JP2011226711A - Cooling structure and cooling method of flash furnace - Google Patents

Cooling structure and cooling method of flash furnace Download PDF

Info

Publication number
JP2011226711A
JP2011226711A JP2010097344A JP2010097344A JP2011226711A JP 2011226711 A JP2011226711 A JP 2011226711A JP 2010097344 A JP2010097344 A JP 2010097344A JP 2010097344 A JP2010097344 A JP 2010097344A JP 2011226711 A JP2011226711 A JP 2011226711A
Authority
JP
Japan
Prior art keywords
cooling
water
ceiling
smelting furnace
flash smelting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010097344A
Other languages
Japanese (ja)
Inventor
Katsuya Toda
勝弥 戸田
Mitsumasa Hoshi
光政 星
Masaharu Takahashi
政晴 高橋
Hiroharu Okamura
博春 岡村
Masanobu Fujita
昌伸 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Tobata Seisakusho Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Tobata Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd, Tobata Seisakusho Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2010097344A priority Critical patent/JP2011226711A/en
Publication of JP2011226711A publication Critical patent/JP2011226711A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling structure of a flash furnace for cooling a settler ceiling portion whose temperature is made high by a heat load.SOLUTION: In the flash furnace 10 in which a shape of the settler ceiling portion 60 is made into an arch shape, the cooling structure 70 of the flash furnace is constituted by arranging a plurality of water cooled jackets 71 by adjusting them to the arch shape of the settler ceiling portion 60. The shapes of respective parts of the cooling structure 70 differ at every place where the structure is arranged by adjusting it to the shape of the settler ceiling portion. A copper pipe through which cooling water flows is cast into the cooling jacket which is hung down and supported so that it can vertically operate.

Description

本発明は、自溶炉のセットラ天井部の冷却構造に関する。   The present invention relates to a cooling structure for a settling ceiling of a flash smelting furnace.

銅製錬の製錬工程では、選鉱により得られた精鉱を酸素富化空気あるいは高温熱風と同時に自溶炉に投入し、瞬間的に化学反応を起こさせてマットとスラグに分離する。このような自溶炉1は、図1に示すように、反応シャフト2、セットラ3、アップテイク4から構成され、反応シャフト2には1〜3本の精鉱バーナ5が備えられている。精鉱は精鉱バーナ5によって炉内に吹き込まれる。   In the smelting process of copper smelting, the concentrate obtained by the beneficiation is introduced into a flash smelting furnace simultaneously with oxygen-enriched air or high-temperature hot air to cause a chemical reaction instantaneously and separate into mat and slag. As shown in FIG. 1, such a flash smelting furnace 1 includes a reaction shaft 2, a setter 3, and an uptake 4, and the reaction shaft 2 is provided with 1 to 3 concentrate burners 5. The concentrate is blown into the furnace by the concentrate burner 5.

このような自溶炉では銅の製錬工程上、熱の発生が避けられない。特に、近年の銅生産量の増加要求に伴い、高負荷での操業が必要となり、自溶炉内で発生する熱量も増加することとなった。このため、自溶炉を構成する耐熱レンガ等の耐火材の劣化進行が早まることとなっていた。これに対し、耐火材の劣化進行を抑制する技術が特許文献1乃至5に開示されている。   In such a flash furnace, heat generation is unavoidable in the copper smelting process. In particular, with the recent demand for increased copper production, operation at high loads is required, and the amount of heat generated in the flash smelting furnace has also increased. For this reason, deterioration progress of refractory materials, such as a heat-resistant brick which comprises a flash smelting furnace, was to be accelerated. On the other hand, Patent Documents 1 to 5 disclose techniques for suppressing the progress of deterioration of the refractory material.

特許文献1には、自溶炉の反応シャフトの天井部に配置された精鉱バーナ付近の点検孔に装着する水冷ジャケット構造が示されている。特許文献2には、自溶炉本体からマットまたはスラグを抜き出すためのタップホールの冷却構造が示されている。特許文献3には、自溶炉のシャフト近傍に位置するセットラの三角天井部に、冷却水の流れるパイプ部材を鋳込んだ銅製の水冷ジャケットを吊り下げ支持した炉体水冷構造が示されている。特許文献4には、自溶炉のシャフトとセットラとの連結部またはアップテイクとセットラとの連結部に水冷ジャケットを吊り下げ支持した自溶炉の炉体冷却構造が示されている。特許文献5には、自溶炉のシャフト直下のスラグ層が生成する領域の耐火物を冷却する炉体水冷ジャケットが示されている。   Patent Document 1 discloses a water-cooled jacket structure that is attached to an inspection hole in the vicinity of a concentrate burner arranged on the ceiling of a reaction shaft of a flash smelting furnace. Patent Document 2 discloses a tap hole cooling structure for extracting a mat or slag from a flash smelting furnace main body. Patent Document 3 shows a furnace water cooling structure in which a copper water cooling jacket in which a pipe member through which cooling water is cast is suspended and supported on a triangular ceiling portion of a setter located near the shaft of a flash furnace. . Patent Document 4 shows a furnace body cooling structure of a flash smelting furnace in which a water cooling jacket is suspended and supported at a connecting part between a shaft and a setr of a flash furnace or a connecting part between an uptake and a setr. Patent Document 5 discloses a furnace water cooling jacket for cooling a refractory in a region where a slag layer immediately below the shaft of a flash furnace is generated.

