
 本発明は上記実施例2.1~2.3の形態に限定されるものではなく、水素吸蔵金属101が矩形状ウエハであればウエハ保持手段をDO電解液の流れを考慮した別の構造することもできる。
<Example 2.4>
The present invention is not limited to the above examples 2.1-2.3, hydrogen storage metal 101 the wafer holding means as long as rectangular wafers another considering the flow of D 2 O electrolyte It can also be structured.
 図45に例示するように、本実施例による常温核融合装置では、一対のスロット状の保持部604bが矩形ウエハ状の水素吸蔵金属101bを左右両側から支えるように配置される。一対の保持部604bは第1実施形態におけるヒータ105と同じ加熱手段を兼ねている。また矩形状の水素吸蔵金属101bの表面と平行に所定距離gだけ離れて同じく矩形プレート状の対向電極102b(図示せず)が固定配置されている。対向電極102bの電位は、第1実施形態と同様に水素吸蔵金属101bに対して正と負の間で切り替えられる。 As illustrated in FIG. 45, in the cold fusion device according to the present embodiment, a pair of slot-shaped holding portions 604b are arranged so as to support the rectangular wafer-shaped hydrogen storage metal 101b from both the left and right sides. The pair of holding portions 604b also serve as the same heating means as the heater 105 in the first embodiment. Further, a rectangular plate-shaped counter electrode 102b (not shown) is fixedly arranged parallel to the surface of the rectangular hydrogen storage metal 101b at a predetermined distance g. The potential of the counter electrode 102b is switched between positive and negative with respect to the hydrogen storage metal 101b as in the first embodiment.
 本実施例では、複数本の供給パイプ602bが矩形ウエハ状の水素吸蔵金属101bの下側エッジに沿うように反応炉601の下部に配置される。各供給パイプ602bには水素吸蔵金属101bと対向電極102との間の全面にDO電解液F2の流れを形成するための噴出口が設けられている。なお、水素吸蔵金属101bの対向電極102側の面にはDO電解液の流れる方向F2に沿って延びたナノ構造の発熱体701が方向F2と直交する方向に配列されており、隣接する発熱体701の間の谷がDO電解液の流路を成している。 In this embodiment, a plurality of supply pipes 602b are arranged in the lower part of the reactor 601 so as to be along the lower edge of the rectangular wafer-shaped hydrogen storage metal 101b. Spout for the entire surface forming a flow of D 2 O electrolyte F2 between the hydrogen storage metal 101b and the counter electrode 102 in each of the supply pipe 602b is provided. Note that the surface of the counter electrode 102 side of the hydrogen storage metal 101b and the heating element 701 of nanostructures extending along a direction F2 of the flow of D 2 O electrolyte are arranged in a direction perpendicular to the direction F2, the adjacent valley between the heating element 701 forms a flow path of D 2 O electrolyte.
 <実施例2.5>
 本発明は上記実施例2.1~2.4に例示したストライプ状の発熱体に限定されるものではなく、上記実施例1.1~1.3に例示したナノコーン形状の発熱体がDO電解液の流路を形成するように配列された形態であってもよい。
<Example 2.5>
The present invention is not limited to the striped heating element exemplified in Examples 2.1 to 2.4, and the nanocone-shaped heating element exemplified in Examples 1.1 to 1.3 is D 2. O The form may be arranged so as to form a flow path of the electrolytic solution.
 図46に例示するように、本発明の実施例2.5によれば、発熱体としてナノコーン301aのアレイが支持基板の対向電極102側の面上にDO電解液の流れる方向に沿って配列されている。本実施例におけるナノコーン301aは水素吸蔵金属であるニッケル(Ni)からなり、発熱体301a間の間隔s=80nm、発熱体301aの上面は幅d=20nm、発熱体301aの深さDpはたとえば上述した実施例2.2で例示したように100nmとすることができる。 As illustrated in FIG. 46, according to the embodiment 2.5 of the present invention, an array of nanocone 301a as heating element along the direction of flow of D 2 O electrolyte on the surface of the counter electrode 102 side of the supporting substrate It is arranged. The nanocone 301a in this embodiment is made of nickel (Ni) which is a hydrogen storage metal, the interval s between the heating elements 301a is 80 nm, the upper surface of the heating element 301a has a width d = 20 nm, and the depth Dp of the heating element 301a is, for example, described above. It can be 100 nm as illustrated in Example 2.2.
 なお、各ナノコーン301aの上面エッジは、上述した実施例2.1と同様に、実際は2nm以下の曲率半径rのランダムな凹凸が形成されてもよい。このような凹凸が各発熱体301aの側面に形成されてもよいが、上述したエッチングにより上面よりも下方にいくほど凹凸は平均化される。 Incidentally, the upper surface edges of each nanocone 301a, as in Example 2.1 above, in fact may be formed random unevenness of curvature radius r 0 of 2nm or less. Such unevenness may be formed on the side surface of each heating element 301a, but the unevenness is averaged as it goes below the upper surface by the etching described above.
 また、支持基板として銅Cuの金属基板101aの表面を水素拡散防止のための金属(ここでは白金Pt)で覆い、裏面も同様のPtで覆う。これにより水素拡散および金属溶出が防止できるとともに、ナノコーン301aをエッチングにより形成する際に、エッチングを深さDpで停止させることができる。対応電極102の電位は、上述したようにナノコーン301aに対して正と負の間で切り替えられる。したがって、上述した水素吸蔵および常温核融合反応は、対向電極の電位切り替えに応じて、各ナノコーン301aの表面で次のように進行する。 Further, as a support substrate, the front surface of the copper Cu metal substrate 101a is covered with a metal for preventing hydrogen diffusion (here, platinum Pt), and the back surface is also covered with the same Pt. As a result, hydrogen diffusion and metal elution can be prevented, and when the nanocone 301a is formed by etching, the etching can be stopped at a depth of Dp. The potential of the corresponding electrode 102 is switched between positive and negative with respect to the nanocone 301a as described above. Therefore, the hydrogen storage and cold fusion reactions described above proceed as follows on the surface of each nanocone 301a according to the potential switching of the counter electrode.
 図47に模式的に示すように、対向電極102がナノコーン301aよりも正電位の場合、既に述べたように、DがHeのない表面Tサイトを通ってナノコーン301aの金属内部に侵入し、隣接Oサイトへ順次移動することで金属内で拡散する。こうして吸蔵されたDはOサイト内に中性の原子状態Dで保持され、ナノコーン301a内のD濃度が徐々に高くなる。この状態で対向電極102がナノコーン301aよりも負電位に切り替えられると、既に述べたように金属表面で自由電子が空乏化し核融合が発生する。 As schematically shown in FIG. 47, when the counter electrode 102 has a more positive potential than the nanocone 301a, as described above, D penetrates into the metal of the nanocone 301a through the surface T site without He and is adjacent to the nanocone 301a. It diffuses in the metal by sequentially moving to the O-site. The occluded D is retained in the O site in the neutral atomic state D 0 , and the D concentration in the nanocone 301a gradually increases. When the counter electrode 102 is switched to a more negative potential than the nanocone 301a in this state, free electrons are depleted on the metal surface and nuclear fusion occurs as described above.
 詳しいメカニズムは第4実施形態の図55で説明するが、核融合により表面Tサイトに生成したHeは、Oサイト内の中性のDが陽イオンDとして表面Tサイトにトンネリングすると、陽イオンDが電気陰性度的に金属から電子を受け取って陰イオンDになる。陰イオンDはサイズが相当に大きくなるので、これにより表面Tサイトが膨張し、HeがTサイトから追い出される。 The detailed mechanism will be described in FIG. 55 of the fourth embodiment, but when He generated at the surface T site by nuclear fusion, when the neutral D 0 in the O site is tunneled to the surface T site as a cation D +, the cation is positive. ions D + anion D receives electrons from electronegativity of metal - becomes. The size of the anion D - is significantly increased, which causes the surface T-site to swell and He to be expelled from the T-site.
 Heが追い出されDにより押し広げられたTサイトには、Oサイトから拡散によりDがDとしてトンネリングして入ることで続いて核融合反応が発生し、以下同様に対向電極102の電位を正および負の間で切り替えることにより、水素吸蔵、Heの追い出しおよび常温核融合反応を連続的に発生させることができる。 At the T site where He is expelled and expanded by D − , D 0 is tunneled as D + by diffusion from the O site, and a fusion reaction occurs subsequently. By switching between positive and negative, hydrogen storage, eviction of He, and cold fusion reaction can be continuously generated.
 このようにナノコーン301aの金属内部のOサイトから表面TサイトへDが供給されることでHeが追い出され、連続的な常温核融合反応が可能となる。 By supplying D from the O site inside the metal of the nanocone 301a to the surface T site in this way, He is expelled and a continuous cold fusion reaction becomes possible.
3.第3実施形態
 本発明の第3実施形態は、第2実施形態と同様に反応炉内に配置された水素吸蔵金属の表面電位を対向電極により切り替えながら水素吸蔵金属表面と対向電極との間にDO電解液が流れるように構成されているが、以下の点で異なっている。第3実施形態によれば、絶縁ウエハの両面に水素吸蔵金属が設けられた構成を有し、それぞれの水素吸蔵金属の表面電位を対応する対向電極により切り替え制御する。以下、図38の第2実施形態と異なる構成について説明し、同じ機能を有する部材には同一参照番号を付して詳細な説明は省略するものとする。
3. 3. Third Embodiment In the third embodiment of the present invention, the surface potential of the hydrogen storage metal arranged in the reaction furnace is switched by the counter electrode as in the second embodiment, and the surface potential of the hydrogen storage metal is switched between the surface of the hydrogen storage metal and the counter electrode. D 2 O electrolyte is configured to flow, but is different in the following points. According to the third embodiment, the insulating wafer is provided with hydrogen storage metals on both sides, and the surface potential of each hydrogen storage metal is switched and controlled by the corresponding counter electrodes. Hereinafter, a configuration different from that of the second embodiment of FIG. 38 will be described, and members having the same function will be assigned the same reference number and detailed description will be omitted.
 図48に例示するように、本実施形態によれば水素吸蔵金属101.1および101.2がそれぞれ絶縁ウエハ101.3の両面に形成されており、水素吸蔵金属101.1および101.2のそれぞれに対向して対向電極102.1および102.2が設けられている。以下、水素吸蔵金属101.1および101.2と絶縁ウエハ101.3とからなる基板構成を両面金属基板Scと記すものとする。 As illustrated in FIG. 48, according to the present embodiment, the hydrogen storage metals 101.1 and 101.2 are formed on both sides of the insulating wafer 101.3, respectively, and the hydrogen storage metals 101.1 and 101.2. Opposing electrodes 102.1 and 102.2 are provided opposite to each other. Hereinafter, the substrate configuration including the hydrogen storage metals 101.1 and 101.2 and the insulating wafer 101.3 will be referred to as a double-sided metal substrate Sc.
 一例として、両面金属基板Scは、第一の絶縁ウエハの一面に水素吸蔵金属101.1を形成し、第二の絶縁ウエハの一面に水素吸蔵金属101.2を形成し、第一および第二の絶縁ウエハのそれぞれの他面を貼り合わせることで製造することができる。 As an example, in the double-sided metal substrate Sc, the hydrogen storage metal 101.1 is formed on one surface of the first insulating wafer, the hydrogen storage metal 101.2 is formed on one surface of the second insulating wafer, and the first and second insulating wafers are formed. It can be manufactured by laminating the other surfaces of the insulating wafers of the above.
 両面金属基板Scはヒータとホルダを兼ねた複数の保持部604により反応炉内に配置され、その両側にそれぞれ距離gを隔てて対向電極102.1および102.2が配置されている。極性切替可能電源103は、対向電極102.1および102.2の電位を水素吸蔵金属101.1および101.2の電位に対して正電位あるいは負電位に切り替える(図40参照)。 The double-sided metal substrate Sc is arranged in the reaction furnace by a plurality of holding portions 604 that also serve as a heater and a holder, and counter electrodes 102.1 and 102.2 are arranged on both sides thereof with a distance g, respectively. The polarity switchable power supply 103 switches the potentials of the counter electrodes 102.1 and 102.2 to positive or negative potentials with respect to the potentials of the hydrogen storage metals 101.1 and 101.2 (see FIG. 40).
