JP2011224587A - Insert-chip, plasma torch and plasma welding device - Google Patents

Insert-chip, plasma torch and plasma welding device Download PDF

Info

Publication number
JP2011224587A
JP2011224587A JP2010094727A JP2010094727A JP2011224587A JP 2011224587 A JP2011224587 A JP 2011224587A JP 2010094727 A JP2010094727 A JP 2010094727A JP 2010094727 A JP2010094727 A JP 2010094727A JP 2011224587 A JP2011224587 A JP 2011224587A
Authority
JP
Japan
Prior art keywords
welding
electrode
plasma
arrangement space
electrode arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010094727A
Other languages
Japanese (ja)
Other versions
JP5578920B2 (en
Inventor
Shigeru Sato
藤 茂 佐
Tadashi Hoshino
野 忠 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2010094727A priority Critical patent/JP5578920B2/en
Priority to TW099118661A priority patent/TWI409119B/en
Priority to CN201010231689.0A priority patent/CN101987391B/en
Priority to KR1020100072898A priority patent/KR101242823B1/en
Publication of JP2011224587A publication Critical patent/JP2011224587A/en
Application granted granted Critical
Publication of JP5578920B2 publication Critical patent/JP5578920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To further increase the speed of plasma arc welding by a stable arc without causing hot cracking nor undercut.SOLUTION: The insert-chip 1 includes: a leading electrode space 1a, one or more intermediate electrode spaces 1b and a tail electrode space 1c; and three or more openings 4a, 4b, 4c which are distributed on one line in a welding direction y, respectively communicate with the respective electrode spaces and are opened oppositely to a welding line parallel to the one line. The plasma torch includes a plurality of electrodes 2a, 2b, 2c each having a tip part inserted in the corresponding electrode space of the insert-chip. The plasma welding device includes: first power sources 18ap, 18aw for feeding preheating power to the leading electrode 2a; second power sources 18bp, 18bw for feeding back bead formation power to the intermediate electrode 2b; and third power source 18cp, 18cw for feeding power for welding without welding rod to the tail electrode 2c. In the plasma welding device, a back bead is formed by a plasma arc of the leading electrode or the intermediate electrode, and preheating or welding without welding rod is performed by TIG arcs of the other electrodes.

Description

本発明は、プラズマトーチのインサートチップ,該インサートチップを用いるプラズマトーチ、および、該プラズマトーチを用いるプラズマ溶接装置、に関する。   The present invention relates to an insert tip of a plasma torch, a plasma torch using the insert tip, and a plasma welding apparatus using the plasma torch.

特許文献1には、プラズマキーホール溶接によるキーホール断面形状を改良するノズル形状が記載されている。特許文献2には、2つのアーク溶接トーチを、1つの溶融プールを形成するように、溶接線方向に対して電極先端の並びが直交するように配置する、各トーチによる同時なめ付け溶接が記載されている。特許文献3には、アーク溶接の狙い位置の前方0〜2mmの溶融プールにレーザを照射してキーホール溶接する複合溶接方法が記載されている(図4,0024,0025)。特許文献4には、先行の第1レーザビームで非貫通溶接しそれによって形成されるホール開口に焦点を合わせて第2レーザビームで貫通(キーホール)溶接するレーザ溶接方法が記載されている。   Patent Document 1 describes a nozzle shape that improves the cross-sectional shape of a keyhole by plasma keyhole welding. Patent Document 2 describes simultaneous tanning welding by each torch in which two arc welding torches are arranged so that the arrangement of electrode tips is orthogonal to the welding line direction so as to form one molten pool. Has been. Patent Document 3 describes a composite welding method in which keyhole welding is performed by irradiating a molten pool of 0 to 2 mm ahead of the arc welding target position with laser (FIGS. 4, 0024, 0025). Patent Document 4 describes a laser welding method in which non-penetrating welding is performed with a preceding first laser beam, and through-hole (keyhole) welding is performed with a second laser beam while focusing on a hole opening formed thereby.

特開平 8− 10957号公報JP-A-8-10957 特開平 6−155018号公報JP-A-6-155018 特開2004−298896号公報JP 2004-298896 A 特開2008−126315号公報JP 2008-126315 A 特願2009−201304号Japanese Patent Application No. 2009-201304

従来の1トーチによるプラズマアーク溶接のプラズマアークの横断面は、略円形である。板厚3mm未満ではプラズマアークによるキーホール溶接は不可能なため、なめ付け溶接(熱伝導型溶接:溶接対象に対してプラズマが非貫通)を採用するが、なめ付け溶接でも、高速化すると、
イ)アンダーカットが発生し、
ロ)広幅ビードによる高温割れが発生しやすい。高速溶接では電流が高電流で広幅アークとなるため、広幅浅溶け込みのビード形状となって、凝固時に高温割れが発生しやすい。
The cross section of the plasma arc of the plasma arc welding by the conventional 1 torch is substantially circular. Since keyhole welding by plasma arc is impossible if the plate thickness is less than 3 mm, tanning welding (heat conduction type welding: plasma does not penetrate through the object to be welded) is adopted.
B) Undercut occurs,
B) Hot cracking due to wide beads is likely to occur. In high-speed welding, the current is a high current and a wide arc, so a wide, shallow bead shape is formed, and high temperature cracking is likely to occur during solidification.

従来の1トーチによるプラズマアーク溶接では、3〜10mmの板厚でキーホール溶接(溶接対象材に対してプラズマが貫通)を高速化すると、中央部が盛り上がった凸形状で縁部が下がったアンダーカットができるため、高速化が難しい。2本トーチによるワンプール高速化もあるが、ワンプールとするにはトーチ同士を大きく傾けなければならず、引き合うアーク力と傾けたことによる磁気吹きで、アークが乱れやすく、不安定であった。   In the conventional plasma arc welding with one torch, when the speed of keyhole welding (plasma penetrates through the material to be welded) is increased with a plate thickness of 3 to 10 mm, the convex portion with a raised central portion and the underside with a lowered edge portion Since cutting is possible, speeding up is difficult. Although there is a one-pool speedup with two torches, torches must be tilted greatly to make a one-pool, and the arc is easily disturbed and unstable due to the attracting arc force and magnetic blown by tilting.

本発明者は、安定したアークで高温割れやアンダーカットのない高速溶接を実現するために、2個の電極配置空間と、同一直径線上に分布し各電極配置空間にそれぞれが連通し前記直径線と平行な溶接線に対向して開いた2個のノズルと、を備えるインサートチップ、ならびに、それを装備するプラズマトーチを提示した(特許文献5)。   In order to realize high-speed welding without hot cracking and undercut with a stable arc, the present inventor distributes two electrode arrangement spaces on the same diameter line and communicates with each electrode arrangement space, respectively. And an insert tip provided with two nozzles opened opposite to a welding line parallel to the surface, and a plasma torch equipped therewith (Patent Document 5).

