JP2011224445A - Apparatus for treating wastewater containing ammonium salt - Google Patents

Apparatus for treating wastewater containing ammonium salt Download PDF

Info

Publication number
JP2011224445A
JP2011224445A JP2010094967A JP2010094967A JP2011224445A JP 2011224445 A JP2011224445 A JP 2011224445A JP 2010094967 A JP2010094967 A JP 2010094967A JP 2010094967 A JP2010094967 A JP 2010094967A JP 2011224445 A JP2011224445 A JP 2011224445A
Authority
JP
Japan
Prior art keywords
chamber
ammonium salt
concentration chamber
water
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010094967A
Other languages
Japanese (ja)
Inventor
Hideyuki Komori
英之 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2010094967A priority Critical patent/JP2011224445A/en
Publication of JP2011224445A publication Critical patent/JP2011224445A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for treating wastewater containing ammonium salt that can efficiently treat wastewater containing ammonium salt by increasing electric conductivity in a cation concentration chamber, and reducing power consumption of an electrodialyzer in the apparatus for treating wastewater containing ammonium salt by the electrodialyzer.SOLUTION: The apparatus for treating wastewater containing ammonium salt is adapted to supply wastewater containing ammonium salt into a desalting chamber 18 of the electrodialyzer 10, to take out acid-containing water from an anion concentration chamber 17 and to take out ammonia water from a cation concentration chamber 19. The apparatus includes return lines 40, 44 returning ammonia water taken out of the cation concentration chamber 19, to the cation concentration chamber, and a carbon dioxide blow-in tank 41 blowing carbon dioxide into ammonia water.

Description

本発明は、硝酸アンモニウムなどのアンモニウム塩を含有する排水を処理するアンモニウム塩含有排水の処理装置に係り、特に電気透析装置を用いたアンモニウム塩含有排水の処理装置に関する。詳しくは、金属酸化物の精製工程からのアンモニウム塩含有排水の処理に好適なアンモニウム塩含有排水の処理装置に関する。   The present invention relates to a treatment apparatus for ammonium salt-containing wastewater for treating wastewater containing ammonium salt such as ammonium nitrate, and more particularly to a treatment apparatus for ammonium salt-containing wastewater using an electrodialyzer. In detail, it is related with the processing apparatus of the ammonium salt containing waste water suitable for the processing of the ammonium salt containing waste water from the refinement | purification process of a metal oxide.

蛍光体の原料などで用いられている酸化イットリウムを高純度化するために、低純度の酸化イットリウム原石を酸溶解した後に水酸化物もしくは炭酸塩として析出・沈殿させたものを焼成することが行われている。この工程からは、酸溶液と、析出・沈殿させる際の副生成物となるカチオン(炭酸塩として析出させる場合、アンモニウムイオン)含有排水が多量に排出され、その排水は窒素成分を多く含むために、処理を行う必要がある。   In order to increase the purity of yttrium oxide used as a raw material for phosphors, low-purity yttrium oxide ore is dissolved in acid, and then precipitated and precipitated as hydroxide or carbonate. It has been broken. From this process, a large amount of waste water containing acid solution and cations (ammonium ions when precipitating as carbonate), which is a by-product when precipitating and precipitating, is drained, and the waste water contains a lot of nitrogen components. Need to be processed.

モナズ鉱からセリウム化合物及び希土類元素化合物を取り出す工程からも、硝酸アンモニウム含有排水が排出され、同様に処理が必要となる。   Also from the step of taking out the cerium compound and the rare earth element compound from the monazite, the ammonium nitrate-containing waste water is discharged and needs to be treated in the same manner.

特開平7−163845には、硝酸アンモニウム含有排水を電気透析装置の脱塩室に供給し、アンモニウムイオンを脱塩室からアニオン濃縮室に移動させてアンモニア液として取り出し、硝酸イオンを脱塩室からカチオン濃縮室に移動させて硝酸として取り出すことが記載されている。   In JP-A-7-163845, ammonium nitrate-containing wastewater is supplied to a desalting chamber of an electrodialyzer, ammonium ions are moved from the desalting chamber to an anion concentration chamber, taken out as an ammonia solution, and nitrate ions are cationized from the desalting chamber. It is described that it is moved to a concentrating chamber and taken out as nitric acid.

特開平7−163845JP 7-163845 A

電気透析装置の脱塩室からカチオン濃縮室に移動したNH は電離度の低いNHとなるので、カチオン濃縮室の導電率が低くなる。これは電圧上昇の原因となり、電気透析装置の電力消費量が多くなる。 Since NH 4 + moved from the desalting chamber of the electrodialyzer to the cation concentration chamber becomes NH 3 having a low degree of ionization, the conductivity of the cation concentration chamber is lowered. This causes an increase in voltage and increases the power consumption of the electrodialysis apparatus.

