JP2011225958A - Alloy steel end mill - Google Patents

Alloy steel end mill Download PDF

Info

Publication number
JP2011225958A
JP2011225958A JP2010099394A JP2010099394A JP2011225958A JP 2011225958 A JP2011225958 A JP 2011225958A JP 2010099394 A JP2010099394 A JP 2010099394A JP 2010099394 A JP2010099394 A JP 2010099394A JP 2011225958 A JP2011225958 A JP 2011225958A
Authority
JP
Japan
Prior art keywords
steel
alloy steel
end mill
hardness
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010099394A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
博史 渡邊
Koichi Matsumura
宏一 松村
Ryo Katashima
亮 片島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010099394A priority Critical patent/JP2011225958A/en
Publication of JP2011225958A publication Critical patent/JP2011225958A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an alloy steel end mill and a surface-covered alloy steel end mill which exhibits superior wear resistance over a long-term use.SOLUTION: The alloy steel end mill is provided in which an alloy steel having a high-temperature tempering softening resistance comprising, by mass%, 2.0 to 3.0% of C, 3.5 to 6.0% of Si, 1.0% or less of Mn, 3.5 to 4.0% of Cr, 10.0 to 12.0% of one kind or the sum of two kinds of W and Mo, 3.0 to 3.5% of V, 4.0 to 5.0% of Co and the balance being Fe and inevitable impurities constitutes a tool base body. The surface-covered alloy steel end mill is also provided.

Description

この発明は、長期の使用にわたってすぐれた耐摩耗性を発揮するエンドミルに関し、特に、高速切削加工時に、刃先が焼戻し温度以上の高温に晒された場合でも優れた高温焼戻し軟化抵抗性を備える合金鋼で工具基体を構成することにより、刃先の硬度低下が防止され、高温下で優れた切削性を発揮する合金鋼製エンドミルおよび工具基体表面に硬質被覆層を蒸着形成した表面被覆合金鋼製エンドミルに関する。   TECHNICAL FIELD The present invention relates to an end mill that exhibits excellent wear resistance over a long period of use, and in particular, an alloy steel having excellent high-temperature temper softening resistance even when the cutting edge is exposed to a temperature higher than the tempering temperature during high-speed cutting. The present invention relates to an alloy steel end mill that prevents deterioration in the hardness of the cutting edge and exhibits excellent machinability at high temperatures, and a surface coated alloy steel end mill in which a hard coating layer is formed by vapor deposition on the surface of the tool base. .

切削工具用の材料としては、合金鋼(JIS SKH、SKD等)、超硬合金、サーメット、cBN、ダイヤモンド等が知られているが、切削工具用合金鋼のなかでは、耐摩耗性と靭性に優れることから高速度工具鋼(JIS SKH)が多用されている。
高速度工具鋼は、C,Cr,W,Mo,V,Co等の合金元素を多量に添加し、特に高温での硬さや耐摩耗性を高めた工具鋼であるが、大別して、溶製により製造する高速度工具鋼と粉末冶金法により製造する粉末高速度工具鋼(粉末ハイスともいう)の2種類がある。
溶製法による場合には、通常の製法により製造し得るものの、粗大炭化物の偏析等による材料の均質化が問題となりやすく、一方、粉末冶金法による場合は、製造工程が複雑でコスト高になるという欠点はあるものの、溶製法により製造が困難である材質をも製造可能とするとともに、均一組織を形成することができるという利点がある。
Alloy steels (JIS SKH, SKD, etc.), cemented carbide, cermet, cBN, diamond, etc. are known as materials for cutting tools. However, among the alloy steels for cutting tools, they have high wear resistance and toughness. High speed tool steel (JIS SKH) is frequently used because of its superiority.
High-speed tool steel is a tool steel to which a large amount of alloying elements such as C, Cr, W, Mo, V, Co, etc. are added to improve hardness and wear resistance especially at high temperatures. There are two types of high-speed tool steel manufactured by the method and powder high-speed tool steel (also referred to as powder high speed) manufactured by the powder metallurgy method.
In the case of the melting method, although it can be manufactured by a normal manufacturing method, the homogenization of the material due to segregation of coarse carbides tends to be a problem, while in the case of the powder metallurgy method, the manufacturing process is complicated and expensive. Although there are drawbacks, there is an advantage that even a material that is difficult to manufacture by a melting method can be manufactured and a uniform structure can be formed.

溶製法による高速度工具鋼については、例えば、特許文献1〜5に記載されており、特許文献1によれば、鋼中成分として微量の希土類元素を含有させ、また、共晶炭化物の形態制御を行うことにより、耐衝撃性と切削性能を高めることが知られている。
また、特許文献2によれば、鋼中にVC炭化物を形成することにより耐摩耗性を向上させるとともに、VC炭化物の晶出形態を微細かつ均一化することで靭性を高めることが知られている。
また、特許文献3によれば、鋼中の合金成分およびその含有量を調整することにより、熱間加工性、靭性、耐衝撃性、疲労強度を向上させることが知られている。
また、特許文献4によれば、鋼中の合金成分Si、Mo,Wの含有量を調整し、0.4≦2Mo/(W+2Mo)×Si≦1.0の関係を満足させることにより、焼戻し硬さが高く、靭性、耐摩耗性を向上させることが知られている。
また、特許文献5によれば、鋼中に高硬度の微細炭化物を形成することにより耐摩耗性、耐熱性、耐焼付き性の向上を図り、さらに、鋳造組織を微細化することにより工具切刃の耐チッピング性の向上を図ることが知られている。
The high-speed tool steel by the melting method is described in, for example, Patent Documents 1 to 5. According to Patent Document 1, a trace amount of rare earth elements is contained as a component in the steel, and the shape control of the eutectic carbide is performed. It is known to improve impact resistance and cutting performance by performing.
Further, according to Patent Document 2, it is known to improve wear resistance by forming VC carbide in steel and to improve toughness by making the crystallization form of VC carbide fine and uniform. .
Further, according to Patent Document 3, it is known that hot workability, toughness, impact resistance, and fatigue strength are improved by adjusting alloy components and their contents in steel.
According to Patent Document 4, the contents of alloy components Si, Mo and W in steel are adjusted, and the relationship 0.4 ≦ 2Mo / (W + 2Mo) × Si ≦ 1.0 is satisfied, thereby tempering. It is known that it has high hardness and improves toughness and wear resistance.
Further, according to Patent Document 5, the wear resistance, heat resistance, and seizure resistance are improved by forming fine carbides with high hardness in the steel, and further, the tool cutting edge is obtained by refining the cast structure. It is known to improve chipping resistance.