このプラズマトーチによれば、2つのアークで1つの溶融プールを形成する、ワンプール2アークの溶接をすることができる。この場合、プラズマアークの横断面は、溶接の進行方向yに長細い熱源となるため、熱量に対するビード幅(x方向)は狭く抑えられ、高速化しても、高温割れが発生しない。また、ワンプール2アークとすることで、板厚3〜10mmでは、先行アークでキーホール溶接し、後行アークで広幅なめ付け溶接して表ビードを平らにすることができる。板厚3mm未満では、先行アークで掘り下げ溶接をし、後行アークで表ビードを平らにすることができる。   According to this plasma torch, one pool 2 arc welding can be performed in which one arc is formed by two arcs. In this case, since the cross section of the plasma arc becomes a heat source that is long and thin in the welding progress direction y, the bead width (x direction) with respect to the amount of heat is kept narrow, and hot cracking does not occur even if the speed is increased. Moreover, by setting it as one pool 2 arc, in plate | board thickness 3-10mm, a keyhole welding can be carried out by a preceding arc, and a wide tanning welding can be carried out by a subsequent arc, and a surface bead can be made flat. If the plate thickness is less than 3 mm, it is possible to carry out digging welding with a leading arc and flatten the front bead with a trailing arc.

本発明は、高温割れやアンダーカット生じることなく安定したアークで、プラズマアーク溶接をより高速化することを目的とする。   An object of the present invention is to make plasma arc welding faster with a stable arc without causing hot cracking or undercut.

(1)先頭電極配置空間(1a),1以上の中間電極配置空間(1b)および後尾電極配置空間(1c)と、溶接方向(y)の一直線上に分布し各電極配置空間(1a,1b,1c)にそれぞれが連通し前記一直線と平行な溶接線に対向して開いた3個以上の開口(4a,4b,4c)と、を備えるインサートチップ(1:図1)。   (1) Lead electrode arrangement space (1a), one or more intermediate electrode arrangement spaces (1b) and tail electrode arrangement space (1c), and each electrode arrangement space (1a, 1b , 1c) and three or more openings (4a, 4b, 4c) each opened in opposition to the welding line parallel to the straight line (1: FIG. 1).

なお、理解を容易にするために括弧内には、図面に示し後述する実施例の対応要素又は相当要素の記号を、例示として参考までに付記した。以下も同様である。   In addition, in order to make an understanding easy, the code | symbol of the corresponding element or the equivalent element of the Example which is shown in drawing and mentions later in parentheses is attached for reference by reference. The same applies to the following.

このインサートチップ(1)を装備したプラズマトーチによれば、3以上のアークで1つの溶融プールを形成する、ワンプールマルチアークの溶接をすることができる。この場合、プラズマアークの横断面は、溶接の進行方向yに長細い熱源となるため、熱量に対するビード幅(x方向)は狭く抑えられ、高速化しても、高温割れが発生しない。また、ワンプールマルチアークとすることで、板厚3〜10mmでは、先頭アークで溶接線を予熱し中間アークでキーホールによる裏ビートを形成し、後尾アークで広幅なめ付け溶接して表ビードを平らに形成することができる。板厚3mm未満では、先頭アークで溶接線を予熱し中間アークによる掘り下げ溶接で裏ビードを形成し、後尾アークで表ビードを平らにすることができる。いずれにしても、先頭アークの予熱により、中間アークによる裏ビード形成が容易になるため、良好な裏ビードを形成しつつ高速溶接をすることができる。   According to the plasma torch equipped with the insert tip (1), one pool multi-arc welding in which one molten pool is formed by three or more arcs can be performed. In this case, since the cross section of the plasma arc becomes a heat source that is long and thin in the welding progress direction y, the bead width (x direction) with respect to the amount of heat is kept narrow, and hot cracking does not occur even if the speed is increased. Also, by using a one-pool multi-arc, when the plate thickness is 3 to 10 mm, the welding line is preheated with the leading arc, the back beat by the keyhole is formed with the intermediate arc, and the front bead is formed by wide tanning welding with the trailing arc. It can be formed flat. If the plate thickness is less than 3 mm, the welding line can be preheated by the leading arc, the back bead can be formed by digging welding by the intermediate arc, and the front bead can be flattened by the trailing arc. In any case, since the back bead formation by the intermediate arc is facilitated by the preheating of the leading arc, high-speed welding can be performed while forming a good back bead.

本発明の第1実施例のプラズマトーチを用いる溶接装置の、縦断面図およびブロック図である。It is the longitudinal cross-sectional view and block diagram of the welding apparatus using the plasma torch of 1st Example of this invention. (a)は図1のプラズマトーチの縦断面図、(b)はプラズマ噴射端部側から見た底面図である。(A) is the longitudinal cross-sectional view of the plasma torch of FIG. 1, (b) is the bottom view seen from the plasma injection end part side. 図1に示す第1実施例のプラズマトーチのインサートチップ1を拡大して示し、(a)は正面図、(b)は(c)上の3B−3B線での縦断面図、(c)は底面図である。1 is an enlarged view of the insert tip 1 of the plasma torch of the first embodiment shown in FIG. 1, (a) is a front view, (b) is a longitudinal sectional view taken along line 3B-3B in (c), and (c). Is a bottom view. 図1に示すプラズマトーチの縦断面図であり、(a)は、各電極収容空間にプラズマガスを供給する管路の概要を示し、(b)はインサートチップ1を冷却する冷却水の流路の概要を示す。It is a longitudinal cross-sectional view of the plasma torch shown in FIG. 1, (a) shows the outline | summary of the pipe line which supplies plasma gas to each electrode accommodation space, (b) is the flow path of the cooling water which cools the insert chip 1 The outline of is shown. 本発明のプラズマトーチを用いる溶接での溶接ビード断面を模式的に示す横断面図であり、(a)は先頭アークの予熱により形成されるビード形状を、(b)は中間アークによる高速キーホール溶接のビード形状を、(c)は後尾アークによるなめ付け溶接のビード形状を示す。It is a cross-sectional view which shows typically the weld bead section in welding using the plasma torch of the present invention, (a) is a bead shape formed by preheating of a leading arc, (b) is a high-speed keyhole by an intermediate arc (C) shows the bead shape of tanning welding by a tail arc. 図1に示す溶接装置によるワンプール3アーク溶接時の、プラズマアークの挙動を模式的に示す拡大断面図である。It is an expanded sectional view which shows typically the behavior of a plasma arc at the time of the one pool 3 arc welding by the welding apparatus shown in FIG. 本発明の第2実施例のプラズマトーチを用いる溶接装置の、縦断面図およびブロック図である。It is the longitudinal cross-sectional view and block diagram of the welding apparatus using the plasma torch of 2nd Example of this invention. 本発明の第3実施例のプラズマトーチを用いる溶接装置の、縦断面図およびブロック図である。It is the longitudinal cross-sectional view and block diagram of the welding apparatus using the plasma torch of 3rd Example of this invention. 本発明の第4実施例のプラズマトーチを用いる溶接装置の、縦断面図およびブロック図である。It is the longitudinal cross-sectional view and block diagram of the welding apparatus using the plasma torch of 4th Example of this invention.

(2)前記先頭電極配置空間(1a)および前記中間電極配置空間(1b)に連通する前記開口(4a,4b)間の距離より、前記中間電極配置空間(1b)および後尾電極配置空間(1c)に連通する前記開口(4b,4c)間の距離が長い、上記(1)に記載のインサートチップ(1:図7)。   (2) The intermediate electrode arrangement space (1b) and the tail electrode arrangement space (1c) are determined from the distance between the openings (4a, 4b) communicating with the leading electrode arrangement space (1a) and the intermediate electrode arrangement space (1b). The insert tip (1: FIG. 7) according to the above (1), wherein the distance between the openings (4b, 4c) communicating with the contact is long.