 図示しない反応炉601の最下部には、図38および図39と同様に複数の供給パイプ602が設けられ、反応炉601の上面にはガス排出口603が設けられている。供給パイプ602は水素吸蔵金属101.1と対向電極102.1との間にDO電解液の流れF2.1を形成し、水素吸蔵金属101.2と対向電極102.2との間にDO電解液の流れF2.2を形成するように構成することができる。また水素吸蔵金属101.1および101.2の表面は第2実施形態で説明したナノ構造を採用することができる。 Similar to FIGS. 38 and 39, a plurality of supply pipes 602 are provided at the lowermost portion of the reactor 601 (not shown), and a gas discharge port 603 is provided on the upper surface of the reactor 601. Supply pipe 602 forms a flow F2.1 of D 2 O electrolyte between the hydrogen storage metal 101.1 and the counter electrode 102.1, between the hydrogen storage metal 101.2 and a counter electrode 102.2 It can be configured to form a D 2 O electrolyte flow F2.2. Further, the nanostructures described in the second embodiment can be adopted for the surfaces of the hydrogen storage metals 101.1 and 101.2.
 以下、本実施形態を適用した常温核融合装置における反応炉の実施例について説明する。なお、極性切替可能電源103については、第2実施形態と同様に対向電極の電位切替制御を行うので、以下の実施例では説明を省略する。また水素吸蔵金属の加熱についても第1実施形態で述べた通りであるから説明は省略する。 Hereinafter, an example of a reactor in a cold fusion device to which this embodiment is applied will be described. As for the polarity switchable power supply 103, since the potential switching control of the counter electrode is performed in the same manner as in the second embodiment, the description thereof will be omitted in the following examples. Further, since the heating of the hydrogen storage metal is as described in the first embodiment, the description thereof will be omitted.
 <実施例3.1>
 図49に例示するように、本発明の実施例3.1によれば、反応炉601内には図48に示す対向電極102.1および102.2と両面金属基板Scとからなる電極構造が複数配列されており、隣接する電極構造の対向電極が共有されている。言い換えれば、図49において、対向電極Eと両面金属基板Scとが交互に所定間隔gを隔てて配列されることで、各両面金属基板Scの水素吸蔵金属101.1および101.2の各々に対して対向電極Eが所定間隔gをもって配置される。各両面金属基板Scの水素吸蔵金属101.1および101.2と対向電極Eとの間の全面にDO電解液が流れるように供給パイプ602が配管されている。
<Example 3.1>
As illustrated in FIG. 49, according to Example 3.1 of the present invention, the reaction furnace 601 has an electrode structure composed of counter electrodes 102.1 and 102.2 shown in FIG. 48 and a double-sided metal substrate Sc. A plurality of electrodes are arranged, and counter electrodes having adjacent electrode structures are shared. In other words, in FIG. 49, the counter electrode E and the double-sided metal substrate Sc are alternately arranged at predetermined intervals g so that the hydrogen storage metals 101.1 and 101.2 of each double-sided metal substrate Sc are respectively arranged. On the other hand, the counter electrodes E are arranged at predetermined intervals g. A supply pipe 602 is piped so that the D 2 O electrolytic solution flows over the entire surface between the hydrogen storage metals 101.1 and 101.2 of each double-sided metal substrate Sc and the counter electrode E.
 反応炉601の上面に設けられたガス排出口603には、2つの排ガス弁605および606が設けられている。本実施例における排ガス弁605および606は、常温核融合ステージで生じるDO蒸気を排ガス弁605から、水素吸蔵ステージで生じるOガスを排ガス弁606からそれぞれ排出するように開閉制御される。 Two exhaust gas valves 605 and 606 are provided in the gas discharge port 603 provided on the upper surface of the reaction furnace 601. The exhaust gas valves 605 and 606 in this embodiment are controlled to open and close so that the D 2 O steam generated in the cold fusion stage is discharged from the exhaust gas valve 605 and the O 2 gas generated in the hydrogen storage stage is discharged from the exhaust gas valve 606.
 <実施例3.2>
 本実施形態における両面金属基板Scが円形状のウエハであればウエハ保持手段をDO電解液の流れを考慮した別の構造することもできる。
<Example 3.2>
Double-metal substrate Sc in the present embodiment the wafer holding means as long as circular wafers can also be another structure in consideration of the flow of D 2 O electrolyte.
 図50に例示するように、本実施例による常温核融合装置は図44の実施例2.3と基本的な構成は同じであるが、排出口603に2つの排ガス弁605および606を設けた点が異なる。一対のスロット状の保持部604aは、実施例2.3と同様に円形ウエハ状の両面金属基板Scを左右両側から支えるように配置される。また、複数本の供給パイプ602aが円形ウエハ状の両面金属基板Scの下側エッジに沿うように反応炉601の下部に配置される。各供給パイプ602aには両面金属基板Scの両側の対向電極102との間の全面にDO電解液F2の流れを形成するための噴出口が設けられている。なお、両面金属基板Scの両面の水素吸蔵金属の表面にはDO電解液の流れる方向F2に沿って延びたナノ構造の発熱体701が方向F2と直交する方向に配列されており、隣接する発熱体701の間の谷がDO電解液の流路を成している。 As illustrated in FIG. 50, the cold fusion apparatus according to this embodiment has the same basic configuration as that of Example 2.3 in FIG. 44, but is provided with two exhaust gas valves 605 and 606 at the discharge port 603. The point is different. The pair of slot-shaped holding portions 604a are arranged so as to support the circular wafer-shaped double-sided metal substrate Sc from both the left and right sides as in the second embodiment. Further, a plurality of supply pipes 602a are arranged in the lower part of the reactor 601 so as to be along the lower edge of the circular wafer-shaped double-sided metal substrate Sc. Each supply pipe 602a and spout for forming a flow of the entire surface D 2 O electrolyte F2 between the opposite sides of the counter electrode 102 of the double-sided metal substrate Sc is provided. Incidentally, and heating element 701 of nanostructures on the surface of both surfaces of the hydrogen storage metal double-sided metal substrate Sc extending along the direction F2 of the flow of D 2 O electrolyte is arranged in a direction perpendicular to the direction F2, adjacent valley between the heating element 701 which is to form the flow path of D 2 O electrolyte.
 <実施例3.3>
 本発明は上記実施例3.2の形態に限定されるものではなく、両面金属基板Scが矩形状ウエハであればウエハ保持手段をDO電解液の流れを考慮した別の構造することもできる。
<Example 3.3>
The present invention is not limited to the embodiment of Example 3.2, and if the double-sided metal substrate Sc is a rectangular wafer, the wafer holding means may have another structure in consideration of the flow of the D 2 O electrolytic solution. can.
 図51に例示するように、本実施例による常温核融合装置では、一対のスロット状の保持部604bが矩形ウエハ状の両面金属基板Scを左右両側から支えるように配置される。矩形状の両面金属基板Scの表面と平行に所定距離gだけ離れて同じく矩形プレート状の対向電極102(図示せず)が固定配置されている。対向電極102の電位は、第1実施形態と同様に水素吸蔵金属101bに対して正と負の間で切り替えられる。また、複数本の供給パイプ602bが矩形ウエハ状の両面金属基板Scの下側エッジに沿うように反応炉601の下部に配置される。各供給パイプ602bには水素吸蔵金属101bと対向電極102との間の全面にDO電解液F2の流れを形成するための噴出口が設けられている。なお、水素吸蔵金属101bの対向電極102側の面にはDO電解液の流れる方向F2に沿って延びたナノ構造の発熱体701が方向F2と直交する方向に配列されており、隣接する発熱体701の間の谷がDO電解液の流路を成している。 As illustrated in FIG. 51, in the cold fusion device according to the present embodiment, a pair of slot-shaped holding portions 604b are arranged so as to support the rectangular wafer-shaped double-sided metal substrate Sc from both the left and right sides. A rectangular plate-shaped counter electrode 102 (not shown) is fixedly arranged parallel to the surface of the rectangular double-sided metal substrate Sc at a predetermined distance g. The potential of the counter electrode 102 is switched between positive and negative with respect to the hydrogen storage metal 101b as in the first embodiment. Further, a plurality of supply pipes 602b are arranged in the lower part of the reactor 601 so as to be along the lower edge of the rectangular wafer-shaped double-sided metal substrate Sc. Spout for the entire surface forming a flow of D 2 O electrolyte F2 between the hydrogen storage metal 101b and the counter electrode 102 in each of the supply pipe 602b is provided. Note that the surface of the counter electrode 102 side of the hydrogen storage metal 101b and the heating element 701 of nanostructures extending along a direction F2 of the flow of D 2 O electrolyte are arranged in a direction perpendicular to the direction F2, the adjacent valley between the heating element 701 forms a flow path of D 2 O electrolyte.
4.第4実施形態
 本発明の第4実施形態によれば、反応炉内を2つの反応室を設け、これらの反応室を水素吸蔵金属基板で分離する。水素吸蔵金属基板は一方の面で水素を吸蔵し、吸蔵した水素が基板内部で他方の面へ拡散する性質を有する金属からなり、このような性質を有する金属としてニッケル(Ni)を用いることができる。したがって、一方の反応室に正電位の対向電極を、他方の反応室に負電位の対向電極をそれぞれ配置することで、水素吸蔵金属基板の一方の反応室側を水素吸蔵ステージに、他方の反応室側を常温核融合ステージにすることができ、これらを空間的に分離することができる。以下、このような水素吸蔵金属基板を用いた常温核融合装置について説明する。
4. Fourth Embodiment According to the fourth embodiment of the present invention, two reaction chambers are provided in the reaction furnace, and these reaction chambers are separated by a hydrogen storage metal substrate. The hydrogen storage metal substrate is composed of a metal that occludes hydrogen on one surface and diffuses the stored hydrogen to the other surface inside the substrate, and nickel (Ni) can be used as the metal having such a property. can. Therefore, by arranging a positive potential counter electrode in one reaction chamber and a negative potential counter electrode in the other reaction chamber, one reaction chamber side of the hydrogen storage metal substrate is placed in the hydrogen storage stage and the other reaction is carried out. The chamber side can be a normal temperature fusion stage, and these can be spatially separated. Hereinafter, a cold fusion device using such a hydrogen storage metal substrate will be described.
 4.1)構成
 図52に例示するように、反応炉601内に反応室601.1および601.2が設けられ、それらの反応室が水素吸蔵金属基板Mにより分離されている。水素吸蔵金属基板Mは加熱手段を兼ねた保持部604により固定保持され、DC電源103aから接地電位V0が印加される。反応室601.1には水素吸蔵金属基板MのD吸蔵面(Md)側に対向電極102(E+)が所定距離g1だけ離れて配置され、DC電源103aから一定の正電圧V+(>V0)が印加される。反応室601.2には水素吸蔵金属基板Mの常温核融合面(Mf)側に対向電極102(E-)が所定距離g2だけ離れて配置され、DC電源103aから一定の負電圧V-(<V0)が印加される。
4.1) Configuration As illustrated in FIG. 52, reaction chambers 601.1 and 601.2 are provided in the reaction furnace 601 and these reaction chambers are separated by a hydrogen storage metal substrate M. The hydrogen storage metal substrate M is fixedly held by the holding portion 604 that also serves as a heating means, and the ground potential V0 is applied from the DC power supply 103a. In the reaction chamber 601.1, the counter electrode 102 (E +) is arranged on the D storage surface (Md) side of the hydrogen storage metal substrate M at a predetermined distance g1 and has a constant positive voltage V + (> V0) from the DC power supply 103a. Is applied. In the reaction chamber 601.2, counter electrodes 102 (E−) are arranged on the cold fusion surface (Mf) side of the hydrogen storage metal substrate M by a predetermined distance g2, and a constant negative voltage V— ( <V0) is applied.
 このように水素吸蔵金属基板Mの両側にD吸蔵のための対向電極102(E+)と常温核融合のための対向電極102(E-)とがそれぞれ所定距離g1およびg2だけ離れて配置される。ただし、後述する実施例のように反応炉601内に多数の水素吸蔵金属基板Mをコンパクトに配列するためには、対向電極102(E+)および102(E-)を水素吸蔵金属基板Mから等距離(g1=g2)に配置し、隣接する水素吸蔵金属基板Mがそれらの間に配置された対向電極102(E+)あるいは対向電極102(E-)をD吸蔵あるいは常温核融合のために共有することが望ましい。また、本実施形態によれば、対向電極102(E+)および102(E-)の電位はそれぞれ正電位および負電位に固定されるのでDC電源103aを用いることができ、第1~第3実施形態の極性切替可能電源103のように正電位と負電位との間で切り替える必要はない。 In this way, the counter electrode 102 (E +) for storing D and the counter electrode 102 (E−) for cold fusion are arranged on both sides of the hydrogen storage metal substrate M at predetermined distances g1 and g2, respectively. .. However, in order to compactly arrange a large number of hydrogen storage metal substrates M in the reactor 601 as in Examples described later, the counter electrodes 102 (E +) and 102 (E−) are placed from the hydrogen storage metal substrate M, etc. The counter electrode 102 (E +) or counter electrode 102 (E−) arranged at a distance (g1 = g2) and adjacent hydrogen storage metal substrates M are arranged between them is shared for D storage or room temperature nuclear fusion. It is desirable to do. Further, according to the present embodiment, since the potentials of the counter electrodes 102 (E +) and 102 (E−) are fixed to the positive potential and the negative potential, respectively, the DC power supply 103a can be used, and the first to third embodiments can be used. It is not necessary to switch between the positive potential and the negative potential unlike the polarity switchable power supply 103 of the form.