粉末冶金法による粉末高速度工具鋼(粉末ハイス)については、例えば、特許文献6,7に記載されており、特許文献6によれば、鋼中の(W+2Mo)量及び(C−Ceq)の値を規制するとともに、Nb/Vの値を規制することにより、靭性、耐食性を有し、かつ、高温焼戻し軟化抵抗性を高めた粉末高速度工具鋼を得ることができるとされている。
また、特許文献7によれば、鋼中の合金成分相互の含有量を、一定の関係を満足するように調整することによって、耐摩耗性および靭性を向上させ得るとされている。
The powder high-speed tool steel (powder high speed) by the powder metallurgy method is described in, for example, Patent Documents 6 and 7, and according to Patent Document 6, the amount of (W + 2Mo) in the steel and (C-Ceq) By regulating the value and regulating the value of Nb / V, it is said that powder high-speed tool steel having toughness and corrosion resistance and enhanced resistance to high-temperature temper softening can be obtained.
According to Patent Document 7, it is said that the wear resistance and toughness can be improved by adjusting the contents of the alloy components in the steel so as to satisfy a certain relationship.

特開平1−165748号公報JP-A-1-165748 特開平7−228946号公報JP-A-7-228946 特開平8−100239号公報Japanese Patent Application Laid-Open No. 8-100239 特開2000−144333号公報JP 2000-144333 A 特許第2573951号明細書Japanese Patent No. 2573951 特開平5−171373号公報JP-A-5-171373 特開2001−294986号公報JP 2001-294986 A

近年の切削技術の進展はめざましく、加えて切削加工における省力化、省エネ化、低コスト化さらに効率化等の要求も強く、これに伴い、ドライ条件での高速切削加工、高能率切削加工も求められているが、上記従来の合金鋼から作製された合金鋼製エンドミルを用い、ドライ高速切削を行ったような場合には、切刃が切削加工時の高熱にさらされるため、合金鋼が高温焼戻し軟化を起こして硬度低下を生じ、その結果、クレータ摩耗等を発生しやすくなり、工具寿命が短くなるという問題があった。   Recent progress in cutting technology is remarkable, and in addition, there are strong demands for labor saving, energy saving, cost reduction, and efficiency in cutting, and accordingly, high-speed cutting and high-efficiency cutting under dry conditions are also required. However, when dry high-speed cutting is performed using an alloy steel end mill made from the above-mentioned conventional alloy steel, the cutting blade is exposed to high heat during the cutting process, so the alloy steel has a high temperature. There has been a problem that temper softening is caused to cause a decrease in hardness, and as a result, crater wear or the like is likely to occur, and the tool life is shortened.

そこで、本発明者等は、高熱発生を伴うドライ高速切削を行ったような場合にも、高温焼戻し軟化を生じず、硬度低下の少ない合金鋼製エンドミル、表面被覆合金鋼製エンドミルを提供すべく、鋭意研究を行った結果、次のような知見を得たのである。   Accordingly, the present inventors are to provide an alloy steel end mill and a surface-coated alloy steel end mill that do not cause high-temperature temper softening and have low hardness reduction even when dry high-speed cutting accompanied by high heat generation is performed. As a result of earnest research, the following findings were obtained.

従来の合金鋼、特に、高速度工具鋼においては、通常その合金成分として、C,Si,Mn,Cr,W,Mo,V,Co等が含有されているが、その合金成分のうちのSiについては、主として脱酸剤としての作用を期待して添加されており、硬さを向上させる作用もあるが、Si含有量が多くなりすぎると、高速度工具鋼の靭性を劣化させることになるので、靭性に悪影響を与えないといいう観点から通常は2%以下の範囲内で添加されていた。   Conventional alloy steels, particularly high-speed tool steels, usually contain C, Si, Mn, Cr, W, Mo, V, Co, etc. as their alloy components. Of these alloy components, Si Is added mainly in anticipation of the action as a deoxidizer, and also has the effect of improving hardness, but if the Si content is too high, the toughness of the high-speed tool steel will be deteriorated. Therefore, it was usually added in a range of 2% or less from the viewpoint of not adversely affecting toughness.