(3)前記開口は、プラズマアークノズルである、上記(1)又は(2)に記載のインサートチップ(1:形態1)。   (3) The insert tip according to (1) or (2), wherein the opening is a plasma arc nozzle (1: form 1).

(4)前記先頭電極配置空間(1a)又は前記後尾電極配置空間(1c)に連通する開口は、TIG溶接電極が貫通する穴で、他の開口はプラズマアークノズルである、上記(1)又は(2)に記載のインサートチップ(1:形態2/4)。   (4) The opening communicating with the head electrode arrangement space (1a) or the tail electrode arrangement space (1c) is a hole through which the TIG welding electrode passes, and the other opening is a plasma arc nozzle. The insert tip according to (2) (1: form 2/4).

(5)前記先頭電極配置空間(1a)および前記後尾電極配置空間(1c)に連通する開口は、TIG溶接電極が貫通する穴で、前記中間電極配置空間(1b)に連通する開口はプラズマアークノズルである、上記(1)又は(2)に記載のインサートチップ(1:形態3)。   (5) The opening communicating with the leading electrode arrangement space (1a) and the trailing electrode arrangement space (1c) is a hole through which the TIG welding electrode passes, and the opening communicating with the intermediate electrode arrangement space (1b) is a plasma arc. The insert tip according to (1) or (2), which is a nozzle (1: form 3).

(6)前記先頭電極配置空間(1a)に連通する開口はプラズマアークノズルで、前記中間電極配置空間(1b)および前記後尾電極配置空間(1c)に連通する開口は、TIG溶接電極が貫通する穴である、上記(1)又は(2)に記載のインサートチップ(1:形態5)。   (6) The opening communicating with the head electrode arrangement space (1a) is a plasma arc nozzle, and the opening communicating with the intermediate electrode arrangement space (1b) and the tail electrode arrangement space (1c) is penetrated by a TIG welding electrode. The insert tip according to (1) or (2), which is a hole (1: form 5).

(7)上記(1)に記載のインサートチップ(1)と、該インサートチップ(1)の各電極配置空間(1a,1b,1c)に各先端部を挿入した複数の電極(2a,2b,2c)と、を備えるプラズマトーチ。   (7) The insert tip (1) according to the above (1) and a plurality of electrodes (2a, 2b, 1b) having respective tip portions inserted into the electrode arrangement spaces (1a, 1b, 1c) of the insert tip (1) A plasma torch comprising 2c).

(8)上記(7)に記載のプラズマトーチと、該プラズマトーチの先頭電極(2a)に予熱電力を給電する第1電源(18ap,18aw)と、中間電極(2b)に裏ビード形成電力を給電する第2電源(18bp,18bw)と、後尾電極(2c)になめ付け電力を給電する第3電源(18cp,18cw)と、を備えるプラズマ溶接装置。   (8) The plasma torch described in (7) above, the first power supply (18ap, 18aw) for supplying preheating power to the leading electrode (2a) of the plasma torch, and the back bead forming power to the intermediate electrode (2b) A plasma welding apparatus comprising: a second power source (18bp, 18bw) for feeding power; and a third power source (18cp, 18cw) for feeding tanning power to the tail electrode (2c).

(9)上記(2)に記載のインサートチップ(1)の各電極配置空間(1a,1b,1c)に各先端部を挿入した複数の電極(2a,2b,2c)を備えるプラズマトーチと、該プラズマトーチの先頭電極(2a)に予熱電力を給電する第1電源(18ap,18aw)と、中間電極(2b)にキーホール溶接電力を給電する第2電源(18bp,18bw)と、後尾電極(2c)になめ付け電力を給電する第3電源(18cp,18cw)と、を備えるプラズマ溶接装置。   (9) a plasma torch comprising a plurality of electrodes (2a, 2b, 2c) each having a tip inserted into each electrode arrangement space (1a, 1b, 1c) of the insert tip (1) described in (2) above; A first power source (18ap, 18aw) for supplying preheating power to the leading electrode (2a) of the plasma torch, a second power source (18bp, 18bw) for supplying keyhole welding power to the intermediate electrode (2b), and a tail electrode And a third power source (18cp, 18cw) for supplying tanning power to (2c).

(10)前記インサートチップの開口は、プラズマアークノズルであり、第1,第2および第3電源は、プラズマ溶接電源である、上記(8)又は(9)に記載のプラズマ溶接装置(形態1)。   (10) The plasma welding apparatus according to the above (8) or (9), wherein the opening of the insert tip is a plasma arc nozzle, and the first, second and third power sources are plasma welding power sources. ).

(11)前記インサートチップの、前記先頭電極配置空間(1a)又は前記後尾電極配置空間(1c)に連通する開口は、TIG溶接電極が貫通する穴で、他の開口はプラズマアークノズルであり、第1電源又は第3電源はTIG溶接電源であって他の電源はプラズマ溶接電源である、上記(8)又は(9)に記載のプラズマ溶接装置(形態2/4)。   (11) The opening of the insert tip that communicates with the leading electrode arrangement space (1a) or the trailing electrode arrangement space (1c) is a hole through which the TIG welding electrode passes, and the other opening is a plasma arc nozzle, The plasma welding apparatus according to (8) or (9), wherein the first power source or the third power source is a TIG welding power source and the other power source is a plasma welding power source (mode 2/4).

(12)前記インサートチップの、前記先頭電極配置空間(1a)および前記後尾電極配置空間(1c)に連通する開口は、TIG溶接電極が貫通する穴で、前記中間電極配置空間(1b)に連通する開口はプラズマアークノズルであり、第1電源および第3電源はTIG溶接電源であって第2電源はプラズマ溶接電源である、上記(8)又は(9)に記載のプラズマ溶接装置(形態3)。   (12) The opening of the insert tip that communicates with the head electrode arrangement space (1a) and the tail electrode arrangement space (1c) is a hole through which the TIG welding electrode passes, and communicates with the intermediate electrode arrangement space (1b). The plasma welding apparatus according to the above (8) or (9), in which the opening is a plasma arc nozzle, the first power source and the third power source are TIG welding power sources, and the second power source is a plasma welding power source. ).

(13)前記インサートチップの、前記先頭電極配置空間(1a)に連通する開口はプラズマアークノズルで、前記中間電極配置空間(1b)および前記後尾電極配置空間(1c)に連通する開口は、TIG溶接電極が貫通する穴でであって、第1電源はプラズマ溶接電源であって第2および第3電源はTIG溶接電源である、上記(8)又は(9)に記載のプラズマ溶接装置(形態5)。   (13) The opening of the insert tip communicating with the leading electrode arrangement space (1a) is a plasma arc nozzle, and the opening communicating with the intermediate electrode arrangement space (1b) and the trailing electrode arrangement space (1c) is TIG. The plasma welding apparatus according to (8) or (9) above, wherein the welding electrode is a hole through which the first power source is a plasma welding power source and the second and third power sources are TIG welding power sources. 5).

