JP2013210183A - Cooling structure of h steel in settler ceiling part of flash furnace and cooling method of h steel in settler ceiling part of flash furnace - Google Patents

Cooling structure of h steel in settler ceiling part of flash furnace and cooling method of h steel in settler ceiling part of flash furnace Download PDF

Info

Publication number
JP2013210183A
JP2013210183A JP2013106432A JP2013106432A JP2013210183A JP 2013210183 A JP2013210183 A JP 2013210183A JP 2013106432 A JP2013106432 A JP 2013106432A JP 2013106432 A JP2013106432 A JP 2013106432A JP 2013210183 A JP2013210183 A JP 2013210183A
Authority
JP
Japan
Prior art keywords
steel
cooling
furnace
cooling water
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013106432A
Other languages
Japanese (ja)
Other versions
JP5395972B2 (en
Inventor
Katsuya Toda
勝弥 戸田
Mitsumasa Hoshi
光政 星
Masaharu Takahashi
政晴 高橋
Hiroharu Okamura
博春 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2013106432A priority Critical patent/JP5395972B2/en
Publication of JP2013210183A publication Critical patent/JP2013210183A/en
Application granted granted Critical
Publication of JP5395972B2 publication Critical patent/JP5395972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To extend life of an H steel by suppressing the damage and deformation of the H steel supporting a settler ceiling part by cooling the H steel supporting the settler ceiling part.SOLUTION: A cooling structure of an H steel in settler ceiling part of flash furnace arranged in the settler ceiling part of the flash finance, contacting the H steel 70 supporting the settler ceiling part and having a cooling member comprising copper or stainless steel-made cooling water pipes 81, 83 and heat sink 82 and a cooling method of the H steel in the settler ceiling part of the flash furnace.

Description

本発明は、自溶炉のセットラ天井部を支持するH鋼の冷却構造に関する。   The present invention relates to a cooling structure for H steel that supports a settling ceiling of a flash furnace.

銅製錬の製錬工程では、選鉱により得られた精鉱を酸素富化空気あるいは高温熱風と同時に自溶炉に投入し、瞬間的に化学反応を起こさせてマットとスラグに分離する。このような自溶炉1は、図1に示すように、反応シャフト2、セットラ3、アップテイク4から構成され、反応シャフト2には1〜3本の精鉱バーナ5が備えられている。精鉱は精鉱バーナ5によって炉内に吹き込まれる。   In the smelting process of copper smelting, the concentrate obtained by the beneficiation is introduced into a flash smelting furnace simultaneously with oxygen-enriched air or high-temperature hot air to cause a chemical reaction instantaneously and separate into mat and slag. As shown in FIG. 1, such a flash smelting furnace 1 includes a reaction shaft 2, a setter 3, and an uptake 4, and the reaction shaft 2 is provided with 1 to 3 concentrate burners 5. The concentrate is blown into the furnace by the concentrate burner 5.

このような自溶炉では銅の製錬工程上、熱の発生が避けられない。特に、近年の銅生産量の増加要求に伴い、高負荷での操業が必要となり、その発生する熱量も上昇することとなった。このため、自溶炉を構成する耐熱レンガ等の耐火材の劣化進行が早まることとなっていた。これに対し、耐火材の劣化進行を抑制する技術が特許文献1乃至5に開示されている。   In such a flash furnace, heat generation is unavoidable in the copper smelting process. In particular, with the recent demand for increased copper production, operation at high loads is required, and the amount of heat generated is also increased. For this reason, deterioration progress of refractory materials, such as a heat-resistant brick which comprises a flash smelting furnace, was to be accelerated. On the other hand, Patent Documents 1 to 5 disclose techniques for suppressing the progress of deterioration of the refractory material.

特許文献1には、自溶炉の反応シャフトの天井部に配置された精鉱バーナ付近の点検孔に装着する水冷ジャケット構造が示されている。特許文献2には、自溶炉本体からマットまたはスラグを抜き出すためのタップホールの冷却構造が示されている。特許文献3には、自溶炉のシャフト近傍に位置するセットラの三角天井部に、冷却水の流れるパイプ部材を鋳込んだ銅製の水冷ジャケットを吊り下げ支持した炉体水冷構造が示されている。特許文献4には、自溶炉のシャフトとセットラとの連結部またはアップテイクとセットラとの連結部に水冷ジャケットを吊り下げ支持した自溶炉の炉体冷却構造が示されている。特許文献5には、自溶炉のシャフト直下のスラグ層が生成する領域の耐火物を冷却する炉体水冷ジャケットが示されている。   Patent Document 1 discloses a water-cooled jacket structure that is attached to an inspection hole in the vicinity of a concentrate burner arranged on the ceiling of a reaction shaft of a flash smelting furnace. Patent Document 2 discloses a tap hole cooling structure for extracting a mat or slag from a flash smelting furnace main body. Patent Document 3 shows a furnace water cooling structure in which a copper water cooling jacket in which a pipe member through which cooling water is cast is suspended and supported on a triangular ceiling portion of a setter located near the shaft of a flash furnace. . Patent Document 4 shows a furnace body cooling structure of a flash smelting furnace in which a water cooling jacket is suspended and supported at a connecting part between a shaft and a setr of a flash furnace or a connecting part between an uptake and a setr. Patent Document 5 discloses a furnace water cooling jacket for cooling a refractory in a region where a slag layer immediately below the shaft of a flash furnace is generated.