本発明者等は、Si成分の含有量と作用に着目し、Si量を種々に変化させた場合の高温焼戻し軟化特性への影響を調査したところ、鋼中に含有されるC量を特定の範囲内に規制した条件下では、驚くべきことに、多量のSiを添加含有させた場合に、高温焼戻し軟化特性が大きく改善されることを見出したのである。
なお、ここでいう多量のSiとは、通常の合金鋼において、脱酸剤として添加される量をはるかに超えるものであり、例えば、先に挙げた特許文献1〜6の高速度工具鋼におけるSi含有量は、最大で2質量%であり、最大3質量%のSiを含有し得るとしている特許文献7においても、Si含有量の好ましい上限値は1%(段落0022参照)とされており、本発明者等は3質量%を超える量のSiを添加することによって、合金鋼の高温焼戻し軟化特性が大きく改善されることを見出したのであり、また、この合金鋼によって構成されたエンドミルはすぐれた切削性能を備えることを見出したのである。
The inventors focused on the content and action of the Si component, and investigated the influence on the high-temperature temper softening characteristics when the Si amount was variously changed. As a result, the C content contained in the steel was specified. Surprisingly, it has been found that the high-temperature temper softening property is greatly improved when a large amount of Si is added and contained under the conditions regulated within the range.
In addition, in this case, a large amount of Si is much more than the amount added as a deoxidizer in ordinary alloy steel. For example, in the high-speed tool steels of Patent Documents 1 to 6 mentioned above. The Si content is 2% by mass at the maximum, and in Patent Document 7 that can contain 3% by mass of Si at maximum, the preferable upper limit of the Si content is 1% (see paragraph 0022). The present inventors have found that the addition of Si in an amount exceeding 3% by mass greatly improves the high-temperature temper softening characteristics of the alloy steel, and the end mill made of this alloy steel has the following characteristics: They found that it had excellent cutting performance.

この発明は、上記の知見に基づいてなされたものであって、
「(1) 質量%で、C:2.0〜3.0%、Si:3.5〜6.0%、Mn:1.0%以下、Cr:3.5〜4.0%、WおよびMoのうちの1種または2種の合計:10.0〜12.0%、V:3.0〜3.5%、Co:4.0〜5.0%、残部はFeおよび不可避不純物からなる高温焼戻し軟化抵抗性を備える合金鋼で構成したことを特徴とする合金鋼製エンドミル。
(2) 前記(1)記載の高温焼戻し軟化抵抗性を備える合金鋼を基体とし、該基体表面に硬質被覆層を蒸着形成したことを特徴とする表面被覆合金鋼製エンドミル。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) In mass%, C: 2.0 to 3.0%, Si: 3.5 to 6.0%, Mn: 1.0% or less, Cr: 3.5 to 4.0%, W And one or two of Mo: 10.0 to 12.0%, V: 3.0 to 3.5%, Co: 4.0 to 5.0%, the balance being Fe and inevitable impurities An alloy steel end mill characterized by comprising alloy steel having high-temperature temper softening resistance.
(2) An end mill made of surface-coated alloy steel, characterized in that the alloy steel having high-temperature temper softening resistance described in (1) is used as a base, and a hard coating layer is formed by vapor deposition on the surface of the base. "
It has the characteristics.

この発明について、以下に詳細に説明する。
まず、この発明の合金鋼製エンドミルを構成する合金鋼の成分組成範囲についての数値限定理由は次の通りである。
The present invention will be described in detail below.
First, the reasons for limiting the numerical values for the component composition range of the alloy steel constituting the alloy steel end mill of the present invention are as follows.

C:2.0〜3.0質量%(以下においては、質量%を単に%で示す)
Cは、焼入れ状態でその一部がマトリックスに固溶してマトリックスを強化し、また、一部は、W,Mo,Cr,Vと結合して炭化物を形成し、合金鋼の硬さと耐摩耗性を向上させる。
C含有量が2.0%未満では、硬さと耐摩耗性向上を期待できないばかりか、後述するSiとの相互作用によって、高温焼戻し軟化特性の改善を図ることができない。また、C含有量が3.0%を超えると、硬くなり過ぎて靭性劣化が生じるようになり、また、不均一なミクロ組織の形成により材質の均質性が担保できなくなることから、C含有量は2.0〜3.0%と定めた。
C: 2.0-3.0 mass% (in the following, mass% is simply indicated by%)
Part of C is hardened and solidifies in the matrix to strengthen the matrix, and part of it combines with W, Mo, Cr, and V to form carbides, and the hardness and wear resistance of the alloy steel. Improve sexiness.
If the C content is less than 2.0%, not only the hardness and wear resistance can be expected to be improved, but also the high temperature temper softening property cannot be improved by the interaction with Si described later. Further, if the C content exceeds 3.0%, it becomes too hard and deterioration of toughness occurs, and the uniformity of the material cannot be ensured due to the formation of a non-uniform microstructure. Was determined to be 2.0 to 3.0%.

