JP2011226446A - Compressed self-ignition internal combustion engine - Google Patents

Compressed self-ignition internal combustion engine Download PDF

Info

Publication number
JP2011226446A
JP2011226446A JP2010099347A JP2010099347A JP2011226446A JP 2011226446 A JP2011226446 A JP 2011226446A JP 2010099347 A JP2010099347 A JP 2010099347A JP 2010099347 A JP2010099347 A JP 2010099347A JP 2011226446 A JP2011226446 A JP 2011226446A
Authority
JP
Japan
Prior art keywords
intake
combustion chamber
air
temperature
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010099347A
Other languages
Japanese (ja)
Other versions
JP4901973B2 (en
Inventor
Tetsuya Honda
哲也 本田
Hideaki Katashiba
秀昭 片柴
Teruaki Kawakami
輝明 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010099347A priority Critical patent/JP4901973B2/en
Publication of JP2011226446A publication Critical patent/JP2011226446A/en
Application granted granted Critical
Publication of JP4901973B2 publication Critical patent/JP4901973B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent timing advance of combustion start time and increase in combustion speed during compressed self-ignition combustion due to local temperature increase of air fuel mixture within a combustion chamber.SOLUTION: With respect each cylinder, first and second intake valves 2, 3 are provided. Intake air sucked from the first intake valve 2 to the combustion chamber 1 is oriented to the part in the vicinity of the center of the combustion chamber 1, and intake air sucked from the second intake valve 3 to the combustion chamber 1 is oriented to the part in the vicinity of the peripheral edge of an inner wall of the combustion chamber 1. First and second intake heating means 6, 8 are provided in intake flow passages 7, 9 leading to the first and second intake valves 2, 3, respectively. In accordance with an operating state of an internal combustion engine, heating target temperatures of the first and second intake heating means 6, 8 are controlled to different values. Control is performed, so that by setting a temperature of air fuel mixture in the vicinity of the center of the combustion chamber 1 lower than that in the vicinity of the peripheral edge in an intake stroke, heat transfer is caused in a compression stroke and the temperature of the air fuel mixture within the combustion chamber 1 becomes an approximately uniform temperature enabling self-ignition in an ending period of the compression stroke.

Description

この発明は圧縮自己着火内燃機関に関し、特に、少なくとも一部の運転条件において燃焼室内に形成された燃料と空気との混合気をピストンによる圧縮作用によって自己着火させる圧縮自己着火内燃機関に関する。   The present invention relates to a compression self-ignition internal combustion engine, and more particularly to a compression self-ignition internal combustion engine in which a mixture of fuel and air formed in a combustion chamber is self-ignited by a compression action of a piston under at least some operating conditions.

圧縮自己着火内燃機関では、従来のガソリン燃焼の内燃機関での点火に用いられる火花放電を要さず、燃料と空気が混ざり合って燃焼室内に形成される混合気がピストンで圧縮されることで自己発火温度に達して、燃焼室内空間の複数の箇所で同時多発的に燃焼が開始される。   In a compression self-ignition internal combustion engine, the spark discharge used for ignition in a conventional gasoline combustion internal combustion engine is not required, and the air-fuel mixture formed by mixing fuel and air is compressed by the piston. The auto-ignition temperature is reached, and combustion is started simultaneously and multiple times at a plurality of locations in the combustion chamber space.

ピストンによる圧縮での混合気温度の上昇は断熱圧縮作用によるものである。そこで、より強い断熱圧縮作用を得て混合気温度を自己発火温度に到達させるため、圧縮自己着火内燃機関では一般的に従来の火花点火内燃機関よりも圧縮比が高く設定される。   The rise in the mixture temperature due to the compression by the piston is due to the adiabatic compression action. Therefore, in order to obtain a stronger adiabatic compression action and cause the mixture temperature to reach the self-ignition temperature, the compression ratio of the compression self-ignition internal combustion engine is generally set higher than that of the conventional spark ignition internal combustion engine.

ガソリンの自己発火温度は、圧力や混合気濃度により若干異なるが、300℃前後である。常温の空気を多く含む混合気を断熱圧縮作用だけでこの温度まで上昇させることは困難であることから、高温の排気ガスの一部を燃焼室内に残留させたり、燃焼室内に吸入する空気を加熱するなどの手段を用いて混合気の温度を従来のガソリン燃焼の内燃機関の場合よりも高くする必要がある。   The auto-ignition temperature of gasoline is around 300 ° C., although it varies slightly depending on pressure and mixture concentration. Since it is difficult to raise the temperature of air-fuel mixture containing a large amount of normal temperature only to adiabatic compression, only a part of the hot exhaust gas remains in the combustion chamber or heats the air sucked into the combustion chamber. Therefore, it is necessary to make the temperature of the air-fuel mixture higher than that of a conventional gasoline combustion internal combustion engine.

このようにして高温の混合気が得られるが、圧縮期間中にはその一部が冷却されてしまう。なぜなら内燃機関は常に冷却されているためである。内燃機関では燃焼室を形成する壁面やピストンが冷却されており、壁面近くやピストンの近くに存在する混合気は熱を奪われる。   In this way, a high-temperature air-fuel mixture can be obtained, but part of it is cooled during the compression period. This is because the internal combustion engine is always cooled. In the internal combustion engine, the wall surface and piston forming the combustion chamber are cooled, and the air-fuel mixture existing near the wall surface and near the piston is deprived of heat.

壁面やピストンに熱を奪われて低温化した混合気は燃焼室内の混合気の流れによって壁面やピストン近傍から離れ、壁面やピストンの近傍には新たな未冷却の混合気が流れてくる。この混合気もまた冷却されて壁面やピストンから離れる。   The air-fuel mixture whose temperature has been reduced by the heat of the wall surface and the piston is separated from the vicinity of the wall surface and the piston by the flow of the air-fuel mixture in the combustion chamber, and a new uncooled air-fuel mixture flows in the vicinity of the wall surface and the piston. This mixture is also cooled and leaves the wall and piston.

このように壁面やピストン近傍で冷却される混合気が常に存在する一方で、壁面やピストンの近傍を離れた冷却された混合気は周囲の未冷却の混合気を冷却することで周辺の混合気と同じ温度になる。このような挙動を繰り返すことで、壁面やピストンに熱を直接奪われない燃焼室の中心付近の混合気も含めた燃焼室内の全ての混合気の温度がやがて概ね等しくなる。   Thus, while there is always an air-fuel mixture that is cooled in the vicinity of the wall surface and the piston, the cooled air-fuel mixture that has left the wall surface and the vicinity of the piston cools the surrounding uncooled air-fuel mixture, thereby The same temperature. By repeating such a behavior, the temperature of all the air-fuel mixtures in the combustion chamber including the air-fuel mixture in the vicinity of the center of the combustion chamber where heat is not directly taken away by the wall surface or the piston eventually becomes substantially equal.

内燃機関が比較的低回転数で運転されている場合など、壁面やピストンで冷却された混合気による冷却作用が燃焼室の中心付近にまで到達する時間的な余裕がある条件では、このような冷却作用が燃焼室の中心付近の混合気にも十分及ぶことから混合気温度は燃焼室全体で均質化されやすい。   Such as when the internal combustion engine is operated at a relatively low speed, such as when the cooling action by the air-fuel mixture cooled by the wall surface or the piston has time to reach the vicinity of the center of the combustion chamber, Since the cooling action sufficiently extends to the air-fuel mixture near the center of the combustion chamber, the air-fuel mixture temperature is easily homogenized throughout the combustion chamber.

しかしながら、内燃機関が比較的高回転数で運転されている場合など、壁面やピストンで冷却された混合気による冷却作用が燃焼室の中心付近にまで到達する時間的な余裕が無い条件では、冷却作用が燃焼室の中心付近の混合気に十分には及ばず、燃焼室の中心付近の混合気温度がその周辺と比べて高温化しやすい。   However, when the internal combustion engine is operated at a relatively high rotational speed, the cooling is not performed under the condition that the cooling action by the air-fuel mixture cooled by the wall surface or the piston reaches the vicinity of the center of the combustion chamber. The effect does not sufficiently reach the air-fuel mixture near the center of the combustion chamber, and the air-fuel mixture temperature near the center of the combustion chamber tends to be higher than that in the vicinity.

例え内燃機関が比較的低回転数で運転されていても燃焼負荷が高くより多くの空気を圧縮する場合は、断熱圧縮作用によって混合気の温度が上昇する速度が速くなるため、冷却作用が燃焼室の中心付近の混合気に十分には及ばず、燃焼室の中心付近の混合気温度がその周辺と比べて高温化しやすい。   Even if the internal combustion engine is operated at a relatively low rotational speed, if the combustion load is high and more air is compressed, the rate at which the temperature of the air-fuel mixture rises due to the adiabatic compression increases, so the cooling effect is combusted. The air-fuel mixture in the vicinity of the center of the chamber does not sufficiently reach the air-fuel mixture, and the temperature of the air-fuel mixture in the vicinity of the center of the combustion chamber tends to be higher than that in the vicinity.

図1(1)〜(3)は、燃焼室の中心付近の混合気温度が高くなる過程を説明する図である。図1(1)〜(3)は、それぞれ、吸気行程終了時期、圧縮初期、および、さらに圧縮が進んだ時期を示している。これらの図の上段の(a)には、それぞれの時期の燃焼室内の混合気分布イメージが示され、下段の(b)には、それぞれの時期の燃焼室の径方向の温度分布イメージが示されている。   1 (1) to 1 (3) are diagrams illustrating a process in which the temperature of the air-fuel mixture near the center of the combustion chamber increases. 1 (1) to 1 (3) respectively show the intake stroke end timing, the initial stage of compression, and the timing when compression has further progressed. The upper part (a) of these figures shows the mixture distribution image in the combustion chamber at each time, and the lower part (b) shows the radial temperature distribution image of the combustion chamber at each time. Has been.

吸気行程において温度が一様な新気や混合気を燃焼室内に吸入するため、(1)に示すように、吸気行程終了時期の燃焼室内の新気や混合気の温度は均一となる。   Since fresh air or air-fuel mixture having a uniform temperature in the intake stroke is sucked into the combustion chamber, the temperature of the fresh air or air-fuel mixture in the combustion chamber at the end of the intake stroke becomes uniform as shown in (1).

(2)に示すように、ピストンによる圧縮が開始されると、断熱圧縮作用により混合気温度は一様に上昇するが、同時に、燃焼室壁面やピストンの近傍の混合気とそれ以外の混合気との間の熱の移動が開始される。しかしながら、このとき、(1)に示すように混合気の温度はもともと一様であったため、混合気間の熱の移動は活発化が遅れる。すなわち、はじめに、燃焼室壁面やピストンの付近の混合気の温度が低下し始めてから熱の移動が開始され、徐々に当該熱の移動が活発化していく。   As shown in (2), when the compression by the piston is started, the mixture temperature rises uniformly due to the adiabatic compression, but at the same time, the mixture in the vicinity of the combustion chamber wall or piston and the other mixture The heat transfer between is started. However, at this time, as shown in (1), since the temperature of the air-fuel mixture was originally uniform, the heat transfer between the air-fuel mixtures is delayed. That is, first, the heat transfer starts after the temperature of the air-fuel mixture near the combustion chamber wall surface and the piston starts to decrease, and the heat transfer is gradually activated.

この混合気間の熱の移動の活発化の遅れが原因となって、燃焼室中心付近の混合気温度がその周辺の混合気温度よりも高くなる。   Due to the delay in the activation of heat transfer between the air-fuel mixtures, the air-fuel mixture temperature near the center of the combustion chamber becomes higher than the air-fuel mixture temperature around it.

(3)に示すように、さらに圧縮が進むと、燃焼室中心付近の混合気と周辺の混合気との温度差がより顕著になり、圧縮行程の比較的早い時期に、中心付近の混合気のみが自己着火温度に達して燃焼が開始される。この時期の周辺の混合気温度が未だ低温であるために混合気の一部が十分燃焼しないことや、燃焼開始時期が早期化することで燃焼効率の低下を招く。   As shown in (3), when the compression further proceeds, the temperature difference between the air-fuel mixture near the center of the combustion chamber and the air-fuel mixture near the combustion chamber becomes more prominent, and the air-fuel mixture near the center is relatively early in the compression stroke. Only the auto-ignition temperature is reached and combustion begins. Since the temperature of the air-fuel mixture around this period is still low, a part of the air-fuel mixture does not burn sufficiently, and the combustion start time is advanced, leading to a decrease in combustion efficiency.