本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。   Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

−第1実施例−
図1に、第1実施例であるプラズマ溶接装置を示し、図2の(a)には図1に示すプラズマトーチすなわち第1実施例のプラズマアークトーチのみを示し、図2の(b)にはトーチの先端面を示す。第1実施例のプラズマアークトーチは、プラズマ溶接を行う形態のものである。インサートチップ1は、インサートキャップ7を絶縁台9にねじ締めすることにより、絶縁台9に固定されている。シールドキャップ8はねじ締めにより絶縁台9に固定されている。3つ割でx方向に分離した先頭電極台11,中間電極台12および後尾電極台13は、絶縁体の外ケース30の内部にある。中間電極台12と先頭,後尾電極台11,13との間の空間を、絶縁本体14のステムが通っている。
-1st Example-
FIG. 1 shows a plasma welding apparatus according to the first embodiment, FIG. 2 (a) shows only the plasma torch shown in FIG. 1, ie, the plasma arc torch of the first embodiment, and FIG. Indicates the tip of the torch. The plasma arc torch of the first embodiment is of a form that performs plasma welding. The insert chip 1 is fixed to the insulating base 9 by screwing the insert cap 7 to the insulating base 9. The shield cap 8 is fixed to the insulating table 9 by screwing. The head electrode base 11, the intermediate electrode base 12, and the tail electrode base 13 separated in the x direction by being divided into three are inside an outer case 30 made of an insulator. The stem of the insulating body 14 passes through the space between the intermediate electrode base 12 and the leading and trailing electrode bases 11 and 13.

インサートチップ1には、チップの中心軸(z)と直交する同一直径線上に分布し、該中心軸から等距離にある先頭,後尾電極配置空間1a,1cと、該中心軸位置の中間電極配置空間1bがあり、各電極配置空間に、絶縁台9を貫通し各電極台11〜13にねじ10a,10b,10cで固定された、先頭電極2a,中間電極2b,後尾電極2cの先端部が挿入されて、各電極配置空間1a〜1cの軸心位置に、センタリングストーン3で位置決めされている。インサートチップ1の、母材16(溶接対象材)に対向する先端面には、各電極配置空間1a〜1cにつながったノズル4(4a,4b,4c)が開口している。   The insert tip 1 is distributed on the same diameter line orthogonal to the center axis (z) of the tip and is equidistant from the center axis, leading and trailing electrode arrangement spaces 1a and 1c, and an intermediate electrode arrangement at the center axis position. There is a space 1b, and in each electrode arrangement space, the leading ends of the leading electrode 2a, the intermediate electrode 2b, and the trailing electrode 2c that pass through the insulating table 9 and are fixed to the electrode tables 11 to 13 with screws 10a, 10b, and 10c are provided. The centering stone 3 is inserted and positioned at the axial center positions of the electrode arrangement spaces 1a to 1c. Nozzles 4 (4a, 4b, 4c) connected to the electrode arrangement spaces 1a to 1c are opened on the tip surface of the insert tip 1 facing the base material 16 (material to be welded).

図3に、インサートチップ1を拡大して示す。本実施例のインサートチップ1には、チップ1の中心軸(z)と直交する同一直径線に分布し、該中心軸の位置にある中間電極配置空間1bと該中心軸から等距離にあって中心軸(z)に平行に延びる先頭,後尾電極配置空間1a,1cと、各空間1a,1b,1cに連通し母材16に対向する先端面に開口した先頭,中間,後尾のノズル4a,4b,4cと、を備えている。これらのノズル4a,4b,4cも、本実施例では、チップの中心軸(z)と直交する同一直径線上に分布し、該中心軸に平行であって等ピッチで分布している。   FIG. 3 shows the insert chip 1 in an enlarged manner. The insert tip 1 of the present embodiment is distributed on the same diameter line perpendicular to the central axis (z) of the tip 1 and is equidistant from the central electrode arrangement space 1b located at the central axis. Front and rear electrode arrangement spaces 1a and 1c extending parallel to the central axis (z), and front, middle, and rear nozzles 4a that communicate with the spaces 1a, 1b, and 1c and open at a front end surface facing the base material 16, 4b, 4c. In the present embodiment, these nozzles 4a, 4b, and 4c are also distributed on the same diameter line orthogonal to the central axis (z) of the chip, and are distributed at an equal pitch parallel to the central axis.

トーチの絶縁台9には、図1上では図示を省略したが、図4上に示すパイロットガス流路および冷却水流路がある。また、シールドキャップ8内にシールドガスを導くシールドガス流路(図示略)がある。パイロットガスは、図4の(a)に示すように、ガス流路および電極挿入空間を通って電極配置空間1a〜1cに入り、電極先端部でプラズマとなってノズル4a〜4cを通ってトーチの先端面から噴出する。冷却水は、図4の(b)に示すように、冷却水給水流路を通って、インサートチップ1の外周面とインサートキャップ7の内周面との間の空間に入り、そこから冷却水排水流路を通ってトーチ外に出る。シールドガスは、シールドガス流路を通って、インサートキャップ7とシールドキャップ8との間の円筒状の空間に入り、そしてトーチの先端から噴出する。   Although not shown in FIG. 1, the torch insulating base 9 includes a pilot gas passage and a cooling water passage shown in FIG. 4. In addition, there is a shield gas flow path (not shown) for guiding shield gas into the shield cap 8. As shown in FIG. 4A, the pilot gas enters the electrode arrangement spaces 1a to 1c through the gas flow path and the electrode insertion space, becomes plasma at the electrode tip, and passes through the nozzles 4a to 4c. Erupts from the tip of As shown in FIG. 4B, the cooling water enters the space between the outer peripheral surface of the insert tip 1 and the inner peripheral surface of the insert cap 7 through the cooling water supply channel, and from there the cooling water Go out of the torch through the drainage channel. The shield gas passes through the shield gas flow path, enters the cylindrical space between the insert cap 7 and the shield cap 8, and is ejected from the tip of the torch.