Si:3.5〜6.0%
通常の合金鋼の場合と同様に、Siは脱酸剤としての作用を有するが、これに加え、高温焼戻し軟化特性の改善を図る上で、この発明においては、最も重要な合金成分である。
本発明者等は、合金鋼の合金成分であるC,Siの含有量と、焼戻し温度、高温硬さの関連について詳細な調査を行った。
図1にその一例を示す。
図1から、C2.0%、Si4.0%の本発明鋼1、C2.5%、Si4.0%の本発明鋼2の焼戻し温度(℃)による高温硬さ変化(軟化割合(HRC硬さ))をみると、焼入れままの状態では、本発明鋼1の硬さは従来の合金鋼(比較例鋼11、比較例鋼12)のそれに比して劣るものであったが(なお、本発明鋼2については、従来の合金鋼(比較例鋼11、比較例鋼12)の焼入れままの状態とほぼ同等の高温硬さを示している)、600〜700℃の温度範囲で焼戻しを行った場合には、本発明鋼1,本発明鋼2ともに、従来の合金鋼(比較例鋼11、比較例鋼12)の焼戻し硬さに比べて、はるかに高い焼戻し硬さを示した。
このことから、C含有量を2.0〜3.0%とした上で、Si含有量を3.5〜6.0%、好ましくは、3.5〜4.0%、とした本発明の合金鋼の高温焼戻し軟化抵抗性は、従来の合金鋼(比較例鋼11、比較例鋼12)のそれに比してはるかに優れることが分かる。
本発明で高温焼戻し軟化抵抗性が向上する理由は未だ明確ではないが、おそらく、600〜700℃の温度範囲では、鋼中に多量に含有されているSiがセメンタイトの形成を抑制することにより高温硬さが向上し、その結果として、焼戻し軟化抵抗性が向上するのであろうと推測される。
Si: 3.5-6.0%
As in the case of ordinary alloy steel, Si has a function as a deoxidizer, but in addition to this, it is the most important alloy component in the present invention in order to improve the high temperature temper softening property.
The present inventors conducted a detailed investigation on the relationship between the contents of C and Si, which are alloy components of alloy steel, the tempering temperature, and the high temperature hardness.
An example is shown in FIG.
From FIG. 1, the high-temperature hardness change (softening ratio (HRC hardness) of the invention steel 1 of C2.0% and Si4.0%, the steel of the invention 2 of C2.5% and Si4.0% according to the tempering temperature (° C.). In the as-quenched state, the hardness of the steel 1 of the present invention was inferior to that of the conventional alloy steel (Comparative Example Steel 11 and Comparative Example Steel 12). About this invention steel 2, tempering is carried out in the temperature range of 600-700 degreeC which shows the high-temperature hardness substantially equivalent to the as-quenched state of the conventional alloy steel (Comparative example steel 11, Comparative example steel 12). When it performed, both this invention steel 1 and this invention steel 2 showed much higher tempering hardness compared with the tempering hardness of the conventional alloy steel (Comparative example steel 11 and Comparative example steel 12).
From this, the present invention in which the C content is set to 2.0 to 3.0% and the Si content is set to 3.5 to 6.0%, preferably 3.5 to 4.0%. It can be seen that the high-temperature tempering softening resistance of the alloy steels is far superior to that of the conventional alloy steels (Comparative Example Steel 11 and Comparative Example Steel 12).
The reason why the high temperature temper softening resistance is improved in the present invention is not yet clear, but probably in the temperature range of 600 to 700 ° C., Si contained in a large amount in the steel suppresses the formation of cementite. It is speculated that the hardness will improve and, as a result, the temper softening resistance will improve.

Mn:1.0%以下
本発明では、Siを多量に含有し、これが脱酸剤として作用することから、Si同様に脱酸剤として作用するMnの添加は必ずしも必要でないが、Mnには焼入れ性向上作用もあるので、1.0%以下の範囲内で添加することができる。
Mn: 1.0% or less In the present invention, since M contains a large amount of Si and acts as a deoxidizing agent, it is not always necessary to add Mn that acts as a deoxidizing agent as in Si, but Mn is quenched. Since there is also a property improving effect, it can be added within a range of 1.0% or less.

Cr:3.5〜4.0%
Crは、鋼の焼入れ性を確保するとともに、熱処理時の耐酸化性を高め、また、耐摩耗性を向上させるために3.5%以上の添加を必要とするが、4.0%を超えて添加しても工具としての切削性能の向上効果が少ないので、Cr添加量は、3.5〜4.0%と定めた。
Cr: 3.5-4.0%
Cr needs to be added in an amount of 3.5% or more in order to secure the hardenability of the steel, increase the oxidation resistance during heat treatment, and improve the wear resistance, but it exceeds 4.0%. Even if added, the effect of improving the cutting performance as a tool is small, so the Cr addition amount was determined to be 3.5 to 4.0%.

WおよびMoのうちの1種または2種の合計:10.0〜12.0%
Wは、MC型やM6C型の炭化物を形成すると共に、その一部がマトリックス中に固溶し、耐摩耗性、高温焼戻し軟化抵抗性を向上させるが、Wの含有量が過剰になると、炭化物の粗大化を招き、靭性も低下する。
また、Moは、Wと同様に、MC型やM6C型の炭化物を形成して耐摩耗性、高温焼戻し軟化抵抗性を高めるとともに、靭性を向上させるが、Moの含有量が過剰になると、結晶粒が粗大化し脆弱になるとともに、熱処理時に脱炭を生じやすくなる。
したがって、耐摩耗性、高温焼戻し軟化抵抗性を向上させるためには、WおよびMoのうちの1種または2種の合計は10.0%以上必要であるが、その合計量が12.0%を超えると、炭化物の粗大化、結晶粒の粗大化による靭性の低下等が生じるようになるので、WおよびMoのうちの1種または2種の含有量は、10.0〜12.0%と定めた。
Total of one or two of W and Mo: 10.0 to 12.0%
W forms MC-type and M 6 C-type carbides, and some of them dissolve in the matrix, improving wear resistance and high-temperature tempering softening resistance. However, if the W content is excessive, , Leading to coarsening of carbides and toughness.
Mo, like W, forms MC-type and M 6 C-type carbides to improve wear resistance and high-temperature temper softening resistance and improve toughness, but when the Mo content becomes excessive The crystal grains become coarse and brittle, and decarburization is likely to occur during heat treatment.
Therefore, in order to improve wear resistance and high temperature temper softening resistance, the total of one or two of W and Mo needs to be 10.0% or more, but the total amount is 12.0%. If it exceeds 1, the carbides become coarse, the toughness is lowered due to the coarsening of crystal grains, etc., so the content of one or two of W and Mo is 10.0 to 12.0% It was determined.