本発明は、アンモニウム塩含有排水を電気透析装置によって処理するアンモニウム塩含有排水の処理装置において、カチオン濃縮室における導電率を高くし、電気透析装置の電力消費量を減少させ、効率よくアンモニウム塩含有排水を処理することが可能となるアンモニウム塩含有排水の処理装置を提供することを目的とする。   The present invention relates to an ammonium salt-containing wastewater treatment device for treating ammonium salt-containing wastewater with an electrodialyzer, which increases the conductivity in the cation concentration chamber, reduces the power consumption of the electrodialyzer, and efficiently contains ammonium salt. An object of the present invention is to provide an ammonium salt-containing wastewater treatment apparatus capable of treating wastewater.

請求項1のアンモニウム塩含有排水の処理装置は、陽極及び陰極との間にアニオン交換膜及びカチオン交換膜が配置されることにより脱塩室、アニオン濃縮室及びカチオン濃縮室が形成された電気透析装置を用いたアンモニウム塩含有排水の処理装置であって、該脱塩室にアンモニウム塩含有排水が供給され、該アニオン濃縮室から酸含有水が取り出され、該カチオン濃縮室からアンモニア水が取り出されるアンモニウム塩含有排水の処理装置において、該カチオン濃縮室から取り出されたアンモニア水を該カチオン濃縮室に返送する返送ラインと、アンモニア水に炭酸ガスを吹き込む炭酸ガス吹込手段とを備えたことを特徴とするものである。   An apparatus for treating ammonium salt-containing wastewater according to claim 1, wherein an anion exchange membrane and a cation exchange membrane are disposed between an anode and a cathode to form a desalting chamber, an anion concentration chamber, and a cation concentration chamber. An apparatus for treating ammonium salt-containing wastewater using an apparatus, wherein ammonium salt-containing wastewater is supplied to the desalting chamber, acid-containing water is taken out from the anion concentration chamber, and ammonia water is taken out from the cation concentration chamber The apparatus for treating ammonium salt-containing wastewater, comprising: a return line for returning the ammonia water taken out from the cation concentration chamber to the cation concentration chamber; and a carbon dioxide gas blowing means for blowing carbon dioxide into the ammonia water. To do.

請求項2のアンモニウム塩含有排水の処理装置は、請求項1において、前記返送ラインの途中に前記炭酸ガス吹込手段が設けられていることを特徴とするものである。   The treatment apparatus for waste water containing ammonium salt according to claim 2 is characterized in that, in claim 1, the carbon dioxide blowing means is provided in the middle of the return line.

請求項3のアンモニウム塩含有排水の処理装置は、請求項1又は2において、前記脱塩室から取り出された脱塩水を逆浸透処理する逆浸透膜装置を備えたことを特徴とするものである。   According to a third aspect of the present invention, there is provided a treatment apparatus for wastewater containing ammonium salt, comprising the reverse osmosis membrane device for performing reverse osmosis treatment on the demineralized water taken out from the demineralization chamber. .

本発明では、アンモニウム塩含有排水を電気透析装置の脱塩室に供給し、酸イオンを脱塩室からアニオン濃縮室に移動させ、アンモニウムイオンを脱塩室からカチオン濃縮室(アンモニウムイオン濃縮室)に移動させる。このカチオン濃縮室から取り出されたアンモニア含有水をカチオン濃縮室に返送し、循環させると共に、このアンモニア含有水に対し炭酸ガスを吹き込む。これにより、アンモニア含有水中のアンモニアが炭酸ガスと反応して炭酸アンモニウムとなり、その電離度(解離度)が増加し、電気透析装置のアンモニウムイオン濃縮室内の水の導電率が高くなる。このため、電気透析装置のカチオン濃縮室の導電率が高くなり、電気透析装置の電力消費量が減少する。   In the present invention, ammonium salt-containing wastewater is supplied to the desalting chamber of the electrodialyzer, acid ions are moved from the desalting chamber to the anion concentration chamber, and ammonium ions are transferred from the desalting chamber to the cation concentration chamber (ammonium ion concentration chamber). Move to. The ammonia-containing water taken out from the cation concentration chamber is returned to the cation concentration chamber and circulated, and carbon dioxide gas is blown into the ammonia-containing water. As a result, ammonia in the ammonia-containing water reacts with carbon dioxide gas to become ammonium carbonate, the degree of ionization (degree of dissociation) increases, and the conductivity of water in the ammonium ion concentration chamber of the electrodialyzer increases. For this reason, the electrical conductivity of the cation concentration chamber of the electrodialyzer increases, and the power consumption of the electrodialyzer decreases.

炭酸ガスは、電気透析装置のカチオン濃縮室に吹き込むと、カチオン濃縮室にガス溜りが生じるおそれがあると共に、カチオン濃縮室のスペースも小さいところから、返送ラインに吹き込まれるのが好ましい。   When carbon dioxide gas is blown into the cation concentration chamber of the electrodialyzer, gas accumulation may occur in the cation concentration chamber, and it is preferable that the carbon dioxide gas be blown into the return line because the space in the cation concentration chamber is small.