 反応室601.1には上述したように供給口602.1からDO電解液が供給され、水素吸蔵金属基板MのD吸蔵面Mdと対向電極102(E+)との間にDO電解液の流れF2が形成される。また反応室601.1での水素吸蔵後のDガスとOガスとは再結合してDOに戻る(D2+1/2O2 → D2O)。反応室601.2には供給口602.2からHO冷却液が供給され、水素吸蔵金属基板Mの常温核融合面Mfと対向電極102(E-)との間にHO冷却液の流れF4が形成される。また反応室601.2での常温核融合による発熱で気化したHO蒸気は排出口603.1から排出され、後段の発電に利用される。また高温になったHOは排出口603.2から排出される。このように、水素吸蔵金属基板MのD吸蔵面Mdと対向電極102(E+)との間でDO電解液が下方から上方へ流れることで、十分な量のDを効率的に吸蔵させることができ、後述するように水素吸蔵金属基板M内を拡散したDにより常温核融合面Mfで安定的且つ連続的な核融合反応を発生させることができる。また、D吸蔵と常温核融合の反応室が分離され、それぞれの排ガスが別個の排出口603.1および603.2からそれぞれ排出されるので、安全性を高めることができる。 D 2 O electrolyte from the supply port 602.1 as described above is supplied to the reaction chamber 601.1, D 2 O between the D-absorbing surface Md and the counter electrode 102 of the hydrogen storage metal substrate M (E +) The flow F2 of the electrolytic solution is formed. Further, the D 2 gas and the O 2 gas after hydrogen storage in the reaction chamber 601.1 recombine and return to D 2 O (D 2 + 1 / 2O 2 → D 2 O). The reaction chamber 601.2 H 2 O cooling liquid is supplied from the supply port 602.2, H 2 O coolant between the cold fusion surface Mf and the counter electrode 102 of the hydrogen storage metal substrate M (E-) Flow F4 is formed. The H 2 O vapor vaporized by heat generated by the cold fusion in the reaction chamber 601.2 is discharged from the discharge port 603.1 is utilized downstream of the generator. Further, the hot H 2 O is discharged from the discharge port 603.2. In this way, the D 2 O electrolytic solution flows from the lower side to the upper side between the D storage surface Md of the hydrogen storage metal substrate M and the counter electrode 102 (E +), so that a sufficient amount of D is efficiently stored. As will be described later, D diffused in the hydrogen storage metal substrate M can cause a stable and continuous fusion reaction on the cold fusion surface Mf. Further, since the reaction chambers of the D occlusion and the cold fusion are separated and the respective exhaust gases are discharged from the separate discharge ports 603.1 and 603.2, the safety can be enhanced.
 水素吸蔵金属基板Mとしては、たとえば富山住友電工株式会社製のセルメット(登録商標)というニッケル(Ni)多孔体を用いることができる。水素吸蔵金属の多孔体は加工が容易であるだけでなく奥深くまでDOが侵入して水素供給が可能であるために、本実施形態の水素吸蔵金属基板Mに適している。たとえば水素吸蔵金属基板Mの厚さを1mm程度に形成すれば、水素吸蔵金属基板MのD吸蔵面Md側で吸蔵された水素が多孔体金属内を拡散し反対側の常温核融合面Mfに到達して常温核融合が可能になる。その際、拡散で到達した多量の水素が核融合により生成されたHeを外へ追い出すために、連続して核融合反応が可能となる。以下、He追い出しおよび連続核融合反応のメカニズムについて説明する。 As the hydrogen storage metal substrate M, for example, a nickel (Ni) porous body called Celmet (registered trademark) manufactured by Toyama Sumitomo Electric Co., Ltd. can be used. Porous body of the hydrogen-absorbing metal machining is D 2 O deep well is easy because it is possible to hydrogen supply penetration, are suitable for hydrogen storage metal substrate M in the present embodiment. For example, if the thickness of the hydrogen storage metal substrate M is formed to be about 1 mm, the hydrogen stored on the D storage surface Md side of the hydrogen storage metal substrate M diffuses in the porous metal and becomes the room temperature fusion surface Mf on the opposite side. When it reaches, normal temperature fusion becomes possible. At that time, a large amount of hydrogen reached by diffusion expels He generated by nuclear fusion to the outside, so that a continuous nuclear fusion reaction becomes possible. The mechanism of He eviction and continuous fusion reaction will be described below.
 4.2)He追い出しおよび連続核融合反応
 まず、図53に示すように、水素吸蔵金属としてパラジウムPdを一例に挙げ、水素、水素イオン、ヘリウムの大きさを模式的に表記するものとする。言うまでもなく、これらの図面上の大きさの比率は核融合反応の説明のためのものであり、実際の比率をそのまま表すものではない。
4.2) He Expulsion and Continuous Fusion Reaction First, as shown in FIG. 53, palladium Pd is taken as an example as a hydrogen storage metal, and the sizes of hydrogen, hydrogen ions, and helium are schematically described. Needless to say, the size ratios on these drawings are for the purpose of explaining the fusion reaction, and do not represent the actual ratios as they are.
 さらに、図54に模式的に示すように、一辺が約2.75ÅのTサイトを正三角形(A)で表記し、Tサイトの表面金属原子が変位してTサイトが膨張した状態を拡張された正三角形(B)で表記するものとする。Tサイトの膨張については、2.3項で述べたように、Pdナノ粒子に吸蔵された重水素の約1/3はTサイトを占有し、表面Tサイトが応力緩和しやすくその位置がずれることが分かっている(参照文献3)。 Further, as schematically shown in FIG. 54, the T-site having a side of about 2.75 Å is represented by an equilateral triangle (A), and the state in which the surface metal atom of the T-site is displaced and the T-site is expanded is expanded. It shall be expressed as an equilateral triangle (B). Regarding the expansion of T-sites, as described in Section 2.3, about one-third of the deuterium occluded in Pd nanoparticles occupies the T-sites, and the surface T-sites are easily stress-relaxed and their positions shift. It is known (Reference 3).
 図55に模式的に示すように、Tサイトにおいて核融合反応が生じ、ヘリウムが生成されたとする。水素吸蔵金属基板MのD吸蔵面Md側で吸蔵されたDは後述するように基板内のOサイトおよびTサイトを順次トンネリングして拡散し、常温核融合面Mf側へ供給され続ける。こうしてDはOサイトからHeが存在する表面Tサイトへトンネリングする(図55の(1))。 As schematically shown in FIG. 55, it is assumed that a nuclear fusion reaction occurs at the T site and helium is produced. The D stored on the D storage surface Md side of the hydrogen storage metal substrate M sequentially tunnels and diffuses the O site and the T site in the substrate, and continues to be supplied to the cold fusion surface Mf side. In this way, D tunnels from the O site to the surface T site where He exists ((1) in FIG. 55).
 水素は通常原子状態ではなく分子となっており、原子状態で安定して高い密度で存在すると高い量子性を示すと考えられている。Pdのような水素吸蔵金属では水素がPdの格子間に原子状態で存在することができる(「熱伝導率測定によるPdHx系の研究」中辻良太(東京大学 大学院新領域創成科学研究科 基盤科学研究系物質系専攻;平成19年度修士論文)。水素は正負両方のイオンになりうることおよび量子性が高いことから、量子力学的に解釈すると次にような過程を考えることができる。まずOサイト内の中性のDがTサイト内にトンネリングする場合、陽イオンDとしてトンネリングする。TサイトのHeは中性なので、陽イオンDは電気陰性度的に金属から電子を受け取って陰イオンDになる。これにより図54に示すようにサイズが相当に大きくなり、Heが存在するTサイトを押し広げることでHeがTサイトから追い出される(図55の(2))。 Hydrogen is usually a molecule rather than an atomic state, and it is thought that hydrogen exhibits high quantumness when it exists stably at a high density in the atomic state. In hydrogen storage metals such as Pd, hydrogen can exist in the atomic state between the lattices of Pd ("Study of PdHx system by thermal conductivity measurement" Ryota Nakatsuji (Graduate School of Frontier Sciences, University of Tokyo) Basic Science Research Department of Systems and Materials; 2007 Master's Thesis). Since hydrogen can be both positive and negative ions and has high quantum properties, the following process can be considered when interpreted in terms of quantum mechanics. First, O-site. When the neutral D 0 in the inside is tunneled into the T site, it is tunneled as a cation D +. Since the He of the T site is neutral, the cation D + receives an electron from the metal in an electronegative manner and is negative. It becomes ion D , which increases the size considerably as shown in FIG. 54, and the He is expelled from the T site by expanding the T site where He is present ((2) in FIG. 55).
 Heが追い出されDにより押し広げられたTサイトには、Oサイトから拡散によりDがDとしてトンネリングして入ってくる(図55の(3))。膨張したTサイトにDとDとが閉じ込められることで、A2.6項~A2.9項(図13~図19)において説明したように、Tサイト内でDとDとが共有結合してD分子となり(図55の(4))、金属格子から圧縮応力を受けて縮小しフェムトD分子が形成され、核融合反応が発生する(図55の(5))。核融合により生成されたHeがTサイトに残ると(図55の(6))、上述した(1)に戻ってOサイトからDが表面Tサイトへトンネリングして入ってくる。以下(1)~(6)が繰り返され、Dの供給、Heの追い出し、核融合の発生の順で連続的に反応が生起する。 D 0 is tunneled as D + from the O site to the T site where He is expelled and expanded by D − ((3) in FIG. 55). Expanded T sites D - and D + and that is confined, as described in Section Section A2.6 ~ A2.9 (FIGS. 13 to 19), D in the T site - and D + and is covalently bonded to be D 2 molecules ((4) in FIG. 55), the femto D 2 molecules reduced under compressive stress from the metal grid is formed, the fusion reaction occurs (in FIG. 55 (5)). When He generated by fusion remains at the T site ((6) in FIG. 55), returning to (1) described above, D tunnels from the O site to the surface T site and enters. The following steps (1) to (6) are repeated, and reactions occur continuously in the order of supply of D, expulsion of He, and occurrence of nuclear fusion.
 4.3)従来のDO系常温核融合炉の問題点
 図55に示す現象は、A3.3項(FPEに基づいた常温核融合発生メカニズムの誤解)において詳述したように、FPEに基づく常温核融合でも発生していると考えられる。しかしながら、FPEに基づく常温核融合炉では、アノードからカソードへ電界が生じているために、カソードの金属表面に自由電子が存在し、それによりクーロン引力を遮蔽されている。このために非常に高い温度でしか核融合がトリガせず、自律モードを持続させることができない。
4.3) phenomenon shown problems Figure 55 of a conventional D 2 O-based cold nuclear fusion reactor, as described in detail in Section A3.3 (misunderstanding cold fusion generation mechanism based on FPE), the FPE It is considered that it also occurs in cold fusion based on. However, in a cold fusion reactor based on FPE, since an electric field is generated from the anode to the cathode, free electrons are present on the metal surface of the cathode, thereby shielding the Coulomb attraction. For this reason, fusion can only be triggered at very high temperatures and the autonomous mode cannot be sustained.
 またFPEに基づく常温核融合炉において、Dのカソード金属表面への供給は、その表面からバルク内にDを吸蔵し、その吸蔵されたDが表面へ拡散する現象を利用するのでDの供給量を最大化することが困難となる。また、RF電圧を印加してD吸蔵を表面から行う場合には、金属表面のHe濃度が高くなるためにD吸蔵効率が低下する。 Further, in a cold fusion reactor based on FPE, the supply amount of D to the surface of the cathode metal utilizes the phenomenon that D is occluded in the bulk from the surface and the stored D is diffused to the surface. Becomes difficult to maximize. Further, when RF voltage is applied to perform D occlusion from the surface, the He concentration on the metal surface becomes high, so that the D occlusion efficiency decreases.