特開2009−162401号公報JP 2009-162401 A 特許第4350119号公報Japanese Patent No. 4350119 特開2008−202923号公報JP 2008-202923 A 特許第4187752号公報Japanese Patent No. 4187552 特許第4064387号公報Japanese Patent No. 4064387

ところで、自溶炉のセットラ天井部は数本のH鋼を掛け渡すことにより支持されている。自溶炉内で精鉱が反応し熱が発生すると、セットラ天井部にも熱の影響が現われる。セットラ天井部が熱を受けることにより、セットラ天井部を支持するH鋼も熱負荷の影響を受け、損耗、変形する。このようにH鋼が熱を受け、損耗、変形すると、隣接する耐火材が脱落してしまうことが考えられ、耐火材が脱落することにより、自溶炉の操業を停止する必要がある。さらには、自溶炉内の排ガスが漏洩することも考えられ、環境汚染に対する配慮も必要となる。従来では、このようなH鋼の損耗、変形の影響を考慮すると、H鋼を2〜3年の周期で交換することを余儀なくされており、H鋼の交換にかかる材料費、作業費のコストがかかっていた。このような問題に対し、上記の特許文献にはセットラ天井部、特に、セットラ天井部を支持するH鋼の冷却に関する点は考慮されていない。   By the way, the settling ceiling part of a flash smelting furnace is supported by spanning several H steels. When the concentrate reacts in the flash furnace and heat is generated, the effect of the heat also appears on the setra ceiling. When the setra ceiling part receives heat, the H steel supporting the settler ceiling part is also affected by the heat load, and is worn and deformed. Thus, when H steel receives heat, and is worn out or deformed, it is considered that the adjacent refractory material falls off, and it is necessary to stop the operation of the flash smelting furnace when the refractory material falls off. Furthermore, it is considered that exhaust gas in the flash smelting furnace leaks, and it is necessary to consider environmental pollution. Conventionally, in consideration of the effects of wear and deformation of H steel, it has been necessary to replace H steel in a cycle of 2 to 3 years. It was over. With respect to such a problem, the above-mentioned patent document does not consider the point related to the cooling of the setter ceiling, in particular, the H steel that supports the setter ceiling.

そこで、本発明は、セットラ天井部を支持するH鋼を冷却することにより、H鋼の損耗、変形を抑制し、H鋼の寿命を延長することを課題とする。   Then, this invention makes it a subject to suppress the wear and deformation | transformation of H steel, and to prolong the lifetime of H steel by cooling H steel which supports a setter ceiling part.

かかる課題を解決する本発明の自溶炉のセットラ天井部におけるH鋼の冷却構造体は、自溶炉のセットラ天井部に設けられ、かつ前記セットラ天井部を支持するH鋼に接触し、銅製またはステンレス鋼製であり、かつ前記H鋼を冷却する冷却部材を備えたことを特徴とする。 The cooling structure of H steel in the settling ceiling part of the flash smelting furnace of the present invention that solves such a problem is in contact with the H steel provided on the settling ceiling part of the flash melting furnace and supporting the settling ceiling part, and is made of copper. Alternatively, it is made of stainless steel and has a cooling member for cooling the H steel.

上記自溶炉のセットラ天井部におけるH鋼の冷却構造体において、前記冷却部材前記H鋼のウェブ部の炉内側の面に接触して配置された構成とすることができる。 In the H steel cooling structure in the settling ceiling part of the flash furnace, the cooling member may be arranged in contact with the inner surface of the H steel web part.

上記自溶炉のセットラ天井部におけるH鋼の冷却構造体において、前記冷却部材は、前記H鋼のフランジ部の炉内側に接触して配置された構成とすることができる。   In the H steel cooling structure in the settling ceiling of the flash furnace, the cooling member may be arranged in contact with the furnace inside of the H steel flange.

上記自溶炉のセットラ天井部におけるH鋼の冷却構造体において、前記冷却部材は、内部を冷却水が流通する冷却水管を有する構成とすることができる。   In the cooling structure of H steel in the settling ceiling part of the flash furnace, the cooling member may have a cooling water pipe through which cooling water flows.

上記自溶炉のセットラ天井部におけるH鋼の冷却構造体において、前記冷却部材は、前記H鋼に接触する放熱板と、前記放熱板に接触し、かつ、内部を冷却水が流通する冷却水管と、を有する構成とすることができる。   In the cooling structure for H steel in the settling ceiling of the flash smelting furnace, the cooling member is a heat sink that contacts the H steel, and a cooling water pipe that is in contact with the heat sink and through which cooling water flows. It can be set as the structure which has these.

上記自溶炉のセットラ天井部におけるH鋼の冷却構造体において、前記H鋼のウェブ部の炉内側の面に接触して配置された前記冷却部材は、内部を冷却水が流通する冷却水管であり、前記H鋼のフランジ部の炉内側に接触して配置された前記冷却部材は、前記H鋼に接触する放熱板と、前記放熱板に接触し、かつ内部を冷却水が流通する冷却水管であるような構成とすることができる。 In the H steel cooling structure in the settling ceiling of the flash furnace, the cooling member disposed in contact with the furnace inner surface of the H steel web portion is a cooling water pipe through which cooling water flows. And the cooling member disposed in contact with the inside of the furnace of the flange portion of the H steel includes a radiator plate that contacts the H steel, and a cooling water pipe that contacts the radiator plate and through which cooling water flows. It can be set as such a structure.

上記自溶炉のセットラ天井部におけるH鋼の冷却構造体において、前記放熱板は前記H鋼へタップ溶接により接合した構成とすることができる。   In the cooling structure of H steel at the settling ceiling of the flash furnace, the heat radiating plate may be joined to the H steel by tap welding.