V:3.0〜3.5%
Vは、強力な炭化物形成元素で、Cと結合することによってMC型の微細な炭化物を形成し、耐摩耗性の向上に効果がある。また、Vは、結晶粒の微細化作用を有し、結晶粒の粗大化による靭性の低下を防止するとともに、高温焼戻し軟化抵抗性を高める。このような効果を発揮させるためには、3.0%以上含有させる必要があるが、過剰に含有されると研削性を害するのでその上限は3.5%に定めた。
V: 3.0-3.5%
V is a strong carbide-forming element, and when combined with C, forms fine MC-type carbides, and is effective in improving wear resistance. Further, V has a crystal grain refining action, prevents a decrease in toughness due to crystal grain coarsening, and increases high-temperature temper softening resistance. In order to exert such an effect, it is necessary to contain 3.0% or more, but if it is contained excessively, grindability is impaired, so the upper limit was set to 3.5%.

Co:4.0〜5.0%
Coは、それ自体は炭化物を形成しないが、マトリックスに固溶することによって、耐熱性、耐摩耗性、高温焼戻し軟化抵抗性を高める。これらの効果を得るためには、4.0%以上の含有が必要であるが、過剰に含有されると、炭化物の偏析を助長したり脱炭を促進することから、その上限は5.0%と定めた。
Co: 4.0-5.0%
Co itself does not form carbides, but increases heat resistance, wear resistance, and high temperature temper softening resistance by dissolving in a matrix. In order to obtain these effects, the content of 4.0% or more is necessary. However, if excessively contained, the segregation of carbides is promoted or the decarburization is promoted, so the upper limit is 5.0. %.

上記のとおり、本発明の合金鋼製エンドミルは、質量%で、C:2.0〜3.0%、Si:3.5〜6.0%、Cr:3.5〜4.0% WおよびMoのうちの1種または2種の合計:10.0〜12.0%、V:3.0〜3.5%、Co:4.0〜5.0%、残部はFeおよび不可避的不純物からなる合金鋼で構成することによって、ドライ高速切削を行った場合でも、高温焼戻し軟化を生じず、硬度低下の少なく、長期の使用にわたってすぐれた耐摩耗性を発揮することができる。
なお、1.0%以下のMnを含有することが許容されることは前記のとおりであり、また、不可避不純物として、本発明エンドミルの高温焼戻し軟化抵抗性に影響を与えない範囲内で、合金鋼中へP,S,N,Ni,Nb,Cu,As,Sb等の不純物成分が含有されることは許容される。
As described above, the alloy steel end mill of the present invention is in mass%, C: 2.0 to 3.0%, Si: 3.5 to 6.0%, Cr: 3.5 to 4.0% W And one or two of Mo: 10.0 to 12.0%, V: 3.0 to 3.5%, Co: 4.0 to 5.0%, the balance being Fe and inevitable By comprising alloy steel composed of impurities, even when dry high-speed cutting is performed, high-temperature tempering softening does not occur, hardness reduction is small, and excellent wear resistance can be exhibited over a long period of use.
In addition, as described above, it is allowed to contain 1.0% or less of Mn, and as an inevitable impurity, the alloy does not affect the high temperature temper softening resistance of the end mill of the present invention. It is allowed that impurity components such as P, S, N, Ni, Nb, Cu, As, and Sb are contained in the steel.

また、本発明エンドミルを構成する合金鋼の高温焼戻し軟化抵抗性を実験により定量化したところ、600〜700℃における軟化割合(%)を、
軟化割合(%)=(H−H600)×100/H600
で表した場合、本発明の合金鋼では、上記軟化割合(%)は0〜−20%の範囲内であることを確認した。
ここで、軟化割合(%)とは、600℃の焼戻し温度における硬さ(H600)を基準とし、焼戻し温度T(℃)(但し、600≦T≦700)における硬さをHとした場合の、焼戻し温度による硬さ低下の度合い示す指標である。
Moreover, when the high temperature temper softening resistance of the alloy steel constituting the end mill of the present invention was quantified by experiment, the softening ratio (%) at 600 to 700 ° C.
Softening ratio (%) = (H T −H 600 ) × 100 / H 600
In the alloy steel of the present invention, it was confirmed that the softening ratio (%) was in the range of 0 to -20%.
Here, the softening percentage, as a reference hardness at tempering temperature of 600 ° C. The (H 600), tempering temperature T (° C.) (where, 600 ≦ T ≦ 700) The hardness at was H T This is an index indicating the degree of hardness reduction due to tempering temperature.

また、本発明では、合金鋼製エンドミルの基体表面に、AlとTiの複合窒化物層、AlとTiとSiの複合窒化物層、AlとCrの複合窒化物層等の当業者に既によく知られている硬質被覆層を蒸着形成することにより、表面被覆合金鋼製エンドミルとして利用することができる。
上記の硬質被覆層を蒸着形成した表面被覆合金鋼製エンドミルは、耐熱性、耐摩耗性が一段と向上し、高温切削条件下でさらに優れた切削性を発揮するものである。
Further, in the present invention, it is already well known to those skilled in the art such as a composite nitride layer of Al and Ti, a composite nitride layer of Al, Ti and Si, a composite nitride layer of Al and Cr, etc. By forming a known hard coating layer by vapor deposition, it can be used as a surface-coated alloy steel end mill.
The surface-coated alloy steel end mill on which the hard coating layer is deposited is further improved in heat resistance and wear resistance, and exhibits further excellent machinability under high-temperature cutting conditions.