 これに対して本実施形態によれば、水素吸蔵金属基板Mの裏面(D吸蔵面Md)でDが吸蔵され、吸蔵されたDが拡散により表側(常温核融合面Mf)へ供給される。これにより表面Tサイトにおける常温核融合およびHe追い出しが円滑に繰り返され、自律モードで長期的な核融合反応の継続が可能となる。 On the other hand, according to the present embodiment, D is stored on the back surface (D storage surface Md) of the hydrogen storage metal substrate M, and the stored D is supplied to the front side (cold fusion surface Mf) by diffusion. As a result, cold fusion and He eviction at the surface T-site are smoothly repeated, and the long-term fusion reaction can be continued in the autonomous mode.
 また、本実施形態による常温核融合炉は、従来のようなPdカソードと線状のPtアノードからなる常温核融合炉とは異なり、平板状の水素吸蔵金属基板の両側にそれぞれ平板状の対向電極が設けられた構成を有する。一方の対向電極にD吸蔵用の正電圧を印加し、他方の対向電極に常温核融合用の負電圧を印加することで、水素吸蔵金属基板の一方の面でDを吸蔵し、吸蔵されたDが他方の面へ拡散により供給され、これにより他方の面で核融合反応を連続的に生起させることができ、またD供給量を容易に最大化することが可能となる。 Further, the cold fusion reactor according to the present embodiment is different from the conventional cold fusion reactor composed of a Pd cathode and a linear Pt anode, and has flat counter electrodes on both sides of a flat hydrogen storage metal substrate. Has a configuration provided with. By applying a positive voltage for D storage to one counter electrode and a negative voltage for cold fusion to the other counter electrode, D was occluded and stored on one surface of the hydrogen storage metal substrate. D is supplied to the other surface by diffusion, which allows the fusion reaction to occur continuously on the other surface, and the D supply amount can be easily maximized.
 以下、本実施形態を適用した常温核融合装置の実施例について説明する。なお、対向電極の電位によるD吸蔵および常温核融合のメカニズムと水素吸蔵金属の加熱については第1~第3実施形態で述べた通りであるから説明は省略する。 Hereinafter, an example of a cold fusion device to which this embodiment is applied will be described. The mechanism of D storage and cold fusion by the potential of the counter electrode and the heating of the hydrogen storage metal are as described in the first to third embodiments, and thus the description thereof will be omitted.
 <実施例4.1>
 図56に例示するように、本発明の実施例4.1によれば、反応炉601内にできるだけ多数の水素吸蔵金属基板Mをコンパクトに配列するために次のような配列方法を採用することが望ましい。すなわち、対向電極102(E+)および102(E-)を水素吸蔵金属基板Mの両側に等距離(g1=g2)に配置し、隣接する水素吸蔵金属基板Mがそれらの間に配置された対向電極102(E+)あるいは対向電極102(E-)をD吸蔵あるいは常温核融合のために共有する。言い換えれば、任意の電極102の両側には水素吸蔵金属基板M(i)およびM(i+1)がそれぞれ等距離に配置され、その任意の対向電極102が対向電極102(E+)であれば水素吸蔵金属基板M(i)およびM(i+1)の互いに向かい合った面がD吸蔵側であり、対向電極102(E-)であれば水素吸蔵金属基板M(i)およびM(i+1)の互いに向かい合った面が常温核融合側である。
<Example 4.1>
As illustrated in FIG. 56, according to Example 4.1 of the present invention, the following arrangement method is adopted in order to compactly arrange as many hydrogen storage metal substrates M as possible in the reactor 601. Is desirable. That is, the counter electrodes 102 (E +) and 102 (E−) are arranged at equal distances (g1 = g2) on both sides of the hydrogen storage metal substrate M, and the adjacent hydrogen storage metal substrates M are arranged between them. The electrode 102 (E +) or counter electrode 102 (E−) is shared for D storage or room temperature nuclear fusion. In other words, hydrogen storage metal substrates M (i) and M (i + 1) are arranged at equal distances on both sides of the arbitrary electrode 102, and if the arbitrary counter electrode 102 is the counter electrode 102 (E +), hydrogen storage is performed. The surfaces of the metal substrates M (i) and M (i + 1) facing each other are on the D storage side, and if the counter electrode 102 (E−) is used, the hydrogen storage metal substrates M (i) and M (i + 1) face each other. The surface is the normal temperature nuclear fusion side.
 反応炉601内には、対向電極102(E+)を配置した反応室601.1と対向電極102(E-)を配置した反応室601.2とが交互に分離されて設けられ、それらの反応室を仕切るように水素吸蔵金属基板Mが設けられている。各反応室601.1には、図56および図57(A)に例示するように供給口602.1からDO電解液が供給され、対応する水素吸蔵金属基板MのD吸蔵面Mdと対向電極102(E+)との間にDO電解液の流れが形成される。また各反応室601.1での水素吸蔵後のDガスおよびOガスは、上述したように再結合してDOに戻る(D2+1/2O2 → D2O)。 A reaction chamber 601.1 in which the counter electrode 102 (E +) is arranged and a reaction chamber 601.2 in which the counter electrode 102 (E−) is arranged are alternately provided in the reaction furnace 601, and their reactions are performed. A hydrogen storage metal substrate M is provided so as to partition the chamber. As illustrated in FIGS. 56 and 57 (A), the D 2 O electrolytic solution is supplied to each reaction chamber 601.1 from the supply port 602.1, and the D 2 O electrolyte is supplied to each reaction chamber 601.1 with the D storage surface Md of the corresponding hydrogen storage metal substrate M. A flow of D 2 O electrolytic solution is formed between the counter electrode 102 (E +). Further, the D 2 gas and the O 2 gas after hydrogen storage in each reaction chamber 601.1 are recombined as described above and returned to D 2 O (D 2 + 1 / 2O 2 → D 2 O).
 各反応室601.2には、図56および図57(B)に例示するように供給口602.2からHO冷却液が供給され、対応する水素吸蔵金属基板Mの常温核融合面Mfと対向電極102(E-)との間にHO冷却液の流れが形成される。また各反応室601.2での常温核融合による発熱で気化したHO蒸気は排出口603.1から排出され、後段の発電に利用される。また高温になったHOは図示しない排出口603.2から排出される。D吸蔵と常温核融合の反応室が分離され、それぞれの排ガスが別個の排出口603.1および603.3からそれぞれ排出されるので、安全性を高めることができる。 As illustrated in FIGS. 56 and 57 (B), H 2 O coolant is supplied to each reaction chamber 601.2 from the supply port 602.2, and the cold fusion surface Mf of the corresponding hydrogen storage metal substrate M is supplied. flow of H 2 O coolant is formed between the counter electrode 102 and the (E-). The H 2 O vapor vaporized by heat generated by the cold fusion in the reaction chamber 601.2 is discharged from the discharge port 603.1 is utilized downstream of the generator. Further, the hot H 2 O is discharged from a discharge port 603.2 (not shown). D The occlusion and cold fusion reaction chambers are separated, and the respective exhaust gases are discharged from separate outlets 603.1 and 603.3, respectively, so that safety can be enhanced.
 なお、各水素吸蔵金属基板Mは、図52に示す構造と同様に加熱手段を兼ねたウエハ保持部により固定保持されている。なお水素吸蔵金属基板Mの具体的な構成は以下の実施例4.2~4.4で述べる。 Each hydrogen storage metal substrate M is fixedly held by a wafer holding portion that also serves as a heating means, as in the structure shown in FIG. 52. The specific configuration of the hydrogen storage metal substrate M will be described in Examples 4.2 to 4.4 below.
 対向電極102(E+)および102(E-)の電位はそれぞれ正電位および負電位に固定されているので、電源としてDC電源103aを用い、正電圧V+、負電圧V-および接地電位V0をそれぞれ対向電極102(E+)、対向電極102(E-)および水素吸蔵金属基板Mに印加すればよい。 Since the potentials of the counter electrodes 102 (E +) and 102 (E-) are fixed to the positive potential and the negative potential, respectively, a DC power supply 103a is used as the power source, and the positive voltage V +, the negative voltage V-, and the ground potential V0 are used, respectively. It may be applied to the counter electrode 102 (E +), the counter electrode 102 (E−), and the hydrogen storage metal substrate M.
 このように構成することで、各反応室601.1において対向電極102(E+)に面した水素吸蔵金属基板Mの第1表面でDO電解液からDを効率的に吸蔵し、吸蔵されたDが水素吸蔵金属基板M内を拡散し、隣接する反応室601.2において対向電極102(E+)に面した水素吸蔵金属基板Mの第2表面で拡散してきたDにより核融合反応が発生する。本実施例では、反応炉601内に多数の水素吸蔵金属基板Mおよび対向電極102(E+)および102(E-)をコンパクトに配列することができ、極めて効率的に且つ連続して常温核融合反応を生起させることが可能となる。 With this configuration, D is efficiently occluded from the D 2 O electrolytic solution on the first surface of the hydrogen storage metal substrate M facing the counter electrode 102 (E +) in each reaction chamber 601.1, and is occluded. D diffuses in the hydrogen storage metal substrate M, and a nuclear fusion reaction occurs due to D diffused on the second surface of the hydrogen storage metal substrate M facing the counter electrode 102 (E +) in the adjacent reaction chamber 601.2. do. In this embodiment, a large number of hydrogen storage metal substrates M and counter electrodes 102 (E +) and 102 (E−) can be compactly arranged in the reactor 601 to achieve extremely efficient and continuous cold fusion. It is possible to cause a reaction.
 さらに、D吸蔵と常温核融合の反応室が分離され、反応室601.1ではD吸蔵後のDガスおよびOガスが再結合してDOに戻り、常温核融合後のHO蒸気と高温の冷却水は別個の排出口603.1および603.3からそれぞれ排出されるので、安全性を高めることができる。水素吸蔵金属基板Mによる反応室601.1と601.2との分離は例えば図58に示すように実現することができる。 Further, the reaction chambers for D occlusion and cold fusion are separated, and in the reaction chamber 601.1, the D 2 gas and O 2 gas after D occlusion recombine and return to D 2 O, and H 2 after cold fusion. O Steam and hot cooling water are discharged from separate outlets 603.1 and 603.3, respectively, so that safety can be enhanced. Separation of the reaction chambers 601.1 and 601.2 by the hydrogen storage metal substrate M can be realized as shown in FIG. 58, for example.
 図58に例示するように、反応室601.1と601.2との間に水素吸蔵金属基板Mを複数の保持部604により固定する。すなわち、各保持部604の凹部に水素吸蔵金属基板Mの端部を挟み、ネジ604aを締めることで水素吸蔵金属基板Mを押圧して確実に保持し、隣接する反応室内の液体(DOおよびHO)を確実に分離する。 As illustrated in FIG. 58, the hydrogen storage metal substrate M is fixed between the reaction chambers 601.1 and 601.2 by a plurality of holding portions 604. That is, the end of the hydrogen storage metal substrate M is sandwiched between the recesses of each holding portion 604, and the hydrogen storage metal substrate M is pressed and securely held by tightening the screw 604a, and the liquid (D 2 O) in the adjacent reaction chamber is held. And H 2 O) are surely separated.
 <実施例4.2>
 図59に例示するように、本発明の実施例4.2によれば、図52に示す常温核融合装置における水素吸蔵金属基板Mは水素吸蔵金属としてニッケル(Ni)を用い、ニッケル板1000が保持枠1001により保持された構成を有する。ここではニッケル板1000の厚さを1mm程度とし、その裏側(D吸蔵面Md)に保持枠1001が固定され、ニッケル板1000を機械的に保持する。保持枠1001は白金Ptメッキされた銅Cuからなる。
<Example 4.2>
As illustrated in FIG. 59, according to Example 4.2 of the present invention, the hydrogen storage metal substrate M in the cold fusion device shown in FIG. 52 uses nickel (Ni) as the hydrogen storage metal, and the nickel plate 1000 is It has a configuration held by a holding frame 1001. Here, the thickness of the nickel plate 1000 is set to about 1 mm, and the holding frame 1001 is fixed to the back side (D storage surface Md) of the nickel plate 1000 to mechanically hold the nickel plate 1000. The holding frame 1001 is made of platinum Pt-plated copper Cu.