図1に示すように、パイロット電源18ap,18bp,18cpにより、電極2a,2b,2cとチップ1との間にパイロットアークを発生させて、電極2a,2b,2cと母材16の間に、電極側が負で母材側が正のプラズマアーク電流を流すプラズマ電源18aw(予熱用),18bw(裏ビード形成用),18cw(なめ付け溶接用)により、溶接アーク(プラズマアーク)を発生させると、プラズマアーク電流が各電極2a,2b,2cと母材16の間に流れて、1プール3アーク溶接が実現する。図1に示す溶接装置では、電極2aのプラズマアークによる予熱と、電極2bによる裏ビード形成と、電極2cによるなめ付けとが行われる。なお、溶接の進行方向は矢印y方向である。すなわち、先頭の予熱で生成した表面部溶融プール(図5の(a))を中間のビード形成が、母材裏面(底面)まで溶融又は貫通するもの(図5の(b))とし、3mm以上の厚板の場合は、例えばキーホール溶接で形成される溶融プールを後方に送り、キーホール溶接で形成される溶融ビードを、後行のなめ付け溶接が均す。これにより図5の(c)に示す、母材表面と滑らかにつながるなめ付け溶接ビードとなる。3mm未満の薄板の場合は、キーホール溶接が不可能なため、先頭の予熱と中間の溶接により図5の(b)に示すビードが形成され、これが後尾のなめ付け溶接により、図5の(c)に示すビードに変わる。従来のように、大電流ワンプール広幅溶接をするのとは違い、中間,後尾ともそれぞれの機能に分け、必要最小限の低い電流で、ビード幅の狭い高速溶接ができる。先頭の予熱により中間の溶接は容易に母材裏面に達するので、溶接をより高速で行う事ができる。   As shown in FIG. 1, pilot arcs are generated between the electrodes 2a, 2b, 2c and the tip 1 by the pilot power supplies 18ap, 18bp, 18cp, and between the electrodes 2a, 2b, 2c and the base material 16, When a welding arc (plasma arc) is generated by a plasma power source 18aw (for preheating), 18bw (for back bead formation), 18cw (for tanning welding) in which the electrode side is negative and the base metal side is positive. A plasma arc current flows between each electrode 2a, 2b, 2c and the base material 16, and 1 pool 3 arc welding is implement | achieved. In the welding apparatus shown in FIG. 1, preheating by the plasma arc of the electrode 2a, back bead formation by the electrode 2b, and tanning by the electrode 2c are performed. In addition, the advancing direction of welding is an arrow y direction. That is, the surface part molten pool (FIG. 5 (a)) generated by the leading preheating is such that the intermediate bead formation melts or penetrates to the base material back surface (bottom surface) (FIG. 5 (b)), and 3 mm In the case of the above thick plates, for example, a molten pool formed by keyhole welding is fed backward, and a molten bead formed by keyhole welding is leveled by subsequent tanning welding. As a result, a tanned weld bead smoothly connected to the base material surface shown in FIG. In the case of a thin plate of less than 3 mm, since keyhole welding is impossible, the bead shown in FIG. 5B is formed by leading preheating and intermediate welding, and this is formed by tail tanning welding in FIG. Change to the bead shown in c). Unlike conventional high-current one-pool wide welding, it is divided into functions for both the middle and rear, and high-speed welding with a narrow bead width can be performed with the minimum current required. Since the intermediate welding easily reaches the back surface of the base material by the preheating at the beginning, the welding can be performed at a higher speed.

図1に示す実施例では、先頭電極2aによる予熱では、パイロットガス流量を0.2〜1.0(リットル/min)と少なくして浅溶け込みでの予熱をする。中間電極2bによる裏ビード形成では溶け込みを深くするためにパイロットガス流量を0.5〜5.0(リットル/min)と多くし、母材厚が3mm以上ではキーホール溶接により高流量のパイロットガスで母材を裏面を貫通するまでえぐって裏波を形成する。母材厚が3mm未満では、比較的に低流量のパイロットガスとして母材裏面までの熱溶融により裏ビード(図5の(b))を形成する。後尾電極2cによる表ビード形成では、パイロットガス流量を0.2〜1.0(リットル/min)と少なくして浅溶け込みで表面を薄く溶かし平滑にする(図5の(c))。   In the embodiment shown in FIG. 1, in the preheating with the leading electrode 2a, the pilot gas flow rate is reduced to 0.2 to 1.0 (liter / min), and preheating is performed with shallow penetration. In the formation of the back bead by the intermediate electrode 2b, the pilot gas flow rate is increased to 0.5 to 5.0 (liter / min) in order to deepen the penetration, and when the base metal thickness is 3 mm or more, the pilot gas with a high flow rate is formed by keyhole welding. In order to form a back wave, the base material is penetrated until it penetrates the back surface. If the thickness of the base material is less than 3 mm, a back bead (FIG. 5B) is formed by heat melting up to the back surface of the base material as a relatively low flow rate pilot gas. In the formation of the front bead by the tail electrode 2c, the pilot gas flow rate is reduced to 0.2 to 1.0 (liter / min), and the surface is melted and smoothed by shallow penetration ((c) in FIG. 5).

例えば特許文献5に提示した1プール2アーク溶接で、板厚1.6mmの母材を、先行アーク電流210A,後行アーク210/160A:30Hz切替え、の条件で2.3m/minの比較的高速で安定した高品質のプラズマアーク溶接をすることができる。これに対し本実施例では、板厚1.6mmの母材を、先頭アーク電流200A,中間アーク電流210A,後尾アーク電流210/160A(45Hz切替え)、の条件で3.0m/minの、より高速で安定した高品質のプラズマアーク溶接をすることができる。   For example, in 1 pool 2 arc welding presented in Patent Document 5, a base material having a plate thickness of 1.6 mm is comparatively 2.3 m / min under conditions of a leading arc current 210A and a trailing arc 210 / 160A: 30 Hz switching. High-speed and stable high-quality plasma arc welding can be performed. On the other hand, in this example, a base material having a plate thickness of 1.6 mm is 3.0 m / min under the conditions of a leading arc current 200A, an intermediate arc current 210A, and a trailing arc current 210 / 160A (45 Hz switching). High-speed and stable high-quality plasma arc welding can be performed.

一般に、平行に流れる2経路の電流(プラズマアーク)がそれぞれ経路を中心として旋回する磁束を生じ、これらは2経路の間では磁束の流れる方向が逆であるので互いに磁束を相殺し、合成磁束は、2経路の外側を周回するものとなる。この合成磁束の磁界と2経路の電流のそれぞれとの相互作用により、2電流(プラズマアーク)にはローレンツ力Fが作用して、2電流(プラズマアーク)が、互いに近づく方向に曲がる。仮に、アークが不安定になってこの曲がりが大きくなって2電流が交わると、すなわち合流すると、本来意図した溶接特性を現さなくなる。すなわち溶接不良あるいはビード形状不良を生ずる。この傾向は高電流になるほど大きい。   In general, two paths of current (plasma arc) flowing in parallel generate magnetic fluxes that rotate around the path, and these two directions are opposite in the direction of flow of the magnetic flux, so they cancel each other out, and the resultant magnetic flux is It goes around the outside of the two paths. The Lorentz force F acts on the two currents (plasma arc) due to the interaction between the magnetic field of the combined magnetic flux and the two-path currents, and the two currents (plasma arc) bend in a direction approaching each other. If the arc becomes unstable and the bending becomes large and two currents intersect, that is, if they merge, the originally intended welding characteristics will not be exhibited. That is, poor welding or poor bead shape occurs. This tendency increases as the current increases.

しかし図1に示す実施例では、図6に示すように、先頭電極2aと中間電極2bのアーク間にはFaなる引き合うローレンツ力が作用するが、中間電極2bと後尾電極2cのアーク間にもFcなる引き合うローレンツ力が作用し、中間電極2bのアークにはFa,Fcの合成力が作用することになり、この合成力はFa,Fcを相殺した余りの、僅かなものとなり、裏ビードを形成する中間電極2bのアークが安定し、裏波(裏ビード)形成が安定する。先頭電極2aの予熱アークに作用するローレンツ力Faは、該アークを溶接進行方向yで下流側に振り該アークが溶接進行方向yに対し後進角となるが、ビード形成には影響しない。後尾電極2cのなめ付けアークに作用するローレンツ力Fcは、該アークを溶接進行方向yで上流側に振り該アークが溶接進行方向yに対し前進角となり、平滑化に貢献する。すなわち、後尾電極2cのなめ付けアークのプラズマが前方に流れ、該アークの後方に形成される溶融プールをアークプラズマが乱さないので、表ビードは平滑できれいなビード表面となる。   However, in the embodiment shown in FIG. 1, as shown in FIG. 6, an attractive Lorentz force Fa acts between the arcs of the leading electrode 2a and the intermediate electrode 2b, but also between the arcs of the intermediate electrode 2b and the trailing electrode 2c. The attracting Lorentz force acting as Fc acts, and the combined force of Fa and Fc acts on the arc of the intermediate electrode 2b. The arc of the intermediate electrode 2b to be formed is stabilized, and the formation of a back wave (back bead) is stabilized. The Lorentz force Fa acting on the preheating arc of the leading electrode 2a swings the arc downstream in the welding progress direction y, and the arc has a backward angle with respect to the welding progress direction y, but does not affect the bead formation. The Lorentz force Fc acting on the tanning arc of the tail electrode 2c swings the arc upstream in the welding progress direction y, and the arc becomes an advance angle with respect to the welding progress direction y, thereby contributing to smoothing. That is, since the plasma of the tanning arc of the tail electrode 2c flows forward and the arc plasma does not disturb the molten pool formed behind the arc, the front bead has a smooth and clean bead surface.