本発明の合金鋼製エンドミル、表面被覆合金鋼製エンドミルは、特に、合金成分としてのCを2.0〜3.0%とした上で、Si添加量を高め、Si含有量を3.5〜6.0%、好ましくは、3.5〜4.0%、としたことにより、600〜700℃の温度範囲で焼戻しを行った場合でもすぐれた高温焼戻し軟化抵抗性を示すことから、高温にさらされる高速切削条件下であっても、刃先の軟化(硬度低下)が生じることがないために、長期の使用に亘って、すぐれた切削性能を発揮することができる。   The alloy steel end mill and the surface-coated alloy steel end mill of the present invention have a C content of 2.0 to 3.0%, and the Si content is increased and the Si content is 3.5. ˜6.0%, preferably 3.5 to 4.0%, it shows excellent high temperature temper softening resistance even when tempered in the temperature range of 600 to 700 ° C. Even under high-speed cutting conditions exposed to the above, the cutting edge is not softened (decrease in hardness), so that excellent cutting performance can be exhibited over a long period of use.

合金鋼に対して焼戻しを行った場合の、焼戻し温度(℃)と軟化割合(%)との関係を示すグラフである。It is a graph which shows the relationship between tempering temperature (degreeC) and a softening ratio (%) at the time of tempering with respect to alloy steel.

本発明を実施例により、以下に説明する。   The invention is illustrated below by means of examples.

窒素ガスアトマイズ法によって製造した所定の成分組成を有する粉末を、カプセルに充填・脱気後、温度1150℃×圧力100MPaにてHIP処理(熱間静水圧プレス処理)し、表1に示す成分組成を有する本発明の粉末合金鋼1〜10(以下、本発明鋼1〜10という)を作製した。
また、同様にして、本発明から外れる成分組成を有する比較例の粉末合金鋼11〜15(以下、比較例鋼11〜15という)を作製した。
同じく表1に、比較例鋼11〜15の成分組成を示す。
A powder having a predetermined component composition produced by a nitrogen gas atomization method is filled into a capsule and degassed, and then subjected to HIP treatment (hot isostatic pressing) at a temperature of 1150 ° C. and a pressure of 100 MPa to obtain the component composition shown in Table 1. The powder alloy steels 1 to 10 of the present invention (hereinafter referred to as the present invention steels 1 to 10) were produced.
Similarly, powder alloy steels 11 to 15 of comparative examples (hereinafter referred to as comparative example steels 11 to 15) having component compositions deviating from the present invention were produced.
Similarly, Table 1 shows component compositions of Comparative Example Steels 11 to 15.

Figure 2011225958
Figure 2011225958

まず、上記本発明鋼1〜10について、表2に示す条件で熱処理を行い、本発明鋼1−A〜1−D,本発明鋼2−A〜2−D,本発明鋼3−A、3−B,本発明鋼4−A、4−B,本発明鋼5−A、5−B,本発明鋼6−A、6−B,本発明鋼7−A、7−B,本発明鋼8−A、8−B,本発明鋼9−A、9−B,本発明鋼10−A、10−Bを作製した。
同様に、比較例鋼11〜15についても、表3に示す条件で熱処理を行い、比較例鋼11−A〜11−D,比較例鋼12−A〜12−D,比較例鋼13−A、13−B,比較例鋼14−A、14−B,比較例鋼15−A、15−Bを作製した。
即ち、850〜950℃×60〜90分の条件でオーステナイト化処理を行った後、1130〜1180℃×30分間保持で焼入れし、その後、600〜700℃×1時間保持、戻し回数3回で焼戻しを行った。
First, about the said invention steel 1-10, it heat-processes on the conditions shown in Table 2, this invention steel 1-A to 1-D, this invention steel 2-A to 2-D, this invention steel 3-A, 3-B, Invention Steel 4-A, 4-B, Invention Steel 5-A, 5-B, Invention Steel 6-A, 6-B, Invention Steel 7-A, 7-B, Invention Steels 8-A and 8-B, steels 9-A and 9-B of the present invention, and steels 10-A and 10-B of the present invention were produced.
Similarly, it heat-processed on the conditions shown in Table 3 also about the comparative example steels 11-15, comparative example steel 11-A-11-D, comparative example steel 12-A-12-D, comparative example steel 13-A. 13-B, Comparative Example Steels 14-A and 14-B, and Comparative Example Steels 15-A and 15-B were produced.
That is, after performing austenitizing treatment under conditions of 850 to 950 ° C. × 60 to 90 minutes, quenching is performed by holding at 1130 to 1180 ° C. for 30 minutes, then holding at 600 to 700 ° C. for 1 hour, and the number of times of return is 3 times Tempering was performed.

それぞれについて、焼入れまま硬さ、600℃における硬さ(H600)、所定の焼戻し温度Tにおける硬さ(H)をロックウェル硬度計で測定(いずれも5点測定の平均値)することにより硬度を求め、その硬度値から
軟化割合(%)(=(H−H600)×100/H600
を算出した。
これらの値を、表2、表3に示す。
なお、本発明鋼1、本発明鋼2、比較例鋼11、比較例鋼12については、焼戻し温度と硬さの関係を、図1に示した。
For each, by measuring the hardness as quenched, hardness at 600 ° C. (H 600 ), and hardness at a predetermined tempering temperature T (H T ) with a Rockwell hardness meter (both average values of 5-point measurement) The hardness is obtained, and the softening ratio (%) from the hardness value (= (H T -H 600 ) × 100 / H 600 )
Was calculated.
These values are shown in Tables 2 and 3.
In addition, about this invention steel 1, this invention steel 2, the comparative example steel 11, and the comparative example steel 12, the relationship between tempering temperature and hardness was shown in FIG.