 上述したDO電解液はニッケル板1000のD吸蔵面裏側(保持枠1001側)から供給され、それによって吸蔵されたDがニッケル板1000の表側(常温核融合面Mf)に拡散し、表面のTサイトで核融合反応が生じる。保持枠1001で保持することでニッケル板1000の面積を大きくすることができ、十分なD供給が可能となる。なお、ニッケル板1000の裏面で吸蔵されたDが拡散して表面へ到達する時間を短くするにはニッケル板1000の厚さを薄くする必要があるが、その反面、ニッケル板1000の機械的強度を得ることが困難となる。特にニッケル板1000は水素吸蔵および常温核融合により脆弱化することが知られており、ニッケル板1000を薄くするためには保持枠1001による保持が不可欠である。ニッケル板1000の厚さはDの表面到達時間および機械的強度の両方を考慮して決定する必要がある。本実施例では厚さをほぼ1mmとしている。 The above-mentioned D 2 O electrolytic solution is supplied from the back side of the D storage surface (holding frame 1001 side) of the nickel plate 1000, and the occluded D is diffused to the front side (cold fusion surface Mf) of the nickel plate 1000 to surface. A fusion reaction occurs at the T site of. By holding the nickel plate 1000 with the holding frame 1001, the area of the nickel plate 1000 can be increased, and a sufficient D supply can be achieved. In order to shorten the time it takes for D occluded on the back surface of the nickel plate 1000 to reach the front surface, it is necessary to reduce the thickness of the nickel plate 1000, but on the other hand, the mechanical strength of the nickel plate 1000 Will be difficult to obtain. In particular, the nickel plate 1000 is known to be fragile due to hydrogen storage and cold fusion, and holding by the holding frame 1001 is indispensable for thinning the nickel plate 1000. The thickness of the nickel plate 1000 needs to be determined in consideration of both the surface arrival time of D and the mechanical strength. In this embodiment, the thickness is approximately 1 mm.
 また、ニッケル板1000は、ナノ構造を持つ金属板であれば14cm×14cm(6インチφの内接正方形)を用いることができるが、一般的には100cm×100cm、あるいは横5m、縦20mまでのサイズでも可能である。したがって、1m×1mのモジュールを複数組み合わせることで現行の原子炉と同程度の大きさまで製造可能である。 Further, as the nickel plate 1000, 14 cm × 14 cm (inscribed square of 6 inch φ) can be used as long as it is a metal plate having a nanostructure, but generally it is 100 cm × 100 cm, or up to 5 m in width and 20 m in length. It is also possible with the size of. Therefore, by combining a plurality of modules of 1 m × 1 m, it is possible to manufacture up to the same size as the current nuclear reactor.
 上記図52において説明したように、ニッケル板1000の表面Tサイトで生成されたHeは裏側から供給されるDにより排除されるので、面積の大きいニッケル板1000を使用して連続的に常温核融合反応を発生させることが可能となり、大きな発熱量を得ることができる。 As described in FIG. 52 above, He generated at the surface T site of the nickel plate 1000 is eliminated by D supplied from the back side, so cold fusion is continuously performed using the nickel plate 1000 having a large area. It becomes possible to generate a reaction, and a large calorific value can be obtained.
 <実施例4.3>
 図60に例示するように、本発明の実施例4.3によれば、図52に示す常温核融合装置における水素吸蔵金属基板Mは、厚さd1のニッケル(Ni)板1000とそれを保持する厚さd2の保持枠1001bからなる。保持枠1001bは厚さ6mmの保持材料層に複数のテーパ状開口部Oexp-cのアレイを形成し、ニッケル板1000のニッケル面を露出させている。各テーパ状開口部Oexp-cは底面が狭く上面が広い逆円錐台形状を有し、その底面がニッケル露出面となり、既に述べたD吸蔵面Mdとなる。各テーパ状開口部Oexp-cの底面であるニッケル露出面は直径d3、隣接するニッケル露出面の距離はd4である。言い換えれば、直径d3の円形ニッケル露出面が四方に距離d4の間隔で碁盤目状に配列されている。
<Example 4.3>
As illustrated in FIG. 60, according to Example 4.3 of the present invention, the hydrogen storage metal substrate M in the cold fusion apparatus shown in FIG. 52 holds a nickel (Ni) plate 1000 having a thickness of d1 and a nickel (Ni) plate 1000 thereof. It is composed of a holding frame 1001b having a thickness d2. The holding frame 1001b forms an array of a plurality of tapered openings Oexpc in a holding material layer having a thickness of 6 mm, and exposes the nickel surface of the nickel plate 1000. Each tapered opening Oexp-c has an inverted truncated cone shape with a narrow bottom surface and a wide top surface, and the bottom surface is a nickel exposed surface, which is the D storage surface Md described above. The exposed nickel surface on the bottom surface of each tapered opening Oexp-c has a diameter of d3, and the distance between adjacent nickel exposed surfaces is d4. In other words, circular nickel exposed surfaces having a diameter of d3 are arranged in a grid pattern at intervals of a distance d4 on all sides.
 上述したように水素吸蔵金属には水素濃度の上昇に伴って電気抵抗率が上昇し機械的強度も低下する性質があるために、後述するように、ニッケル板1000の厚さd1、ニッケル露出面の直径d3およびニッケル露出面の間隔d4はニッケル板1000の電位制御性および機械的強度を確保するために所定の比率に設定されることが望ましい。本実施例では、ニッケル板1000の厚さd1=2mm、テーパ状開口部Oexp-cの深さd2=6mm、ニッケル露出面の直径d3=2mm、ニッケル露出面の間隔d4=5mmとする。 As described above, the hydrogen storage metal has the property that the electrical resistivity increases and the mechanical strength also decreases as the hydrogen concentration increases. Therefore, as described later, the thickness d1 of the nickel plate 1000 and the exposed nickel surface It is desirable that the diameter d3 and the distance d4 between the exposed nickel surfaces are set to predetermined ratios in order to ensure the potential controllability and mechanical strength of the nickel plate 1000. In this embodiment, the thickness of the nickel plate 1000 is d1 = 2 mm, the depth of the tapered opening Oexp-c is d2 = 6 mm, the diameter of the exposed nickel surface is d3 = 2 mm, and the distance between the exposed nickel surfaces is d4 = 5 mm.
 <実施例4.4>
 上述した実施例4.3でのテーパ状開口部Oexp-cは逆円錐台形状であったが、本実施形態はこの形状に限定されるものではなく、ニッケル露出面がニッケル板1000のD吸蔵面Mdの側に均一に分散されていればよい。以下、実施例4.4として別の形状のテーパ状開口部Oexpを例示する。
<Example 4.4>
The tapered opening Oexp-c in Example 4.3 described above had an inverted truncated cone shape, but this embodiment is not limited to this shape, and the nickel exposed surface is a D storage of the nickel plate 1000. It suffices if it is uniformly dispersed on the side of the surface Md. Hereinafter, as Example 4.4, another shape of the tapered opening Oexp will be illustrated.
 図61に例示するように、本発明の実施例4.4によれば、図52に示す常温核融合装置における水素吸蔵金属基板Mは、厚さd1のニッケル(Ni)板1000とそれを保持する厚さd2の保持枠1001cからなる。保持枠1001cは厚さ6mmの保持材料層に複数のテーパ状開口部Oexp-sのアレイを形成し、ニッケル板1000のニッケル面を露出させる。各テーパ状開口部Oexp-sは底面が狭く上面が広い逆四角錐台形状を有し、その底面がニッケル露出面となり、既に述べたD吸蔵面Mdとなる。各テーパ状開口部Oexp-sの底面であるニッケル露出面は一辺がd3の正方形であり、隣接するニッケル露出面の距離はd4である。言い換えれば、一辺d3の正方形ニッケル露出面が四方に距離d4の間隔で碁盤目状に配列されている。 As illustrated in FIG. 61, according to Example 4.4 of the present invention, the hydrogen storage metal substrate M in the cold fusion apparatus shown in FIG. 52 holds a nickel (Ni) plate 1000 having a thickness of d1 and a nickel (Ni) plate 1000 thereof. It is composed of a holding frame 1001c having a thickness d2. The holding frame 1001c forms an array of a plurality of tapered openings Oexp-s in a holding material layer having a thickness of 6 mm to expose the nickel surface of the nickel plate 1000. Each tapered opening Oexp-s has an inverted quadrangular pyramid shape with a narrow bottom surface and a wide top surface, and the bottom surface is a nickel exposed surface, which is the D storage surface Md described above. The nickel exposed surface which is the bottom surface of each tapered opening Oexp-s is a square having a side of d3, and the distance between adjacent nickel exposed surfaces is d4. In other words, square nickel exposed surfaces having a side d3 are arranged in a grid pattern at intervals of a distance d4 on all sides.
 上述したように水素吸蔵金属には水素濃度の上昇に伴って電気抵抗率が上昇し機械的強度も低下する性質があるために、後述するように、ニッケル板1000の厚さd1、ニッケル露出面の直径d3およびニッケル露出面の間隔d4はニッケル板1000の電位制御性および機械的強度を確保するために所定の比率に設定されることが望ましい。本実施例では、ニッケル板1000の厚さd1=2mm、テーパ状開口部Oexp-sの深さd2=6mm、ニッケル露出面の一辺d3=2mm、ニッケル露出面の間隔d4=5mmとする。 As described above, the hydrogen storage metal has the property that the electrical resistivity increases and the mechanical strength also decreases as the hydrogen concentration increases. Therefore, as described later, the thickness d1 of the nickel plate 1000 and the exposed nickel surface It is desirable that the diameter d3 and the distance d4 between the exposed nickel surfaces are set to predetermined ratios in order to ensure the potential controllability and mechanical strength of the nickel plate 1000. In this embodiment, the thickness of the nickel plate 1000 is d1 = 2 mm, the depth of the tapered opening Oexp-s is d2 = 6 mm, one side of the nickel exposed surface is d3 = 2 mm, and the distance between the nickel exposed surfaces is d4 = 5 mm.
 <保持枠の構成>
 実施例4.3および4.4における保持枠1001bおよび1001cはニッケル板1000上に保持枠材料(金属あるいはセラミック等)をパターニングすることで形成されうる。上記実施例では銅Cuを保持枠材料として用い、DO電解液にCuが溶出しないように貴金属(ここではPt)メッキを施している。保持枠1001bおよび1001cの構成については、ニッケル板1000の電位制御性を確保するために材料として金属を用い、次のような寸法比で形成することが望ましい。以下、逆円錐台形状の開口部Oexp-cあるいは逆四角錐台形状の開口部Oexp-sをまとめて「テーパ状開口部Oexp」と記すものとする。
<Structure of holding frame>
The holding frames 1001b and 1001c in Examples 4.3 and 4.4 can be formed by patterning a holding frame material (metal, ceramic, etc.) on the nickel plate 1000. In the above embodiment using copper Cu as a holding frame materials, precious metal (here, Pt) such Cu is not dissolved into D 2 O electrolyte is plated. Regarding the configurations of the holding frames 1001b and 1001c, it is desirable to use metal as a material and form the holding frames 1001b and 1001c in the following dimensional ratios in order to ensure the potential controllability of the nickel plate 1000. Hereinafter, the inverted cone-shaped opening Oexp-c or the inverted quadrangular cone-shaped opening Oexp-s will be collectively referred to as "tapered opening Oexp".
 図62に例示するように、ニッケル板1000の厚さをd1、各テーパ状開口部Oexpの底面であるニッケル露出面の直径/一辺の長さをd3、隣接するニッケル露出面の間隔をd4とし、以下説明を簡単にするためにd1=d3と仮定する。すなわちニッケル板1000の厚さとニッケル露出面の直径/一辺の長さとが一致するように各テーパ状開口部Oexpが形成されているものとする。既に述べたように、ニッケル板1000のD吸蔵面Mdに対向して(すなわち保持枠1001b/c側に)、正電位の対向電極102(E+)が設けられ、その間にDO電解液が流れる。これによりテーパ状開口部Oexpのニッケル露出面でDが吸蔵され、ニッケル露出面からニッケル板1000内を縦方向(面に直交する方向)および横方向(面方向)に拡散する。したがって、縦方向に拡散したDが常温核融合面Mfに到達する時点で横方向にも同じ距離だけDが拡散し、ニッケル板1000内のテーパ状開口部Oexp近傍に高濃度D領域(Ni-D)1000dが拡散形成されている。すなわち、横方向に拡散したDはニッケル露出面のエッジからd1だけ保持枠1001b/cの下に拡がっている。 As illustrated in FIG. 62, the thickness of the nickel plate 1000 is d1, the diameter / side length of the nickel exposed surface which is the bottom surface of each tapered opening Oexp is d3, and the distance between adjacent nickel exposed surfaces is d4. , It is assumed that d1 = d3 for the sake of simplicity. That is, it is assumed that each tapered opening Oexp is formed so that the thickness of the nickel plate 1000 and the diameter of the exposed nickel surface / the length of one side match. As described above, the positive potential counter electrode 102 (E +) is provided so as to face the D storage surface Md of the nickel plate 1000 (that is, on the holding frame 1001b / c side), and the D 2 O electrolytic solution is placed between them. It flows. As a result, D is occluded on the nickel exposed surface of the tapered opening Oexp and diffuses in the nickel plate 1000 from the nickel exposed surface in the vertical direction (direction orthogonal to the surface) and the horizontal direction (plane direction). Therefore, when D diffused in the vertical direction reaches the cold fusion surface Mf, D diffuses in the horizontal direction by the same distance, and a high concentration D region (Ni−) is present in the vicinity of the tapered opening Oexp in the nickel plate 1000. D) 1000d is diffusely formed. That is, D diffused in the lateral direction extends below the holding frame 1001b / c by d1 from the edge of the nickel exposed surface.