特開2009−162401号公報JP 2009-162401 A 特許第4350119号公報Japanese Patent No. 4350119 特開2008−202923号公報JP 2008-202923 A 特許第4187752号公報Japanese Patent No. 4187552 特許第4064387号公報Japanese Patent No. 4064387

ところで、自溶炉内で精鉱が反応し熱が発生すると、セットラ天井部にも熱の影響が現われる。セットラ天井部のレンガは熱負荷による影響で損耗が著しく、レンガが損耗すると、セットラ天井部のレンガが脱落してしまうことが考えられ、レンガが脱落することにより、自溶炉の操業を停止する必要がある。さらには、自溶炉内の排ガスが漏洩することも考えられ、環境汚染に対する配慮も必要となる。このセットラ天井部のレンガの寿命は、一年半と短命であり、レンガの交換作業のために、自溶炉の操業を停止しなければならず、自溶炉の稼働率を低下させる要因となっていた。また、レンガの交換にも材料費、作業費のコストがかかっていた。これに対し、上記の特許文献には反応シャフトのペチコート部や三角天井、反応シャフトとセットラとの連結部を冷却する構成はあるが、セットラ天井部を冷却するものはみられない。   By the way, when the concentrate reacts in the flash furnace and heat is generated, the influence of the heat also appears on the ceiling of the setter. The bricks on the setra ceiling are subject to significant damage due to the heat load. If the bricks are worn out, the bricks on the setra ceiling may fall off, and the operation of the flash furnace is stopped when the bricks fall off. There is a need. Furthermore, it is considered that exhaust gas in the flash smelting furnace leaks, and it is necessary to consider environmental pollution. The life of bricks on the ceiling of this setra is short and a year and a half, and the operation of the flash smelting furnace has to be stopped for brick replacement work, which is a factor that reduces the operating rate of the flash smelting furnace It was. In addition, replacement of bricks also required material costs and work costs. On the other hand, in the above-mentioned patent document, there is a configuration that cools the petticoat portion of the reaction shaft, the triangular ceiling, and the connection portion between the reaction shaft and the setler, but nothing that cools the setter ceiling portion is found.

そこで、本発明は、熱負荷により高温化するセットラ天井部を冷却することを目的とする。   Accordingly, an object of the present invention is to cool a setter ceiling that is heated to a high temperature by a thermal load.

かかる課題を解決する本発明の自溶炉の冷却構造体は、セットラ天井部の形状をアーチ状とした自溶炉において、前記セットラ天井部のアーチ形状にあわせて、複数の水冷ジャケットを配置して構成したことを特徴とする。   The cooling structure of the flash smelting furnace of the present invention that solves such problems is a flash smelting furnace in which the shape of the setter ceiling part is an arch shape, and a plurality of water cooling jackets are arranged in accordance with the arch shape of the settler ceiling part. It is characterized by being configured.

上記の自溶炉の冷却構造体において、前記水冷ジャケットは、前記セットラ天井部の形状にあわせて、配置される場所ごとにそれぞれの形状が異なる構成とすることができる。   In the cooling structure of the flash smelting furnace, the water cooling jacket may have a configuration in which each shape is different for each place where the water cooling jacket is arranged in accordance with the shape of the settling ceiling.

また、上記の自溶炉の冷却構造体は、前記セットラ天井部の熱負荷の高い箇所に前記水冷ジャケットを配置することができる。   Moreover, the cooling structure of the flash smelting furnace may be configured such that the water cooling jacket is disposed at a location where the thermal load on the setter ceiling is high.

上記の自溶炉の冷却構造体は、前記セットラ天井部の反応シャフト側に到る傾斜部分を構成することができる。   The cooling structure of the flash smelting furnace may constitute an inclined portion that reaches the reaction shaft side of the setter ceiling.

上記の自溶炉の冷却構造体において、前記水冷ジャケットは、冷却水の流れる銅パイプを鋳込んだ構成とすることができる。   In the cooling structure of the flash smelting furnace, the water cooling jacket may be formed by casting a copper pipe through which cooling water flows.

上記の自溶炉の冷却構造体において、前記水冷ジャケットは上下方向に稼働可能に吊下げ支持された構成とすることができる。   In the cooling structure of the flash smelting furnace described above, the water cooling jacket may be suspended and supported so as to be operable in the vertical direction.

上記の自溶炉の冷却構造体において、前記水冷ジャケットの炉側表面は凹凸が形成され、凹部に耐火物が充填された構成とすることができる。   In the cooling structure of the flash smelting furnace described above, the furnace-side surface of the water-cooled jacket may be formed with irregularities, and the concave parts are filled with a refractory.

また、上記課題を解決する本発明の自溶炉の冷却方法は、セットラ天井部の形状をアーチ状とした自溶炉において、前記セットラ天井部のアーチ形状にあわせて配置した複数の水冷ジャケットへ冷却水を供給して冷却することを特徴とする。   Moreover, the cooling method of the flash smelting furnace of the present invention that solves the above-described problem is a flash smelting furnace in which the shape of the settler ceiling part is an arch shape, to a plurality of water cooling jackets arranged according to the arch shape of the settler ceiling part. Cooling is performed by supplying cooling water.

上記の自溶炉の冷却方法は、前記セットラ天井部の形状にあわせて、配置される場所ごとにそれぞれの形状が異なる水冷ジャケットへ冷却水を供給して冷却する方法とすることができる。   The method for cooling the flash smelting furnace may be a method of cooling by supplying cooling water to a water cooling jacket having a different shape for each place in accordance with the shape of the settling ceiling.

上記の自溶炉の冷却方法は、前記セットラ天井部の熱負荷の高い箇所に配置した水冷ジャケットへ冷却水を供給して冷却する方法とすることができる。   The method for cooling the flash furnace may be a method of cooling by supplying cooling water to a water-cooling jacket disposed in a place where the setr ceiling has a high heat load.

上記の自溶炉の冷却方法は、前記セットラ天井部の反応シャフト側に到る傾斜部分に配置した水冷ジャケットへ冷却水を供給して冷却する方法とすることができる。   The method for cooling the flash furnace may be a method of cooling by supplying cooling water to a water cooling jacket disposed in an inclined portion reaching the reaction shaft side of the settler ceiling.

上記の自溶炉の冷却方法は、前記セットラ天井部に配置した冷却水の流れる銅パイプを鋳込んだ水冷ジャケットへ冷却水を供給して冷却する方法とすることができる。   The method of cooling the flash furnace may be a method of cooling by supplying cooling water to a water-cooling jacket in which a copper pipe through which cooling water is disposed arranged on the setter ceiling is cast.