上記自溶炉のセットラ天井部におけるH鋼の冷却構造体において、前記放熱板を銅製とすることができる。また、上記自溶炉のセットラ天井部におけるH鋼の冷却構造において、前記冷却水管を銅製とすることができる。   In the H steel cooling structure in the settling ceiling part of the flash furnace, the heat radiating plate can be made of copper. Moreover, the cooling water pipe can be made of copper in the H steel cooling structure in the settling ceiling part of the flash furnace.

上記自溶炉のセットラ天井部におけるH鋼の冷却構造体において、前記H鋼のウェブ部よりも炉内側に3本の前記冷却水管を有する構成とすることができる。 In the cooling structure of steel H in Settora ceiling of the flash smelting furnace can be configured to have three the cooling water tubes of the furnace inward from the web portion of the H steel.

上記課題を解決する本発明の自溶炉のセットラ天井部におけるH鋼の冷却方法は、自溶炉のセットラ天井部に設けられ、かつ前記セットラ天井部を支持するH鋼に、銅製またはステンレス鋼製の冷却部材を接触させ、かつ前記H鋼を冷却することを特徴とする。 The method for cooling H steel in the settling ceiling part of the flash smelting furnace of the present invention that solves the above-mentioned problems is made of copper or stainless steel on the H steel that is provided in the settling ceiling part of the flash melting furnace and supports the settling ceiling part. A cooling member made of metal is contacted and the H steel is cooled .

上記自溶炉のセットラ天井部におけるH鋼の冷却方法において、前記H鋼のウェブ部の炉内側の面に接触した前記冷却部材は、内部を冷却水が流通する冷却水管であり、前記H鋼のフランジ部の炉内側に接触した前記冷却部材は、前記H鋼に接触する放熱板と、前記放熱板に接触し、かつ内部を冷却水が流通する冷却水管とする方法とすることができる。 In the method for cooling H steel in the settling ceiling part of the flash smelting furnace, the cooling member in contact with the inner surface of the H steel web part is a cooling water pipe through which cooling water flows, and the H steel The cooling member that is in contact with the inside of the furnace of the flange portion may be a heat sink that is in contact with the H steel, and a cooling water pipe that is in contact with the heat sink and through which cooling water flows.

上記自溶炉のセットラ天井部におけるH鋼の冷却方法において、前記冷却水管及び前記放熱板を銅製とする方法とすることができる。 In the method for cooling H steel in the settling ceiling of the flash furnace, the cooling water pipe and the heat radiating plate may be made of copper .

本発明の自溶炉の天井部におけるH鋼の冷却構造体は、セットラ天井部を支持するH鋼を冷却することにより、H鋼の損耗、変形を抑制し、H鋼の寿命を延長することができる。より詳細には、
(1)H鋼に冷却部材を接触させることにより、H鋼から直接奪取する熱量を増加し、H鋼の冷却を促進することができる。
(2)冷却部材をH鋼の炉内側に配置することにより、熱源に近いH鋼の炉内側を冷却することができる。
(3)内部を冷却水が流通する冷却水管を有する構成とすることにより、冷却水がH鋼の熱を奪取するため、H鋼の高温化を抑制できる。
(4)放熱板をH鋼に接触させる構成とすることにより、接触面積が大きい放熱板がH鋼から熱を奪取するため、H鋼の冷却効果を向上できる。
(5)冷却部材として熱伝導性に優れた銅を用いることにより、H鋼の冷却効果を向上できる。
(6)熱源に近いH鋼の炉内側は熱伝導性の高い銅を用いて、高い冷却性能を有し、熱源から遠いH鋼の炉外側は強度が高く、安価なステンレス鋼を用い、コストを低減できる。
The cooling structure of H steel in the ceiling part of the flash smelting furnace of the present invention suppresses wear and deformation of H steel and extends the life of H steel by cooling the H steel supporting the setter ceiling. Can do. More specifically,
(1) By bringing a cooling member into contact with H steel, the amount of heat taken directly from H steel can be increased, and cooling of H steel can be promoted.
(2) By disposing the cooling member inside the H steel furnace, the inside of the H steel near the heat source can be cooled.
(3) Since the cooling water takes the heat of the H steel by having a cooling water pipe through which the cooling water flows, the high temperature of the H steel can be suppressed.
(4) By making a heat sink contact H steel, since a heat sink with a large contact area takes heat from H steel, the cooling effect of H steel can be improved.
(5) The cooling effect of H steel can be improved by using copper excellent in thermal conductivity as a cooling member.
(6) The steel inside the H steel near the heat source uses copper with high thermal conductivity, has high cooling performance, and the steel outside the H steel far from the heat source uses high strength and inexpensive stainless steel. Can be reduced.

従来技術の自溶炉の概略構成を示した説明図である。It is explanatory drawing which showed schematic structure of the flash smelting furnace of a prior art. 本実施例のH鋼の冷却構造体を備える自溶炉の概略構成を示した説明図であって、(a)は自溶炉の平面図を示し、(b)は(a)中のA−A線における断面図を示している。It is explanatory drawing which showed schematic structure of the flash smelting furnace provided with the cooling structure of H steel of a present Example, (a) shows the top view of a flash smelting furnace, (b) is A in (a). A sectional view taken along line -A is shown. セットラの天井部を示した説明図である。It is explanatory drawing which showed the ceiling part of the settler. H鋼を示した説明図である。It is explanatory drawing which showed H steel. H鋼の冷却構造体を示した断面図である。It is sectional drawing which showed the cooling structure of H steel. 比較例のH鋼の冷却構造体を示した断面図である。It is sectional drawing which showed the cooling structure of H steel of a comparative example.