電気透析装置から取り出されたアンモニウム塩濃度の低い脱塩水については、必要に応じ逆浸透膜装置(RO装置)によって脱塩処理することにより、放流基準以下の濃度まで処理することが可能である。   Demineralized water with a low ammonium salt concentration taken out from the electrodialyzer can be treated to a concentration below the discharge standard by subjecting it to desalination treatment with a reverse osmosis membrane device (RO device) as necessary.

本発明装置の一例を示すフロー図である。It is a flowchart which shows an example of this invention apparatus.

以下、図1を参照しながら本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to FIG.

本発明は、アンモニウム塩含有排水を電気透析装置を用いて処理するものである。このアンモニウム塩含有排水としては、酸化イットリウム精製工程排水、モナズ鉱からセリウム化合物、希土類化合物を取り出す工程からの排水など、硝酸アンモニウム含有排水が例示されるが、これに限定されるものではない。例えば、ナイロン原料製造工程から副生する硫酸アンモニウムを硫酸とアンモニアに分離する処理にも適用できる。また、塩化アンモニウム、フッ化アンモニウムなどの含有排水の処理にも適用できる。   The present invention treats ammonium salt-containing wastewater using an electrodialyzer. Examples of the ammonium salt-containing wastewater include, but are not limited to, ammonium nitrate-containing wastewater such as wastewater from the purification process of yttrium oxide and wastewater from the step of taking out cerium compounds and rare earth compounds from monazite. For example, the present invention can be applied to a process of separating ammonium sulfate by-produced from a nylon raw material production process into sulfuric acid and ammonia. It can also be applied to the treatment of wastewater containing ammonium chloride, ammonium fluoride and the like.

上記の硝酸アンモニウム含有排水を処理する場合、硝酸アンモニウム含有排水中の硝酸アンモニウム濃度は10〜30wt%特に15〜25wt%程度が好適である。この硝酸アンモニウム含有排水中には、炭酸イオンなどが含まれていても差し支えない。   When the ammonium nitrate-containing wastewater is treated, the ammonium nitrate concentration in the ammonium nitrate-containing wastewater is preferably about 10 to 30 wt%, particularly about 15 to 25 wt%. This ammonium nitrate-containing wastewater may contain carbonate ions and the like.

なお、原水を予め遠心分離や膜濾過(例えばUF膜濾過)して金属酸化物、金属炭酸塩などの微粒子を除去しておくのが好ましい。   The raw water is preferably subjected to centrifugal separation or membrane filtration (for example, UF membrane filtration) in advance to remove fine particles such as metal oxide and metal carbonate.

図1は、硝酸アンモニウム含有排水を処理するフローの一例を示している。電気透析装置10は、陽極11と陰極12との間にカチオン交換膜13、アニオン交換膜14を配置したものであるが、この実施の形態ではさらにバイポーラ膜15も配置している。バイポーラ膜は、図示の通り、アニオン交換膜とカチオン交換膜とを積層状としたものであり、アニオン交換膜面が陰極12を指向し、カチオン交換膜面が陽極11を指向するように配置されている。最も陽極11側にはカチオン交換膜13が配置され、陽極11との間が陽極室16となっている。最も陰極12側にはアニオン交換膜14が配置され、陰極12との間が陰極室20となっている。   FIG. 1 shows an example of a flow for treating ammonium nitrate-containing waste water. In the electrodialysis apparatus 10, a cation exchange membrane 13 and an anion exchange membrane 14 are disposed between an anode 11 and a cathode 12. In this embodiment, a bipolar membrane 15 is further disposed. As shown in the figure, the bipolar membrane is formed by laminating an anion exchange membrane and a cation exchange membrane, and is arranged such that the anion exchange membrane surface faces the cathode 12 and the cation exchange membrane surface faces the anode 11. ing. A cation exchange membrane 13 is disposed closest to the anode 11, and an anode chamber 16 is formed between the anode 11 and the cation exchange membrane 13. An anion exchange membrane 14 is disposed on the most cathode 12 side, and a cathode chamber 20 is formed between the cathode 12 and the anion exchange membrane 14.