また、燃焼室の中心付近の混合気だけが早い時期に高温化することで局所的に燃焼速度が上昇することから、燃焼振動に伴う騒音の発生などの問題が生じる。   Further, since only the air-fuel mixture near the center of the combustion chamber is heated at an early stage, the combustion speed is locally increased, which causes problems such as generation of noise accompanying combustion vibration.

このような自己着火時期の早期化や燃焼速度の上昇は避ける必要があり、たとえば、特許文献1には、高負荷運転条件では燃焼室の中心付近を指向する混合気の濃度を希薄化させる技術が示されている。   For example, Patent Document 1 discloses a technique for diluting the concentration of an air-fuel mixture directed near the center of a combustion chamber under high load operation conditions. It is shown.

特開2006−348800号公報JP 2006-348800 A 特開平10−339220号公報JP 10-339220 A 特開平11−182246号公報JP 11-182246 A

特許文献1に係る技術では、高負荷運転条件では混合気温度がより低くなる燃焼室の周縁付近に混合気を多く分布させることで圧縮による着火性を抑えた燃焼を得られることが明示されている。言い換えると混合気温度が高くなることで着火性が向上しやすい燃焼室の中心付近には混合気を分布させないことで安定的な圧縮自己着火燃焼が得られることを示している。   In the technology according to Patent Document 1, it is clearly shown that combustion with reduced ignitability due to compression can be obtained by distributing a large amount of air-fuel mixture in the vicinity of the periphery of the combustion chamber where the air-fuel mixture temperature becomes lower under high-load operation conditions. Yes. In other words, it shows that stable compressed self-ignition combustion can be obtained by not distributing the air-fuel mixture in the vicinity of the center of the combustion chamber where the ignitability is likely to be improved by increasing the air-fuel mixture temperature.

圧縮自己着火燃焼の形態を鑑みて、この技術が自己着火時期の早期化や燃焼速度の上昇を抑える効果を有することは事実である。しかしながら、例えば、燃焼室内の空間的に連続する中心付近には空気のみを供給して、周縁付近には混合気を供給したとしても、燃焼室内の複雑な気流の影響で周縁付近の混合気の一部は中心付近に流入してしまう。その結果、中心付近の一部の空間には非常に希薄な混合気が存在することになり、周縁付近の混合気が燃焼を開始しても、この混合気は十分には燃焼できずに燃え残った状態で燃焼ガスとともに燃焼室から排出されてしまうという問題があった。   In view of the form of compression self-ignition combustion, it is a fact that this technology has the effect of suppressing the advance of the self-ignition time and the increase in the combustion speed. However, for example, even if only air is supplied near the spatially continuous center in the combustion chamber and air-fuel mixture is supplied near the periphery, the air-fuel mixture in the vicinity of the periphery is affected by the complicated air flow in the combustion chamber. Some will flow near the center. As a result, a very lean air-fuel mixture exists in a part of the space near the center, and even if the air-fuel mixture near the periphery starts to burn, the air-fuel mixture cannot burn sufficiently and burns. There was a problem that the combustion gas was discharged from the combustion chamber together with the remaining gas.

また、燃焼室内の複雑な気流の影響で、周縁付近の濃度を保った混合気が中心付近に達することも考えられる。この場合は混合気温度が低い周縁付近の混合気よりも早期に着火することで燃焼室全体の混合気の着火を早期化してしまうという問題点もあった。   It is also conceivable that the air-fuel mixture having a concentration in the vicinity of the periphery reaches the vicinity of the center due to the influence of a complicated air flow in the combustion chamber. In this case, there is also a problem that the ignition of the air-fuel mixture in the entire combustion chamber is accelerated by igniting earlier than the air-fuel mixture in the vicinity of the periphery where the air-fuel mixture temperature is low.

さらに、燃焼室内の一部分の空間に予混合気を指向させる特許文献1に係る技術では、吸気弁よりも上流側で空気と燃料を予混合させる必要があるため、燃焼室内に燃料を直接噴射する筒内直噴方式の内燃機関には適用できないという問題点もあった。   Furthermore, in the technique according to Patent Document 1 in which the premixed gas is directed to a part of the space in the combustion chamber, it is necessary to premix air and fuel upstream of the intake valve, so that fuel is directly injected into the combustion chamber. There is also a problem that it cannot be applied to an in-cylinder direct injection internal combustion engine.

圧縮自己着火内燃機関とは異なるが、特許文献2には燃焼室中心付近の混合気温度の高温化を抑えることが可能な技術が示されている。   Although different from the compression self-ignition internal combustion engine, Patent Document 2 discloses a technique capable of suppressing the increase in the temperature of the air-fuel mixture in the vicinity of the center of the combustion chamber.

特許文献2に係る技術では、吸気ポートに合流する副通路から燃焼室の周縁を指向させて吸入する空気のみを加熱している。特許文献2では、この加熱空気で壁面に付着した燃料の霧化の促進を目的としている。   In the technique according to Patent Document 2, only the air to be sucked is heated by directing the peripheral edge of the combustion chamber from the auxiliary passage that joins the intake port. In patent document 2, it aims at promotion of atomization of the fuel adhering to the wall surface by this heated air.

従って、特許文献2では、燃焼室内の混合気の温度をほぼ均質にすることについては目的としておらず、全く意図していないが、仮に、特許文献2において、混合気の温度がほぼ均質となる時期が圧縮行程の早い時期であったとすれば、その後、さらに圧縮が進むと燃焼室の中心付近の混合気が周縁部よりも高温化することは明白である。したがって、燃焼開始時期が早期化せず、かつ、燃焼速度の上昇を抑えた安定的な圧縮自己着火燃焼を得るためには、圧縮行程の後期、理想的にはピストンが圧縮上死点に至った時期に、混合気の温度が均一となり、その温度が自己発火温度である必要がある。なお、圧縮自己着火燃焼の特長である多点同時着火を得るためには混合気濃度が均質であることも重要である。   Therefore, Patent Document 2 does not intend to make the temperature of the air-fuel mixture in the combustion chamber substantially uniform and is not intended at all. However, in Patent Document 2, the temperature of the air-fuel mixture becomes substantially uniform. If the timing is an early stage of the compression stroke, it is clear that the air-fuel mixture near the center of the combustion chamber becomes higher than the peripheral portion as the compression further proceeds. Therefore, in order to obtain stable compression self-ignition combustion in which the combustion start timing is not advanced and the increase in the combustion speed is suppressed, ideally, the piston reaches the compression top dead center at the latter stage of the compression stroke. During this period, the temperature of the air-fuel mixture must be uniform and the temperature needs to be the auto-ignition temperature. In order to obtain multipoint simultaneous ignition, which is a feature of compression self-ignition combustion, it is also important that the mixture concentration is uniform.

この混合気温度に関する条件を満たすためには、吸入時の2種類の空気温度を適正に制御する必要があるが、特許文献2に係る技術では、吸気を加熱する機能を片方のみに設けているため、外気温度や内燃機関の運転状態に応じた適切な制御、即ち、圧縮行程後期に混合気全体をほぼ自己発火温度とする制御ができないという問題点があった。   In order to satisfy the condition regarding the air-fuel mixture temperature, it is necessary to appropriately control two types of air temperatures at the time of inhalation. However, in the technology according to Patent Document 2, a function for heating the intake air is provided only on one side. For this reason, there is a problem that appropriate control according to the outside air temperature and the operating state of the internal combustion engine, that is, control that makes the entire air-fuel mixture almost the self-ignition temperature in the latter half of the compression stroke cannot be performed.

さらに別の技術として、特許文献3では2系統存在する吸気系の片側にのみ燃焼ガスを混入する技術が示されている。燃焼ガスは外気温度よりも高温であることから、燃焼ガスが混入された吸気の温度は混入されていない吸気の温度よりも高温となる。このことから、圧縮行程初期における燃焼室内の空気または混合気の温度分布は、燃焼室の周縁付近を高温にすることができる。   As yet another technique, Patent Document 3 discloses a technique of mixing combustion gas only on one side of two intake systems. Since the combustion gas is higher than the outside air temperature, the temperature of the intake air mixed with the combustion gas is higher than the temperature of the intake air not mixed. From this, the temperature distribution of the air or air-fuel mixture in the combustion chamber at the beginning of the compression stroke can make the vicinity of the periphery of the combustion chamber high.

しかしながら、燃焼ガスを混入しない側の吸気は外気温度であることから、特許文献2の技術と同様に、圧縮行程後期に混合気全体をほぼ自己発火温度とする制御ができないという問題点があった。   However, since the intake air on the side where no combustion gas is mixed is at the outside air temperature, there is a problem in that, as in the technique of Patent Document 2, it is impossible to control the entire air-fuel mixture to almost the self-ignition temperature in the latter half of the compression stroke. .

さらに、特許文献3に係る技術では、燃焼ガスを混入した空気と燃料とが混ざり合って形成される混合気と、燃焼ガスを混入しない吸気と燃料とが混ざり合って形成される混合気とが、燃焼室内で成層化される。仮に圧縮行程の後期に混合気全体をほぼ自己発火温度にできたとしても、燃焼ガスが混入している混合気内の酸素濃度が低いために、燃焼ガスが混入していない混合気と同時に自己発火できず、安定した圧縮自己着火燃焼を得ることができないという問題点もあった。   Furthermore, in the technique according to Patent Document 3, an air-fuel mixture formed by mixing air and fuel mixed with combustion gas and an air-fuel mixture formed by mixing intake air and fuel not mixed with combustion gas are formed. Stratified in the combustion chamber. Even if the entire gas mixture can be brought to almost the auto-ignition temperature in the later stage of the compression stroke, the oxygen concentration in the gas mixture containing the combustion gas is low, so that the self gas is mixed with the gas mixture not containing the gas. There was also a problem that ignition could not be performed and stable compression self-ignition combustion could not be obtained.

この発明は、かかる問題点を解決するためになされたものであって、外気温度や内燃機関の運転条件によらず、ピストンが概ね圧縮上死点に至る時期に、燃焼室内の混合気に局所的な高温化を生じさせず、かつ、自己発火可能な混合気温度を得ることで、内燃機関の圧縮自己着火燃焼を安定化することが可能な、圧縮自己着火内燃機関を提供することを目的とする。   The present invention has been made to solve such a problem, and the local mixture is mixed with the air-fuel mixture in the combustion chamber at the time when the piston reaches the compression top dead center regardless of the outside air temperature or the operating condition of the internal combustion engine. An object of the present invention is to provide a compression self-ignition internal combustion engine that can stabilize the compression self-ignition combustion of the internal combustion engine by obtaining a mixture temperature that does not cause a high temperature and that can self-ignite. And

この発明は、燃焼室内に形成された燃料と空気との混合気をピストンによる圧縮によって自己着火させる圧縮自己着火内燃機関であって、気筒毎に配された第1および第2の吸気弁と、前記第1及び第2の吸気弁を介してそれぞれ前記燃焼室内に吸気を導入する第1および第2の吸気流路と、前記第1の吸気流路から前記第1の吸気弁を介して前記燃焼室内に吸入される吸気に前記燃焼室の中心付近を指向させる第1の指向手段と、前記第2の吸気流路から前記第2の吸気弁を介して前記燃焼室内に吸入される吸気に前記燃焼室の周縁付近を指向させる第2の指向手段と、前記第1の吸気流路に設けられ、前記第1の吸気流路を流れる前記吸気を第1の加熱目標温度に基づいて加熱する第1の吸気加熱手段と、前記第2の吸気流路に設けられ、前記第2の吸気流路を流れる前記吸気を第2の加熱目標温度に基づいて加熱する第2の吸気加熱手段と、前記燃焼室の中心付近を指向する前記吸気の温度が前記燃焼室の周縁付近を指向する前記吸気の温度よりも低温になるように、現在の内燃機関の運転状態に基づいて、前記第1の加熱目標温度と前記第2の加熱目標温度との温度差を設定し、当該温度差に基づいて前記第1の加熱目標温度および前記第2の加熱目標温度の値を制御する制御手段とを備えたことを特徴とする圧縮自己着火内燃機関である。   The present invention is a compression self-ignition internal combustion engine that self-ignites a mixture of fuel and air formed in a combustion chamber by compression by a piston, and includes first and second intake valves arranged for each cylinder; First and second intake passages for introducing intake air into the combustion chamber via the first and second intake valves, respectively, and the first intake passage and the first intake valve through the first intake valve First directing means for directing the intake air sucked into the combustion chamber to the vicinity of the center of the combustion chamber, and the intake air sucked into the combustion chamber from the second intake passage through the second intake valve Second directing means for directing the vicinity of the periphery of the combustion chamber and the first intake passage, and the intake air flowing through the first intake passage is heated based on a first heating target temperature. Provided in the first intake heating means and the second intake flow path; A second intake air heating means for heating the intake air flowing through the second intake flow path based on a second heating target temperature; and a temperature of the intake air that is directed near the center of the combustion chamber is a peripheral edge of the combustion chamber Based on the current operating state of the internal combustion engine, a temperature difference between the first heating target temperature and the second heating target temperature is set so as to be lower than the temperature of the intake air that is directed in the vicinity, A compression self-ignition internal combustion engine comprising control means for controlling values of the first heating target temperature and the second heating target temperature based on the temperature difference.