 上述したように高濃度D領域1000dの電気抵抗率は高いので、ニッケル板1000の電位制御性を確保するためには、隣接する高濃度D領域1000dの間にニッケル金属の低抵抗部分を実質的に残すこと、すなわち隣接する高濃度D領域1000dが接触しないことが必要である。この条件を満たすようにニッケル板1000の厚さd1(=d3)およびニッケル露出面の間隔d4を設定する。すなわち実施例4.3および4.4においては、ニッケル露出面の間隔d4は両側のエッジからd1以上高濃度D領域1000dが拡散するので、d1=d3の場合、少なくともd4>2×d1を満たし、かつ保持枠1001b/cのの機械的強度を確保するように設定される。 As described above, since the electrical resistivity of the high concentration D region 1000d is high, in order to ensure the potential controllability of the nickel plate 1000, the low resistance portion of the nickel metal is substantially placed between the adjacent high concentration D regions 1000d. That is, it is necessary that the adjacent high-concentration D region 1000d does not come into contact with each other. The thickness d1 (= d3) of the nickel plate 1000 and the distance d4 of the exposed nickel surfaces are set so as to satisfy this condition. That is, in Examples 4.3 and 4.4, the nickel exposed surface spacing d4 diffuses a high-concentration D region 1000d of d1 or more from both edges, so that at least d4> 2 × d1 is satisfied when d1 = d3. And, it is set so as to secure the mechanical strength of the holding frame 1001b / c.
 図63は実施例4.3の場合の高濃度D領域1000dの広がりを模式的に示す平面図である。このように隣接する高濃度D領域1000dの間にDが拡散していない部分が残存し、ニッケル板1000の電位制御性が確保される。またニッケル部分は脆化しにくいのでニッケル板1000の機械的強度を維持することもできる。なお、実施例4.4でも同様に高濃度D領域が正方形のニッケル露出面のエッジから拡散形成されるので、同様の効果を奏する。 FIG. 63 is a plan view schematically showing the spread of the high concentration D region 1000d in the case of Example 4.3. In this way, a portion where D is not diffused remains between the adjacent high-concentration D regions 1000d, and the potential controllability of the nickel plate 1000 is ensured. Further, since the nickel portion is hard to be brittle, the mechanical strength of the nickel plate 1000 can be maintained. Similarly, in Example 4.4, the high-concentration D region is diffusely formed from the edge of the square nickel exposed surface, so that the same effect is obtained.
 このように水素吸蔵金属基板Mの金属板(ニッケル板1000)に電気抵抗値の低い金属部分が残るので、水素吸蔵金属基板Mの電位制御性を十分なレベルに維持することができ、さらに金属板としての機械的強度を維持することもできる。なお、保持枠1001b/cはセラミック等の金属以外の材料で形成することもできる。 Since the metal portion having a low electric resistance value remains on the metal plate (nickel plate 1000) of the hydrogen storage metal substrate M in this way, the potential controllability of the hydrogen storage metal substrate M can be maintained at a sufficient level, and the metal can be further maintained. It is also possible to maintain the mechanical strength of the plate. The holding frame 1001b / c can also be formed of a material other than metal such as ceramic.
5.第5実施形態
 本発明の第5実施形態によれば、反応炉内に2つの反応室を設け、これらの反応室を水素吸蔵金属基板で分離し、第4実施形態と同様に、一方の反応室に正電位の対向電極を、他方の反応室に負電位の対向電極をそれぞれ配置することで、水素吸蔵金属基板の一方の反応室側を水素吸蔵ステージに、他方の反応室側を常温核融合ステージにすることができ、これらを空間的に分離することができる。ただし、上記第4実施形態とは次の点で異なっている。
5. Fifth Embodiment According to the fifth embodiment of the present invention, two reaction chambers are provided in the reaction furnace, these reaction chambers are separated by a hydrogen storage metal substrate, and one reaction is carried out as in the fourth embodiment. By arranging a positive potential counter electrode in the chamber and a negative potential counter electrode in the other reaction chamber, one reaction chamber side of the hydrogen storage metal substrate is the hydrogen storage stage and the other reaction chamber side is cold fusion. It can be a fusion stage and these can be spatially separated. However, it differs from the fourth embodiment in the following points.
 本実施形態によれば、DO電解液の代わりにDガスがD吸蔵用に用いられ、水素吸蔵金属基板が水素を吸蔵し拡散する性質を有する金属基板とその水素吸蔵面上に設けられた水素分離膜と、から構成される。上述したように、DO電解液を用いた電気分解では吸収量を高くするために高い電圧を印加する必要があり、そのために高電界での絶縁膜成長が起こって電流が流れない領域が生じてしまう問題があった。本実施形態ではD吸蔵のためにDガスを用いることでこのような問題を解消している。 According to this embodiment , D 2 gas is used for D storage instead of the D 2 O electrolytic solution, and the hydrogen storage metal substrate is provided on a metal substrate having a property of storing and diffusing hydrogen and its hydrogen storage surface. It is composed of the hydrogen separation membrane obtained. As described above, D in the electrolysis using 2 O electrolyte it is necessary to apply a high voltage in order to increase the absorption amount, the region where the insulating film growth at a high electric field is not current flows going to the There was a problem that occurred. In this embodiment, such a problem is solved by using D 2 gas for D occlusion.
 なお、水素吸蔵金属としては第4実施形態と同様のニッケル(Ni)を用いることができる。水素分離膜については後に詳しく説明する。以下、このような水素吸蔵金属基板を用いた常温核融合装置について説明する。 As the hydrogen storage metal, nickel (Ni) similar to that in the fourth embodiment can be used. The hydrogen separation membrane will be described in detail later. Hereinafter, a cold fusion device using such a hydrogen storage metal substrate will be described.
 図64に模式的に示すように、反応炉601内に反応室601.1および601.2が設けられ、それらの反応室が水素吸蔵金属基板Mcにより分離されている。水素吸蔵金属基板Mcは、後述するように、水素吸蔵金属の基板上に水素分離膜が形成された構成を有するが、図64では特徴的な構成が明確になるように金属基板および水素分離膜が拡大されており、言うまでもなく実際の厚さの比率を反映しているものではない。 As schematically shown in FIG. 64, reaction chambers 601.1 and 601.2 are provided in the reaction furnace 601 and these reaction chambers are separated by a hydrogen storage metal substrate Mc. As will be described later, the hydrogen storage metal substrate Mc has a configuration in which a hydrogen separation membrane is formed on the hydrogen storage metal substrate, but in FIG. 64, the metal substrate and the hydrogen separation membrane are formed so that the characteristic configuration becomes clear. Has been expanded and, needless to say, does not reflect the actual thickness ratio.
 水素吸蔵金属基板Mcは加熱手段を兼ねた保持部604により固定保持され、DC電源103aから接地電位V0が印加される。反応室601.1には水素吸蔵金属基板Mcの水素分離膜側に対向電極102(E+)が所定距離g1だけ離れて配置され、DC電源103aから一定の正電圧V+(>V0)が印加される。反応室601.2には水素吸蔵金属基板Mcの常温核融合面(Mf)側に対向電極102(E-)が所定距離g2だけ離れて配置され、DC電源103aから一定の負電圧V-(<V0)が印加される。なお水素吸蔵金属基板Mcの構成については後述する。 The hydrogen storage metal substrate Mc is fixedly held by the holding portion 604 that also serves as a heating means, and the ground potential V0 is applied from the DC power supply 103a. In the reaction chamber 601.1, the counter electrodes 102 (E +) are arranged on the hydrogen separation membrane side of the hydrogen storage metal substrate Mc at a predetermined distance g1, and a constant positive voltage V + (> V0) is applied from the DC power supply 103a. NS. In the reaction chamber 601.2, counter electrodes 102 (E−) are arranged on the cold fusion surface (Mf) side of the hydrogen storage metal substrate Mc at a predetermined distance g2, and a constant negative voltage V— ( <V0) is applied. The configuration of the hydrogen storage metal substrate Mc will be described later.
 水素吸蔵金属基板Mcの両側にD吸蔵のための対向電極102(E+)と常温核融合のための対向電極102(E-)とがそれぞれ所定距離g1およびg2だけ離れて配置されるが、第4実施形態で述べたように、反応炉601内に多数の水素吸蔵金属基板Mcをコンパクトに配列するためには、対向電極102(E+)および102(E-)を水素吸蔵金属基板Mから等距離(g1=g2)に配置し、隣接する水素吸蔵金属基板Mcがそれらの間に配置された対向電極102(E+)あるいは対向電極102(E-)をD吸蔵あるいは常温核融合のために共有することが望ましい。また、DC電源103aについても第4実施形態で述べたように、水素吸蔵金属基板Mcを基準電圧V0に設定し、対向電極102(E+)および102(E-)にそれぞれ一定の正電圧V+および負電圧V-を印加するだけでよく、その極性を切り替える必要はない。 The counter electrode 102 (E +) for D storage and the counter electrode 102 (E−) for room temperature nuclear fusion are arranged on both sides of the hydrogen storage metal substrate Mc at predetermined distances g1 and g2, respectively. 4 As described in the embodiment, in order to compactly arrange a large number of hydrogen storage metal substrates Mc in the reaction furnace 601, the counter electrodes 102 (E +) and 102 (E−) are arranged from the hydrogen storage metal substrate M and the like. The counter electrode 102 (E +) or counter electrode 102 (E−) arranged at a distance (g1 = g2) and adjacent hydrogen storage metal substrates Mc are arranged between them is shared for D storage or room temperature nuclear fusion. It is desirable to do. Further, as for the DC power supply 103a, as described in the fourth embodiment, the hydrogen storage metal substrate Mc is set to the reference voltage V0, and the counter electrodes 102 (E +) and 102 (E−) have constant positive voltages V + and 102 (E−), respectively. It is only necessary to apply a negative voltage V−, and it is not necessary to switch the polarity.
 反応室601.1には供給口602.1aからDガスが供給され、水素吸蔵金属基板McのD吸蔵側の面と対向電極102(E+)との間にDガスの流れF2が形成される。また反応室601.1での水素吸蔵後のDガスは排出口603.3aから排出される。反応室601.2には供給口602.2からHO冷却液が供給され、水素吸蔵金属基板Mの常温核融合面Mfと対向電極102(E-)との間にHO冷却液の流れF4が形成される。また反応室601.2での常温核融合による発熱で気化したHO蒸気は排出口603.1から排出され、後段の発電に利用される。また高温のHOは排出口603.2から排出される。 The reaction chamber 601.1 D 2 gas is supplied from the supply port 602.1A, flow F2 of D 2 gas formed between the hydrogen storage metal substrate Mc of D-absorbing-side surface and the opposite electrode 102 (E +) Will be done. Further, the D 2 gas after hydrogen storage in the reaction chamber 601.1 is discharged from the discharge port 603.3a. The reaction chamber 601.2 H 2 O cooling liquid is supplied from the supply port 602.2, H 2 O coolant between the cold fusion surface Mf and the counter electrode 102 of the hydrogen storage metal substrate M (E-) Flow F4 is formed. The H 2 O vapor vaporized by heat generated by the cold fusion in the reaction chamber 601.2 is discharged from the discharge port 603.1 is utilized downstream of the generator. Further, the high temperature H 2 O is discharged from the discharge port 603.2.