陽極室16側から陰極室20側に向ってカチオン交換膜13、アニオン濃縮室としての硝酸イオン濃縮室17、アニオン交換膜14、脱塩室18、カチオン交換膜13、カチオン濃縮室としてのアンモニウムイオン濃縮室19、バイポーラ膜15、硝酸イオン濃縮室17、アニオン交換膜14、脱塩室18、カチオン交換膜13、アンモニウムイオン濃縮室19、アニオン交換膜14が配置されている。脱塩室18には、後に詳述する通り、カチオン交換樹脂とアニオン交換樹脂とを混合充填しておくのが好ましい。   From the anode chamber 16 side toward the cathode chamber 20 side, the cation exchange membrane 13, the nitrate ion concentration chamber 17 as the anion concentration chamber, the anion exchange membrane 14, the desalting chamber 18, the cation exchange membrane 13, and the ammonium ion as the cation concentration chamber A concentration chamber 19, a bipolar membrane 15, a nitrate ion concentration chamber 17, an anion exchange membrane 14, a desalting chamber 18, a cation exchange membrane 13, an ammonium ion concentration chamber 19, and an anion exchange membrane 14 are arranged. As described in detail later, the desalting chamber 18 is preferably mixed and filled with a cation exchange resin and an anion exchange resin.

原水(硝酸アンモニウム含有排水)は、原水ライン1から脱塩室18に供給され、取出ライン2を経て脱塩水槽3に導入され、ポンプ4、返送ライン5及び前記ライン1を経て脱塩室18に循環される。なお、ライン5から脱塩水取出ライン6が分岐している。   The raw water (ammonium nitrate-containing wastewater) is supplied from the raw water line 1 to the desalting chamber 18, introduced into the desalting water tank 3 through the extraction line 2, and passed through the pump 4, the return line 5 and the line 1 to the desalting chamber 18. Circulated. Note that a desalted water extraction line 6 branches from the line 5.

硝酸イオンがアニオン交換膜14を透過して脱塩室18から硝酸イオン濃縮室17に移動することにより硝酸イオン濃縮室17に生じた硝酸は、硝酸ライン30から硝酸槽31に導入され、ポンプ32、ライン33を介して硝酸イオン濃縮室17に返送される。ライン33からは硝酸取出ライン34が分岐している。   Nitric acid ions that pass through the anion exchange membrane 14 and move from the desalting chamber 18 to the nitrate ion concentrating chamber 17 are introduced into the nitrate ion concentrating chamber 17 from the nitric acid line 30 into the nitric acid tank 31, and the pump 32. , And returned to the nitrate ion concentration chamber 17 via the line 33. A nitric acid extraction line 34 is branched from the line 33.

この実施の形態では、アンモニウムイオンがカチオン交換膜13を透過して脱塩室18からアンモニウムイオン濃縮室19に移動することにより、アンモニア及び炭酸水素アンモニウム含有水が生成し、このアンモニア及び炭酸水素アンモニウム含有水がライン40から炭酸ガス吹込槽41に導入され、炭酸ガスが散気管42から吹き込まれる。これにより、アンモニアは重炭酸アンモニウム(炭酸水素アンモニウム)となる。この重炭酸アンモニウム含有水がポンプ43、ライン44を介してアンモニウムイオン濃縮室19へ返送される。ライン44からは重炭酸アンモニウム含有水の取出ライン45が分岐している。炭酸ガスの吹込量は、炭酸ガス吹込槽内のpHが中性例えば6〜8程度となる量が好適である。   In this embodiment, ammonium ions permeate the cation exchange membrane 13 and move from the desalting chamber 18 to the ammonium ion concentrating chamber 19 to produce ammonia and ammonium hydrogen carbonate-containing water. The contained water is introduced into the carbon dioxide gas blowing tank 41 from the line 40, and carbon dioxide gas is blown from the diffuser pipe 42. As a result, ammonia becomes ammonium bicarbonate (ammonium bicarbonate). This ammonium bicarbonate-containing water is returned to the ammonium ion concentration chamber 19 via the pump 43 and the line 44. A line 44 for branching out ammonium bicarbonate-containing water branches from the line 44. The amount of carbon dioxide blown is suitably such that the pH in the carbon dioxide blown tank is neutral, for example, about 6-8.

このように構成されたアンモニウム塩含有排水の処理装置10を用いて硝酸アンモニウム含有排水を処理する場合、運転開始時には各濃縮室17,19、槽31,41には純水を張っておくのが好ましい。また、原水を脱塩室18及び脱塩水槽3に張っておくのが好ましい。   When the ammonium salt-containing wastewater treatment apparatus 10 configured as described above is used to treat ammonium nitrate-containing wastewater, it is preferable that pure water is filled in the concentration chambers 17 and 19 and the tanks 31 and 41 at the start of operation. . Moreover, it is preferable that raw water is stretched over the desalting chamber 18 and the desalted water tank 3.

陽極室16及び陰極室20には電極反応を起こしにくいNaSO溶液を通液するのが好ましい。 It is preferable to pass a Na 2 SO 4 solution that hardly causes an electrode reaction through the anode chamber 16 and the cathode chamber 20.