上記の自溶炉の冷却方法は、上下方向に稼働可能に吊下げ支持されて、前記セットラ天井部に配置された水冷ジャケットへ冷却水を供給して冷却する方法とすることができる。   The method for cooling the flash furnace may be a method of cooling by supplying cooling water to a water-cooling jacket that is suspended and supported so as to be operable in the vertical direction and is arranged on the setter ceiling.

上記の自溶炉の冷却方法は、炉側表面に凹凸が形成され、凹部に耐火物が充填されている前記セットラ天井部に配置された水冷ジャケットへ冷却水を供給して冷却する方法とすることができる。   The cooling method of the flash furnace is a method of cooling by supplying cooling water to the water-cooling jacket disposed on the setter ceiling portion in which irregularities are formed on the surface on the furnace side and the refractory is filled in the concave portions. be able to.

本発明の自溶炉の冷却装置は、以下の効果を奏する。
(1)アーチ形状のセットラ天井部に水冷ジャケットを備え冷却水を循環することにより、セットラ天井部を冷却し、熱損耗により、天井部の構造物が炉内へ落下することを抑制できる。これにより、構造物の交換回数が減らせ、自溶炉を停止する回数が減少するため、自溶炉の稼働効率を向上できる。また、落下防止により、排ガスの漏洩を防止できる。
(2)特に、セットラ天井部のうち、熱負荷の高い反応シャフト側に水冷ジャケットを備えることにより、炉内への熱の影響を解消する効果が際立つ。
(3)水冷ジャケットは、熱伝導性の良い銅パイプを鋳込んだ構成としたことにより、冷却効果が向上できる。また、万が一水冷ジャケットに亀裂等が発生しても、銅パイプに亀裂が生じない限り水漏れしないため、冷却水の水漏れが防止できる。
(4)水冷ジャケットを複数に分割できる構成としたことにより、損耗した部分のみを交換することができる。このため、水冷ジャケットの交換にかかる費用と時間を低減し、作業効率を向上できる。また、水冷ジャケットの交換の作業スペースが狭いため、作業効率が向上することにより、作業員の負担を軽減できる。
(5)また、水冷ジャケットは上下方向に稼働可能に吊下げ支持されたことにより、交換作業の負担を軽減することができる。
(6)また、セットラ天井構造に合わせて水冷ジャケットを構成することにより、いかなる構造の天井にも対応できる。また、天井構造に合わせた形状であるため、隙間が生じにくく、排ガスの漏洩を防ぐことができる。
The flash smelting apparatus of the present invention has the following effects.
(1) By providing a water cooling jacket on the arch-shaped settler ceiling part and circulating the cooling water, it is possible to cool the settler ceiling part and to prevent the structure of the ceiling part from falling into the furnace due to thermal wear. Thereby, since the frequency | count of replacement | exchange of a structure can be reduced and the frequency | count of stopping a flash smelting furnace reduces, the operating efficiency of a flash smelting furnace can be improved. Moreover, leakage of exhaust gas can be prevented by preventing the fall.
(2) In particular, by providing a water cooling jacket on the reaction shaft side having a high heat load in the ceiling of the setter, the effect of eliminating the influence of heat into the furnace stands out.
(3) The cooling effect can be improved by adopting a structure in which the water-cooled jacket is made by casting a copper pipe having good thermal conductivity. In addition, even if a crack or the like occurs in the water cooling jacket, water leakage does not occur unless the copper pipe is cracked, so that leakage of cooling water can be prevented.
(4) Since the water-cooling jacket can be divided into a plurality of parts, only a worn part can be replaced. For this reason, the expense and time concerning replacement | exchange of a water cooling jacket can be reduced, and work efficiency can be improved. Further, since the work space for replacing the water cooling jacket is narrow, the work efficiency can be improved, thereby reducing the burden on the worker.
(5) Moreover, since the water cooling jacket is suspended and supported so as to be operable in the vertical direction, the burden of replacement work can be reduced.
(6) Moreover, it can respond to the ceiling of any structure by comprising a water-cooling jacket according to a settler ceiling structure. Moreover, since it is a shape according to the ceiling structure, it is difficult for gaps to occur, and leakage of exhaust gas can be prevented.

従来技術の自溶炉の概略構成の説明図である。It is explanatory drawing of schematic structure of the flash smelting furnace of a prior art. 冷却構造体を備える自溶炉の概略構成を示した説明図であって、(a)は自溶炉の平面図であり、(b)は(a)中のA−A線における断面図である。It is explanatory drawing which showed schematic structure of the flash smelting furnace provided with a cooling structure, (a) is a top view of a flash smelting furnace, (b) is sectional drawing in the AA in (a). is there. 冷却構造体を示した斜視図である。It is the perspective view which showed the cooling structure. (a)は冷却構造体の正面図、(b)は冷却構造体の平面図を示した説明図である。(A) is a front view of a cooling structure, (b) is explanatory drawing which showed the top view of the cooling structure. 水冷ジャケットを示した説明図であって、(a)は水冷ジャケットを自溶炉に設置した際に炉の外側から見た際の水冷ジャケットの正面図、(b)は側面図、(c)は背面図、(d)は(a)のB−B断面図であり、(e)は図5(a)のC−C断面図である。It is explanatory drawing which showed the water cooling jacket, Comprising: (a) is a front view of the water cooling jacket when it sees from the outside of a furnace when installing a water cooling jacket in a flash smelting furnace, (b) is a side view, (c) Is a rear view, (d) is a BB cross-sectional view of (a), and (e) is a CC cross-sectional view of FIG. 5 (a). 自溶炉に設置された水冷ジャケットを断面にして示した説明図である。It is explanatory drawing which showed the water cooling jacket installed in the flash smelting furnace in the cross section.

以下、本発明を実施するための一形態を図面と共に詳細に説明する。   Hereinafter, an embodiment for carrying out the present invention will be described in detail with reference to the drawings.

本実施例における冷却構造体70を備える自溶炉10について図面を参照しつつ説明する。図2は本実施例の冷却構造体70を備える自溶炉10の概略構成を示した説明図である。図2(a)は自溶炉10の平面図であって、図2(b)は図2(a)中のA−A線における断面図である。   The flash smelting furnace 10 including the cooling structure 70 in the present embodiment will be described with reference to the drawings. FIG. 2 is an explanatory diagram showing a schematic configuration of the flash smelting furnace 10 including the cooling structure 70 of the present embodiment. 2A is a plan view of the flash smelting furnace 10, and FIG. 2B is a cross-sectional view taken along the line AA in FIG. 2A.