以下、本発明を実施するための一形態を図面と共に詳細に説明する。   Hereinafter, an embodiment for carrying out the present invention will be described in detail with reference to the drawings.

本実施例における装置の構成について図面を参照しつつ説明する。図2は本実施例のH鋼の冷却構造体を備える自溶炉10の概略構成を示した説明図である。図2(a)は自溶炉10の平面図であって、図2(b)は図2(a)中のA−A線における断面図である。   The configuration of the apparatus in the present embodiment will be described with reference to the drawings. FIG. 2 is an explanatory view showing a schematic configuration of a flash smelting furnace 10 provided with a cooling structure of H steel of this embodiment. 2A is a plan view of the flash smelting furnace 10, and FIG. 2B is a cross-sectional view taken along the line AA in FIG. 2A.

自溶炉10は、例えば、銅製錬の自溶炉である。図2に示すように、自溶炉10は、反応シャフト20、セットラ30、アップテイク40を備えている。反応シャフト20の上部には精鉱バーナ50が備えられており、精鉱バーナ50から反応シャフト20内へ精鉱と酸素富化空気が吹き込まれる。吹き込まれた精鉱と酸素富化空気は反応シャフト20内で混合して瞬間的に反応し、セットラ30内において層状のマットとスラグに分離する。   The flash furnace 10 is, for example, a copper smelting flash furnace. As shown in FIG. 2, the flash smelting furnace 10 includes a reaction shaft 20, a setter 30, and an uptake 40. A concentrate burner 50 is provided above the reaction shaft 20, and concentrate and oxygen-enriched air are blown into the reaction shaft 20 from the concentrate burner 50. The blown concentrate and oxygen-enriched air are mixed in the reaction shaft 20 and react instantaneously, and are separated into a layered mat and slag in the setter 30.

ところで、高温となる自溶炉10の炉壁は耐熱性のレンガを敷き詰めて構成されている。セットラ30の天井部60は、このようなレンガを支持するために、アーチ状のSS400製のH鋼70が6本掛け渡されている。さらに、自溶炉10はこのH鋼70を冷却する冷却構造体80を備えている。   By the way, the furnace wall of the flash smelting furnace 10 that is at a high temperature is configured by spreading heat-resistant bricks. In order to support such a brick, the ceiling portion 60 of the setter 30 is spanned by six arch-shaped H steels 70 made of SS400. Further, the flash furnace 10 is provided with a cooling structure 80 for cooling the H steel 70.

図3はセットラ30の天井部60を示した説明図である。図4はH鋼70を示した説明図である。図5はH鋼70の冷却構造体80を示した断面図である。図6は比較例のH鋼70の冷却構造体90を示した断面図である。   FIG. 3 is an explanatory view showing the ceiling portion 60 of the setter 30. FIG. 4 is an explanatory view showing the H steel 70. FIG. 5 is a cross-sectional view showing a cooling structure 80 of H steel 70. FIG. 6 is a sectional view showing a cooling structure 90 of H steel 70 of a comparative example.

図3に示すように、セットラ30の天井部は6本のH鋼70により支持される。H鋼70の間には耐熱性のレンガが詰め込まれている。最も反応シャフト20側に位置するH鋼70と、最もアップテイク40側に位置するH鋼70との間はおよそ6200mm離れている。   As shown in FIG. 3, the ceiling portion of the setter 30 is supported by six H steels 70. Heat resistant bricks are packed between the H steels 70. The distance between the H steel 70 located closest to the reaction shaft 20 and the H steel 70 located closest to the uptake 40 is approximately 6200 mm.

図4のH鋼70は図3の矢印Bの方向からみた場合を示している。図4に示すように、H鋼70はアーチ状の構造をしている。また、以下説明する冷却構造体80もこのH鋼70のアーチ状構造に沿うようにアーチ状の形状となっている。   The H steel 70 in FIG. 4 shows the case seen from the direction of arrow B in FIG. As shown in FIG. 4, the H steel 70 has an arched structure. In addition, the cooling structure 80 described below has an arched shape so as to follow the arched structure of the H steel 70.

ここで、図5を参照し、冷却構造体80について詳細に説明する。H鋼70は、ウェブ部71が横向きとなるように配置されている。H鋼70は厚さ22mmの一般構造用圧延鋼材(SS400)から成り、H鋼70の断面は、高さ450mm、幅250mmである。   Here, the cooling structure 80 will be described in detail with reference to FIG. The H steel 70 is disposed such that the web portion 71 is in the horizontal direction. The H steel 70 is made of a general structural rolled steel (SS400) having a thickness of 22 mm. The cross section of the H steel 70 has a height of 450 mm and a width of 250 mm.

冷却構造体80は冷却部材を備え、冷却部材は、後述する冷却水管81、83及び放熱板82から構成され、H鋼70の内側の面に接触するように配置され、H鋼70のウェブ部71では両面に配置されている。   The cooling structure 80 includes a cooling member. The cooling member includes cooling water pipes 81 and 83 and a heat radiating plate 82, which will be described later. The cooling structure 80 is disposed so as to contact the inner surface of the H steel 70. 71 is arranged on both sides.