脱塩水槽3内の原水をポンプ4、ライン5,1、脱塩室18、ライン2の順に循環させると共に、硝酸イオン濃縮室内の水をライン30、槽31、ポンプ32、ライン33の順に循環させる。また、アンモニウムイオン濃縮室内の水をライン40、炭酸ガス吹込槽41、ポンプ43、ライン44の順に循環させると共に、炭酸ガスを散気管42から炭酸ガス吹込槽41に吹き込み、NHOH成分をNHHCOとする。原水中の硝酸イオンはアニオン交換膜14を透過して硝酸イオン濃縮室17に移動し、アンモニウムイオンはカチオン交換膜13を透過してアンモニウムイオン濃縮室19に移動する。これにより、脱塩室18を通過する原水中の硝酸イオン濃度及びアンモニウムイオン濃度が徐々に低下する。また、硝酸槽31内の硝酸濃度が徐々に上昇し、炭酸ガス吹込槽41内の重炭酸アンモニウムイオン濃度も徐々に上昇する。 The raw water in the desalted water tank 3 is circulated in the order of the pump 4, lines 5, 1, the desalting chamber 18 and the line 2, and the water in the nitrate ion concentrating chamber is circulated in the order of the line 30, the tank 31, the pump 32 and the line 33. Let In addition, the water in the ammonium ion concentrating chamber is circulated in the order of the line 40, the carbon dioxide blowing tank 41, the pump 43, and the line 44, and carbon dioxide is blown into the carbon dioxide blowing tank 41 from the diffuser tube 42, so that NH 4 OH component is NH. 4 HCO 3 The nitrate ions in the raw water pass through the anion exchange membrane 14 and move to the nitrate ion concentration chamber 17, and the ammonium ions pass through the cation exchange membrane 13 and move to the ammonium ion concentration chamber 19. Thereby, the nitrate ion concentration and the ammonium ion concentration in the raw water passing through the desalting chamber 18 are gradually decreased. Moreover, the nitric acid concentration in the nitric acid tank 31 gradually increases, and the ammonium bicarbonate ion concentration in the carbon dioxide gas blowing tank 41 also gradually increases.

前述の通り、アンモニウムイオン濃縮室19には、炭酸ガス吹込槽41を経て、NHOH成分がNHHCOとなった液が循環通水されるので、アンモニウムイオン濃縮室19内の導電率が高く、電気透析装置の電力消費量が低減される。 As described above, since the liquid in which the NH 4 OH component has become NH 4 HCO 3 is circulated through the carbon dioxide gas blowing tank 41 into the ammonium ion concentrating chamber 19, the conductivity in the ammonium ion concentrating chamber 19 is increased. The power consumption of the electrodialyzer is reduced.

なお、このようにバッチ循環処理していると、脱塩水の塩濃度が低くなるために脱塩室18内の抵抗が高くなり、電力消費量が増える。したがって、脱塩室18内にイオン交換樹脂を充填しておき、脱塩室18内の電気抵抗を小さくすることが望ましい。   Note that when batch circulation treatment is performed in this manner, the salt concentration in the desalted water is lowered, so that the resistance in the desalting chamber 18 is increased and the power consumption is increased. Therefore, it is desirable to fill ion exchange resin in the desalting chamber 18 to reduce the electrical resistance in the desalting chamber 18.

脱塩室18内には、カチオン交換樹脂及びアニオン交換樹脂の双方を混合充填するのが好ましい。カチオン交換樹脂とアニオン交換樹脂の合計量に占めるカチオン交換樹脂の割合は90%以下特に40%以下が好ましい。カチオン交換樹脂が少ない方が電流が流れ易く、好ましい。   The desalting chamber 18 is preferably filled with both a cation exchange resin and an anion exchange resin. The ratio of the cation exchange resin to the total amount of the cation exchange resin and the anion exchange resin is preferably 90% or less, particularly preferably 40% or less. A smaller amount of cation exchange resin is preferable because current flows easily.

電気透析により所定量以上、例えば90%のイオンをそれぞれ回収したところで、脱塩工程を終了する。脱塩工程を終了するタイミングは、脱塩水の導電率を測定して判断することができる。   When a predetermined amount or more, for example, 90% of ions are collected by electrodialysis, the desalting step is terminated. The timing for ending the desalting step can be determined by measuring the conductivity of the desalted water.

電気透析装置10により十分に脱塩処理することにより、脱塩水中の硝酸アンモニウム濃度は0.1mol/L以下程度まで低下する。ここまで硝酸アンモニウム濃度が下がっていれば、この脱塩水をRO膜により処理することが可能となる。そこで、脱塩水槽3内の脱塩水を、ライン6からRO装置に供給し、RO処理する。   By sufficiently desalting with the electrodialyzer 10, the ammonium nitrate concentration in the desalted water is reduced to about 0.1 mol / L or less. If the ammonium nitrate concentration is lowered so far, this desalted water can be treated with the RO membrane. Therefore, the demineralized water in the demineralized water tank 3 is supplied from the line 6 to the RO device and subjected to RO treatment.