−第2実施例−
図7に、厚板の高速溶接に好適な、本発明の第2実施例のプラズマ溶接装置を示す。板厚が3mm以上の、パイロットガス流量を多くしたキーホール溶接では、溶接速度を速くすると中間電極2bによる溶融プールが溶接方向yに大きくなって、溶融金属が溶け落ちる可能性が高くなる。そこで第2実施例では、先頭電極2aと中間電極2bとの距離よりも、中間電極2bに対する後尾電極2cの距離を長くして、中間電極2bのキーホール溶接が形成する溶融プールが凝固を始める位置を、後尾電極のプラズマアークでなめ付け溶接する。これによりキーホール溶接速度を高速化しても、溶融金属の溶け落ちを抑止できる。後尾電極2cによるなめ付け溶接は、凝固金属を再加熱して溶融させるものとなるが、凝固金属は凝固開始直後の高熱であるので、容易に溶融し、高速化に適合する。
-Second Example-
FIG. 7 shows a plasma welding apparatus according to a second embodiment of the present invention suitable for high-speed welding of thick plates. In keyhole welding in which the plate thickness is 3 mm or more and the pilot gas flow rate is increased, if the welding speed is increased, the molten pool by the intermediate electrode 2b becomes larger in the welding direction y, and the possibility that the molten metal melts increases. Therefore, in the second embodiment, the distance of the tail electrode 2c with respect to the intermediate electrode 2b is made longer than the distance between the leading electrode 2a and the intermediate electrode 2b, and the molten pool formed by the keyhole welding of the intermediate electrode 2b starts to solidify. The position is tanned and welded with a plasma arc of the tail electrode. Thereby, even if the keyhole welding speed is increased, molten metal can be prevented from being melted. The tanning welding by the tail electrode 2c is to reheat and melt the solidified metal. However, since the solidified metal has high heat immediately after the start of solidification, it is easily melted and adapted to high speed.

プラズマアーク溶接に限らずTIG溶接によっても、予熱あるいはなめ付けを行うことができる。TIG溶接ではパイロット電源が不要であるので、電源装置を低コストで構成できる。また、シールドガスがトーチ下端を満たすのでの、TIG溶接では電極配置空間から母材に噴出すパイロットガスを省略することもできる。そこで本発明のプラズマ溶接装置は、次の表1に示す溶接形態を実施する。   Preheating or tanning can be performed not only by plasma arc welding but also by TIG welding. Since TIG welding does not require a pilot power supply, the power supply device can be configured at low cost. Further, since the shielding gas fills the lower end of the torch, the pilot gas ejected from the electrode arrangement space to the base material can be omitted in TIG welding. Therefore, the plasma welding apparatus of the present invention implements the welding forms shown in the following Table 1.

Figure 2011224587
Figure 2011224587

表1上の実施形態1は、第1,第2実施例のように、先頭電極2a,中間電極2bおよび後尾電極2cのいずれも、プラズマアーク溶接を行うものである。   In Embodiment 1 on Table 1, as in the first and second examples, all of the head electrode 2a, the intermediate electrode 2b, and the tail electrode 2c perform plasma arc welding.

−第3実施例−
図8に示す本発明の第3実施例のプラズマ溶接装置は、表1上の実施形態2のものである。すなわち、先頭電極2aは、TIG溶接により母材を予熱するものであって、インサートチップ1の、その下端面に開いた電極配置空間の開口から更に下方に突出して、TIGアークにより母材の表面を予熱溶融する。中間電極2bおよび後尾電極2cは、第1,第2実施例と同様に、プラズマアーク溶接により裏ビード形成およびなめ付けを行う。
-Third Example-
The plasma welding apparatus of the third example of the present invention shown in FIG. 8 is that of Embodiment 2 on Table 1. That is, the leading electrode 2a preheats the base metal by TIG welding, and protrudes further downward from the opening of the electrode arrangement space opened at the lower end surface of the insert tip 1, and the surface of the base metal by the TIG arc Preheat and melt. The intermediate electrode 2b and the tail electrode 2c are subjected to back bead formation and tanning by plasma arc welding as in the first and second embodiments.

−第4実施例−
図9に示す本発明の第4実施例のプラズマ溶接装置は、表1上の実施形態3のものである。すなわち、先頭電極2aおよび後尾電極2cは、TIG溶接により母材を予熱およびなめ付けするものであり、インサートチップ1の、その下端面に開いた電極配置空間の開口から更に下方に突出して、TIGアークにより母材の表面を予熱溶融およびなめ付け溶接する。中間電極2bは、第1,第2実施例と同様に、プラズマアーク溶接により裏ビード形成を行う。
-Fourth embodiment-
The plasma welding apparatus of the fourth example of the present invention shown in FIG. 9 is that of Embodiment 3 on Table 1. That is, the leading electrode 2a and the trailing electrode 2c are for preheating and tanning the base material by TIG welding, projecting further downward from the opening of the electrode arrangement space opened at the lower end surface of the insert tip 1, The surface of the base metal is preheated and welded by arcing. The intermediate electrode 2b performs back bead formation by plasma arc welding as in the first and second embodiments.

表1上の実施形態4では、後尾電極2cは、TIG溶接により母材をなめ付けするものであり、インサートチップ1の、その下端面に開いた電極配置空間の開口から更に下方に突出して、TIGアークにより母材の表面をなめ付け溶接する。先頭電極2aおよび中間電極2bは、第1,第2実施例と同様に、プラズマアーク溶接により予熱および裏ビード形成を行う。   In Embodiment 4 on Table 1, the tail electrode 2c is for tanning the base material by TIG welding, and further protrudes downward from the opening of the electrode arrangement space opened at the lower end surface of the insert tip 1, The surface of the base metal is tanned and welded with a TIG arc. As with the first and second embodiments, the leading electrode 2a and the intermediate electrode 2b are preheated and back-beaded by plasma arc welding.