この発明は、燃焼室内に形成された燃料と空気との混合気をピストンによる圧縮によって自己着火させる圧縮自己着火内燃機関であって、気筒毎に配された第1および第2の吸気弁と、前記第1及び第2の吸気弁を介してそれぞれ前記燃焼室内に吸気を導入する第1および第2の吸気流路と、前記第1の吸気流路から前記第1の吸気弁を介して前記燃焼室内に吸入される吸気に前記燃焼室の中心付近を指向させる第1の指向手段と、前記第2の吸気流路から前記第2の吸気弁を介して前記燃焼室内に吸入される吸気に前記燃焼室の周縁付近を指向させる第2の指向手段と、前記第1の吸気流路に設けられ、前記第1の吸気流路を流れる前記吸気を第1の加熱目標温度に基づいて加熱する第1の吸気加熱手段と、前記第2の吸気流路に設けられ、前記第2の吸気流路を流れる前記吸気を第2の加熱目標温度に基づいて加熱する第2の吸気加熱手段と、前記燃焼室の中心付近を指向する前記吸気の温度が前記燃焼室の周縁付近を指向する前記吸気の温度よりも低温になるように、現在の内燃機関の運転状態に基づいて、前記第1の加熱目標温度と前記第2の加熱目標温度との温度差を設定し、当該温度差に基づいて前記第1の加熱目標温度および前記第2の加熱目標温度の値を制御する制御手段とを備えたことを特徴とする圧縮自己着火内燃機関であるので、外気温度や内燃機関の運転条件によらず、ピストンが概ね圧縮上死点に至る時期に、燃焼室内の混合気に局所的な高温化を生じさせず、かつ、自己発火可能な混合気温度を得ることで、内燃機関の圧縮自己着火燃焼を安定化することができる。   The present invention is a compression self-ignition internal combustion engine that self-ignites a mixture of fuel and air formed in a combustion chamber by compression by a piston, and includes first and second intake valves arranged for each cylinder; First and second intake passages for introducing intake air into the combustion chamber via the first and second intake valves, respectively, and the first intake passage and the first intake valve through the first intake valve First directing means for directing the intake air sucked into the combustion chamber to the vicinity of the center of the combustion chamber, and the intake air sucked into the combustion chamber from the second intake passage through the second intake valve Second directing means for directing the vicinity of the periphery of the combustion chamber and the first intake passage, and the intake air flowing through the first intake passage is heated based on a first heating target temperature. Provided in the first intake heating means and the second intake flow path; A second intake air heating means for heating the intake air flowing through the second intake flow path based on a second heating target temperature; and a temperature of the intake air that is directed near the center of the combustion chamber is a peripheral edge of the combustion chamber Based on the current operating state of the internal combustion engine, a temperature difference between the first heating target temperature and the second heating target temperature is set so as to be lower than the temperature of the intake air that is directed in the vicinity, Since it is a compression self-ignition internal combustion engine comprising control means for controlling the values of the first heating target temperature and the second heating target temperature based on the temperature difference, Regardless of the operating conditions of the engine, at the time when the piston reaches compression top dead center, by obtaining a mixture temperature that does not cause local high temperature in the mixture in the combustion chamber and can self-ignite, Stabilize compression self-ignition combustion of internal combustion engines Door can be.

従来の内燃機関における各吸気弁を介して同じ温度の新気を吸入した場合の圧縮行程での混合気温度分布の変化を説明する図である。It is a figure explaining the change of mixture temperature distribution in the compression stroke at the time of suck | inhaling the fresh air of the same temperature via each intake valve in the conventional internal combustion engine. この発明の実施の形態1に係る圧縮自己着火内燃機関における各吸気弁を介して温度が異なる新気を吸入した場合の圧縮行程での混合気温度分布の変化を説明する図である。It is a figure explaining the change of mixture temperature distribution in the compression stroke at the time of suck | inhaling the fresh air from which temperature differs through each intake valve in the compression self-ignition internal combustion engine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る圧縮自己着火内燃機関の吸気系の構成を示す構成図である。It is a block diagram which shows the structure of the intake system of the compression self-ignition internal combustion engine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る圧縮自己着火内燃機関における各吸気の燃焼室内での指向を説明する図である。It is a figure explaining the direction in the combustion chamber of each intake air in the compression self-ignition internal combustion engine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る圧縮自己着火内燃機関における吸気に燃焼室中心を指向させる手段の一例を示す図である。It is a figure which shows an example of the means which directs the combustion chamber center to the intake air in the compression self-ignition internal combustion engine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る圧縮自己着火内燃機関における吸気に燃焼室の周縁を指向させる手段の一例を示す図である。It is a figure which shows an example of the means which orient | assigns the periphery of a combustion chamber to the intake air in the compression self-ignition internal combustion engine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る圧縮自己着火内燃機関における内燃機関の運転状態に対する各吸気温度設定の傾向を示す図である。It is a figure which shows the tendency of each intake air temperature setting with respect to the driving | running state of the internal combustion engine in the compression self-ignition internal combustion engine which concerns on Embodiment 1 of this invention. ノッキング発生有無のクランク角度に対する燃焼室圧力発生パターンの例を示す図である。It is a figure which shows the example of the combustion chamber pressure generation | occurrence | production pattern with respect to the crank angle with or without knocking generation | occurrence | production. ノッキング発生時の燃焼室圧力信号の一例を周波数ごとのスペクトル強度として表した図である。It is the figure which represented an example of the combustion chamber pressure signal at the time of knocking generation as spectrum intensity for every frequency. この発明の実施の形態2に係る圧縮自己着火内燃機関における燃焼室圧力信号の特定周波数帯のスペクトル強度に応じて吸気温度制御目標値を補正する制御の流れを説明する流れ図である。It is a flowchart explaining the flow of control which correct | amends an intake air temperature control target value according to the spectrum intensity of the specific frequency band of the combustion chamber pressure signal in the compression self-ignition internal combustion engine which concerns on Embodiment 2 of this invention.

実施の形態1.
図3は、この発明の実施の形態1に係る圧縮自己着火内燃機関での吸気系の構成を示す図である。なお、図3においては、圧縮自己着火内燃機関として、4気筒内燃機関を例に挙げて説明しているが、気筒数は、これに限定されるものではない。また、この発明の実施の形態1に係る内燃機関としては、空気と燃料が混ぜられた混合気が燃焼室内に吸入される方式の内燃機関だけでなく、空気を吸入し燃焼室内に燃料を直接噴射する方式の内燃機関も含むものとする。従って、下記の説明においては、燃焼室に吸入される空気または混合気を、合わせて、吸気と呼ぶこととする。
Embodiment 1 FIG.
FIG. 3 is a diagram showing the configuration of the intake system in the compression self-ignition internal combustion engine according to the first embodiment of the present invention. In FIG. 3, a four-cylinder internal combustion engine is described as an example of a compression self-ignition internal combustion engine, but the number of cylinders is not limited to this. Further, the internal combustion engine according to Embodiment 1 of the present invention is not limited to an internal combustion engine of a type in which an air-fuel mixture in which air and fuel are mixed is sucked into the combustion chamber, but also directly sucks air into the combustion chamber. An internal combustion engine of an injection type is also included. Therefore, in the following description, the air or air-fuel mixture sucked into the combustion chamber is collectively referred to as intake air.

この発明の実施の形態1に係る内燃機関は、図3に示すように、各気筒毎に設けられた燃焼室1と、各気筒毎に配された第1の吸気弁2及び第2の吸気弁3と、同じく各気筒毎に配された排気弁4と、第1の吸気弁2および第2の吸気弁3を介して燃焼室1に吸入する吸気の吸入量を調整するスロットル5と、スロットル5の下流で2つに分流され、第1の吸気弁2から燃焼室1に吸入される一方の吸気を加熱する第1の吸気加熱手段6と、先端が気筒数に合わせて第1の吸気マニホールドして分岐され、第1の吸気加熱手段6で加熱された吸気を、各気筒ごとに設けられた第1の吸気弁2まで導く第1の吸気流路7と、上記スロットル5の下流で2つに分流されて、第2の吸気弁3から燃焼室1に吸入される、もう一方の吸気を加熱する第2の吸気加熱手段8と、先端が気筒数に合わせて第2の吸気マニホールドして分岐され、第2の吸気加熱手段8で加熱された吸気を、各気筒ごとに設けられた第2の吸気弁3まで導く第2の吸気流路9とを備える。なお、図3の構成においては、排気弁4として、各気筒ごとに、2つの排気弁4a,4bが設けられている。   As shown in FIG. 3, the internal combustion engine according to Embodiment 1 of the present invention includes a combustion chamber 1 provided for each cylinder, a first intake valve 2 and a second intake air arranged for each cylinder. A valve 3, an exhaust valve 4 arranged for each cylinder, a throttle 5 for adjusting an intake amount of intake air sucked into the combustion chamber 1 via the first intake valve 2 and the second intake valve 3, A first intake air heating means 6 that heats one intake air that is divided into two downstream of the throttle 5 and that is sucked into the combustion chamber 1 from the first intake valve 2, and a first end that corresponds to the number of cylinders. A first intake passage 7 that branches off as an intake manifold and is heated by the first intake heating means 6 to a first intake valve 2 provided for each cylinder, and downstream of the throttle 5. The second intake air that is divided into two by the second intake valve 3 and sucked into the combustion chamber 1 from the second intake valve 3 is heated. The intake air heating means 8 and the second intake valve provided for each cylinder are divided into a second intake manifold that branches according to the number of cylinders, and the intake air heated by the second intake air heating means 8 is provided for each cylinder. 2 and a second intake flow path 9 leading to 3. In the configuration of FIG. 3, as the exhaust valve 4, two exhaust valves 4a and 4b are provided for each cylinder.