RO処理によりさらに硝酸アンモニウムを90%以上除去したRO処理水を下水・排水処理設備へ放流する。濃縮水については別途処理するか、電気透析装置10の処理に戻す。   RO treated water from which ammonium nitrate is further removed by 90% or more by RO treatment is discharged to sewage / drainage treatment facilities. Concentrated water is treated separately or returned to the treatment of the electrodialyzer 10.

槽31,41内のHNO溶液、重炭酸アンモニウム溶液を再利用する場合、電気透析によるイオン回収率が90%であるため、規定濃度に満たない分は濃厚な硝酸溶液又は重炭酸アンモニウム溶液を添加して濃度調整する。オンラインで濃度を把握する場合は導電率計、比重計などを用いて濃度を測定し、規定の溶液濃度に調整するのが好ましい。 When the HNO 3 solution and ammonium bicarbonate solution in the tanks 31 and 41 are reused, since the ion recovery rate by electrodialysis is 90%, a concentrated nitric acid solution or ammonium bicarbonate solution is used for the amount less than the specified concentration. Add to adjust concentration. When the concentration is grasped online, it is preferable to measure the concentration using a conductivity meter, a specific gravity meter, etc., and adjust it to a prescribed solution concentration.

本発明は、金属酸化物の精製工程からの排水を処理し、回収した重炭酸アンモニウム溶液及び硝酸などの酸溶液を該精製工程に再利用する用途に用いるのに好適である。この場合、アンモニウムイオン濃縮室19には、アンモニウムイオンの他、金属イオンも脱塩室18から移動してくるので、回収した重炭酸アンモニウム溶液中に金属イオンが濃縮している可能性がある。そこで、回収した重炭酸アンモニウム溶液をキレート樹脂と接触させ、金属イオンを除去してから再利用することが好ましい。   INDUSTRIAL APPLICABILITY The present invention is suitable for use in applications where wastewater from a metal oxide purification process is treated and the recovered ammonium bicarbonate solution and an acid solution such as nitric acid are reused in the purification process. In this case, in addition to ammonium ions, metal ions move from the desalting chamber 18 to the ammonium ion concentration chamber 19, so there is a possibility that the metal ions are concentrated in the recovered ammonium bicarbonate solution. Therefore, it is preferable to reuse the recovered ammonium bicarbonate solution after contacting the chelate resin to remove metal ions.

上記実施の形態では、電気透析装置10としてバイポーラ膜を用いたものを採用しているが、特開2003−305475のように、陽極と陰極との間にカチオン交換膜及びアニオン交換膜のみを交互に配列した電気透析装置を用いてもよい。   In the above embodiment, a bipolar membrane is used as the electrodialyzer 10, but only a cation exchange membrane and an anion exchange membrane are alternately provided between the anode and the cathode as disclosed in JP-A-2003-305475. An electrodialyzer arranged in the above may be used.

以下、実施例及び比較例について説明する。   Hereinafter, examples and comparative examples will be described.

[実施例1]
第1図に示すフローに従って、濃度1mol/Lの硝酸アンモニウム溶液の脱塩処理を行った。
[Example 1]
According to the flow shown in FIG. 1, a desalting treatment of an ammonium nitrate solution having a concentration of 1 mol / L was performed.

電気透析装置のアニオン交換膜として(株)アストム製アニオン交換膜「ネオセプタAHA」を用い、カチオン交換膜として(株)アストム製カチオン交換膜「ネオセプタCMB」を用いた。バイポーラ膜は(株)アストム製「BP−1E」を用いた。膜面積は0.46dmとした。陽極にはペルメレック社製Pt被覆Ti電極を用い、陰極にはステンレス304電極を用いた。 The anion exchange membrane “Neocepta AHA” manufactured by Astom Co., Ltd. was used as the anion exchange membrane of the electrodialysis apparatus, and the cation exchange membrane “Neocepta CMB” manufactured by Astom Co., Ltd. was used as the cation exchange membrane. As the bipolar membrane, “BP-1E” manufactured by Astom Co., Ltd. was used. The film area was 0.46 dm 2 . A Pt-coated Ti electrode manufactured by Permerec was used for the anode, and a stainless steel 304 electrode was used for the cathode.

この電気透析装置として直流電源装置(菊水電子工業(株)コンパクト可変スイッチング電源PAK35−10A)を用い、2.5Aの定電流設定で通電した。電流密度は5.4A/dmである。 A DC power supply (Kikusui Electronics Co., Ltd. compact variable switching power supply PAK35-10A) was used as the electrodialysis apparatus, and energization was performed at a constant current setting of 2.5A. Current density is 5.4A / dm 2.