Figure 2011225958
Figure 2011225958

Figure 2011225958
Figure 2011225958

表2、表3および図1から明らかなように、600〜700℃という高温焼戻しが行われた場合でも、本発明鋼1〜10は、すぐれた焼戻し硬さ(HRCは50以上)を有するとともに、比較例鋼11〜15に比してすぐれた高温焼戻し軟化抵抗性を示し、例えば、焼戻し温度700℃における軟化割合(%)は最大でも−20%(本発明鋼6−B)であった。
これに対して、比較例鋼11〜15は、焼戻し硬さが低いばかりか、高温焼戻し軟化抵抗性も劣り、例えば、焼戻し温度700℃における軟化割合(%)は、−26%(比較例鋼11−D),−26%(比較例鋼12−D),−27%(比較例鋼13−B),−34%(比較例鋼14−B),−26%(比較例鋼15−B)であって、高温焼戻し軟化抵抗性が劣ることは明らかである。
As is apparent from Tables 2 and 3 and FIG. 1, even when high temperature tempering of 600 to 700 ° C. is performed, the steels 1 to 10 of the present invention have excellent tempering hardness (HRC is 50 or more). The high-temperature tempering softening resistance superior to those of Comparative Steels 11 to 15 was exhibited. For example, the softening ratio (%) at a tempering temperature of 700 ° C. was −20% at maximum (invention steel 6-B). .
In contrast, the comparative steels 11 to 15 have not only low tempering hardness but also poor high-temperature tempering softening resistance. For example, the softening ratio (%) at a tempering temperature of 700 ° C. is −26% (comparative steel). 11-D), -26% (Comparative Steel 12-D), -27% (Comparative Steel 13-B), -34% (Comparative Steel 14-B), -26% (Comparative Steel 15-) B), which is clearly inferior in high temperature temper softening resistance.

次に、上記で作製した表1に示す成分組成の本発明鋼1〜10を素材として、機械加工にて、切刃部の直径×長さがそれぞれ10mm×25mmの寸法を有し、また、いずれもねじれ角45度の4枚刃スクエア形状をもった本発明合金鋼製エンドミル(以下、本発明エンドミルという)1〜10をそれぞれ製造した。
同様に、比較例鋼11〜15についても、比較例エンドミル11〜15を作製した。
Next, the present invention steels 1 to 10 having the composition shown in Table 1 prepared as described above are used as materials, and the diameter x length of the cutting edge portion has a size of 10 mm x 25 mm by machining, In each case, steel alloy end mills (hereinafter referred to as the present invention end mills) 1 to 10 having a four-blade square shape with a twist angle of 45 degrees were produced.
Similarly, comparative example end mills 11 to 15 were produced for comparative example steels 11 to 15.

ついで、上記本発明エンドミル1〜10および比較例エンドミル11〜15のそれぞれに対して、(Al0.6,Ti0.4)Nからなる層厚5μmの硬質被覆層をアークイオンプレーティングにより蒸着形成することにより、本発明合金鋼製エンドミル(本発明被覆エンドミルという)1〜10および比較例合金製エンドミル(比較例被覆エンドミルという)11〜15を作製した。 Next, a hard coating layer made of (Al 0.6 , Ti 0.4 ) N and having a thickness of 5 μm is deposited on each of the above-described end mills 1 to 10 and comparative example end mills 11 to 15 by arc ion plating. By forming, end mills made of the alloy steel of the present invention (referred to as a coated end mill of the present invention) 1 to 10 and end mills made of a comparative example alloy (referred to as a coated end mill of a comparative example) 11 to 15 were produced.

上記硬質被覆層を蒸着形成した本発明被覆エンドミル1〜10および比較例被覆エンドミル11〜15を用いて、次の条件で側面切削加工試験を行ない、切削性能を評価した。
被削材−平面:100mm×250mm、厚さ:50mmの寸法のJIS・S50Cの板材、
切削速度: 90 m/min.、
半径方向切込み量: 20.0 mm、
軸方向切込み量: 1.5 mm、
テーブル送り: 802 mm/分、
の条件での炭素鋼の乾式高速溝切削加工試験(通常の切削速度は60m/min.)。
上記の溝切削加工試験で、切刃部の外周刃の逃げ面摩耗幅が、使用寿命の目安とされる0.3mmに至るまでの切削溝長を測定した。
上記の結果を表4に示した。
Using the present coated end mills 1 to 10 and comparative example coated end mills 11 to 15 on which the hard coating layer was formed by vapor deposition, a side cutting test was performed under the following conditions to evaluate the cutting performance.
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / S50C plate material,
Cutting speed: 90 m / min. ,
Radial depth of cut: 20.0 mm,
Axial depth of cut: 1.5 mm,
Table feed: 802 mm / min,
Carbon steel dry-type high-speed grooving test (normal cutting speed is 60 m / min.).
In the above groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.3 mm, which is a guide for the service life.
The results are shown in Table 4.