図2に示すように、自溶炉10は、反応シャフト20、セットラ30、アップテイク40を備えている。反応シャフト20の上部には精鉱バーナ50が備えられており、精鉱バーナ50から反応シャフト20内へ精鉱と酸素富化空気が吹き込まれる。吹き込まれた精鉱と酸素富化空気は反応シャフト20内で混合して瞬間的に反応し、セットラ30内において層状のマットとスラグに分離する。   As shown in FIG. 2, the flash smelting furnace 10 includes a reaction shaft 20, a setter 30, and an uptake 40. A concentrate burner 50 is provided above the reaction shaft 20, and concentrate and oxygen-enriched air are blown into the reaction shaft 20 from the concentrate burner 50. The blown concentrate and oxygen-enriched air are mixed in the reaction shaft 20 and react instantaneously, and are separated into a layered mat and slag in the setter 30.

セットラ30の天井部60は機械的強度の強いアーチ状に形成されている。また、このアーチ状の天井部60の入口、すなわち、セットラ30の天井部の反応シャフト20側に到る傾斜部分61は、精鉱の酸化反応により高温となったガスが通過するため、セットラ30の天井部60の中でも特に熱負荷が高い。このような熱負荷の高い傾斜部分61に、冷却構造体70が組み込まれている。この冷却構造体70はアーチ状のH鋼80に挟まれるように位置している。   The ceiling portion 60 of the setter 30 is formed in an arch shape having a high mechanical strength. In addition, since the gas that has become hot due to the oxidation reaction of the concentrate passes through the entrance of the arch-shaped ceiling 60, that is, the inclined portion 61 that reaches the reaction shaft 20 side of the ceiling of the setter 30, the setter 30 Among these ceiling portions 60, the heat load is particularly high. The cooling structure 70 is incorporated in the inclined portion 61 having such a high heat load. The cooling structure 70 is positioned so as to be sandwiched between the arched H steel 80.

図3は冷却構造体70を示した斜視図である。また、図4(a)は冷却構造体70の正面図、図4(b)は冷却構造体70の平面図を示した説明図である。なお、図4(a)では詳細な構成の記載は省略している。冷却構造体70は、内部を冷却水の流れる銅パイプを鋳込んだ水冷ジャケット71を備えている。図3、図4に示すように、冷却構造体70は、セットラ30の天井部60のアーチ構造にあわせ、2列12段24個に小分けした水冷ジャケット71に分割されている。冷却構造体70の配置される傾斜部位61は図2の断面のように傾斜した形状と、図2の断面に直行する方向のアーチ状の形状とにより、複雑な形状をしている。このため、冷却構造体70を構成する水冷ジャケット71のそれぞれは配置される場所ごとに大きさ、角度などの形状が異なる。また、図3、図4(a)、図4(b)中に示す冷却構造体70に示す3つの孔70a、70b、70cは自溶炉10内の圧力を測定する圧力計、または重油バーナの設置や銑鉄の投入口として使用される。   FIG. 3 is a perspective view showing the cooling structure 70. 4A is a front view of the cooling structure 70, and FIG. 4B is an explanatory view showing a plan view of the cooling structure 70. In FIG. 4A, detailed description of the configuration is omitted. The cooling structure 70 includes a water cooling jacket 71 in which a copper pipe through which cooling water flows is cast. As shown in FIGS. 3 and 4, the cooling structure 70 is divided into water-cooling jackets 71 that are subdivided into 24 in 12 rows and 12 rows in accordance with the arch structure of the ceiling 60 of the setter 30. The inclined portion 61 in which the cooling structure 70 is arranged has a complicated shape with an inclined shape as in the cross section of FIG. 2 and an arch shape in a direction perpendicular to the cross section of FIG. For this reason, each of the water cooling jackets 71 constituting the cooling structure 70 has a different shape such as a size and an angle for each place. Further, the three holes 70a, 70b, 70c shown in the cooling structure 70 shown in FIGS. 3, 4 (a), 4 (b) are pressure gauges or heavy oil burners for measuring the pressure in the flash furnace 10. It is used as an installation port for pig iron and pig iron.

図5は水冷ジャケット71のひとつを示した説明図である。図5(a)は水冷ジャケット71を自溶炉10に設置した際に炉の外側から見た際の水冷ジャケット71の正面図、図5(b)は水冷ジャケット71の側面図、図5(c)は水冷ジャケット71の背面図、図5(d)は図5(a)のB−B断面図であり、図5(e)は図5(a)のC−C断面図である。   FIG. 5 is an explanatory view showing one of the water cooling jackets 71. 5A is a front view of the water cooling jacket 71 when viewed from the outside of the furnace when the water cooling jacket 71 is installed in the flash furnace 10, FIG. 5B is a side view of the water cooling jacket 71, and FIG. FIG. 5C is a rear view of the water cooling jacket 71, FIG. 5D is a BB cross-sectional view of FIG. 5A, and FIG. 5E is a CC cross-sectional view of FIG. 5A.