 このように、水素吸蔵金属基板Mcの水素分離膜側の面と対向電極102(E+)との間でDガスが下方から上方へ流れ、後述する水素分離膜を通してDが水素吸蔵金属に吸蔵されることで、十分な量のDを効率的に吸蔵させることができる。吸蔵されたDは水素吸蔵金属内を拡散し常温核融合面Mfで安定的且つ連続的な核融合反応を発生させることができる。また、D吸蔵と常温核融合の反応室が分離され、それぞれの排ガスが別個の排出口603.1および603.3aからそれぞれ排出されるので、安全性を高めることができる。 In this way, the D 2 gas flows from the bottom to the top between the surface of the hydrogen storage metal substrate Mc on the hydrogen separation film side and the counter electrode 102 (E +), and D is stored in the hydrogen storage metal through the hydrogen separation film described later. By doing so, a sufficient amount of D can be efficiently occluded. The occluded D can diffuse in the hydrogen storage metal and generate a stable and continuous fusion reaction on the cold fusion surface Mf. Further, since the reaction chambers of the D occlusion and the cold fusion are separated and the respective exhaust gases are discharged from the separate discharge ports 603.1 and 603.3a, the safety can be enhanced.
 <水素分離膜>
 図65に模式的に示すように、水素吸蔵金属基板Mcは水素を吸蔵し拡散する性質を有する金属(以下、ニッケル基板1000aとする。)とそのD吸蔵面Md上に形成された水素分離膜1002と、から構成される。水素分離膜1002は、後述する製法により多数のナノレベル貫通孔が配列形成されたホールパターン1002dを有し、これにより水素透過性能を有する分離膜として機能する。すなわち、水素分離膜1002と対向電極102(E+)との間にDガスを流すことで水素分離膜1002を通してDがニッケル基板1000aのD吸蔵面Mdからニッケル板内に吸蔵される。このような水素分離膜1002を半導体微細加工技術を用いて製造する方法の一例が、草壁克己による「水素利用のための膜分離技術」(総説(Review Article):膜(MEMBRANE),Vol.30 No.1,(2005)pp. 2-6)に記載されている。
<Hydrogen separation membrane>
As schematically shown in FIG. 65, the hydrogen storage metal substrate Mc is a metal having a property of storing and diffusing hydrogen (hereinafter referred to as nickel substrate 1000a) and a hydrogen separation film formed on the D storage surface Md thereof. It is composed of 1002 and 1002. The hydrogen separation membrane 1002 has a hole pattern 1002d in which a large number of nano-level through holes are arranged in an array by a production method described later, and thereby functions as a separation membrane having hydrogen permeation performance. That is, by flowing D 2 gas between the hydrogen separation membrane 1002 and the counter electrode 102 (E +), D is occluded in the nickel plate from the D occlusal surface Md of the nickel substrate 1000a through the hydrogen separation membrane 1002. An example of a method for producing such a hydrogen separation membrane 1002 using semiconductor microfabrication technology is "Membrane Separation Technology for Hydrogen Utilization" by Katsumi Kusakabe (Review Article: Membrane (MEMBRANE), Vol.30. It is described in No. 1, (2005) pp. 2-6).
 図66に例示するように、水素分離膜1002を形成するための基板1003上に電解法あるいはスパッタリング法により所定の厚さの無欠陥ニッケル層を被服形成し、このニッケル層をニッケル基板1000aとする(図66(A))。 As illustrated in FIG. 66, a defect-free nickel layer having a predetermined thickness is formed on the substrate 1003 for forming the hydrogen separation film 1002 by an electrolytic method or a sputtering method, and this nickel layer is designated as a nickel substrate 1000a. (Fig. 66 (A)).
 続いて、基板1003上にホールパターン1002dを形成するためのマスク1004をナノインプリントリソグラフィー等により形成し(図66(B))、マスク1004を通したエッチングによりナノホールを形成する(図66(C))こうして得られたエッチング後の基板1003aからマスク1004を除去することで、ニッケル基板1000a上に基板1003aからなる水素分離膜1002を形成する(図66(D))。 Subsequently, a mask 1004 for forming the hole pattern 1002d on the substrate 1003 is formed by nanoimprint lithography or the like (FIG. 66 (B)), and nanoholes are formed by etching through the mask 1004 (FIG. 66 (C)). By removing the mask 1004 from the etched substrate 1003a thus obtained, a hydrogen separation film 1002 made of the substrate 1003a is formed on the nickel substrate 1000a (FIG. 66 (D)).
 このように平滑な基板1003上に電解法やスパッタリング法で無欠陥のニッケル層を容易に被覆することができ、その後エッチングによって基板1003に微細な孔(ナノホール)を開けて多孔化することで、水素分離膜1002を形成することができる。本実施例では500nmくらいのホールパターン1002dが形成される。なお、ナノホールの間隔はナノホールの径の10倍くらい、たとえば1~5μm程度に設定される。 A defect-free nickel layer can be easily coated on the smooth substrate 1003 by an electrolytic method or a sputtering method, and then fine holes (nanoholes) are formed in the substrate 1003 by etching to make the substrate 1003 porous. The hydrogen separation membrane 1002 can be formed. In this embodiment, a hole pattern 1002d having a diameter of about 500 nm is formed. The distance between the nanoholes is set to about 10 times the diameter of the nanoholes, for example, about 1 to 5 μm.
 <作用および効果>
 次に図64および図65を参照しながら本実施形態による常温核融合装置の動作を説明する。
<Action and effect>
Next, the operation of the cold fusion device according to the present embodiment will be described with reference to FIGS. 64 and 65.
 反応室601.1に供給口602.1aから供給されたDガスは、水素吸蔵金属基板Mcの水素分離膜1002と対向電極102(E+)との間に流れることで、水素分離膜1002を通してDがニッケル基板1000aのD吸蔵面Mdに到達し、そこでニッケル基板1000aに吸蔵される。Dガスを用いてD吸蔵を行うので、対向電極102(E+)に高電圧を印加しても水素吸蔵金属基板Mの表面に絶縁膜が成膜することがない。吸蔵されたDは、既に述べたように、ニッケル基板1000a内のOサイトおよびTサイトを順次トンネリングして拡散し、常温核融合面Mf側へ供給され続ける。こうして図48に示すサイクルにより、ニッケル板1000aの表面Tサイトにおける常温核融合およびHe追い出しが繰り返され、自立モードで長期的な核融合反応の継続が可能となる。また、D吸蔵と常温核融合の反応室601.1と601.2とが分離され、それぞれのガスが別個の排出口603.3aおよび603.1から排出されるので、安全性を高めることができる。 The D 2 gas supplied to the reaction chamber 601.1 from the supply port 602.1a flows between the hydrogen separation membrane 1002 of the hydrogen storage metal substrate Mc and the counter electrode 102 (E +), and passes through the hydrogen separation membrane 1002. D reaches the D storage surface Md of the nickel substrate 1000a, where it is occluded in the nickel substrate 1000a. Since D storage is performed using D 2 gas, an insulating film is not formed on the surface of the hydrogen storage metal substrate M even if a high voltage is applied to the counter electrode 102 (E +). As described above, the occluded D sequentially tunnels and diffuses the O-site and the T-site in the nickel substrate 1000a, and continues to be supplied to the cold fusion surface Mf side. Thus, by the cycle shown in FIG. 48, cold fusion and He eviction at the surface T site of the nickel plate 1000a are repeated, and the long-term fusion reaction can be continued in the self-sustaining mode. Further, the D occlusion and the cold fusion reaction chambers 601.1 and 601.2 are separated, and the respective gases are discharged from the separate discharge ports 603.3a and 603.1, so that the safety can be improved. can.

Claims (15)

  1.  反応炉内に、重水素を吸蔵する金属からなる水素吸蔵金属基板と、前記水素吸蔵金属基板に対向して設けられ前記水素吸蔵金属基板の表面電位を制御するための平板状の対向電極と、が設けられ、
     前記水素吸蔵金属基板を基準として正電圧が印加された対向電極であれば重水素が前記水素吸蔵金属基板内に移動する水素吸蔵が生起し、負電圧が印加された対向電極であれば前記水素吸蔵金属基板の内部から表面へ拡散した重水素により常温核融合が生起する、ことを特徴とする常温核融合装置。
    In the reaction furnace, a hydrogen storage metal substrate made of a metal that stores heavy hydrogen, a flat plate-shaped counter electrode provided facing the hydrogen storage metal substrate and for controlling the surface potential of the hydrogen storage metal substrate, Is provided,
    If it is a counter electrode to which a positive voltage is applied with reference to the hydrogen storage metal substrate, hydrogen storage occurs in which heavy hydrogen moves into the hydrogen storage metal substrate, and if it is a counter electrode to which a negative voltage is applied, the hydrogen A cold fusion device characterized in that cold fusion occurs due to heavy hydrogen diffused from the inside of the storage metal substrate to the surface.
  2.  前記対向電極を前記水素吸蔵金属基板に対して正電圧と負電圧との間で切り替えることで水素吸蔵と常温核融合とを時間的に交互に生起させることを特徴とする請求項1に記載の常温核融合装置。 The first aspect of claim 1, wherein hydrogen storage and cold fusion occur alternately in time by switching the counter electrode between a positive voltage and a negative voltage with respect to the hydrogen storage metal substrate. Cold fusion device.
  3.  前記対向電極と前記水素吸蔵金属基板との間に酸化重水素(DO)電解液のフローを形成する供給口が前記反応炉に設けられ、前記水素吸蔵金属基板の表面が前記フローの方向に延びたナノ構造の発熱体からなることを特徴とする請求項1または2に記載の常温核融合装置。 The deuterium oxide between the counter electrode and the hydrogen absorbing metal substrate (D 2 O) supply port for forming a flow of the electrolyte is provided in the reactor, the direction of the surface the flow of the hydrogen-absorbing metal substrate The cold fusion device according to claim 1 or 2, wherein the heating element has a nanostructure extending from the above.
  4.  前記反応炉内に設けられた第1反応室と第2反応室とを前記水素吸蔵金属基板により空間的に分離し、前記第1反応室に前記水素吸蔵金属基板の第1面に対向した平板状の第1対向電極を設け、前記第2反応室に前記水素吸蔵金属基板の第2面に対向した平板状の第2対向電極を設け、
     前記第1対向電極に正電圧を、前記第2対向電極に負電圧をそれぞれ印加することで、前記水素吸蔵金属基板の前記第1面で水素吸蔵を、前記第2面で常温核融合をそれぞれ生起させることを特徴とする請求項1に記載の常温核融合装置。
    The first reaction chamber and the second reaction chamber provided in the reaction furnace are spatially separated by the hydrogen storage metal substrate, and the flat plate facing the first surface of the hydrogen storage metal substrate in the first reaction chamber. A first counter electrode shaped like a plate is provided, and a flat plate-shaped second counter electrode facing the second surface of the hydrogen storage metal substrate is provided in the second reaction chamber.
    By applying a positive voltage to the first counter electrode and a negative voltage to the second counter electrode, hydrogen storage is performed on the first surface of the hydrogen storage metal substrate, and cold fusion is performed on the second surface. The cold fusion device according to claim 1, wherein the fusion device is caused.
  5.  前記水素吸蔵金属基板は前記第1面で吸蔵された重水素が前記水素吸蔵金属基板内を通して前記第2面に拡散する性質を有する金属からなることを特徴とする請求項4に記載の常温核融合装置。 The room temperature nucleus according to claim 4, wherein the hydrogen storage metal substrate is made of a metal having a property that deuterium stored on the first surface is diffused to the second surface through the hydrogen storage metal substrate. Fusion device.
  6.  前記第1対向電極と前記水素吸蔵金属基板の前記第1面との間および前記第2対向電極と前記水素吸蔵金属基板の前記第2面との間に酸化重水素(DO)電解液のフローをそれぞれ形成する供給口が前記反応炉に設けられたことを特徴とする請求項4または5に記載の常温核融合装置。 Deuterium oxide (D 2 O) electrolyte between the second surface of the hydrogen absorbing metal substrate and between the second counter electrode of the first surface of the hydrogen absorbing metal substrate and the first counter electrode The cold fusion apparatus according to claim 4 or 5, wherein supply ports for forming the respective flows are provided in the reactor.
  7.  前記第1対向電極と前記水素吸蔵金属基板の前記第1面との間に酸化重水素(DO)電解液のフローを形成する第1供給口と、前記第2対向電極と前記水素吸蔵金属基板の前記第2面との間に冷却水のフローを形成する第2供給口と、が前記反応炉に設けられたことを特徴とする請求項4または5に記載の常温核融合装置。 A first supply port for forming a flow of deuterium oxide (D 2 O) electrolyte between the first surface of the hydrogen absorbing metal substrate and the first counter electrode, the hydrogen absorbing and the second counter electrode The cold fusion apparatus according to claim 4 or 5, wherein a second supply port for forming a flow of cooling water with the second surface of the metal substrate is provided in the reaction furnace.