電気透析装置の運転開始に先立って脱塩室及び原水循環ラインを合計500mLの硝酸アンモニウム溶液で満たした。硝酸イオン濃縮室17及びその循環ラインを150mLの純水で満たした。アンモニウムイオン濃縮室19及びその循環ラインを400mLの純水で満たした。陽極室16と陰極室20にはそれぞれNaSO溶液(濃度5000mg/L)を循環させた。 Prior to the start of operation of the electrodialyzer, the desalting chamber and the raw water circulation line were filled with a total of 500 mL of ammonium nitrate solution. The nitrate ion concentration chamber 17 and its circulation line were filled with 150 mL of pure water. The ammonium ion concentration chamber 19 and its circulation line were filled with 400 mL of pure water. A Na 2 SO 4 solution (concentration: 5000 mg / L) was circulated through the anode chamber 16 and the cathode chamber 20, respectively.

ライン5の原水循環水量を500mL/minとし、ライン33の硝酸溶液循環水量を250mL/minとし、ライン44の重炭酸アンモニウム溶液循環水量を250mL/minとして運転し、炭酸ガス吹込槽41では、pHが中性領域(6〜8)となるように炭酸ガスを吹き込んだ。   The raw water circulating water amount in line 5 is set to 500 mL / min, the nitric acid solution circulating water amount in line 33 is set to 250 mL / min, and the ammonium bicarbonate solution circulating water amount in line 44 is set to 250 mL / min. Carbon dioxide gas was blown so that became a neutral region (6-8).

脱塩水槽3内の脱塩水の硝酸アンモニウム濃度が0.1mol/L以下となるまで約20時間運転行った。運転開始から12時間後までの電気透析装置の通電電圧を表1に示す。   The operation was continued for about 20 hours until the ammonium nitrate concentration in the desalted water tank 3 was 0.1 mol / L or less. Table 1 shows the energization voltage of the electrodialyzer until 12 hours after the start of operation.

[実施例2]
実施例1において、ライン40を介してアンモニウムイオン濃縮室19から取り出される水中の硝酸アンモニウム以外のアンモニア濃度が1mol/Lであることを想定して、HCO で1mol/Lとなるようにあらかじめ炭酸ガス吹込槽41において純水に炭酸ガスを吹き込んでから運転を開始した。その他の条件は実施例1と同一とした。運転開始から12時間後までの電気透析装置の通電電圧を表1に示す。
[Example 2]
In Example 1, assuming that the ammonia concentration other than ammonium nitrate in the water taken out from the ammonium ion concentrating chamber 19 via the line 40 is 1 mol / L, the carbonic acid is preliminarily set to 1 mol / L with HCO 3 −. The operation was started after carbon dioxide gas was blown into pure water in the gas blowing tank 41. Other conditions were the same as in Example 1. Table 1 shows the energization voltage of the electrodialyzer until 12 hours after the start of operation.

[比較例1]
炭酸ガス吹込槽41に炭酸を吹き込まないこと以外は実施例1と同一条件にて運転を行った。その他の条件は実施例1と同一とした。運転開始から12時間後までの電気透析装置の通電電圧を表1に示す。
[Comparative Example 1]
The operation was performed under the same conditions as in Example 1 except that carbon dioxide was not blown into the carbon dioxide blowing tank 41. Other conditions were the same as in Example 1. Table 1 shows the energization voltage of the electrodialyzer until 12 hours after the start of operation.

Figure 2011224445
Figure 2011224445

表1の通り、実施例1では運転開始から3時間以上経過後、電圧は比較例1よりも低い値となった。なお、実施例2においては、あらかじめ炭酸を吹き込んでおいたため、運転開始直後から実施例1及び比較例1よりも電圧が低くなっている。   As shown in Table 1, in Example 1, the voltage was lower than that in Comparative Example 1 after 3 hours or more had elapsed from the start of operation. In Example 2, since carbonic acid was blown in advance, the voltage was lower than that in Example 1 and Comparative Example 1 immediately after the start of operation.

これに対し、比較例1では、運転開始から2時間が経過するまでは実施例1と同等の通電電圧であったが、それ以降は徐々に通電電圧が上昇し、実施例1との電圧差も次第に大きくなった。なお、比較例1でも、運転開始から2時間経過するまでは、アンモニウムイオンが濃縮室19に移動することにより、通電電圧が徐々に低下する。   On the other hand, in Comparative Example 1, the energization voltage was the same as that in Example 1 until 2 hours passed from the start of operation, but thereafter, the energization voltage gradually increased, and the voltage difference from Example 1 Gradually increased. In Comparative Example 1, the energization voltage gradually decreases as ammonium ions move to the concentration chamber 19 until 2 hours have elapsed since the start of operation.