水冷ジャケット71には、冷却水の流れる銅製のパイプ72が2本並べて鋳込まれている。水冷ジャケット71において2本のパイプ72のそれぞれは給水口73と排水口74とを備えている。パイプ72のそれぞれの給水口73が斜向かいに配置され、パイプ72のそれぞれの排水口74が斜向かいに配置され、それぞれのパイプ72の中を流れる冷却水の方向が異なるように構成されている。また、水冷ジャケット71の正面中央付近には、吊り輪用のボルト穴75が3箇所設けられている。また、図5(c)に示すように、自溶炉10に設置した際に炉の内側に向く水冷ジャケット71の背面には凹部76が設けられている。水冷ジャケット71は配置される場所により形状が異なるが、冷却水の通過するパイプ72、給水口73、排水口74、ボルト穴75、背面の凹部76はいずれの水冷ジャケット71も備えている。   Two copper pipes 72 through which cooling water flows are juxtaposed into the water cooling jacket 71. In the water cooling jacket 71, each of the two pipes 72 includes a water supply port 73 and a drain port 74. The water supply ports 73 of the pipes 72 are arranged diagonally oppositely, the drainage ports 74 of the pipes 72 are arranged diagonally oppositely, and the direction of the cooling water flowing through the pipes 72 is different. . Near the center of the front surface of the water cooling jacket 71, three bolt holes 75 for suspension rings are provided. Moreover, as shown in FIG.5 (c), when installed in the flash smelting furnace 10, the recessed part 76 is provided in the back surface of the water cooling jacket 71 which faces the inner side of a furnace. Although the shape of the water cooling jacket 71 differs depending on the place where it is disposed, the pipe 72 through which the cooling water passes, the water supply port 73, the drainage port 74, the bolt hole 75, and the recess 76 on the back surface are provided with any water cooling jacket 71.

図6は自溶炉に設置された冷却構造体70を断面にして示した説明図である。冷却構造体70は2本のH鋼80の間に位置する。また、冷却構造体70を分割した水冷ジャケット71は、吊下部材90により、上下方向に稼働可能に吊下げ支持できる構成となっている。   FIG. 6 is an explanatory view showing a cross section of the cooling structure 70 installed in the flash smelting furnace. The cooling structure 70 is located between the two H steels 80. Further, the water cooling jacket 71 obtained by dividing the cooling structure 70 is configured to be suspended and supported by the suspension member 90 so as to be operable in the vertical direction.

さらに、図6に示すように、水冷ジャケット71の凹部76にはキャスタブル等の耐火物77が充填される。この耐火物77は水冷ジャケット71の炉内側に厚さ100mmとなるように不定形耐火物を突き固めて形成する。このような不定形耐火物としては、スラグより融点が高く、熱膨張性が小さい物質が好ましく、放熱特性、硬度、耐摩耗性、耐食性、高温強度性、耐熱衝撃性など多くの機能特性を備えたアルミナ系のキャスタブル、例えば、アルミナ・クロミア質が好ましい。また、主成分がMgOのもの(例えば:株式会社ヨータイ製:ヨータイスタンプ(R−MP))なども利用することができる。凹部76断面の形状は、三角形、四角形、矩形、台形、U字形、皿型など種々の形状が可能であるが、耐火物脱落防止の観点から、炉内側に向かって窄んだ台形形状が好ましい。また、凹部76の表面は、平坦面、細かい凹凸面などの態様が可能であり、さらに充填される耐火物と凹部76が堅く係合するように、ピン状突起を設けることも可能であるが、充填される耐火物の脱落をタイミングよく行うためには鋳造や切削などで得られる平坦面とするのが好ましい。   Furthermore, as shown in FIG. 6, the recess 76 of the water cooling jacket 71 is filled with a refractory 77 such as castable. This refractory 77 is formed by tamping an amorphous refractory so as to have a thickness of 100 mm inside the furnace of the water cooling jacket 71. As such an irregular refractory material, a substance having a higher melting point than slag and a low thermal expansion property is preferable, and has many functional characteristics such as heat dissipation characteristics, hardness, wear resistance, corrosion resistance, high temperature strength, and thermal shock resistance. Alumina-based castables such as alumina chromia are preferred. Moreover, the thing whose main component is MgO (For example: The product made from Yotai: Yawtai stamp (R-MP)) etc. can also be utilized. Various shapes such as a triangle, a quadrangle, a rectangle, a trapezoid, a U-shape, and a dish shape are possible as the cross-sectional shape of the recess 76, but a trapezoidal shape that is narrowed toward the inside of the furnace is preferable from the viewpoint of preventing the refractory from falling off. . Further, the surface of the recess 76 can be a flat surface, a fine uneven surface, or the like, and further, pin-like protrusions can be provided so that the refractory to be filled and the recess 76 are firmly engaged. In order to remove the filled refractory with good timing, a flat surface obtained by casting or cutting is preferable.

次に、水冷ジャケット71を通る冷却水について説明する。冷却構造体70は4つの冷却水の経路を備える。水冷ジャケット71は6つで1つの冷却水の経路を形成し、例えば、図4中の右上側の6つの水冷ジャケット71a、71b、71c、71d、71e、71fが1つの経路を形成する。冷却水は端に配置された水冷ジャケット71aへ流入し、水冷ジャケット71aから隣に配置された水冷ジャケット71bへ移動し、順々に隣の水冷ジャケットへ移動する。冷却水は中央の水冷ジャケット71fに到達すると水冷ジャケット71f内を折り返して再び水冷ジャケット71aへ戻るような経路Dを通る。同様に、図4中の他の水冷ジャケットも6つで一つの経路を構成している。このように冷却構造体70内を冷却水が往復する構成となっており、これにより効率よく冷却される。また、水冷ジャケット71内のパイプ72の内部へ流入する冷却水は、流入温度25〜35℃、流入速度23m/sであり、パイプ72から排出される冷却水は排出温度35〜45℃、流出速度23m/sである。また、冷却水の流量は33L/minである。   Next, the cooling water passing through the water cooling jacket 71 will be described. The cooling structure 70 includes four cooling water paths. Six water cooling jackets 71 form one cooling water path. For example, the six water cooling jackets 71a, 71b, 71c, 71d, 71e, 71f on the upper right side in FIG. 4 form one path. The cooling water flows into the water cooling jacket 71a disposed at the end, moves from the water cooling jacket 71a to the water cooling jacket 71b disposed adjacently, and sequentially moves to the adjacent water cooling jacket. When the cooling water reaches the central water-cooling jacket 71f, the cooling water returns through the water-cooling jacket 71f and returns to the water-cooling jacket 71a. Similarly, six other water-cooling jackets in FIG. 4 constitute one path. Thus, the cooling water is configured to reciprocate in the cooling structure 70, thereby efficiently cooling. The cooling water flowing into the pipe 72 in the water cooling jacket 71 has an inflow temperature of 25 to 35 ° C. and an inflow speed of 23 m / s, and the cooling water discharged from the pipe 72 has an exhaust temperature of 35 to 45 ° C. The speed is 23 m / s. The flow rate of the cooling water is 33 L / min.