また、本実施の形態1においては、第1の吸気加熱手段6および第2の吸気加熱手段8に対して、それぞれの加熱目標温度を制御するための制御手段(図示せず)が設けられている。当該制御手段は、第1の吸気加熱手段6により加熱された吸気の温度と第2の吸気加熱手段8により加熱された吸気の温度とが互いに温度差を有するように、現在の運転状態に応じた温度差を設定し、当該温度差に基づいて前記第1および第2の加熱目標温度の値を決定する。第1の吸気加熱手段6および第2の吸気加熱手段8は、それぞれ、制御手段によって決定された第1および第2の加熱目標温度に従って、分流された吸気を別個に加熱する。具体的には、第1の吸気加熱手段6で加熱される吸気の温度が、第2の吸気加熱手段8で加熱される吸気の温度よりも低温となるように、加熱目標値がそれぞれ決定される。詳細については、後述する。   In the first embodiment, control means (not shown) for controlling the respective heating target temperatures is provided for the first intake air heating means 6 and the second intake air heating means 8. Yes. The control means responds to the current operating state so that the temperature of the intake air heated by the first intake air heating means 6 and the temperature of the intake air heated by the second intake air heating means 8 have a temperature difference between each other. A temperature difference is set, and values of the first and second heating target temperatures are determined based on the temperature difference. The first intake air heating means 6 and the second intake air heating means 8 individually heat the divided intake air according to the first and second heating target temperatures determined by the control means, respectively. Specifically, the heating target value is determined so that the temperature of the intake air heated by the first intake air heating unit 6 is lower than the temperature of the intake air heated by the second intake air heating unit 8. The Details will be described later.

また、本実施の形態1においては、第1の吸気流路7と第2の吸気流路9とに、それぞれ、後述する第1および第2の指向手段が設けられており、第1の吸気流路7から第1の吸気弁2を介して燃焼室1内に吸入される吸気は燃焼室1の中心付近を指向され、第2の吸気流路9から第2の吸気弁3を介して燃焼室1内に吸入される吸気は燃焼室1の内壁の周縁を指向されて、それぞれの吸気が指向する燃焼室1内の空間が互いに異なるように構成されている。これらの指向手段の詳細については、後述する。   In the first embodiment, the first intake passage 7 and the second intake passage 9 are provided with first and second directing means, which will be described later, respectively. The intake air sucked into the combustion chamber 1 from the flow path 7 via the first intake valve 2 is directed near the center of the combustion chamber 1, and is directed from the second intake flow path 9 via the second intake valve 3. The intake air sucked into the combustion chamber 1 is directed to the peripheral edge of the inner wall of the combustion chamber 1 so that the spaces in the combustion chamber 1 to which the respective intake air is directed are different from each other. Details of these directing means will be described later.

なお、図3においては、一般的な圧縮自己着火内燃機関に通常設けられている、吸気ダクトや、エアクリーナー、吸気ポート、燃料噴射ノズル、排気ポート、クランクシャフト、各種センサなどの構成が省略されているが、この発明における内燃機関においても、それらの構成は必要に応じて当然に設けられているものとする。   In FIG. 3, configurations such as an intake duct, an air cleaner, an intake port, a fuel injection nozzle, an exhaust port, a crankshaft, and various sensors that are normally provided in a general compression self-ignition internal combustion engine are omitted. However, even in the internal combustion engine of the present invention, those configurations are naturally provided as necessary.

次に、この発明の実施の形態1に係る圧縮自己着火内燃機関の動作について説明する。先ず、図3を用いて、この4サイクル内燃機関での吸気動作を説明する。4サイクル内燃機関では、各気筒の燃焼室1ごとに、吸気行程、圧縮行程、膨張行程、排気行程の4つの行程が連続的に繰り返される。4気筒の内燃機関では、燃焼室1は4個存在し(以下では、燃焼室1a〜1dとする)、各燃焼室1a〜1d間で内燃機関のクランクシャフトの出力軸(図示せず)の回転角度で180度の位相差を伴って、この4つの行程を繰り返すよう設定されている。   Next, the operation of the compression self-ignition internal combustion engine according to Embodiment 1 of the present invention will be described. First, the intake operation in the four-cycle internal combustion engine will be described with reference to FIG. In the four-cycle internal combustion engine, four strokes of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke are continuously repeated for each combustion chamber 1 of each cylinder. In a four-cylinder internal combustion engine, there are four combustion chambers 1 (hereinafter referred to as combustion chambers 1a to 1d), and an output shaft (not shown) of the crankshaft of the internal combustion engine is provided between the combustion chambers 1a to 1d. These four strokes are set to be repeated with a phase difference of 180 degrees in rotation angle.

前述の通り、各燃焼室1a〜1dに対して、吸気行程で吸気(燃焼室1に新たに吸入される空気)を燃焼室1内に導入するための第1の吸気弁2と第2の吸気弁3と、排気行程で燃焼室1内から燃焼ガスを排出するための排気弁4とが備えられている。図3では、燃焼室1dに設けた第1の吸気弁2と第2の吸気弁3と排気弁4のみに符号を付しているが、その他の燃焼室1a〜1cにも、図示されるように、同じ構成で各弁2〜4が設けられている。   As described above, the first intake valve 2 and the second intake valve 2 for introducing the intake air (air newly sucked into the combustion chamber 1) into the combustion chamber 1 in the intake stroke for each of the combustion chambers 1a to 1d. An intake valve 3 and an exhaust valve 4 for discharging combustion gas from the combustion chamber 1 in the exhaust stroke are provided. In FIG. 3, only the first intake valve 2, the second intake valve 3, and the exhaust valve 4 provided in the combustion chamber 1 d are denoted by symbols, but the other combustion chambers 1 a to 1 c are also illustrated. Thus, each valve 2-4 is provided by the same structure.

各燃焼室1は、内燃機関のクランクシャフトの出力軸(図示せず)の回転角度で180度の位相差を伴って吸気行程を実行するため、内燃機関の運転中は常に何れかの燃焼室1に設けられた第1の吸気弁2と第2の吸気弁3が開弁されている。   Since each combustion chamber 1 executes the intake stroke with a phase difference of 180 degrees at the rotation angle of the output shaft (not shown) of the crankshaft of the internal combustion engine, any one of the combustion chambers is always operated during the operation of the internal combustion engine. A first intake valve 2 and a second intake valve 3 provided in 1 are opened.

第1の吸気弁2と第2の吸気弁3が開弁されている際には、ピストン(図3では図示せず、図2参照)が下がって、その燃焼室1の容積を増加させる動作を行っており、その動作により吸気が燃焼室1の内部に吸入される。   When the first intake valve 2 and the second intake valve 3 are opened, the piston (not shown in FIG. 3, see FIG. 2) is lowered to increase the volume of the combustion chamber 1 The intake air is sucked into the combustion chamber 1 by the operation.

吸気は、吸入量を調節するためのスロットル5を通過した後に分流される。分流された一方の吸気は、第1の吸気加熱手段6で加熱され、さらに第1の吸気流路7と第1の吸気弁2を通過して燃焼室1に至る。分流されたもう一方の吸気は、第2の吸気加熱手段8で加熱され、さらに第2の吸気流路9と第2の吸気弁3を通過して同じ燃焼室1に至る。   The intake air is diverted after passing through the throttle 5 for adjusting the intake amount. One of the divided intake air is heated by the first intake air heating means 6, and further passes through the first intake air passage 7 and the first intake valve 2 to reach the combustion chamber 1. The other divided intake air is heated by the second intake air heating means 8 and further passes through the second intake passage 9 and the second intake valve 3 to reach the same combustion chamber 1.

第1の吸気加熱手段6と第2の吸気加熱手段8の構造は特に限定されないが、電気ヒーターで構成されるものや、燃焼排気ガスなどの内燃機関の排熱を吸気に熱交換可能な熱交換器で構成されているものが望ましい。   The structure of the first intake air heating means 6 and the second intake air heating means 8 is not particularly limited. However, the structure is constituted by an electric heater, or heat capable of exchanging exhaust heat of an internal combustion engine such as combustion exhaust gas with intake air. What consists of an exchanger is desirable.

このように分流された吸気は、別個の吸気加熱手段6,8で加熱されてから、同じ燃焼室1に吸入されるが、前述したように、それぞれの吸気が指向する燃焼室1内の空間が互いに異なる空間になるように構成されている。図4は、各吸気の燃焼室1内での指向を説明する図である。図4において、各構成要素は図3と同じであるため、ここでは、構成要素の説明は省略する。   The intake air thus divided is heated by the separate intake heating means 6 and 8 and then drawn into the same combustion chamber 1. As described above, the space in the combustion chamber 1 to which each intake air is directed. Are configured in different spaces. FIG. 4 is a diagram for explaining the orientation of each intake air in the combustion chamber 1. In FIG. 4, since each component is the same as FIG. 3, description of a component is abbreviate | omitted here.

図4に黒色矢印で示すように、第1の吸気流路7を通過して第1の吸気弁2に至った吸気には、燃焼室1の中心付近を指向させ、一方、第2の吸気流路9を通過して第2の吸気弁3に至った吸気には、白抜き矢印で示すように、燃焼室1の周縁付近を指向させている。これにより、第1の吸気流路7を通過して第1の吸気弁2に至った吸気は燃焼室1の中心付近に集まり、それを取り囲むように第2の吸気流路9を通過して第2の吸気弁3に至った吸気が燃焼室1の周縁付近を周縁に沿って流れる。   As indicated by a black arrow in FIG. 4, the intake air that has passed through the first intake passage 7 and reached the first intake valve 2 is directed near the center of the combustion chamber 1, while the second intake air The intake air that has passed through the flow path 9 and reached the second intake valve 3 is directed near the periphery of the combustion chamber 1 as indicated by the white arrow. As a result, the intake air that has passed through the first intake passage 7 and reached the first intake valve 2 gathers near the center of the combustion chamber 1 and passes through the second intake passage 9 so as to surround it. The intake air that has reached the second intake valve 3 flows around the periphery of the combustion chamber 1 along the periphery.

図5は、吸気に燃焼室1の中心付近を指向させるための第1の指向手段の一例を示した図である。図5において、10は、第1の指向手段としての縦渦生成板であり、その他の構成要素は図3と同じである。縦渦生成板10は、その根元が第1の吸気流路7の下側の内壁面に取り付けられており、当該根元を支点として、その先端は回動可能になっており、第1の吸気流路7の内壁面に沿うように縦渦生成板10を寄せたり、あるいは、第1の吸気流路7の内壁面に対して所定の角度を有して縦渦生成板10を離間させたりすることが可能となっている。   FIG. 5 is a diagram showing an example of a first directing means for directing the vicinity of the center of the combustion chamber 1 to the intake air. In FIG. 5, reference numeral 10 denotes a vertical vortex generating plate as a first directing means, and other components are the same as those in FIG. The base of the vertical vortex generating plate 10 is attached to the inner wall surface on the lower side of the first intake flow path 7, and the tip of the vertical vortex generating plate 10 is rotatable with the base as a fulcrum. The vertical vortex generating plate 10 is moved along the inner wall surface of the flow path 7 or the vertical vortex generating plate 10 is separated from the inner wall surface of the first intake flow path 7 with a predetermined angle. It is possible to do.

図5(A)に示すように、縦渦生成板10を第1の吸気流路7の内壁面に寄せた状態の通常の吸気では、吸気は、破線矢印で示すように、第1の吸気弁2の全周からほぼ均等に燃焼室1に吸入されるため、特別な指向性や渦の発生を伴わない。   As shown in FIG. 5 (A), in normal intake with the vertical vortex generating plate 10 brought close to the inner wall surface of the first intake flow path 7, the intake is the first intake as shown by the broken line arrow. Since it is sucked into the combustion chamber 1 almost evenly from the entire circumference of the valve 2, there is no special directivity or vortex generation.

一方、(B)に示すように、縦渦生成板10の先端を第1の吸気流路7の内壁面から浮かして、縦渦生成板10を所定の角度を有して第1の吸気流路7の内壁面から離し、縦渦生成板10で第1の吸気流路7の一部の流れを塞いで、偏流を発生させると、吸気の流速が高くなることに加えて、第1の吸気弁2の一部分の方向のみから燃焼室1に吸気が吸入され、吸気に燃焼室1の中心付近を指向させる指向性や強い渦を発生させることができる。(B)のように、吸気を燃焼室1の上壁面側に偏流させて吸入すると、吸気の多くが燃焼室1の上壁面に衝突して燃焼室1の中心付近を指向する流れとなる。   On the other hand, as shown in (B), the front end of the vertical vortex generating plate 10 is lifted from the inner wall surface of the first intake flow path 7 so that the vertical vortex generating plate 10 has a predetermined angle and the first intake flow. In addition to increasing the flow velocity of the intake air, if the vertical vortex generating plate 10 separates the partial flow of the first intake flow path 7 from the inner wall surface of the passage 7 and generates a drift, Intake is sucked into the combustion chamber 1 only from the direction of a part of the intake valve 2, and directivity or strong vortex that directs the vicinity of the center of the combustion chamber 1 to the intake air can be generated. As shown in FIG. 5B, when intake air is drifted to the upper wall surface of the combustion chamber 1 and sucked, most of the intake air collides with the upper wall surface of the combustion chamber 1 and flows toward the center of the combustion chamber 1.