3 原水槽
10 電気透析装置
13 カチオン交換膜
14 アニオン交換膜
41 炭酸ガス吹込槽
42 散気管
3 Raw Water Tank 10 Electrodialyzer 13 Cation Exchange Membrane 14 Anion Exchange Membrane 41 Carbon Dioxide Blowing Tank 42 Aeration Tube

Claims (3)

陽極及び陰極との間にアニオン交換膜及びカチオン交換膜が配置されることにより脱塩室、アニオン濃縮室及びカチオン濃縮室が形成された電気透析装置を用いたアンモニウム塩含有排水の処理装置であって、
該脱塩室にアンモニウム塩含有排水が供給され、該アニオン濃縮室から酸含有水が取り出され、該カチオン濃縮室からアンモニア水が取り出されるアンモニウム塩含有排水の処理装置において、
該カチオン濃縮室から取り出されたアンモニア水を該カチオン濃縮室に返送する返送ラインと、
アンモニア水に炭酸ガスを吹き込む炭酸ガス吹込手段と
を備えたことを特徴とするアンモニウム塩含有排水の処理装置。
An ammonium salt-containing wastewater treatment apparatus using an electrodialysis apparatus in which a desalination chamber, an anion concentration chamber, and a cation concentration chamber are formed by disposing an anion exchange membrane and a cation exchange membrane between an anode and a cathode. And
In the apparatus for treating ammonium salt-containing wastewater, wastewater containing ammonium salt is supplied to the desalting chamber, acid-containing water is taken out from the anion concentration chamber, and ammonia water is taken out from the cation concentration chamber.
A return line for returning the aqueous ammonia extracted from the cation concentration chamber to the cation concentration chamber;
An apparatus for treating wastewater containing ammonium salt, comprising carbon dioxide blowing means for blowing carbon dioxide into ammonia water.
請求項1において、前記返送ラインの途中に前記炭酸ガス吹込手段が設けられていることを特徴とするアンモニウム塩含有排水の処理装置。   The apparatus for treating wastewater containing ammonium salt according to claim 1, wherein the carbon dioxide gas blowing means is provided in the middle of the return line. 請求項1又は2において、前記脱塩室から取り出された脱塩水を逆浸透処理する逆浸透膜装置を備えたことを特徴とするアンモニウム塩含有排水の処理装置。   The apparatus for treating wastewater containing ammonium salt according to claim 1 or 2, further comprising a reverse osmosis membrane device for reverse osmosis treatment of the desalted water taken out from the desalting chamber.
JP2010094967A 2010-04-16 2010-04-16 Apparatus for treating wastewater containing ammonium salt Pending JP2011224445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094967A JP2011224445A (en) 2010-04-16 2010-04-16 Apparatus for treating wastewater containing ammonium salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094967A JP2011224445A (en) 2010-04-16 2010-04-16 Apparatus for treating wastewater containing ammonium salt

Publications (1)

Publication Number Publication Date
JP2011224445A true JP2011224445A (en) 2011-11-10

Family

ID=45040506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094967A Pending JP2011224445A (en) 2010-04-16 2010-04-16 Apparatus for treating wastewater containing ammonium salt

Country Status (1)

Country Link
JP (1) JP2011224445A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922442A (en) * 2014-04-10 2014-07-16 北京工业大学 Method for efficiently enriching ammonia nitrogen ions in water based on membrane and electrode
CN113479985A (en) * 2021-08-04 2021-10-08 中南大学 Method for transformation deamination of ammonia nitrogen wastewater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922442A (en) * 2014-04-10 2014-07-16 北京工业大学 Method for efficiently enriching ammonia nitrogen ions in water based on membrane and electrode
CN113479985A (en) * 2021-08-04 2021-10-08 中南大学 Method for transformation deamination of ammonia nitrogen wastewater

Similar Documents

Publication Publication Date Title
Reig et al. Integration of nanofiltration and bipolar electrodialysis for valorization of seawater desalination brines: Production of drinking and waste water treatment chemicals
US20140227151A1 (en) Recovery and purification of monovalent salt contaminated with divalent salt
JP6223442B2 (en) Method and apparatus for producing or recovering hydrochloric acid from a metal salt solution
WO2015012054A1 (en) Method and device for treating boron-containing water
JP3164970B2 (en) Treatment of wastewater containing neutral salts of monovalent ions
JP4993136B2 (en) Pure water production apparatus and pure water production method
JP3137831B2 (en) Membrane processing equipment
CN103937979A (en) Process for treating raffinate in hydrometallurgy by using electrocoagulation combination membrane technology
JP2011224445A (en) Apparatus for treating wastewater containing ammonium salt
JP5277559B2 (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
JP2000051665A (en) Desalination method
JP5158393B2 (en) Pure water production apparatus and pure water production method
JP2003145163A (en) Electric deionization device and electric deionization method
JP2000317457A (en) Production of pure water
JP3484329B2 (en) Deionized water production equipment
JP2009297670A (en) Electric deionized water making apparatus
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP2004167423A (en) Apparatus and method for pure water production
KR100398417B1 (en) A method for treating electrogalvanizing wastewaters
JP2010036160A (en) Method and device for recovering water from discharged water
JP3555732B2 (en) Pure water production method
JP4505965B2 (en) Pure water production method
JP4599668B2 (en) Operation method of electrodeionization equipment
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP2001219161A (en) Water cleaning apparatus