  8.  前記水素吸蔵金属基板の前記第1面に保持枠が設けられ、前記保持枠には前記第1面の金属が露出した開口部が配列形成されていることを特徴とする請求項4-7のいずれか1項に記載の常温核融合装置。 According to claim 4-7, a holding frame is provided on the first surface of the hydrogen storage metal substrate, and openings in which the metal on the first surface is exposed are arranged in the holding frame. The cold fusion device according to any one of the items.
  9.  前記水素吸蔵金属基板は前記第1面側に重水素を選択的に透過させる水素分離膜を有することを特徴とする請求項5に記載の常温核融合装置。 The cold fusion device according to claim 5, wherein the hydrogen storage metal substrate has a hydrogen separation membrane on the first surface side for selectively permeating deuterium.
  10.  前記第1対向電極と前記水素吸蔵金属基板の前記第1面との間に重水素(D)ガスのフローを形成する第1供給口が前記第1反応室に設けられ、前記第2対向電極と前記水素吸蔵金属基板の前記第2面との間に冷却水のフローを形成する第2供給口が前記第2反応室に設けられたことを特徴とする請求項4、5または9に記載の常温核融合装置。 A first supply port for forming a flow of deuterium (D 2 ) gas between the first counter electrode and the first surface of the hydrogen storage metal substrate is provided in the first reaction chamber, and the second facing is provided. According to claim 4, 5 or 9, a second supply port for forming a flow of cooling water between the electrode and the second surface of the hydrogen storage metal substrate is provided in the second reaction chamber. The described cold fusion device.
  11.  反応炉内に、重水素を吸蔵する金属からなる水素吸蔵金属基板と、前記水素吸蔵金属基板に対向して設けられ前記水素吸蔵金属基板の表面電位を制御するための平板状の対向電極と、が設けられ、
     前記対向電極に対して、前記水素吸蔵金属基板を基準電位とした正電圧を印加することで重水素が前記水素吸蔵金属基板内に移動する水素吸蔵を生起させ、
     前記対向電極に対して、前記水素吸蔵金属基板を基準電位とした負電圧を印加することで前記水素吸蔵金属基板の内部から表面へ拡散した重水素により常温核融合を生起させ、熱を生成する、
     ことを特徴とする発熱方法。
    In the reaction furnace, a hydrogen storage metal substrate made of a metal that stores heavy hydrogen, a flat plate-shaped counter electrode provided facing the hydrogen storage metal substrate and for controlling the surface potential of the hydrogen storage metal substrate, Is provided,
    By applying a positive voltage with the hydrogen storage metal substrate as a reference potential to the counter electrode, hydrogen storage in which heavy hydrogen moves into the hydrogen storage metal substrate is generated.
    By applying a negative voltage with the hydrogen storage metal substrate as a reference potential to the counter electrode, cold fusion is caused by deuterium diffused from the inside to the surface of the hydrogen storage metal substrate to generate heat. ,
    A heat generation method characterized by that.
  12.  反応炉内に、重水素を吸蔵する金属からなる水素吸蔵金属基板と、前記水素吸蔵金属基板に対向して設けられ前記水素吸蔵金属基板の表面電位を制御するための平板状の対向電極と、が設けられ、前記水素吸蔵金属基板を基準電位として、正電位の対向電極であれば重水素が前記水素吸蔵金属基板内に移動する水素吸蔵が生起し、負電位の対向電極であれば前記水素吸蔵金属基板の内部から表面へ拡散した重水素により過剰発熱反応が生起する発熱装置であって、
     前記対向電極を前記水素吸蔵金属基板に対して正電圧と負電圧との間で切り替えることで水素吸蔵と過剰発熱反応とを時間的に交互に生起させ、
     前記対向電極と前記水素吸蔵金属基板との間に酸化重水素(DO)電解液のフローを形成する供給口が前記反応炉に設けられ、前記水素吸蔵金属基板の表面が前記フローの方向に延びたナノ構造の発熱体からなることを特徴とする発熱装置。
    In the reaction furnace, a hydrogen storage metal substrate made of a metal that stores heavy hydrogen, a flat plate-shaped counter electrode provided facing the hydrogen storage metal substrate and for controlling the surface potential of the hydrogen storage metal substrate, If the counter electrode has a positive potential, hydrogen storage occurs in which heavy hydrogen moves into the hydrogen storage metal substrate, and if the counter electrode has a negative potential, the hydrogen is stored. A heat generating device in which an excessive exothermic reaction occurs due to heavy hydrogen diffused from the inside to the surface of the storage metal substrate.
    By switching the counter electrode between a positive voltage and a negative voltage with respect to the hydrogen storage metal substrate, hydrogen storage and an excessive exothermic reaction occur alternately in time.
    The deuterium oxide between the counter electrode and the hydrogen absorbing metal substrate (D 2 O) supply port for forming a flow of the electrolyte is provided in the reactor, the direction of the surface the flow of the hydrogen-absorbing metal substrate A heat generating device characterized in that it is composed of a heating element having a nanostructure extending to.
  13.  反応炉内に第1反応室と第2反応室とが設けられ、重水素を吸蔵する金属からなる水素吸蔵金属基板が前記第1反応室と前記第2反応室とを空間的に分離し、
     前記第1反応室に前記水素吸蔵金属基板の第1面に対向した平板状の第1対向電極を設け、前記第2反応室に前記水素吸蔵金属基板の第2面に対向した平板状の第2対向電極を設け、
     前記第1対向電極と前記水素吸蔵金属基板の前記第1面との間に酸化重水素(DO)電解液あるいは重水素(D)ガスのフローを形成する第1供給口が前記第1反応室に設けられ、前記第2対向電極と前記水素吸蔵金属基板の前記第2面との間に冷却水のフローを形成する第2供給口が前記第2反応室に設けられ、
     前記第1対向電極に正電圧を、前記第2対向電極に負電圧をそれぞれ印加することで、前記水素吸蔵金属基板の前記第1面で水素吸蔵を生起させ、前記第2面で前記水素吸蔵金属基板の内部から表面へ拡散した重水素により過剰発熱反応を生起させる、ことを特徴とする発熱装置。
    A first reaction chamber and a second reaction chamber are provided in the reaction furnace, and a hydrogen storage metal substrate made of a metal that stores deuterium spatially separates the first reaction chamber and the second reaction chamber.
    The first reaction chamber is provided with a flat plate-shaped first counter electrode facing the first surface of the hydrogen storage metal substrate, and the second reaction chamber is provided with a flat plate-shaped first facing electrode of the hydrogen storage metal substrate. 2 counter electrodes are provided
    Wherein the first feed port to form a flow of deuterium oxide (D 2 O) electrolyte or deuterium (D 2) gas between the first surface of the hydrogen absorbing metal substrate and the first counter electrode first A second supply port provided in one reaction chamber and forming a flow of cooling water between the second counter electrode and the second surface of the hydrogen storage metal substrate is provided in the second reaction chamber.
    By applying a positive voltage to the first counter electrode and a negative voltage to the second counter electrode, hydrogen storage occurs on the first surface of the hydrogen storage metal substrate, and the hydrogen storage occurs on the second surface. A heating device characterized in that an excessive exothermic reaction is caused by heavy hydrogen diffused from the inside to the surface of a metal substrate.
  14.  前記水素吸蔵金属基板は前記第1面で吸蔵された重水素が前記水素吸蔵金属基板内を通して前記第2面に拡散する性質を有する金属からなることを特徴とする請求項13に記載の発熱装置。 The heat generating device according to claim 13, wherein the hydrogen storage metal substrate is made of a metal having a property that deuterium stored on the first surface is diffused to the second surface through the hydrogen storage metal substrate. ..
  15.  前記水素吸蔵金属基板は前記第1面側に重水素を選択的に透過させる水素分離膜を有することを特徴とする請求項13または14に記載の発熱装置。 The heat generating device according to claim 13 or 14, wherein the hydrogen storage metal substrate has a hydrogen separation membrane on the first surface side for selectively permeating deuterium.
PCT/JP2021/014437 2020-04-07 2021-04-05 Cold fusion device, and heat generation device and heat generation method using cold fusion WO2021206036A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020069438 2020-04-07
JP2020-069438 2020-04-07
JP2020-123285 2020-07-17
JP2020123285A JP2020170020A (en) 2020-04-07 2020-07-17 Cold nuclear fusion apparatus, and heat generation method and heating unit by cold nuclear fusion
JP2020175041 2020-10-16
JP2020-175041 2020-10-16
JP2021009701A JP2022007951A (en) 2020-04-07 2021-01-25 Cold nuclear fusion device, and method and device for generating heat due to cold nuclear fusion
JP2021-009701 2021-05-10

Publications (1)

Publication Number Publication Date
WO2021206036A1 true WO2021206036A1 (en) 2021-10-14

Family

ID=78023250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014437 WO2021206036A1 (en) 2020-04-07 2021-04-05 Cold fusion device, and heat generation device and heat generation method using cold fusion

Country Status (1)

Country Link
WO (1) WO2021206036A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203775A (en) * 1992-01-24 1993-08-10 Matsushita Electric Ind Co Ltd Low temperature nuclear fusion apparatus and method
JPH0634776A (en) * 1992-07-15 1994-02-10 Tokyo Electric Power Co Inc:The Room temperature nuclear fusion heat generating device seam generating device and power plant
JPH07104081A (en) * 1993-10-05 1995-04-21 Hiroshi Kubota Exothermic device
JP2011226948A (en) * 2010-04-21 2011-11-10 Murata Mfg Co Ltd Heat generation method and regeneration method for heavy hydrogen storage metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203775A (en) * 1992-01-24 1993-08-10 Matsushita Electric Ind Co Ltd Low temperature nuclear fusion apparatus and method
JPH0634776A (en) * 1992-07-15 1994-02-10 Tokyo Electric Power Co Inc:The Room temperature nuclear fusion heat generating device seam generating device and power plant
JPH07104081A (en) * 1993-10-05 1995-04-21 Hiroshi Kubota Exothermic device
JP2011226948A (en) * 2010-04-21 2011-11-10 Murata Mfg Co Ltd Heat generation method and regeneration method for heavy hydrogen storage metal

Similar Documents

Publication Publication Date Title
Alonso Structure and properties of atomic nanoclusters
CN102217001B (en) Method for producing energy and apparatus therefor
RU2265677C2 (en) Electrode and cell device
US8440165B2 (en) Dislocation site density techniques
US20070280398A1 (en) Modified electrodes for low energy nuclear reaction power generators
KR20160041937A (en) Reactant, heating device, and heating method
TW202045862A (en) Magnetohydrodynamic hydrogen electrical power generator
US20150375198A1 (en) Methods of gas confinement within the voids of crystalline material and articles thereof
US20130121449A1 (en) Method and device for direct nuclear energy conversion in electricity in fusion and transmutation processes
US20130295512A1 (en) Power units based on dislocation site techniques
WO1994016446A1 (en) Self-catalyzed nuclear fusion of lithium-6 and deuterium using alpha particles
JP2022007951A (en) Cold nuclear fusion device, and method and device for generating heat due to cold nuclear fusion
WO2021206036A1 (en) Cold fusion device, and heat generation device and heat generation method using cold fusion
MX2014012863A (en) Apparatus and process for penetration of the coulomb barrier.
WO2010096080A1 (en) Low-energy-nuclear-reaction based energy source
US20100303188A1 (en) Interactions of Charged Particles on Surfaces for Fusion and Other Applications
JP2020170020A (en) Cold nuclear fusion apparatus, and heat generation method and heating unit by cold nuclear fusion
US9715945B2 (en) Fusion reactor
US7279088B2 (en) Catalytic electrode, cell, system and process for storing hydrogen/deuterium
Oku Possible applications of nanomaterials for nuclear fusion devices
US20190318833A1 (en) Methods for enhancing anomalous heat generation
EP0531454B1 (en) Distributed deuterium-lithium energy apparatus
US20080205572A1 (en) Apparatus and process for generating nuclear heat
Kim Surface‐reaction theory of coland and warm fusion
Szpak et al. PRECURSORS AND THE FUSION REACTIONS IN POLARIZED Pd/D–D 2 O SYSTEM: EFFECT OF AN EXTERNAL ELECTRIC FIELD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785646

Country of ref document: EP

Kind code of ref document: A1