図6は、吸気に燃焼室1の周縁付近を指向させるための第2の指向手段の一例を示した図である。図6において、11は、第2の指向手段としての旋回渦生成板であり、その他の構成要素は図3と同じである。旋回渦生成板11は、その根元が第2の吸気流路9の上側の内壁面に取り付けられており、当該根元を支点として、その先端は回動可能になっており、第2の吸気流路9の内壁面に沿うように旋回渦生成板11を寄せたり、あるいは、第2の吸気流路9の内壁面に対して所定の角度を有して旋回渦生成板11を離間させたりすることが可能となっている。   FIG. 6 is a diagram showing an example of the second directing means for directing the intake air near the periphery of the combustion chamber 1. In FIG. 6, reference numeral 11 denotes a swirl vortex generating plate as the second directing means, and the other components are the same as those in FIG. 3. The base of the swirl vortex generating plate 11 is attached to the inner wall surface on the upper side of the second intake flow path 9, and the tip of the swirl vortex generating plate 11 is rotatable with the base as a fulcrum. The swirl vortex generating plate 11 is moved along the inner wall surface of the path 9, or the swirl vortex generating plate 11 is separated from the inner wall surface of the second intake flow path 9 with a predetermined angle. It is possible.

図6に示すように、旋回渦生成板11の先端を第2の吸気流路9の内壁面から浮かして、旋回渦生成板11を所定の角度を有して第2の吸気流路9の内壁面から離し、旋回渦生成板11で第2の吸気流路9の一部の流れを塞いで、偏流を発生させると、吸気の流速が高くなることに加えて、第2の吸気弁3の一部分の方向のみから燃焼室1に吸気が吸入され、吸気に燃焼室1の内壁の周縁付近を指向させる指向性を得ることができる。このような手段で、燃焼室1の内壁の周縁付近を指向させて吸入した吸気は、燃焼室1の内壁の周縁に沿った旋回流を生成する。   As shown in FIG. 6, the tip of the swirl vortex generating plate 11 is lifted from the inner wall surface of the second intake flow path 9, and the swirl vortex generating plate 11 has a predetermined angle and the second intake flow path 9 has a predetermined angle. When the partial flow is generated by blocking the partial flow of the second intake flow path 9 by the swirl vortex generating plate 11 away from the inner wall surface, the flow rate of the intake air is increased and the second intake valve 3 It is possible to obtain directivity in which intake air is sucked into the combustion chamber 1 only from a part of the direction and directs the intake air toward the periphery of the inner wall of the combustion chamber 1. By such means, the intake air sucked in the vicinity of the peripheral edge of the inner wall of the combustion chamber 1 generates a swirl flow along the peripheral edge of the inner wall of the combustion chamber 1.

以上のような構造を用いると、縦渦生成板10および旋回渦生成板11の働きにより、燃焼室1内の中心付近を指向する吸気と燃焼室1内の周縁付近を指向する吸気とを生成することを実現でき、さらに、第1の吸気加熱手段6および第2の吸気加熱手段8の働きにより、それらの吸気の温度に温度差を与えることで、図2の(1)に示すように、吸気行程終了時期における燃焼室1内の空気や混合気に温度差を得ることができる。   When the structure as described above is used, the action of the vertical vortex generating plate 10 and the swirl vortex generating plate 11 generates the intake air directed near the center in the combustion chamber 1 and the intake air directed near the periphery in the combustion chamber 1. In addition, by the action of the first intake air heating means 6 and the second intake air heating means 8, a temperature difference is given to the temperature of the intake air, as shown in (1) of FIG. A temperature difference can be obtained in the air or air-fuel mixture in the combustion chamber 1 at the end of the intake stroke.

この技術は、燃焼室1の壁面やピストンによる冷却が及びにくい燃焼室1の中央付近の空気や混合気の温度上昇を抑えることに有効である。即ち、図2に示したように、吸気行程終了時期では、燃焼室1の中央付近に吸入する吸気温度を燃焼室の周縁付近に吸入する吸気温度よりも低温としておくことで、圧縮行程中に熱が移動して、圧縮が進んだ圧縮行程の終了時期において、燃焼室1内の混合気の温度がちょうどほぼ均一になるように制御することができる。   This technique is effective in suppressing the temperature rise of the air or air-fuel mixture in the vicinity of the center of the combustion chamber 1 that is difficult to cool by the wall surface of the combustion chamber 1 and the piston. That is, as shown in FIG. 2, at the end of the intake stroke, the intake temperature sucked near the center of the combustion chamber 1 is set to be lower than the intake temperature sucked near the periphery of the combustion chamber, so that during the compression stroke. It can be controlled so that the temperature of the air-fuel mixture in the combustion chamber 1 is almost uniform at the end of the compression stroke in which the heat has moved and the compression has progressed.

図2(1)〜(3)は、各吸気弁を介して温度が異なる新気を吸入した場合の圧縮行程での混合気温度の変化を説明する図で、燃焼室の中心付近の混合気温度が高くなる過程を説明する図である。図2(1)〜(3)は、それぞれ、吸気行程終了時期、圧縮初期、および、さらに圧縮が進んだ時期を示している。また、これらの図の上段の(a)には、それぞれの時期の燃焼室内の混合気分布イメージが示され、下段の(b)には、それぞれの時期の燃焼室の径方向の温度分布イメージが示されている。   FIGS. 2 (1) to (3) are diagrams for explaining changes in the mixture temperature in the compression stroke when fresh air having different temperatures is drawn through the intake valves, and the mixture in the vicinity of the center of the combustion chamber. It is a figure explaining the process in which temperature becomes high. FIGS. 2 (1) to 2 (3) show the intake stroke end timing, the initial stage of compression, and the timing when the compression further proceeds. Moreover, the upper part (a) of these figures shows an image of the mixture distribution in the combustion chamber at each time, and the lower part (b) shows an image of the temperature distribution in the radial direction of the combustion chamber at each time. It is shown.

図2(1)に示すように、吸気行程が終了した時期には、燃焼室の中心付近よりも高温の空気または混合気が燃焼室の周縁周辺に形成されている。   As shown in FIG. 2 (1), when the intake stroke is completed, air or air-fuel mixture having a temperature higher than that near the center of the combustion chamber is formed around the periphery of the combustion chamber.

続いて、図2(2)に示すように、圧縮行程が進むにつれて、燃焼室1内のすべての空気または混合気の温度は上昇する。このとき、まだ、燃焼室1の中心付近よりも周縁付近の空気または混合気の方が高温であるため、周縁付近の空気または混合気の熱が中心付近の空気または混合気に移動する。   Subsequently, as shown in FIG. 2 (2), the temperature of all the air or air-fuel mixture in the combustion chamber 1 rises as the compression stroke proceeds. At this time, since the air or mixture near the periphery is still hotter than the center of the combustion chamber 1, the heat of the air or mixture near the periphery moves to the air or mixture near the center.

当該熱の移動を行いながら、図2(3)に示すように、さらに圧縮が進むと、混合気全体がほぼ均質な温度となる。   As shown in FIG. 2 (3), while the heat is transferred, when the compression further proceeds, the entire air-fuel mixture becomes a substantially homogeneous temperature.

これにより、本実施の形態に係る内燃機関においては、圧縮行程の後期、理想的には、ピストンが圧縮上死点に至った時期に、燃焼室1内の混合気の温度が均一となり、また、その温度が自己発火温度になるように制御することが可能である。さらに、圧縮自己着火燃焼の特長である多点同時着火を得るために、燃焼室1内の混合気濃度が均質であることも重要であるが、本実施の形態に係る内燃機関においては、第1の吸気弁2と第2の吸気弁3とから吸入される混合気の濃度が均質であるため、燃焼室1内の混合気濃度にばらつきが生じることなく、燃焼室1内の混合気濃度は当然に均質である。以上により、本実施の形態においては、燃焼開始時期が早期化せず、かつ、燃焼速度の上昇を抑えた、安定的な圧縮自己着火燃焼を実現することができる。   Thereby, in the internal combustion engine according to the present embodiment, the temperature of the air-fuel mixture in the combustion chamber 1 becomes uniform at the later stage of the compression stroke, ideally at the time when the piston reaches the compression top dead center. The temperature can be controlled to be the auto-ignition temperature. Further, in order to obtain multipoint simultaneous ignition, which is a feature of compression self-ignition combustion, it is important that the mixture concentration in the combustion chamber 1 is uniform. In the internal combustion engine according to the present embodiment, however, Since the concentration of the air-fuel mixture sucked from the first intake valve 2 and the second air-intake valve 3 is uniform, the air-fuel mixture concentration in the combustion chamber 1 does not vary and the air-fuel mixture concentration in the combustion chamber 1 does not vary. Is naturally homogeneous. As described above, in the present embodiment, it is possible to realize stable compression self-ignition combustion in which the combustion start time is not advanced and the increase in the combustion speed is suppressed.

図7に、内燃機関の運転状態(軸回転数や吸入空気量など)に対する各吸気温度設定のパターンを示す。図7に示すグラフにおいて、横軸は、内燃機関の運転状態である軸回転数および吸入空気量であり、縦軸は各吸気の温度をそれぞれ示している。   FIG. 7 shows each intake air temperature setting pattern with respect to the operating state of the internal combustion engine (shaft rotation speed, intake air amount, etc.). In the graph shown in FIG. 7, the horizontal axis represents the rotational speed of the internal combustion engine and the intake air amount, and the vertical axis represents the temperature of each intake air.

図7に実線で示す特性線は、燃焼室1の周縁付近を指向する吸気の温度を示しており、内燃機関の軸回転数や吸入空気量の増加に伴って、吸気温度を低下させることを意味している。   A characteristic line indicated by a solid line in FIG. 7 indicates the temperature of the intake air that is directed near the periphery of the combustion chamber 1, and indicates that the intake air temperature is decreased as the shaft rotational speed and the intake air amount of the internal combustion engine increase. I mean.

これは、内燃機関の軸回転数の増大に伴って燃焼室1内の空気や混合気から燃焼室1の壁面やピストンに熱が移動する時間が短くなることで、断熱圧縮熱が燃焼室1の壁面やピストンに奪われにくくなるためと、吸入空気量の増大に伴って断熱圧縮による空気や混合気の温度上昇そのものが増大するためである。   This is because the time for heat transfer from the air or mixture in the combustion chamber 1 to the wall surface or piston of the combustion chamber 1 is shortened as the shaft rotational speed of the internal combustion engine increases, so that the adiabatic compression heat is converted into the combustion chamber 1. This is because the temperature rise of the air and the air-fuel mixture due to adiabatic compression increases as the intake air amount increases.

また、図7に破線で示す特性線は、燃焼室1の中心付近を指向する吸気の温度を示しており、内燃機関の軸回転数や吸入空気量の増加に伴って、実線で示す燃焼室1の周縁付近を指向する吸気の温度との温度差ΔTを拡大させることを意味している。   In addition, the characteristic line indicated by a broken line in FIG. 7 indicates the temperature of the intake air directed near the center of the combustion chamber 1, and the combustion chamber indicated by the solid line as the shaft rotational speed and intake air amount of the internal combustion engine increase. This means that the temperature difference ΔT with the temperature of the intake air directed to the vicinity of the peripheral edge of 1 is enlarged.