表1上の実施形態5では、先頭電極2aのプラズマアーク溶接によって裏ビードを形成する。中間電極2bおよび後尾電極2cは、TIG溶接によりそれぞれ表ビードを形成する。すなわち、2段階で表ビードを形成する。これは母材の溶融金属の表面張力が大きい母材に適合する。なお、実施形態4でも同様に、先頭電極2aのプラズマアーク溶接によって裏ビードを形成し、中間電極2bによるプラズマアーク溶接と後尾電極2cによるTIG溶接でそれぞれ表ビードを形成することもできる。   In Embodiment 5 on Table 1, the back bead is formed by plasma arc welding of the leading electrode 2a. The intermediate electrode 2b and the tail electrode 2c each form a front bead by TIG welding. That is, a front bead is formed in two stages. This is suitable for a base material having a large surface tension of the molten metal of the base material. In the fourth embodiment as well, the back bead can be formed by plasma arc welding of the leading electrode 2a, and the front bead can be formed by plasma arc welding by the intermediate electrode 2b and TIG welding by the tail electrode 2c.

なお、上述の実施例および実施形態のいずれも、中間電極2bは1本であるが、本発明によれば、2本以上の中間電極を用いる態様もある。ただしこの場合も、すべての電極は溶接方向に延びる一直線上にあるものである。例えば2本の中間電極2b1,2b2を用いる実施形態では、1本の中間電極によるキーホール溶接では母材裏面への貫通が無理な厚い母材を、先行の中間電極2b1によるプラズマアーク溶接でえぐりそして後行の中間電極2b2によるプラズマアーク溶接で母材裏面までキーホール溶接することができる。換言すると、厚板を高速でキーホール溶接することができる。   In each of the above-described examples and embodiments, there is one intermediate electrode 2b. However, according to the present invention, there is an aspect in which two or more intermediate electrodes are used. However, also in this case, all the electrodes are on a straight line extending in the welding direction. For example, in the embodiment using two intermediate electrodes 2b1 and 2b2, a thick base material that cannot be penetrated to the back surface of the base material by keyhole welding with one intermediate electrode is removed by plasma arc welding with the preceding intermediate electrode 2b1. Then, keyhole welding can be performed up to the back surface of the base material by plasma arc welding using the subsequent intermediate electrode 2b2. In other words, the thick plate can be keyhole welded at high speed.

1:インサートチップ
1a,1b,1c:先頭,中間,後尾の電極配置空間
2(2a,2b,2c):電極
2a:先頭電極
2b:中間電極
2c:後尾電極
3:センタリングストーン
4(4a,4b,4c):ノズル(先頭,中間,後尾のノズル)
7:インサートキャップ
8:シールドキャップ
9:絶縁台
10(10a,10b,10c):電極固定ねじ
11:先頭電極台
12:中間電極台
13:後尾電極台
14:絶縁本体
16:母材
18,43:電源
19:プラズマ
20:プール
30:外ケース
1: Insert tip 1a, 1b, 1c: Lead, middle, and tail electrode arrangement space 2 (2a, 2b, 2c): Electrode 2a: Lead electrode 2b: Intermediate electrode 2c: Trail electrode 3: Centering stone 4 (4a, 4b) , 4c): Nozzle (head, middle and tail nozzles)
7: Insert cap 8: Shield cap 9: Insulation base 10 (10a, 10b, 10c): Electrode fixing screw 11: Lead electrode base 12: Intermediate electrode base 13: Rear electrode base 14: Insulation body 16: Base materials 18, 43 : Power supply 19: Plasma 20: Pool 30: Outer case

Claims (13)

先頭電極配置空間,1以上の中間電極配置空間および後尾電極配置空間と、溶接方向の一直線上に分布し各電極配置空間にそれぞれが連通し前記一直線と平行な溶接線に対向して開いた3個以上の開口と、を備えるインサートチップ。   The first electrode arrangement space, the one or more intermediate electrode arrangement spaces, and the rear electrode arrangement space are distributed on a straight line in the welding direction, and communicate with each electrode arrangement space, respectively, and open to face a welding line parallel to the straight line. An insert chip comprising at least one opening. 前記先頭電極配置空間および前記中間電極配置空間に連通する前記開口間の距離より、前記中間電極配置空間および後尾電極配置空間に連通する前記開口間の距離が長い、請求項1に記載のインサートチップ。   The insert tip according to claim 1, wherein a distance between the openings communicating with the intermediate electrode arrangement space and the rear electrode arrangement space is longer than a distance between the openings communicating with the leading electrode arrangement space and the intermediate electrode arrangement space. . 前記開口は、プラズマアークノズルである、請求項1又は2に記載のインサートチップ。   The insert tip according to claim 1, wherein the opening is a plasma arc nozzle. 前記先頭電極配置空間又は前記後尾電極配置空間に連通する開口は、TIG溶接電極が貫通する穴で、他の開口はプラズマアークノズルである、請求項1又は2に記載のインサートチップ。   The insert tip according to claim 1 or 2, wherein the opening communicating with the head electrode arrangement space or the tail electrode arrangement space is a hole through which the TIG welding electrode passes, and the other opening is a plasma arc nozzle. 前記先頭電極配置空間および前記後尾電極配置空間に連通する開口は、TIG溶接電極が貫通する穴で、前記中間電極配置空間(1b)に連通する開口はプラズマアークノズルである、請求項1又は2に記載のインサートチップ。   The opening communicating with the head electrode arrangement space and the tail electrode arrangement space is a hole through which a TIG welding electrode passes, and the opening communicating with the intermediate electrode arrangement space (1b) is a plasma arc nozzle. Insert chip as described in. 前記先頭電極配置空間に連通する開口はプラズマアークノズルで、前記中間電極配置空間および前記後尾電極配置空間に連通する開口は、TIG溶接電極が貫通する穴である、請求項1又は2に記載のインサートチップ。   The opening that communicates with the head electrode arrangement space is a plasma arc nozzle, and the opening that communicates with the intermediate electrode arrangement space and the tail electrode arrangement space is a hole through which a TIG welding electrode passes. Insert tip. 請求項1に記載のインサートチップと、該インサートチップの各電極配置空間に各先端部を挿入した複数の電極と、を備えるプラズマトーチ。   A plasma torch comprising: the insert tip according to claim 1; and a plurality of electrodes each having a tip portion inserted into each electrode arrangement space of the insert tip. 請求項7に記載のプラズマトーチと、該プラズマトーチの先頭電極に予熱電力を給電する第1電源と、中間電極に裏ビード形成電力を給電する第2電源と、後尾電極になめ付け電力を給電する第3電源と、を備えるプラズマ溶接装置。   8. The plasma torch according to claim 7, a first power source for supplying preheating power to the leading electrode of the plasma torch, a second power source for supplying back bead forming power to the intermediate electrode, and tanning power to the tail electrode And a third power source. 請求項2に記載のインサートチップの各電極配置空間に各先端部を挿入した複数の電極を備えるプラズマトーチと、該プラズマトーチの先頭電極に予熱電力を給電する第1電源と、中間電極にキーホール溶接電力を給電する第2電源と、後尾電極になめ付け電力を給電する第3電源と、を備えるプラズマ溶接装置。   A plasma torch comprising a plurality of electrodes each having a tip inserted into each electrode arrangement space of the insert tip according to claim 2, a first power source for supplying preheating power to the leading electrode of the plasma torch, and a key for the intermediate electrode A plasma welding apparatus comprising: a second power source for supplying hall welding power; and a third power source for supplying tanning power to a tail electrode. 前記インサートチップの開口は、プラズマアークノズルであり、第1,第2および第3電源は、プラズマ溶接電源である、請求項8又は9に記載のプラズマ溶接装置。   The plasma welding apparatus according to claim 8 or 9, wherein the opening of the insert tip is a plasma arc nozzle, and the first, second, and third power sources are plasma welding power sources. 前記インサートチップの、前記先頭電極配置空間又は前記後尾電極配置空間に連通する開口は、TIG溶接電極が貫通する穴で、他の開口はプラズマアークノズルであり、第1電源又は第3電源はTIG溶接電源であって他の電源はプラズマ溶接電源である、請求項8又は9に記載のプラズマ溶接装置。   The opening of the insert tip that communicates with the head electrode arrangement space or the tail electrode arrangement space is a hole through which the TIG welding electrode passes, the other opening is a plasma arc nozzle, and the first power source or the third power source is TIG. The plasma welding apparatus according to claim 8 or 9, wherein the power source is a welding power source and the other power source is a plasma welding power source. 前記インサートチップの、前記先頭電極配置空間および前記後尾電極配置空間に連通する開口は、TIG溶接電極が貫通する穴で、前記中間電極配置空間に連通する開口はプラズマアークノズルであり、第1電源および第3電源はTIG溶接電源であって第2電源はプラズマ溶接電源である、請求項8又は9に記載のプラズマ溶接装置。   The opening of the insert tip that communicates with the head electrode arrangement space and the tail electrode arrangement space is a hole through which the TIG welding electrode passes, and the opening that communicates with the intermediate electrode arrangement space is a plasma arc nozzle, The plasma welding apparatus according to claim 8 or 9, wherein the third power source is a TIG welding power source and the second power source is a plasma welding power source. 前記インサートチップの、前記先頭電極配置空間に連通する開口はプラズマアークノズルで、前記中間電極配置空間および前記後尾電極配置空間に連通する開口は、TIG溶接電極が貫通する穴でであって、第1電源はプラズマ溶接電源であって第2および第3電源はTIG溶接電源である、請求項8又は9に記載のプラズマ溶接装置。   The opening of the insert tip that communicates with the leading electrode arrangement space is a plasma arc nozzle, and the opening that communicates with the intermediate electrode arrangement space and the trailing electrode arrangement space is a hole through which the TIG welding electrode passes, and The plasma welding apparatus according to claim 8 or 9, wherein the one power source is a plasma welding power source and the second and third power sources are TIG welding power sources.
JP2010094727A 2009-07-30 2010-04-16 Insert tip, plasma torch and plasma welding equipment Active JP5578920B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010094727A JP5578920B2 (en) 2010-04-16 2010-04-16 Insert tip, plasma torch and plasma welding equipment
TW099118661A TWI409119B (en) 2009-07-30 2010-06-09 Insert-chip, plasma torch and plasma processing device
CN201010231689.0A CN101987391B (en) 2009-07-30 2010-07-07 Embedded chip, plasma-based torch and plasma-based processing unit (plant)
KR1020100072898A KR101242823B1 (en) 2009-07-30 2010-07-28 Insert-chip, plasma torch and plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094727A JP5578920B2 (en) 2010-04-16 2010-04-16 Insert tip, plasma torch and plasma welding equipment