上記において説明した本実施例の冷却構造体70は以下の効果を奏する。
(1)アーチ状のセットラ30の天井部60における熱負荷の高い反応シャフト30側に水冷ジャケット71を備え冷却水を循環することにより、セットラ30の天井部60を冷却し、熱損耗により天井部60の構造物が炉内へ落下することを抑制する。これにより、落下防止のため行われていた天井部60の構造物の交換回数を減少するため、自溶炉10の停止回数が減少し、自溶炉10の操業効率が向上する。また、落下防止により、排ガスの漏洩が防止され、環境事故を未然に防ぐ。
(2)水冷ジャケット71は、パイプ72を鋳込んだ構成としたことにより、万が一水冷ジャケット71に亀裂等が発生しても、パイプ72に亀裂が生じない限り水漏れしないため、冷却水の水漏れが防がれる。また、パイプ72を流れる冷却水が冷却構造体70を往復することにより、効率よく冷却が行われる。また、パイプ72は熱伝導性の良い銅製であるため、冷却効率が高い。
(3)冷却構造体70を複数の水冷ジャケット71に分割することにより、損耗した部分のみを交換することができる。このため、水冷ジャケット71の交換にかかる費用と時間を低減し、作業効率を向上する。また、水冷ジャケット71の交換の作業スペースは狭いが、作業効率が向上することにより、作業員の負担を軽減する。
(4)水冷ジャケット71の背面に凹部を設け、耐火物77を充填したことにより、水冷ジャケット71と耐火物77の熱伝導が効率よく行われ、炉内で発生する高温気流に熱せられる耐火物77を効率よく冷却する。
(5)また、水冷ジャケット71を上下方向に稼働可能に吊下げ支持したことにより、水冷ジャケット71の交換時の作業負担を軽減できる。すなわち、水冷ジャケット71を吊り下げて、配置する部位へ容易に移動ができるため、重量のある水冷ジャケット71を人手でセットラ30の天井部60へ運送する作業負担を軽減することができる。また、水冷ジャケット71を吊り下げて支持することにより、炉内への落下を防止できる。
(6)また、小分けした水冷ジャケット71を組み合わせ、アーチ状の天井構造に合わせて冷却構造体70を構成することにより、複雑な構造の天井にも対応する。また、天井構造に合わせて冷却構造体70が配置されるため、隙間が生じにくく、排ガスの漏洩が防がれる。
The cooling structure 70 of the present embodiment described above has the following effects.
(1) The ceiling portion 60 of the arch-shaped setter 30 is provided with a water cooling jacket 71 on the reaction shaft 30 side where the heat load is high, and the cooling water is circulated to cool the ceiling portion 60 of the setter 30 and the ceiling portion due to thermal wear. The structure of 60 is prevented from falling into the furnace. Thereby, since the frequency | count of replacement | exchange of the structure of the ceiling part 60 performed for fall prevention is reduced, the frequency | count of the stop of the flash smelting furnace 10 reduces, and the operation efficiency of the flash smelting furnace 10 improves. In addition, the fall prevention prevents the exhaust gas from leaking and prevents environmental accidents.
(2) Since the water cooling jacket 71 has a structure in which the pipe 72 is cast, even if a crack or the like occurs in the water cooling jacket 71, water does not leak unless the pipe 72 is cracked. Leakage is prevented. Further, the cooling water flowing through the pipe 72 reciprocates the cooling structure 70, whereby the cooling is performed efficiently. Moreover, since the pipe 72 is made of copper having good thermal conductivity, the cooling efficiency is high.
(3) By dividing the cooling structure 70 into a plurality of water cooling jackets 71, only the worn parts can be replaced. For this reason, the expense and time concerning replacement | exchange of the water cooling jacket 71 are reduced, and work efficiency is improved. Further, although the work space for exchanging the water cooling jacket 71 is narrow, the work efficiency is improved, thereby reducing the burden on the worker.
(4) By providing a recess on the back of the water-cooling jacket 71 and filling the refractory 77, the water-cooling jacket 71 and the refractory 77 conduct heat efficiently, and the refractory is heated by the high-temperature airflow generated in the furnace. 77 is cooled efficiently.
(5) Moreover, the work load at the time of replacement | exchange of the water cooling jacket 71 can be reduced by suspending and supporting the water cooling jacket 71 so that it can operate | move up and down. That is, the water cooling jacket 71 can be suspended and easily moved to the place where the water cooling jacket 71 is placed, so that the work burden of transporting the heavy water cooling jacket 71 to the ceiling 60 of the setter 30 manually can be reduced. Moreover, by dropping and supporting the water cooling jacket 71, it is possible to prevent the water cooling jacket 71 from falling into the furnace.
(6) Further, by combining the subdivided water cooling jacket 71 and configuring the cooling structure 70 in accordance with the arched ceiling structure, it is possible to cope with a ceiling having a complicated structure. In addition, since the cooling structure 70 is arranged in accordance with the ceiling structure, a gap is hardly generated, and leakage of exhaust gas is prevented.

上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、さらに本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。   The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited thereto. Various modifications of these embodiments are within the scope of the present invention. It is apparent from the above description that various other embodiments are possible within the scope.