次に、冷却部材を詳細に説明する。H鋼70のウェブ部71よりもセットラ30の中心側、すなわち、ウェブ部71よりも下側に3本の銅製の冷却水管(銅管)81が配置されている。銅管81の1つはウェブ部71の下面に接触して配置されている。残りの銅管81は、フランジ部72に接触する放熱板82に接触して配置されている。これらの銅管81は、外径32mm、厚さ6mmであり、また、放熱板82も銅製である。銅管81、及び放熱板82はH鋼70のアーチ形状に沿ったアーチ状の形状をしている。また、放熱板82はH鋼70のフランジ部72にタップ溶接で施工されている。本発明のように大型のアーチ型をした特殊な形状部分では、銅製の放熱板82とSUS製のH鋼70をフル溶接する場合に比べ、製作が容易となり、製作時間が短く済み、製作費が安価となり、十分に機械的強度が得られるという点に利点を有している。   Next, the cooling member will be described in detail. Three copper cooling water pipes (copper pipes) 81 are arranged on the center side of the setter 30 relative to the web part 71 of the H steel 70, that is, below the web part 71. One of the copper tubes 81 is disposed in contact with the lower surface of the web portion 71. The remaining copper tube 81 is disposed in contact with the heat dissipation plate 82 that contacts the flange portion 72. These copper tubes 81 have an outer diameter of 32 mm and a thickness of 6 mm, and the heat sink 82 is also made of copper. The copper tube 81 and the heat radiating plate 82 have an arch shape along the arch shape of the H steel 70. Further, the heat radiating plate 82 is applied to the flange portion 72 of the H steel 70 by tap welding. The specially shaped portion having a large arch shape as in the present invention is easier to manufacture and shorter in manufacturing time than the case of fully welding the heat sink 82 made of copper and the H steel 70 made of SUS. Is advantageous in that it is inexpensive and sufficient mechanical strength can be obtained.

一方、H鋼70のウェブ部71よりもセットラ30の外周側、すなわち、ウェブ部71よりも上側に3本のステンレス製の冷却水管(ステンレス管、例えばSUS304)83が配置されている。ステンレス管83はいずれもウェブ部71に接触するように配置されている。ステンレス管83は外径34mm、厚さ6.4mmであり、ステンレス管83はH鋼70のアーチ形状に沿ったアーチ状の形状をしている。   On the other hand, three stainless steel cooling water pipes (stainless steel pipes, for example, SUS304) 83 are arranged on the outer peripheral side of the setter 30 with respect to the web part 71 of the H steel 70, that is, on the upper side of the web part 71. All of the stainless steel pipes 83 are disposed so as to contact the web portion 71. The stainless steel tube 83 has an outer diameter of 34 mm and a thickness of 6.4 mm, and the stainless steel tube 83 has an arch shape that follows the arch shape of the H steel 70.

さらに、H鋼70に銅管81、放熱板82、ステンレス管83を配置したうえで、その隙間に耐火物73が充填されている。耐火物73は、スラグより融点が高く、熱膨張性が小さい物質が好ましく、放熱特性、硬度、耐摩耗性、耐食性、高温強度性、耐熱衝撃性など多くの機能特性を備えたアルミナ系のキャスタブル、例えば、アルミナ・クロミア質が好ましい。また、主成分がMgOのものなども利用することができる。   Further, a copper tube 81, a heat radiating plate 82, and a stainless steel tube 83 are arranged on the H steel 70, and a refractory 73 is filled in the gap. The refractory 73 is preferably a substance having a melting point higher than that of slag and a low thermal expansion, and is an alumina-based castable having many functional characteristics such as heat dissipation characteristics, hardness, wear resistance, corrosion resistance, high-temperature strength, and thermal shock resistance. For example, alumina chromia is preferable. Moreover, the thing whose main component is MgO etc. can also be utilized.

このような冷却構造体80の銅管81、ステンレス管83は、管の内部を冷却水が通るよう構成されている。銅管81、ステンレス管83の内部を通る冷却水は、流入温度25〜35℃、流入速度23m/sであり、排出される冷却水は、排出温度35〜45℃、流出速度23m/sである。また、冷却水の流量は33L/minである。   The copper pipe 81 and the stainless steel pipe 83 of the cooling structure 80 are configured such that cooling water passes through the inside of the pipe. The cooling water passing through the copper pipe 81 and the stainless steel pipe 83 has an inflow temperature of 25 to 35 ° C. and an inflow speed of 23 m / s, and the discharged cooling water has an exhaust temperature of 35 to 45 ° C. and an outflow speed of 23 m / s. is there. The flow rate of the cooling water is 33 L / min.

次に、比較例の冷却構造体90について説明する。図6に示すように、冷却構造体90では、放熱板92を備えた銅製の冷却水管91が、H鋼70に接触しないで配置されている。そして、実施例の冷却構造体80と同様に、H鋼70と冷却構造体90の隙間には耐火物73が充填されている。   Next, the cooling structure 90 of the comparative example will be described. As shown in FIG. 6, in the cooling structure 90, a copper cooling water pipe 91 including a heat radiating plate 92 is arranged without contacting the H steel 70. And like the cooling structure 80 of the embodiment, the refractory 73 is filled in the gap between the H steel 70 and the cooling structure 90.

本実施例の冷却構造体80の場合、冷却部材、すなわち、銅管81、放熱板82がH鋼70に接触しているため、接触をしていない比較例と比べ、H鋼70からの熱伝達が向上する。したがって、実施例の冷却構造体80は比較例に比べて、H鋼70の冷却効果が優れている。   In the case of the cooling structure 80 of the present embodiment, since the cooling member, that is, the copper tube 81 and the heat sink 82 are in contact with the H steel 70, the heat from the H steel 70 is compared with the comparative example that is not in contact. Communication is improved. Therefore, the cooling structure 80 of the example is superior in the cooling effect of the H steel 70 compared to the comparative example.