Publications (2)

Publication Number Publication Date
JP2011224587A true JP2011224587A (en) 2011-11-10
JP5578920B2 JP5578920B2 (en) 2014-08-27

Family

ID=45040621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094727A Active JP5578920B2 (en) 2009-07-30 2010-04-16 Insert tip, plasma torch and plasma welding equipment

Country Status (1)

Country Link
JP (1) JP5578920B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128790A (en) * 2013-12-06 2015-07-16 日鐵住金溶接工業株式会社 Welding torch of plural electrodes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074550A (en) * 1973-10-26 1975-06-19
JPS52125440A (en) * 1973-10-08 1977-10-21 Kobe Steel Ltd Automatic oneestde welding
JPS54869B1 (en) * 1970-05-07 1979-01-17
JPS5428243A (en) * 1977-07-20 1979-03-02 Hitachi Ltd Welder for fine grain and high toughness
JPS59110474A (en) * 1982-12-17 1984-06-26 Mitsubishi Heavy Ind Ltd Arc welding method
JP2000158141A (en) * 1998-11-20 2000-06-13 Kobe Steel Ltd Manufacture of titanium or titanium alloy welding pipe
JP2007144427A (en) * 2005-11-24 2007-06-14 Akihisa Murata Arc-contracting shield nozzle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54869B1 (en) * 1970-05-07 1979-01-17
JPS52125440A (en) * 1973-10-08 1977-10-21 Kobe Steel Ltd Automatic oneestde welding
JPS5074550A (en) * 1973-10-26 1975-06-19
JPS5428243A (en) * 1977-07-20 1979-03-02 Hitachi Ltd Welder for fine grain and high toughness
JPS59110474A (en) * 1982-12-17 1984-06-26 Mitsubishi Heavy Ind Ltd Arc welding method
JP2000158141A (en) * 1998-11-20 2000-06-13 Kobe Steel Ltd Manufacture of titanium or titanium alloy welding pipe
JP2007144427A (en) * 2005-11-24 2007-06-14 Akihisa Murata Arc-contracting shield nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128790A (en) * 2013-12-06 2015-07-16 日鐵住金溶接工業株式会社 Welding torch of plural electrodes

Also Published As

Publication number Publication date
JP5578920B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP6043969B2 (en) Welding method
JP5322859B2 (en) Plasma torch insert tip, plasma torch and plasma welding equipment
JP4726038B2 (en) System for welding and method of use thereof
JP5826057B2 (en) Composite welding method and welding torch for composite welding
US6469277B1 (en) Method and apparatus for hybrid welding under shielding gas
WO2012017913A1 (en) Complex weld method and welding torch for complex welds
Wang et al. Stabilization mechanism and weld morphological features of fiber laser-arc hybrid welding of pure copper
JP5812527B2 (en) Hot wire laser welding method and apparatus
KR101242823B1 (en) Insert-chip, plasma torch and plasma processing device
JP2007237225A (en) High-speed hot wire multi-electrode tig welding method of thin steel plate
KR20100072822A (en) Tandem electro gas arc welding apparatus
Liu et al. Influence of interwire distance and arc length on welding process and defect formation mechanism in double-wire pulsed narrow-gap gas metal arc welding
JP5414571B2 (en) Transfer type plasma torch assembly, plasma welding apparatus, and plasma welding method
JP5578920B2 (en) Insert tip, plasma torch and plasma welding equipment
JP2001246465A (en) Gas shielded-system arc welding method
US10201068B2 (en) Method for the plasma cutting of workpieces
JP2010167483A (en) Laser-arc composite welding method
JP5441156B2 (en) Insert tip, plasma torch and plasma processing equipment
JP2007181876A (en) Two-electrode arc welding method for high alloy steel
JP2010104996A (en) Plasma electrode and plasma mig welding torch
JP2007237224A (en) Tig welding method of thin steel plate
JP5472931B2 (en) Plasma welding equipment
JPH0675792B2 (en) Plasma arc welding method
JP5454916B2 (en) Hybrid plasma welding method, hybrid plasma torch and hybrid welding apparatus
JP5791109B2 (en) Welding method with two-electrode plasma torch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140708

R150 Certificate of patent or registration of utility model

Ref document number: 5578920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250