1、10 自溶炉
2、20 反応シャフト
3、30 セットラ
4、40 アップテイク
5、50 精鉱バーナ
60 天井部
70 冷却構造体
71 水冷ジャケット
72 パイプ
76 凹部
77 耐火物
90 吊下部材
DESCRIPTION OF SYMBOLS 1,10 Flash furnace 2,20 Reaction shaft 3,30 Settler 4,40 Uptake 5,50 Concentrate burner 60 Ceiling part 70 Cooling structure 71 Water cooling jacket 72 Pipe 76 Recessed part 77 Refractory 90 Suspended member

Claims (14)

セットラ天井部の形状をアーチ状とした自溶炉において、前記セットラ天井部のアーチ形状にあわせて、複数の水冷ジャケットを配置して構成したことを特徴とする自溶炉の冷却構造体。   In the flash smelting furnace in which the shape of the settler ceiling part is an arch shape, a cooling structure of the flash smelting furnace is configured by arranging a plurality of water cooling jackets in accordance with the arch shape of the settler ceiling part. 前記水冷ジャケットは、前記セットラ天井部の形状にあわせて、配置される場所ごとにそれぞれの形状が異なる請求項1記載の自溶炉の冷却構造体。   The said water cooling jacket is a cooling structure of the flash smelting furnace of Claim 1 from which each shape differs for every location arrange | positioned according to the shape of the said settler ceiling part. 前記セットラ天井部の熱負荷の高い箇所に前記水冷ジャケットを配置した請求項1または2記載の自溶炉の冷却構造体。   The cooling structure of the flash smelting furnace according to claim 1 or 2, wherein the water cooling jacket is disposed at a location where the thermal load of the settler ceiling is high. 前記セットラ天井部の反応シャフト側に到る傾斜部分を構成した請求項1〜3記載の自溶炉の冷却構造体。   The cooling structure of the flash smelting furnace according to claim 1, wherein an inclined portion reaching the reaction shaft side of the settler ceiling is configured. 前記水冷ジャケットは、冷却水の流れる銅パイプを鋳込んだ請求項1〜4記載の自溶炉の冷却構造体。   The said water cooling jacket is a cooling structure of the flash smelting furnace of Claims 1-4 which cast the copper pipe through which cooling water flows. 前記水冷ジャケットは上下方向に稼働可能に吊下げ支持された請求項1〜5記載の自溶炉の冷却構造体。   The cooling structure for a flash smelting furnace according to claim 1, wherein the water cooling jacket is suspended and supported so as to be operable in the vertical direction. 前記水冷ジャケットの炉側表面は凹凸が形成され、凹部に耐火物が充填されている請求項1〜6記載の自溶炉の冷却構造体。   The cooling structure of the flash smelting furnace according to claim 1, wherein the furnace-side surface of the water-cooling jacket is provided with irregularities, and the concave parts are filled with a refractory. セットラ天井部の形状をアーチ状とした自溶炉において、前記セットラ天井部のアーチ形状にあわせて配置した複数の水冷ジャケットへ冷却水を供給して冷却することを特徴とする自溶炉の冷却方法。   In a flash smelting furnace having an arched shape of a settler ceiling, cooling is performed by supplying cooling water to a plurality of water cooling jackets arranged in accordance with the arch shape of the settler ceiling. Method. 前記セットラ天井部の形状にあわせて、配置される場所ごとにそれぞれの形状が異なる水冷ジャケットへ冷却水を供給して冷却する請求項8記載の自溶炉の冷却方法。   The method for cooling a flash furnace according to claim 8, wherein cooling water is supplied to a water-cooling jacket having a different shape for each place to be cooled in accordance with the shape of the setter ceiling. 前記セットラ天井部の熱負荷の高い箇所に配置した水冷ジャケットへ冷却水を供給して冷却する請求項8または9記載の自溶炉の冷却方法。   The cooling method of the flash smelting furnace according to claim 8 or 9, wherein cooling water is supplied to a water-cooling jacket disposed at a location where the heat load on the settler ceiling part is high to cool. 前記セットラ天井部の反応シャフト側に到る傾斜部分に配置した水冷ジャケットへ冷却水を供給して冷却する請求項8〜10記載の自溶炉の冷却方法。   The cooling method of the flash smelting furnace according to claim 8, wherein cooling water is supplied and cooled to a water cooling jacket disposed in an inclined portion reaching the reaction shaft side of the setter ceiling. 前記セットラ天井部に配置した冷却水の流れる銅パイプを鋳込んだ水冷ジャケットへ冷却水を供給して冷却する請求項8から11記載の自溶炉の冷却方法。   The method for cooling a flash furnace according to any one of claims 8 to 11, wherein cooling water is supplied and cooled to a water-cooling jacket in which a copper pipe through which cooling water flows, which is disposed on the setter ceiling, is cast. 上下方向に稼働可能に吊下げ支持されて、前記セットラ天井部に配置された水冷ジャケットへ冷却水を供給して冷却する請求項8〜12記載の自溶炉の冷却方法。   The method for cooling a flash furnace according to any one of claims 8 to 12, wherein the cooling water is cooled by supplying a cooling water to a water-cooling jacket that is suspended and supported so as to be operable in an up-down direction and disposed on the setter ceiling. 炉側表面に凹凸が形成され、凹部に耐火物が充填されている前記セットラ天井部に配置された水冷ジャケットへ冷却水を供給して冷却する請求項8〜13記載の自溶炉の冷却方法。   The cooling method of a flash smelting furnace according to claim 8 to 13, wherein cooling water is supplied and cooled to a water cooling jacket disposed on the settler ceiling part in which irregularities are formed on the furnace side surface and the refractory is filled in the concave part. .
JP2010097344A 2010-04-20 2010-04-20 Cooling structure and cooling method of flash furnace Pending JP2011226711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097344A JP2011226711A (en) 2010-04-20 2010-04-20 Cooling structure and cooling method of flash furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097344A JP2011226711A (en) 2010-04-20 2010-04-20 Cooling structure and cooling method of flash furnace

Publications (1)

Publication Number Publication Date
JP2011226711A true JP2011226711A (en) 2011-11-10

Family

ID=45042258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097344A Pending JP2011226711A (en) 2010-04-20 2010-04-20 Cooling structure and cooling method of flash furnace

Country Status (1)