本実施例における自溶炉10のH鋼70の冷却構造体80は以下の効果を奏する。
(1)H鋼に冷却部材を接触させることにより、H鋼から直接熱を奪い、H鋼の冷却を促進する。
(2)冷却部材をH鋼の炉内側に配置することにより、熱源に近いH鋼の炉内側を冷却する。
(3)冷却水管(銅管81、ステンレス管83)の内部を冷却水が流通することにより、冷却水がH鋼の熱を奪い、H鋼が冷却される。
(4)H鋼70の熱が放熱板82へ伝達するため、H鋼70の高温化を抑制できる。
(5)炉内側の冷却配管を熱伝導性に優れた銅管81とすることにより、H鋼70の冷却効果を向上する。
(1)〜(5)の効果により、H鋼70の高温化を抑制し、H鋼70の損耗、変形を抑え、H鋼70の寿命を延長することができる。このような冷却構造体80を取り入れたことにより、H鋼70は5〜6年維持できると試算することができる。これにより、H鋼の交換にかかるコストを削減する。また、H鋼70の損耗、変形が抑制されることにより、レンガの脱落が防止されるため、自溶炉の停止回数が減り、稼働率を向上する。また、ガス漏れが防止でき、環境事故を未然に防ぐことができる。
The cooling structure 80 of the H steel 70 of the flash smelting furnace 10 in the present embodiment has the following effects.
(1) By bringing a cooling member into contact with the H steel, heat is directly taken from the H steel, and cooling of the H steel is promoted.
(2) Cooling the inside of the H steel near the heat source by disposing the cooling member inside the H steel.
(3) When the cooling water flows through the inside of the cooling water pipe (copper pipe 81, stainless steel pipe 83), the cooling water takes heat of the H steel and the H steel is cooled.
(4) Since the heat of the H steel 70 is transmitted to the heat radiating plate 82, the high temperature of the H steel 70 can be suppressed.
(5) The cooling effect of the H steel 70 is improved by using the copper pipe 81 with excellent thermal conductivity as the cooling pipe inside the furnace.
Due to the effects (1) to (5), the high temperature of the H steel 70 can be suppressed, the wear and deformation of the H steel 70 can be suppressed, and the life of the H steel 70 can be extended. By adopting such a cooling structure 80, it can be estimated that the H steel 70 can be maintained for 5 to 6 years. Thereby, the cost concerning replacement | exchange of H steel is reduced. Further, since the wear and deformation of the H-steel 70 are suppressed, the bricks are prevented from falling off, so the number of times the flash furnace is stopped is reduced and the operating rate is improved. Moreover, gas leakage can be prevented and environmental accidents can be prevented.

さらに、熱源に近いH鋼70の炉内側は熱伝導性の高い銅を用いて、高い冷却性能を有する一方、熱源から遠いH鋼70の炉外側は強度が高く、安価なステンレス鋼を用い、コストを低減する。ステンレス製の管は同径の銅製の管に比べ、例えば、銅管2本が65(万円)に対してステンレス管2本は31(万円)と半価程度であるため、コストを削減できる利点がある。   Furthermore, the furnace inner side of the H steel 70 close to the heat source uses copper having high thermal conductivity and has high cooling performance, while the furnace outer side of the H steel 70 far from the heat source uses high-strength and inexpensive stainless steel, Reduce costs. Compared to copper pipes with the same diameter, stainless steel pipes, for example, have two copper pipes of 65 (10,000 yen) and two stainless steel pipes are 31 (10,000 yen), which is about half price, reducing costs. There are advantages you can do.

上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、さらに本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。   The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited thereto. Various modifications of these embodiments are within the scope of the present invention. It is apparent from the above description that various other embodiments are possible within the scope.

例えば、本実施例の他の例として、上記のステンレス管83を銅管81としてもよい。また、H鋼70のウェブ部71よりもセットラ30の外周側、すなわち、H鋼70のウェブ部71の上側に放熱板82を配置してもよい。この場合も、放熱板82はH鋼70に接触させる。これらの構成とすることにより、更なる冷却効果が期待できる。   For example, as another example of this embodiment, the stainless steel pipe 83 may be a copper pipe 81. Further, the heat radiating plate 82 may be disposed on the outer peripheral side of the setter 30 relative to the web portion 71 of the H steel 70, that is, on the upper side of the web portion 71 of the H steel 70. Also in this case, the heat sink 82 is brought into contact with the H steel 70. By adopting these configurations, a further cooling effect can be expected.

1、10 自溶炉
2、20 反応シャフト
3、30 セットラ
4、40 アップテイク
5、50 精鉱バーナ
70 H鋼
71 ウェブ部
72 フランジ部
73 耐火物
80 冷却構造体
81 冷却水管(銅管)
82 放熱板
83 冷却水管(ステンレス管)
DESCRIPTION OF SYMBOLS 1,10 Flash furnace 2,20 Reaction shaft 3,30 Settler 4,40 Uptake 5,50 Concentrate burner 70H steel 71 Web part 72 Flange part 73 Refractory 80 Cooling structure 81 Cooling water pipe (copper pipe)
82 Heat sink 83 Cooling water pipe (stainless steel pipe)

Claims (13)