これは、内燃機関の軸回転数の増大に伴って燃焼室1内の空気や混合気間の熱が移動する時間が短くなることで、燃焼室1の中心付近の空気や混合気の熱が燃焼室1の周縁付近の空気や混合気に奪われにくくなるためと、吸入空気量の増大に伴って、燃焼室1の中心付近の空気や混合気の断熱圧縮による温度上昇そのものが増大するためである。   This is because the time during which the heat between the air and the air-fuel mixture in the combustion chamber 1 moves with the increase in the shaft speed of the internal combustion engine is shortened, so that the heat of the air and air-fuel mixture near the center of the combustion chamber 1 is reduced. Because it is difficult for the air and air-fuel mixture near the periphery of the combustion chamber 1 to be deprived, and as the intake air amount increases, the temperature rise itself due to adiabatic compression of the air and air-fuel mixture near the center of the combustion chamber 1 increases. It is.

内燃機関の現在の運転状態である軸回転数や吸入空気量の増減に対応させた温度差ΔTの具体的な温度設定は、内燃機関の特性、特に燃焼室1の構造上の違い、例えば、燃焼室1の直径や、ピストン形状や、混合気を冷却する能力の違いによって異なる。そこで、本実施の形態においては、燃焼室1の構造が異なる内燃機関ごとに、軸回転数や吸入空気量ごとの温度差ΔTを導くための、軸回転数や吸入空気量に関する所定の関数や設定値データテーブルを予め作成しておくようにする。   The specific temperature setting of the temperature difference ΔT corresponding to the increase or decrease of the shaft rotational speed and the intake air amount that is the current operating state of the internal combustion engine is the difference in the characteristics of the internal combustion engine, particularly the structure of the combustion chamber 1, for example, It differs depending on the diameter of the combustion chamber 1, the piston shape, and the difference in the ability to cool the air-fuel mixture. Therefore, in the present embodiment, for each internal combustion engine having a different structure of the combustion chamber 1, a predetermined function relating to the shaft rotational speed and intake air amount for deriving the temperature difference ΔT for each shaft rotational speed and intake air amount, A set value data table is created in advance.

また、第1の吸気加熱手段6から第1の吸気弁2に至る第1の吸気流路7内と第2の吸気加熱手段8から第2の吸気弁3に至る第2の吸気流路9内とのそれぞれに、熱電対やサーミスタなどから構成された吸気温度検出手段(図示せず)を設け、当該吸気温度検出手段から各吸気温度を得て、それらに応じて、上記の関数や設定値データテーブルから求めた温度差ΔTに基づいて、第1の吸気加熱手段6と第2の吸気加熱手段8のそれぞれによる加熱量制御を行う。   Further, a second intake flow path 9 from the first intake heating means 6 to the first intake valve 2 and a second intake flow path 9 from the second intake heating means 8 to the second intake valve 3 is provided. Each is provided with an intake air temperature detection means (not shown) composed of a thermocouple, a thermistor, etc., and each intake air temperature is obtained from the intake air temperature detection means, and the functions and settings described above are obtained accordingly. Based on the temperature difference ΔT obtained from the value data table, the heating amount control by each of the first intake air heating means 6 and the second intake air heating means 8 is performed.

具体的には、まず、内燃機関の特性ごとに予め設定した上記の関数や設定値データテーブルを用いて、現在の運転状態(軸回転数や吸入空気量)に応じた吸気の温度差ΔTを求め、設定する。次に、燃焼室1の周縁寄りを旋回するように第2の吸入弁3を介して吸入される吸気の加熱目標温度T2に対しても、同様に、内燃機関の特性ごとに、軸回転数や吸入空気量に関する所定の関数や設定値データテーブルを予め設定しておき、当該関数や設定値データテーブルから、加熱目標温度T2を求め、設定する。次に、温度差ΔTを加熱目標温度T2から減じることで、燃焼室1の中心付近を指向させる第1の吸気弁2を介して吸入される吸気の加熱目標温度T1を算出する(T1=T2−ΔT)。こうして得られた加熱目標温度T1を第1の吸気加熱手段6による吸入空気の加熱目標温度としてセットし、加熱目標温度T2を第2の吸気加熱手段8による吸入空気の加熱目標温度としてセットする。なお、この制御の流れは所定の周期で繰り返し実行され、それにより、時々刻々変化する内燃機関の現在の運転状態に対応可能となる。これにより、現在の運転状態に応じて設定される温度差ΔTに基づく第1の吸気加熱手段6と第2の吸気加熱手段8のそれぞれによる加熱量制御が可能となり、燃焼室の中心付近を指向させる吸気の温度が燃焼室の周縁付近を指向させる吸気の温度よりも現在の運転状態に応じて設定された温度差ΔTだけ低温になるように制御することができる。   Specifically, first, the intake air temperature difference ΔT according to the current operating state (shaft rotation speed or intake air amount) is calculated using the above-described function or set value data table preset for each characteristic of the internal combustion engine. Find and set. Next, for the heating target temperature T2 of the intake air sucked through the second intake valve 3 so as to turn around the periphery of the combustion chamber 1, the shaft rotational speed is similarly determined for each characteristic of the internal combustion engine. Further, a predetermined function and set value data table relating to the intake air amount are set in advance, and the heating target temperature T2 is obtained from the function and set value data table and set. Next, by subtracting the temperature difference ΔT from the heating target temperature T2, the heating target temperature T1 of the intake air sucked through the first intake valve 2 that is directed near the center of the combustion chamber 1 is calculated (T1 = T2). -ΔT). The heating target temperature T1 thus obtained is set as the heating target temperature of the intake air by the first intake air heating means 6, and the heating target temperature T2 is set as the heating target temperature of the intake air by the second intake air heating means 8. Note that this control flow is repeatedly executed at a predetermined cycle, thereby making it possible to cope with the current operating state of the internal combustion engine that changes from moment to moment. This makes it possible to control the heating amount by each of the first intake air heating means 6 and the second intake air heating means 8 based on the temperature difference ΔT set according to the current operating state, and directs the vicinity of the center of the combustion chamber. The temperature of the intake air to be controlled can be controlled to be lower by the temperature difference ΔT set according to the current operating state than the temperature of the intake air directed toward the periphery of the combustion chamber.

第1の吸気加熱手段6と第2の吸気加熱手段8により双方の吸気を加熱すると、燃焼室1内に低温の空気を直接吸入しないため、圧縮行程の終了時期における空気や混合気を常に自己発火可能な温度にでき、さらに、第1の吸気加熱手段6と第2の吸気加熱手段8により、吸気の温度差を、温度差ΔTの値に基づいて、常に適切に制御できることから、圧縮行程の終了時期における燃焼室1内の混合気の温度を均一にすることができる。その結果、混合気の低温化による失火を防止しつつ、燃焼室1内の混合気に局所的な高温化が原因となる自己着火の早期化や、燃焼速度の上昇に伴う圧縮自己着火燃焼の不安定化が防止される。   When both the intake air is heated by the first intake air heating means 6 and the second intake air heating means 8, low-temperature air is not directly sucked into the combustion chamber 1, so that the air and the air-fuel mixture at the end of the compression stroke are always self. The temperature can be ignited, and the first intake air heating means 6 and the second intake air heating means 8 can always appropriately control the temperature difference of the intake air based on the value of the temperature difference ΔT. The temperature of the air-fuel mixture in the combustion chamber 1 at the end time of can be made uniform. As a result, while preventing misfire due to the low temperature of the air-fuel mixture, the self-ignition caused by the local high temperature in the air-fuel mixture in the combustion chamber 1 can be accelerated, and the compression self-ignition combustion accompanying the increase in the combustion speed can be prevented. Instability is prevented.

以上のように、この発明の本実施の形態1に係る圧縮自己着火内燃機関によれば、2系統の吸気系統に別個に設けた第1及び第2の吸気加熱手段6,8を用いて、内燃機関の運転状態に応じて、吸気行程終了時期においては、燃焼室1の中心付近を指向するように設定された吸気の温度を予め燃焼室1の周縁寄りを旋回するよう設定された吸気の温度よりも低温になるように制御し、圧縮行程中に熱の移動を進ませるようにしたため、内燃機関の運転状態によらず、圧縮行程の終了時期(ピストンが概ね圧縮上死点に至る時期)に、燃焼室1内の混合気全体を概ね均一な温度に制御することができる。また、双方の吸気を加熱制御することで外気温度などによらず、ピストンが概ね圧縮上死点に至る時期に、燃焼室1内の混合気を自己発火可能な温度にすることができることから、燃焼室1内の混合気に局所的な高温化が原因となる自己着火の早期化や、燃焼速度の上昇に伴う圧縮自己着火燃焼の不安定化や、燃焼室1内の混合気温度が自己発火可能な温度に到達できないために生じる失火などに伴う未燃混合気の排出が防止される。これにより、本実施の形態1に係る圧縮自己着火内燃機関によれば、外気温度や内燃機関の運転条件によらず、ピストンが概ね圧縮上死点に至る時期に、燃焼室1内の混合気に局所的な高温化を生じさせずに、概ね均一な温度に制御し、かつ、自己発火可能な混合気温度を得ることができ、内燃機関の圧縮自己着火燃焼を安定化することが可能となり、燃焼の不安定化に伴う未燃混合気の排出を防止することができるという効果が得られる。   As described above, according to the compression self-ignition internal combustion engine according to the first embodiment of the present invention, using the first and second intake air heating means 6 and 8 separately provided in the two intake systems, In accordance with the operating state of the internal combustion engine, at the end of the intake stroke, the intake air temperature set so as to be directed to the vicinity of the center of the combustion chamber 1 is set in advance so as to swirl toward the periphery of the combustion chamber 1. The temperature is controlled to be lower than the temperature, and heat is transferred during the compression stroke, so the end of the compression stroke (the timing at which the piston reaches the compression top dead center regardless of the operating state of the internal combustion engine). ), The entire air-fuel mixture in the combustion chamber 1 can be controlled to a substantially uniform temperature. Also, by controlling the heating of both intake air, the air-fuel mixture in the combustion chamber 1 can be brought to a temperature at which self-ignition is possible at a time when the piston reaches compression top dead center, regardless of the outside air temperature or the like. Early self-ignition caused by local high temperature in the air-fuel mixture in the combustion chamber 1, destabilization of compression self-ignition combustion accompanying an increase in combustion speed, and the air-fuel mixture temperature in the combustion chamber 1 is self The unburned mixture is prevented from being discharged due to misfires caused by the inability to reach an ignitable temperature. Thus, according to the compression self-ignition internal combustion engine according to the first embodiment, the air-fuel mixture in the combustion chamber 1 is approximately the time when the piston reaches the compression top dead center regardless of the outside air temperature or the operating conditions of the internal combustion engine. Therefore, it is possible to obtain a mixture temperature that can be self-ignited without causing local high temperature, and to stabilize the compression self-ignition combustion of the internal combustion engine. Thus, it is possible to prevent the unburned mixture from being discharged due to unstable combustion.

実施の形態2.
上述の実施の形態1では、内燃機関の特性に応じて軸回転数や吸入空気量ごとに予め設定した、燃焼室1の中心付近を指向する吸気の温度と燃焼室1の周縁付近を指向する吸気の温度との温度差ΔTに基づいて、各吸気加熱量を制御することで、自己着火の早期化や圧縮自己着火燃焼の不安定化が防止される動作について説明した。本実施の形態2においては、実際の燃焼状態を検知した結果に基づいて、温度差ΔTを補正することで、より確実に自己着火の早期化や圧縮自己着火燃焼の不安定化を防止するための制御動作について説明する。
Embodiment 2. FIG.
In the first embodiment described above, the temperature of the intake air directed to the vicinity of the center of the combustion chamber 1 and the vicinity of the periphery of the combustion chamber 1 set in advance for each shaft speed and intake air amount in accordance with the characteristics of the internal combustion engine. The operation has been described in which the amount of heating of each intake air is controlled based on the temperature difference ΔT with the temperature of the intake air to prevent the early ignition and the instability of the compression self-ignition combustion. In the second embodiment, the temperature difference ΔT is corrected based on the result of detecting the actual combustion state, thereby more reliably preventing the early self-ignition and the instability of the compression self-ignition combustion. The control operation will be described.

なお、この発明の実施の形態2に係る圧縮自己着火内燃機関の構成は、図3〜図6に示した実施の形態1の構成と基本的に同じであるため、ここでは、それらの図を参照することとし、その説明は省略する。   The configuration of the compression self-ignition internal combustion engine according to the second embodiment of the present invention is basically the same as the configuration of the first embodiment shown in FIGS. The description will be omitted.