Figure 2011225958
Figure 2011225958

表4に示す結果から、本発明被覆エンドミル1〜10は切削加工時の高温にさらされても、切刃部の高温焼戻し軟化抵抗性が高いことから、軟化(硬度低下)によるクレーター摩耗の発生はなく、また、欠損等の異常損傷を生じることもなく、正常な摩耗形態をとり、切削長は71m以上であり、すぐれた切削性能を示した。
これに対して、比較例被覆エンドミル11〜15は、本発明被覆エンドミル1〜10に比べ軟化抵抗が低いことから、硬度低下によるクレーター摩耗等の異常摩耗が生じ、切削長もたかだか46m程度であって、短寿命であった。
From the results shown in Table 4, since the coated end mills 1 to 10 of the present invention have high resistance to high-temperature tempering and softening at the cutting edge even when exposed to high temperatures during cutting, crater wear occurs due to softening (hardness reduction) In addition, without causing abnormal damage such as defects, it took a normal wear form, the cutting length was 71 m or more, and showed excellent cutting performance.
In contrast, the coated end mills 11 to 15 of the comparative examples have lower softening resistance than the coated end mills 1 to 10 of the present invention. Therefore, abnormal wear such as crater wear due to hardness reduction occurs, and the cutting length is about 46 m. The service life was short.

上記のとおり、本発明の合金鋼製エンドミル、表面被覆合金鋼製エンドミルは、すぐれた高温焼戻し軟化抵抗性を有し、刃先の硬度低下が防止される結果、高熱を発生する切削条件下で、すぐれた切削性能、耐摩耗性を発揮し、また、長寿命であることから、産業上の有益性が非常に大きいといえる。   As described above, the alloy steel end mill and the surface-coated alloy steel end mill of the present invention have excellent high-temperature temper softening resistance and prevent cutting of the hardness of the cutting edge, so that under cutting conditions that generate high heat, Since it exhibits excellent cutting performance and wear resistance, and has a long life, it can be said that the industrial benefits are very large.

Claims (2)

質量%で、C:2.0〜3.0%、Si:3.5〜6.0%、Mn:1.0%以下、Cr:3.5〜4.0%、WおよびMoのうちの1種または2種の合計:10.0〜12.0%、V:3.0〜3.5%、Co:4.0〜5.0%、残部はFeおよび不可避不純物からなる高温焼戻し軟化抵抗性を備える合金鋼で構成したことを特徴とする合金鋼製エンドミル。   % By mass, C: 2.0 to 3.0%, Si: 3.5 to 6.0%, Mn: 1.0% or less, Cr: 3.5 to 4.0%, W and Mo Total of one or two of: 10.0 to 12.0%, V: 3.0 to 3.5%, Co: 4.0 to 5.0%, the balance being Fe and inevitable impurities at high temperature tempering An end mill made of alloy steel, characterized by comprising alloy steel having softening resistance. 請求項1に記載の高温焼戻し軟化抵抗性を備える合金鋼を基体とし、該基体表面に硬質被覆層を蒸着形成したことを特徴とする表面被覆合金鋼製エンドミル。   An end mill made of surface-coated alloy steel, characterized in that the alloy steel having high-temperature temper softening resistance according to claim 1 is used as a base, and a hard coating layer is formed by vapor deposition on the surface of the base.
JP2010099394A 2010-04-23 2010-04-23 Alloy steel end mill Withdrawn JP2011225958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010099394A JP2011225958A (en) 2010-04-23 2010-04-23 Alloy steel end mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099394A JP2011225958A (en) 2010-04-23 2010-04-23 Alloy steel end mill

Publications (1)

Publication Number Publication Date
JP2011225958A true JP2011225958A (en) 2011-11-10

Family

ID=45041662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099394A Withdrawn JP2011225958A (en) 2010-04-23 2010-04-23 Alloy steel end mill

Country Status (1)

Country Link
JP (1) JP2011225958A (en)

Similar Documents

Publication Publication Date Title
JP5225843B2 (en) Steel produced by powder metallurgy, tool including the steel, and method for producing the tool
JP6528610B2 (en) Mold steel and mold
WO2014126086A1 (en) Metal powder, tool for hot working and method for manufacturing tool for hot working
JP2020501027A (en) Powder metallurgically produced steel material comprising hard material particles, a method for producing parts from such steel material, and parts produced from steel material
JP6301145B2 (en) Sleeve dog gear
JP2006028568A (en) Steel for high temperature carburizing and its production method
JP2013108112A (en) End mill made of alloy steel
JP5720302B2 (en) Gear cutting tool
JP5510665B2 (en) Alloy steel with excellent high temperature temper softening resistance
JP6537342B2 (en) High-speed nitrided powder tool steel with excellent hardness, toughness and wear resistance
JP6516440B2 (en) Powdered high speed tool steel
JP5424120B2 (en) Alloy steel with excellent high temperature temper softening resistance
JP2012210671A (en) Drill made of alloy steel
JP2018154884A (en) Cold tool steel
JP2011225958A (en) Alloy steel end mill
JP2011224759A (en) Drill made from alloy steel
JP2013213253A (en) Alloy steel with high temperature toughness, high temperature hardness, and high temperature tempering softening resistance, and end mill using the alloy steel as tool body
JPH0143017B2 (en)
JP2013036079A (en) Alloy steel end mill
JP2012210670A (en) Drill made of alloy steel
JP6345945B2 (en) Powdered high-speed tool steel with excellent wear resistance and method for producing the same
TWI647318B (en) Steel for cold working tool
EP3132066B1 (en) Cold work tool steel
SE542781C2 (en) A method of producing a high speed steel alloy
JP6096040B2 (en) Powdered high-speed tool steel with excellent high-temperature tempering hardness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130702