自溶炉のセットラ天井部に設けられ、かつ前記セットラ天井部を支持するH鋼に接触し、銅製またはステンレス鋼製であり、かつ前記H鋼を冷却する冷却部材を備えたことを特徴とする自溶炉のセットラ天井部におけるH鋼の冷却構造体。 A cooling member is provided on a settling ceiling portion of the flash smelting furnace and is in contact with H steel supporting the settling ceiling portion , made of copper or stainless steel, and cooling the H steel. H steel cooling structure in the settling ceiling of the flash furnace. 前記冷却部材前記H鋼のウェブ部の炉内側の面に接触して配置された請求項1記載の自溶炉のセットラ天井部におけるH鋼の冷却構造体。 The cooling structure of H steel in the settling ceiling part of the flash smelting furnace according to claim 1, wherein the cooling member is disposed in contact with a surface inside the furnace of the H steel web part. 前記冷却部材は、前記H鋼のフランジ部の炉内側に接触して配置された請求項1または2記載の自溶炉のセットラ天井部におけるH鋼の冷却構造体。   The cooling structure of H steel in the settling ceiling part of the flash smelting furnace according to claim 1, wherein the cooling member is disposed in contact with the furnace inside of the flange part of the H steel. 前記冷却部材は、内部を冷却水が流通する冷却水管を有する請求項1乃至3のいずれか一項記載の自溶炉のセットラ天井部におけるH鋼の冷却構造体。   The said cooling member is a cooling structure of H steel in the settling ceiling part of a flash smelting furnace as described in any one of Claims 1 thru | or 3 which has a cooling water pipe | tube with which cooling water distribute | circulates inside. 前記冷却部材は、前記H鋼に接触する放熱板と、
前記放熱板に接触し、かつ、内部を冷却水が流通する冷却水管と、
を有する請求項1乃至4のいずれか一項記載の自溶炉のセットラ天井部におけるH鋼の冷却構造体。
The cooling member is a heat sink contacting the H steel;
A cooling water pipe in contact with the heat radiating plate and through which cooling water flows;
The cooling structure of H steel in the settling ceiling part of the flash smelting furnace as described in any one of Claims 1 thru | or 4 which has these.
前記H鋼のウェブ部の炉内側の面に接触して配置された前記冷却部材は、内部を冷却水が流通する冷却水管であり、
前記H鋼のフランジ部の炉内側に接触して配置された前記冷却部材は、前記H鋼に接触する放熱板と、前記放熱板に接触し、かつ内部を冷却水が流通する冷却水管である請求項1記載の自溶炉のセットラ天井部におけるH鋼の冷却構造体。
The cooling member arranged in contact with the furnace inner surface of the H steel web part is a cooling water pipe through which cooling water flows.
The cooling member disposed in contact with the furnace inside of the flange portion of the H steel is a heat sink that contacts the H steel, and a cooling water pipe that contacts the heat sink and through which cooling water flows. The cooling structure of H steel in the settling ceiling part of the flash smelting furnace according to claim 1.
前記放熱板は前記H鋼へタップ溶接により接合された請求項5または6記載の自溶炉のセットラ天井部におけるH鋼の冷却構造体。   The said heat sink is the cooling structure of H steel in the settling ceiling part of the flash smelting furnace of Claim 5 or 6 joined to the said H steel by tap welding. 前記放熱板を銅製とした請求項5乃至7記載の自溶炉のセットラ天井部におけるH鋼の冷却構造体。   The H steel cooling structure in the settling ceiling part of the flash smelting furnace according to claim 5, wherein the heat radiating plate is made of copper. 前記冷却水管を銅製とした請求項4乃至8のいずれか一項記載の自溶炉のセットラ天井部におけるH鋼の冷却構造体。   The cooling structure of H steel in the settling ceiling part of the flash smelting furnace according to any one of claims 4 to 8, wherein the cooling water pipe is made of copper. 前記H鋼のウェブ部よりも炉内側に3本の前記冷却水管を有する請求項4乃至のいずれか一項記載の自溶炉のセットラ天井部におけるH鋼の冷却構造体。 Cooling structure of steel H in Settora ceiling of the flash smelting furnace according to any one of claims 4 to 9 having the cooling water tubes of the three furnace inward from the web portion of the H steel. 自溶炉のセットラ天井部に設けられ、かつ前記セットラ天井部を支持するH鋼に、銅製またはステンレス鋼製の冷却部材を接触させ、かつ前記H鋼を冷却することを特徴とする自溶炉のセットラ天井部におけるH鋼の冷却方法。 A flash smelting furnace characterized in that a cooling member made of copper or stainless steel is brought into contact with H steel provided on a settling ceiling of the flash melting furnace and supporting the settling ceiling , and the H steel is cooled. Cooling method for H steel at the setra ceiling. 前記H鋼のウェブ部の炉内側の面に接触した前記冷却部材は、内部を冷却水が流通する冷却水管であり、
前記H鋼のフランジ部の炉内側に接触した前記冷却部材は、前記H鋼に接触する放熱板と、前記放熱板に接触し、かつ内部を冷却水が流通する冷却水管である請求項11記載の自溶炉のセットラ天井部におけるH鋼の冷却方法。
The cooling member in contact with the furnace inner surface of the H steel web part is a cooling water pipe through which cooling water flows.
It said cooling member furnace in contact with the inner side of the flange portion of the H steel, a heat dissipation plate in contact with the steel H, in contact with the heat radiating plate, and claim 11, wherein the internal coolant is a cooling water pipe for circulating Method for cooling H steel in the settling ceiling of the flash smelting furnace.
前記冷却水管及び前記放熱板を銅製とした請求項12記載の自溶炉のセットラ天井部におけるH鋼の冷却方法。 The cooling method of H steel in the settling ceiling part of the flash smelting furnace according to claim 12, wherein the cooling water pipe and the radiator plate are made of copper.
JP2013106432A 2013-05-20 2013-05-20 H steel cooling structure in the settling ceiling part of the flash smelting furnace, and cooling method of the H steel in the settling ceiling part of the flash melting furnace Active JP5395972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013106432A JP5395972B2 (en) 2013-05-20 2013-05-20 H steel cooling structure in the settling ceiling part of the flash smelting furnace, and cooling method of the H steel in the settling ceiling part of the flash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013106432A JP5395972B2 (en) 2013-05-20 2013-05-20 H steel cooling structure in the settling ceiling part of the flash smelting furnace, and cooling method of the H steel in the settling ceiling part of the flash melting furnace