図8は、ノッキング発生有無のクランク角度に対する燃焼室圧力発生パターンの例を示した図である。図8の太い実線は、燃焼室1内の混合気の局所的な高温化によって圧縮自己着火において異常が発生した場合のクランク角度に対する燃焼室1内の圧力変化の例を示しており、図8の細い実線は、混合気の局所的な高温化などがなく異常が発生していない場合の圧力変化の例を示している。この場合の異常とは、所謂ノッキングのごとく、正常な圧力変化に高周波数の圧力変化成分が加わった状態のことである。   FIG. 8 is a diagram showing an example of a combustion chamber pressure generation pattern with respect to a crank angle with or without knocking. The thick solid line in FIG. 8 shows an example of the pressure change in the combustion chamber 1 with respect to the crank angle when an abnormality occurs in compression self-ignition due to the local high temperature of the air-fuel mixture in the combustion chamber 1. The thin solid line indicates an example of the pressure change when there is no abnormality due to local high temperature of the air-fuel mixture. The abnormality in this case is a state in which a high-frequency pressure change component is added to a normal pressure change as in so-called knocking.

燃焼室内の圧力変化にノッキングのごとく高周波数の変化が加わると、内燃機関のクランクシャフトの出力軸(図示せず)に伝達される駆動トルクが小刻みに振動することから内燃機関を搭載した車両の走行速度が小刻みに変化すると共に、騒音発生の原因にもなり、車両の乗車における快適性が損なわれる。   When a high-frequency change such as knocking is added to the pressure change in the combustion chamber, the drive torque transmitted to the output shaft (not shown) of the crankshaft of the internal combustion engine vibrates in small increments. The running speed changes in small increments and causes noise, which impairs the comfort of the vehicle.

圧縮自己着火内燃機関において、このような圧力変化にノッキングのごとく高周波数の変化が加わる主要因は混合気の局所的な高温化であり、局所的な高温化は燃焼室1の壁面やピストンによる冷却効果が及びにくい燃焼室1の中心付近で発生するため、その防止には、図7に示す温度差ΔTを拡大する制御が有効である。   In a compression self-ignition internal combustion engine, the main factor that a high-frequency change such as knocking is added to such a pressure change is the local high temperature of the air-fuel mixture, and the local high temperature is caused by the wall surface of the combustion chamber 1 and the piston. Since it occurs in the vicinity of the center of the combustion chamber 1 where the cooling effect is difficult to achieve, control for expanding the temperature difference ΔT shown in FIG. 7 is effective in preventing this.

図9は、燃焼室1内の圧力変化にノッキングのごとく高周波数の変化が加わる条件でのクランク角度に対する圧力変化データをフーリエ変換して得られた各信号周波数のスペクトル強度を示した図である。   FIG. 9 is a diagram showing the spectral intensity of each signal frequency obtained by Fourier transforming the pressure change data with respect to the crank angle under the condition that a high frequency change is applied to the pressure change in the combustion chamber 1 like knocking. .

低周波数側のスペクトルの増加は、ノッキングのごとく高周波数の変化が加わっていない場合にも得られる圧縮自己着火燃焼による基本的な圧力変化に起因する変化である。   The increase in the spectrum on the low frequency side is a change caused by a basic pressure change due to compression self-ignition combustion that is obtained even when a high frequency change is not applied like knocking.

一方、高周波数側に発生するスペクトルの増加は、圧力変化に加わったノッキングのごとく高周波数成分の発生によるものである。よって、この高周波数帯のスペクトル(の強度)を求めることで、圧力変化に加わったノッキングのごとく高周波数成分の発生の有無や強さを検出することができる。   On the other hand, the increase in the spectrum generated on the high frequency side is due to the generation of a high frequency component such as knocking applied to the pressure change. Therefore, by obtaining the spectrum (its intensity) in this high frequency band, it is possible to detect the presence and intensity of the high frequency component as in the knocking applied to the pressure change.

このような高周波数帯のスペクトル強度Pは、燃焼室1内の圧力変化情報や圧力変化に連動する何らかの物理量変化を電圧信号に変換可能な素子の出力を算術的に計算処理することで得ることができるが、簡易的には素子の出力信号のうち特定の高周波数帯のみを通過させるフィルターを用いるなどの方法により特定周波数帯のスペクトル強度を得ることができる。なお、高周波成分は燃焼室内を高速で移動するエネルギーの共鳴により生じるものであるため、その周波数は燃焼室1の形状が支配的である。よって、軸回転数などの内燃機関動作の周波数によってスペクトル強度を検出する周波数帯を変更する必要はない。   Such spectral intensity P in the high frequency band is obtained by arithmetically calculating the output of the element capable of converting pressure change information in the combustion chamber 1 and some physical quantity change linked to the pressure change into a voltage signal. However, the spectrum intensity of the specific frequency band can be obtained by a method such as using a filter that passes only a specific high frequency band in the output signal of the element. Since the high frequency component is generated by resonance of energy that moves at high speed in the combustion chamber, the shape of the combustion chamber 1 is dominant in the frequency. Therefore, it is not necessary to change the frequency band for detecting the spectrum intensity according to the frequency of the internal combustion engine operation such as the shaft rotational speed.

この特定周波数帯のスペクトル強度Pが例えば予め定めた上限値よりも大きい場合は、燃焼室1の中心付近を指向させる第1の吸気弁2を介して吸入される吸気の温度設定値を現状よりも低い値に補正して吸気加熱制御を実行することで内燃機関の軸トルクの振動や騒音の発生を抑制することができる。   When the spectrum intensity P in this specific frequency band is larger than, for example, a predetermined upper limit value, the temperature setting value of the intake air sucked through the first intake valve 2 that is directed near the center of the combustion chamber 1 is set from the current state. Further, by correcting the value to a low value and executing the intake air heating control, it is possible to suppress the occurrence of shaft torque vibration and noise of the internal combustion engine.

具体的な処理の流れの一例を図10に示す。この例は燃焼室内圧力情報に関する高周波数帯のスペクトル強度が予め設定した値となるように制御するものである。   An example of a specific processing flow is shown in FIG. In this example, control is performed so that the spectrum intensity in the high frequency band related to the pressure information in the combustion chamber becomes a preset value.

制御開始から、先ず、ステップS100において、高周波数帯のスペクトル強度制御目標値Psをメモリー(図示せず)にセットする。スペクトル強度制御目標値Psは内燃機関が許容するスペクトル強度の上限値などであり、0よりも大きい上限値以下の値であればよい。   From the start of control, first, in step S100, the spectrum intensity control target value Ps for the high frequency band is set in a memory (not shown). The spectrum intensity control target value Ps is an upper limit value of the spectrum intensity allowed by the internal combustion engine, and may be any value that is greater than 0 and less than or equal to the upper limit value.

次に、ステップS101で、内燃機関の現在の運転状態(軸回転数や吸入空気量など)に応じた吸入空気の温度差ΔT0と、燃焼室1の周縁寄りを旋回するように第2の吸入弁3を介して吸入される吸気の加熱目標温度T2とを、それぞれ、予め設定した所定の関数から演算して設定するか、あるいは、予め設定したテーブルを参照して設定する。   Next, in step S101, the second intake air is swung around the temperature difference ΔT0 of the intake air corresponding to the current operating state of the internal combustion engine (shaft rotation speed, intake air amount, etc.) and the periphery of the combustion chamber 1. The heating target temperature T2 of the intake air sucked through the valve 3 is set by calculation from a predetermined function set in advance, or is set with reference to a preset table.

次に、ステップS102では、まず、燃焼室1内の圧力情報に基づいて、現在のスペクトル強度Pを検出する。検出方法としては、上述したいずれかの方法を用いればよく、例えば、燃焼室1内の圧力変化に応じた電気的な出力が得られる素子の出力を算術的に計算処理して求めるか、あるいは、当該素子の出力を特定の高周波数帯のみを通過させるフィルターを通すことによって求める。次に、検出された現在のスペクトル強度PとステップS100でメモリーにセットしたスペクトル強度制御目標値Psとの偏差に基づいた制御演算を実行して補正係数Rを算出する(R=f(P−Ps),0≦R)。制御演算には、偏差に対する比例制御演算(P制御)や、比例演算に偏差の積分値に比例した積分制御演算(I制御)を加えたPI制御や、比例演算にスペクトル強度の変化に比例した微分制御演算(D制御)を加えたPD制御や、これらを組み合わせたPID制御などを用いることができる。   Next, in step S102, first, the current spectrum intensity P is detected based on the pressure information in the combustion chamber 1. As a detection method, any one of the above-described methods may be used. For example, an output of an element that can obtain an electrical output corresponding to a pressure change in the combustion chamber 1 is obtained by arithmetic calculation, or The output of the element is obtained by passing through a filter that passes only a specific high frequency band. Next, the control coefficient based on the deviation between the detected current spectral intensity P and the spectral intensity control target value Ps set in the memory in step S100 is executed to calculate the correction coefficient R (R = f (P− Ps), 0 ≦ R). The control calculation includes proportional control calculation (P control) for deviation, PI control in which integral control calculation (I control) proportional to the integral value of deviation is added to proportional calculation, and proportional calculation is proportional to changes in spectrum intensity. PD control to which differential control calculation (D control) is added, PID control that combines these, and the like can be used.

ステップS103では、ステップS101で設定した内燃機関の現在の運転状態に応じた吸入空気の温度差ΔT0に、ステップS102で求めた補正係数Rを乗ずることで、吸気温度差ΔTを算出し(ΔT=ΔT0×R)する。   In step S103, the intake air temperature difference ΔT is calculated by multiplying the intake air temperature difference ΔT0 according to the current operating state of the internal combustion engine set in step S101 by the correction coefficient R obtained in step S102 (ΔT = ΔT0 × R).

次に、ステップS104では、その温度差ΔTを、ステップS101で設定された、燃焼室1の周縁寄りを旋回するように第2の吸気弁3を介して吸入される吸気の加熱目標温度T2から減じることで、燃焼室1の中心付近を指向させる第1の吸気弁2を介して吸入される吸気の加熱目標温度T1を算出する(T1=T2−ΔT)。   Next, in step S104, the temperature difference ΔT is determined from the heating target temperature T2 of the intake air sucked through the second intake valve 3 so as to turn near the periphery of the combustion chamber 1 set in step S101. By subtracting, the heating target temperature T1 of the intake air sucked through the first intake valve 2 directed near the center of the combustion chamber 1 is calculated (T1 = T2−ΔT).

よって、ステップS102における制御演算の結果として得られる補正係数Rは0以上の値とすることが望ましい。なぜならば、Rが負の値の場合は、燃焼室1の中心付近を指向する吸気の温度が燃焼室1の周縁を旋回するように吸入する空気の温度よりも高温となってしまい、圧縮行程の進行に伴って燃焼室1の中心付近の混合気温度の局所的な高温化傾向が強くなるためである。   Therefore, it is desirable that the correction coefficient R obtained as a result of the control calculation in step S102 is a value of 0 or more. This is because when R is a negative value, the temperature of the intake air that is directed near the center of the combustion chamber 1 becomes higher than the temperature of the air that is sucked so as to swirl around the periphery of the combustion chamber 1, and the compression stroke. This is because the local temperature increasing tendency of the air-fuel mixture temperature near the center of the combustion chamber 1 increases with the progress of.

次に、ステップS105では、ステップS104で算出した燃焼室1の中心付近を指向させる吸気の加熱目標温度T1を、第1の吸気加熱手段6による吸入空気の加熱目標温度としてセットし、ステップS101で得た燃焼室1の周縁に沿うように指向させる吸気の加熱目標温度T2を、第2の吸気加熱手段8による吸入空気の加熱目標温度としてセットする。   Next, in step S105, the heating target temperature T1 of the intake air that is directed near the center of the combustion chamber 1 calculated in step S104 is set as the heating target temperature of the intake air by the first intake air heating means 6, and in step S101. The target heating temperature T2 of the intake air that is directed along the peripheral edge of the combustion chamber 1 is set as the target heating temperature of the intake air by the second intake air heating means 8.