Country Link
JP (1) JP2011226711A (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104705U (en) * 1977-01-28 1978-08-23
JPS5565494U (en) * 1978-10-28 1980-05-06
JPS60159589A (en) * 1984-01-27 1985-08-21 日本鉱業株式会社 Construction method in furnace
JPH0357169B2 (en) * 1983-12-27 1991-08-30
JPH04316983A (en) * 1991-04-15 1992-11-09 Nippon Steel Corp Furnace wall structure for metallurgic furnace
JPH08127825A (en) * 1994-10-27 1996-05-21 Mitsui Mining & Smelting Co Ltd Self-fluxing furnace
JPH10103871A (en) * 1996-09-30 1998-04-24 Nikko Kinzoku Kk Corner part cooling device and flat surface part cooling device for non-ferrous material refining furnace and arranging structure thereof
JPH11189829A (en) * 1997-12-26 1999-07-13 Mitsui Mining & Smelting Co Ltd Structure of triangle roof wall in flash smelting furnace
JP2002356725A (en) * 2002-04-10 2002-12-13 Sumitomo Metal Mining Co Ltd FLASH REDUCTION FURNACE FOR SMELTING Zn-Pb, AND OPERATING METHOD THEREOF
JP2002363659A (en) * 2001-06-04 2002-12-18 Nippon Mining & Metals Co Ltd Device for charging material containing iron in copper smelting furnace
JP2008202923A (en) * 2007-01-23 2008-09-04 Nikko Kinzoku Kk Furnace body water cooling structure for flash smelting furnace
JP2008235572A (en) * 2007-03-20 2008-10-02 Toyota Industries Corp Electronic component cooling device
JP2010505082A (en) * 2006-09-27 2010-02-18 オウトテック オサケイティオ ユルキネン Method for coating a cooling element
JP2011208920A (en) * 2010-03-30 2011-10-20 Pan Pacific Copper Co Ltd Cooling structure of h-steel on settler ceiling section of flash smelter and method of cooling h-steel in settler ceiling section of flash smelter
JP2013210183A (en) * 2013-05-20 2013-10-10 Pan Pacific Copper Co Ltd Cooling structure of h steel in settler ceiling part of flash furnace and cooling method of h steel in settler ceiling part of flash furnace

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104705U (en) * 1977-01-28 1978-08-23
JPS5565494U (en) * 1978-10-28 1980-05-06
JPH0357169B2 (en) * 1983-12-27 1991-08-30
JPS60159589A (en) * 1984-01-27 1985-08-21 日本鉱業株式会社 Construction method in furnace
JPH04316983A (en) * 1991-04-15 1992-11-09 Nippon Steel Corp Furnace wall structure for metallurgic furnace
JPH08127825A (en) * 1994-10-27 1996-05-21 Mitsui Mining & Smelting Co Ltd Self-fluxing furnace
JPH10103871A (en) * 1996-09-30 1998-04-24 Nikko Kinzoku Kk Corner part cooling device and flat surface part cooling device for non-ferrous material refining furnace and arranging structure thereof
JPH11189829A (en) * 1997-12-26 1999-07-13 Mitsui Mining & Smelting Co Ltd Structure of triangle roof wall in flash smelting furnace
JP2002363659A (en) * 2001-06-04 2002-12-18 Nippon Mining & Metals Co Ltd Device for charging material containing iron in copper smelting furnace
JP2002356725A (en) * 2002-04-10 2002-12-13 Sumitomo Metal Mining Co Ltd FLASH REDUCTION FURNACE FOR SMELTING Zn-Pb, AND OPERATING METHOD THEREOF
JP2010505082A (en) * 2006-09-27 2010-02-18 オウトテック オサケイティオ ユルキネン Method for coating a cooling element
JP2008202923A (en) * 2007-01-23 2008-09-04 Nikko Kinzoku Kk Furnace body water cooling structure for flash smelting furnace
JP2008235572A (en) * 2007-03-20 2008-10-02 Toyota Industries Corp Electronic component cooling device
JP2011208920A (en) * 2010-03-30 2011-10-20 Pan Pacific Copper Co Ltd Cooling structure of h-steel on settler ceiling section of flash smelter and method of cooling h-steel in settler ceiling section of flash smelter
JP2013210183A (en) * 2013-05-20 2013-10-10 Pan Pacific Copper Co Ltd Cooling structure of h steel in settler ceiling part of flash furnace and cooling method of h steel in settler ceiling part of flash furnace

Similar Documents

Publication Publication Date Title
JP5511601B2 (en) Water cooling jacket, furnace body cooling structure and furnace body cooling method using the same
JP4762172B2 (en) Furnace body water cooling structure of flash furnace
JP6240650B2 (en) Furnace cooling system
ES2287167T3 (en) REFRIGERATION ELEMENT.
JP5726614B2 (en) Refractory brick cooling structure and method for converter
CA2495552A1 (en) Cooling plate for metallurgical furnaces
JP4187752B2 (en) Furnace body water cooling structure of flash furnace
JP5395972B2 (en) H steel cooling structure in the settling ceiling part of the flash smelting furnace, and cooling method of the H steel in the settling ceiling part of the flash melting furnace
FI126540B (en) Blast furnace for metallurgical processes
JP2011226711A (en) Cooling structure and cooling method of flash furnace
JP5441593B2 (en) Water cooling jacket, furnace body cooling structure and furnace body cooling method using the same
CN115505663A (en) Cooling structure of reduction furnace body and reduction furnace
JP2011208219A (en) Stave cooler
JP5395723B2 (en) H steel cooling structure in the settling ceiling part of the flash smelting furnace, and cooling method of the H steel in the settling ceiling part of the flash melting furnace
KR102111898B1 (en) Copper cooling plate with multi-layer protrusions comprising wear-resistant material for blast furnace
JP2014173164A (en) Stave cooler and blast furnace including the same
JP2013024526A (en) Water-cooled h type steel
US11150020B2 (en) Copper cooling plate with wear resistant inserts, for a blast furnace
JP2013023759A (en) Water-cooled triangular ceiling structure for flash smelting furnace
JP6385778B2 (en) H steel cooling structure and H steel cooling method
CN218232465U (en) Cooling structure of reduction furnace body and reduction furnace
JP2014169490A (en) Skid button
JP7037419B2 (en) Metal smelting furnace and its operation method
JP6999473B2 (en) Flash smelting furnace cooling method and flash smelting furnace cooling structure
JP6285251B2 (en) Cooling device for inspection hole structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202