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010079480A Division JP5395723B2 (en) 2010-03-30 2010-03-30 H steel cooling structure in the settling ceiling part of the flash smelting furnace, and cooling method of the H steel in the settling ceiling part of the flash melting furnace

Publications (2)

Publication Number Publication Date
JP2013210183A true JP2013210183A (en) 2013-10-10
JP5395972B2 JP5395972B2 (en) 2014-01-22

Family

ID=49528160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013106432A Active JP5395972B2 (en) 2013-05-20 2013-05-20 H steel cooling structure in the settling ceiling part of the flash smelting furnace, and cooling method of the H steel in the settling ceiling part of the flash melting furnace

Country Status (1)

Country Link
JP (1) JP5395972B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226711A (en) * 2010-04-20 2011-11-10 Pan Pacific Copper Co Ltd Cooling structure and cooling method of flash furnace
CN105476755A (en) * 2014-07-06 2016-04-13 储诚浩 Heating device for physical therapy patch
JP2016070573A (en) * 2014-09-29 2016-05-09 パンパシフィック・カッパー株式会社 H-steel cooling structure and h-steel cooling method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127825A (en) * 1994-10-27 1996-05-21 Mitsui Mining & Smelting Co Ltd Self-fluxing furnace
JP2006071212A (en) * 2004-09-03 2006-03-16 Nippon Mining & Metals Co Ltd Furnace body water-cooling jacket
JP2007271173A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk Furnace body water cooling structure for flash smelting furnace
JP2008138906A (en) * 2006-11-30 2008-06-19 Nikko Kinzoku Kk Tapped hole cooling structure
JP2008202923A (en) * 2007-01-23 2008-09-04 Nikko Kinzoku Kk Furnace body water cooling structure for flash smelting furnace
JP2009162401A (en) * 2007-12-28 2009-07-23 Pan Pacific Copper Co Ltd Water-cooling jacket structure for inspection hole of flash furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127825A (en) * 1994-10-27 1996-05-21 Mitsui Mining & Smelting Co Ltd Self-fluxing furnace
JP2006071212A (en) * 2004-09-03 2006-03-16 Nippon Mining & Metals Co Ltd Furnace body water-cooling jacket
JP2007271173A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk Furnace body water cooling structure for flash smelting furnace
JP2008138906A (en) * 2006-11-30 2008-06-19 Nikko Kinzoku Kk Tapped hole cooling structure
JP2008202923A (en) * 2007-01-23 2008-09-04 Nikko Kinzoku Kk Furnace body water cooling structure for flash smelting furnace
JP2009162401A (en) * 2007-12-28 2009-07-23 Pan Pacific Copper Co Ltd Water-cooling jacket structure for inspection hole of flash furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226711A (en) * 2010-04-20 2011-11-10 Pan Pacific Copper Co Ltd Cooling structure and cooling method of flash furnace
CN105476755A (en) * 2014-07-06 2016-04-13 储诚浩 Heating device for physical therapy patch
CN105476755B (en) * 2014-07-06 2019-12-27 吉林大学第一医院 Heating device for physiotherapy plaster
JP2016070573A (en) * 2014-09-29 2016-05-09 パンパシフィック・カッパー株式会社 H-steel cooling structure and h-steel cooling method

Also Published As

Publication number Publication date
JP5395972B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5726614B2 (en) Refractory brick cooling structure and method for converter
JP5395972B2 (en) H steel cooling structure in the settling ceiling part of the flash smelting furnace, and cooling method of the H steel in the settling ceiling part of the flash melting furnace
JP4762172B2 (en) Furnace body water cooling structure of flash furnace
ES2287167T3 (en) REFRIGERATION ELEMENT.
JP4350119B2 (en) Tap hole cooling structure
JP4187752B2 (en) Furnace body water cooling structure of flash furnace
JP5395723B2 (en) H steel cooling structure in the settling ceiling part of the flash smelting furnace, and cooling method of the H steel in the settling ceiling part of the flash melting furnace
US4132852A (en) Cooled roof of electric furnace
FI126540B (en) Blast furnace for metallurgical processes
JP5726940B2 (en) Water cooling jacket and manufacturing method thereof
RU2383837C1 (en) Method to cool melting unit and melting unit to this end
JP6385778B2 (en) H steel cooling structure and H steel cooling method
JP2019135429A (en) Tap hole structure of metal refining furnace
JP2014218420A (en) Vertical lime firing furnace cooling structure
CN208108833U (en) Heat-exchanger rig for non-ferrous metallurgical furnace and the non-ferrous metallurgical furnace with it
JP2011208219A (en) Stave cooler
JP2013024526A (en) Water-cooled h type steel
CN202204321U (en) Metallurgical furnace kiln wall cooling device
JP5726941B2 (en) Water cooling jacket
JP5369716B2 (en) Blast furnace body cooling structure
CN201935581U (en) Copper jacket cooling device for oxygen enrichment side-blown converter
JP2013023759A (en) Water-cooled triangular ceiling structure for flash smelting furnace
JP7037419B2 (en) Metal smelting furnace and its operation method
JP6999473B2 (en) Flash smelting furnace cooling method and flash smelting furnace cooling structure
RU2211421C1 (en) Electric arc steel-making furnace lining

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130807

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20131004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131018

R150 Certificate of patent or registration of utility model

Ref document number: 5395972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250