この制御の流れは、ステップS105からステップS101に戻ることで繰り返し実行される。よって、第1の吸気加熱手段6と第2の吸気加熱手段8のそれぞれによる吸入空気の加熱目標温度は、内燃機関の運転状態の変化に応じて時々刻々変化する。そのため、本実施の形態においては、第1の吸気加熱手段6から第1の吸気弁2に至る第1の吸気流路7内と第2の吸気加熱手段8から第2の吸気弁3に至る第2の吸気流路9内のそれぞれに設けた熱電対やサーミスタなどの吸気温度検出手段(図示せず)から各吸気温度を得て、加熱目標温度T1または加熱目標温度T2との温度差などに基づいた、第1の吸気加熱手段6または第2の吸気加熱手段8のそれぞれによる加熱制御も連続的に実行することで、燃焼運転中の内燃機関において吸入空気の温度差を常に適切に保つことができ、圧縮行程の終了時期における空気や混合気の温度の均一性が向上することから、圧縮自己着火内燃機関においては、燃焼室内の混合気に局所的な高温化を生じさせず、自己着火の早期化や燃焼速度の上昇に伴う圧縮自己着火燃焼の不安定化が防止される。   This control flow is repeatedly executed by returning from step S105 to step S101. Therefore, the heating target temperature of the intake air by each of the first intake air heating means 6 and the second intake air heating means 8 changes every moment according to the change in the operating state of the internal combustion engine. For this reason, in the present embodiment, the first intake passage 7 from the first intake heating means 6 to the first intake valve 2 and the second intake heating means 8 from the second intake heating means 8 to the second intake valve 3 are reached. Each intake air temperature is obtained from an intake air temperature detecting means (not shown) such as a thermocouple or thermistor provided in each of the second intake air passages 9, and the temperature difference from the heating target temperature T1 or the heating target temperature T2 or the like. By continuously executing the heating control by the first intake air heating means 6 or the second intake air heating means 8 based on the above, the temperature difference of the intake air is always kept appropriate in the internal combustion engine during the combustion operation. In the compression self-ignition internal combustion engine, the temperature of the air-fuel mixture in the combustion chamber does not cause local high temperature and the self-ignition temperature is improved. Early ignition and increased combustion speed Compression destabilization of the self-ignition combustion can be prevented with.

以上のように、本実施の形態2によれば、上述の実施の形態1と同様の効果が得られるとともに、さらに、本実施の形態2においては、燃焼室内の圧力変化に応じた電気的な出力が得られる素子の出力から特定した高周波数帯のスペクトル強度Pを検出し、該スペクトル強度Pに応じて燃焼室1の中心付近を指向させる空気または混合気の加熱目標温度T1と燃焼室1の周縁を沿わせる空気または混合気の加熱目標温度T2との温度差ΔTを補正するようにしたため、内燃機関の運転状態によらず、より確実に自己着火の早期化や燃焼速度の上昇に伴う圧縮自己着火燃焼の不安定化とそれに伴う未燃混合気の排出が防止されるという効果が得られる。   As described above, according to the second embodiment, the same effect as in the first embodiment described above can be obtained, and furthermore, in the second embodiment, an electrical response corresponding to the pressure change in the combustion chamber can be obtained. The spectrum intensity P in the high frequency band specified from the output of the element from which the output is obtained is detected, and the heating target temperature T1 of the air or the air-fuel mixture that is directed near the center of the combustion chamber 1 according to the spectrum intensity P and the combustion chamber 1 Because the temperature difference ΔT with the target heating temperature T2 of the air or air-fuel mixture that runs along the periphery of the engine is corrected, the self-ignition and the combustion speed increase more reliably regardless of the operating state of the internal combustion engine. The effect of preventing the instability of compression self-ignition combustion and the accompanying discharge of unburned mixture is obtained.

なお、この発明の実施の形態1および実施の形態2に係る動作は燃焼室内に温度が異なる空気を吸入する場合について説明しており、筒内直噴方式の圧縮自己着火内燃機関に関するものである。しかしながら、一方の吸気弁を介して燃焼室に吸入する流体を燃焼室の中心を指向させるとともに、他方の吸気弁を介して燃焼室の周縁を指向させて吸入する流体よりも低温に制御し、かつ、吸入する流体がほぼ同じ濃度の混合気であれば予混合方式の圧縮自己着火内燃機関においても同様の効果が得られる。   The operation according to the first and second embodiments of the present invention is described for the case where air having different temperatures is sucked into the combustion chamber, and relates to a compression self-ignition internal combustion engine of a direct injection type. . However, the fluid sucked into the combustion chamber through one intake valve is directed to the center of the combustion chamber, and the temperature is controlled to be lower than the fluid sucked by directing the periphery of the combustion chamber through the other intake valve, In addition, if the fluid to be sucked is an air-fuel mixture having substantially the same concentration, the same effect can be obtained in a premixed compression self-ignition internal combustion engine.

1 燃焼室、2 第1の吸気弁、3 第2の吸気弁、4 排気弁、5 スロットル、6 第1の吸気加熱手段、7 第1の吸気流路、8 第2の吸気加熱手段、9 第2の吸気流路、10 縦渦生成板、11 旋回渦生成板。   DESCRIPTION OF SYMBOLS 1 Combustion chamber, 2 1st intake valve, 3nd intake valve, 4 Exhaust valve, 5 Throttle, 6 1st intake heating means, 7 1st intake flow path, 8 2nd intake heating means, 9 Second intake flow path, 10 longitudinal vortex generator plate, 11 swirl vortex generator plate.

Claims (2)

燃焼室内に形成された燃料と空気との混合気をピストンによる圧縮によって自己着火させる圧縮自己着火内燃機関であって、
気筒毎に配された第1および第2の吸気弁と、
前記第1及び第2の吸気弁を介してそれぞれ前記燃焼室内に吸気を導入する第1および第2の吸気流路と、
前記第1の吸気流路から前記第1の吸気弁を介して前記燃焼室内に吸入される吸気に前記燃焼室の中心付近を指向させる第1の指向手段と、
前記第2の吸気流路から前記第2の吸気弁を介して前記燃焼室内に吸入される吸気に前記燃焼室の周縁付近を指向させる第2の指向手段と、
前記第1の吸気流路に設けられ、前記第1の吸気流路を流れる前記吸気を第1の加熱目標温度に基づいて加熱する第1の吸気加熱手段と、
前記第2の吸気流路に設けられ、前記第2の吸気流路を流れる前記吸気を第2の加熱目標温度に基づいて加熱する第2の吸気加熱手段と、
前記燃焼室の中心付近を指向する前記吸気の温度が前記燃焼室の周縁付近を指向する前記吸気の温度よりも低温になるように、現在の内燃機関の運転状態に基づいて、前記第1の加熱目標温度と前記第2の加熱目標温度との温度差を設定し、当該温度差に基づいて前記第1の加熱目標温度および前記第2の加熱目標温度の値を制御する制御手段と
を備えたことを特徴とする圧縮自己着火内燃機関。
A compression self-ignition internal combustion engine that self-ignites a mixture of fuel and air formed in a combustion chamber by compression by a piston,
First and second intake valves arranged for each cylinder;
First and second intake passages for introducing intake air into the combustion chamber via the first and second intake valves, respectively;
First directing means for directing the intake air sucked into the combustion chamber from the first intake passage through the first intake valve in the vicinity of the center of the combustion chamber;
Second directing means for directing the intake air sucked into the combustion chamber from the second intake flow path via the second intake valve in the vicinity of the periphery of the combustion chamber;
A first intake air heating means provided in the first intake flow path for heating the intake air flowing through the first intake flow path based on a first heating target temperature;
A second intake air heating means provided in the second intake air flow path for heating the intake air flowing through the second intake flow path based on a second heating target temperature;
Based on the current operating state of the internal combustion engine, the first intake air that is directed near the center of the combustion chamber is lower in temperature than the intake air that is directed near the periphery of the combustion chamber. Control means for setting a temperature difference between the heating target temperature and the second heating target temperature and controlling the values of the first heating target temperature and the second heating target temperature based on the temperature difference. A compression self-ignition internal combustion engine characterized by the above.
前記制御手段は、さらに、
前記燃焼室内の圧力変化に応じた電気的な出力が得られる素子の出力から特定高周波数帯のスペクトル強度を検出し、該スペクトル強度に応じて前記第1の加熱目標温度と前記第2の加熱目標温度との前記温度差を補正し、補正した当該温度差に基づいて前記第1の加熱目標温度および前記第2の加熱目標温度の値を制御する
ことを特徴とする請求項1に記載の圧縮自己着火内燃機関。
The control means further includes
A spectrum intensity in a specific high frequency band is detected from an output of an element that can obtain an electrical output corresponding to a pressure change in the combustion chamber, and the first heating target temperature and the second heating are detected according to the spectrum intensity. The temperature difference from the target temperature is corrected, and the values of the first heating target temperature and the second heating target temperature are controlled based on the corrected temperature difference. Compression self-ignition internal combustion engine.
JP2010099347A 2010-04-23 2010-04-23 Compression self-ignition internal combustion engine Expired - Fee Related JP4901973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010099347A JP4901973B2 (en) 2010-04-23 2010-04-23 Compression self-ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099347A JP4901973B2 (en) 2010-04-23 2010-04-23 Compression self-ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011226446A true JP2011226446A (en) 2011-11-10
JP4901973B2 JP4901973B2 (en) 2012-03-21

Family

ID=45042057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099347A Expired - Fee Related JP4901973B2 (en) 2010-04-23 2010-04-23 Compression self-ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP4901973B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264319A (en) * 1998-03-19 1999-09-28 Nissan Motor Co Ltd Exhaust control device for internal combustion engine
JP2001323829A (en) * 2000-05-17 2001-11-22 Tokyo Gas Co Ltd Premix compression self-ignition engine
JP2004197598A (en) * 2002-12-17 2004-07-15 Toyota Motor Corp Pre-mixed compression ignition internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264319A (en) * 1998-03-19 1999-09-28 Nissan Motor Co Ltd Exhaust control device for internal combustion engine
JP2001323829A (en) * 2000-05-17 2001-11-22 Tokyo Gas Co Ltd Premix compression self-ignition engine
JP2004197598A (en) * 2002-12-17 2004-07-15 Toyota Motor Corp Pre-mixed compression ignition internal combustion engine

Also Published As

Publication number Publication date
JP4901973B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
US8078387B2 (en) Control apparatus for spark-ignition engine
JP4838666B2 (en) Operation method of premixed compression self-ignition engine
JP6315005B2 (en) Control device for internal combustion engine
JP6262957B2 (en) Operation method of internal combustion engine
JP5858971B2 (en) Control device and method for internal combustion engine
JP6669124B2 (en) Internal combustion engine
JP2017186984A (en) Control device of internal combustion engine
JP6508186B2 (en) Control device for internal combustion engine
JP2017180111A (en) Internal combustion engine
JP2007046474A (en) Internal combustion engine and operation controller of internal combustion engine
JP2018040264A (en) Control device for internal combustion engine
JP2018040263A (en) Control device for internal combustion engine
US8381700B2 (en) Systems and methods for exhaust gas recirculation control in homogeneous charge compression ignition engine systems
WO2015181881A1 (en) Diesel engine control device and control method
JP2012149552A (en) Internal combustion engine controller
JP4901973B2 (en) Compression self-ignition internal combustion engine
JP5229428B1 (en) Control device for internal combustion engine
WO2013042430A1 (en) Combustion control device
WO2013038805A1 (en) Combustion control device
JP5375979B2 (en) Combustion control device for internal combustion engine
JP6866754B2 (en) Control device for compression ignition type internal combustion engine
JP4389721B2 (en) EGR control device for internal combustion engine
JP2010159683A (en) Internal combustion engine
JP6283959B2 (en) Engine control device
WO2020014636A1 (en) Systems, apparatus, and methods for increasing combustion temperature of fuel-air mixtures in internal combustion engines

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees