JP2011219846A - Method for manufacturing machine structural member - Google Patents

Method for manufacturing machine structural member Download PDF

Info

Publication number
JP2011219846A
JP2011219846A JP2010093397A JP2010093397A JP2011219846A JP 2011219846 A JP2011219846 A JP 2011219846A JP 2010093397 A JP2010093397 A JP 2010093397A JP 2010093397 A JP2010093397 A JP 2010093397A JP 2011219846 A JP2011219846 A JP 2011219846A
Authority
JP
Japan
Prior art keywords
ferrite
martensite
steel material
steel
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010093397A
Other languages
Japanese (ja)
Other versions
JP5582855B2 (en
Inventor
Yoshitaka Misaka
佳孝 三阪
Kazuhiro Kawasaki
一博 川嵜
Kengo Fukazawa
剣吾 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2010093397A priority Critical patent/JP5582855B2/en
Publication of JP2011219846A publication Critical patent/JP2011219846A/en
Application granted granted Critical
Publication of JP5582855B2 publication Critical patent/JP5582855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a machine structural member with which workability can be made to be satisfactory even if a steel raw material for improving the temper softening resistance is used.SOLUTION: This method includes; a step, in which the steel raw material composed by mass% of 0.3-1.5% C, 0.2-2.0% Mn and one or more kinds intentionally selected from the group of 0.5-2.0% Si, 0.1-1.5% Cr, 0.1-1.5% Mo, 0.05-0.5% V and 0.005-0.2% Nb, and the balance Fe with inevitable impurities, is softening-treated to make the metallographic structure composed of the ferrite having ≥30% area ratio and the pearite, or the metallographic structure composed of the ferrite and the spheroidal carbide or the metallographic structure composed of the ferrite and the granular carbide; a step for work-treating the softening-treated steel raw material into a prescribed shape; and a step, in which at least two times of high frequency-induction heat-treatment are performed to the work-treated steel raw material and the metallographic structure on the surface layer is made to the martensite and the metallographic structure in the intermediate layer adjoined to the surface layer is made to a tempered-martensite or a tempered-martensite, ferrite and pearite.

Description

本発明は、高周波焼入れにより鋼素材表面に硬化層を形成して、歯車等の機械構造部品を製造する方法の改良に関する。   The present invention relates to an improvement in a method of manufacturing a mechanical structural component such as a gear by forming a hardened layer on the surface of a steel material by induction hardening.

本発明者らは、炭素鋼に対して2回の高周波焼入れを行なう際に、第2回目の高周波焼入れの焼入れ深さが第1回目の高周波焼入れよりも浅い高周波加熱、焼入れを行なうことにより、表面から3.0mm以内の深さまでのマルテンサイト組織の焼入領域と、焼入領域に隣接しマルテンサイトとフェライトの混合組織の不完全焼入領域と、不完全焼入領域に隣接し焼入領域の深さの2.5倍以上7.0倍以下の深さまでの焼戻軟化領域とを有し、前記不完全焼入領域と焼戻軟化領域の境界における硬さの極小値に対する焼戻軟化領域内の硬さの最大値との差がHV150以内である表面焼入れされた鋼を製造する方法を先に提案した(特許文献1)。   When performing induction hardening twice on carbon steel, the inventors conducted induction heating and quenching in which the hardening depth of the second induction hardening is shallower than that of the first induction hardening. A martensitic structure hardened to a depth of 3.0 mm or less from the surface, an incompletely quenched area adjacent to the quenched area and a mixed structure of martensite and ferrite, and adjacent to the incompletely quenched area. A temper softening region having a depth of 2.5 to 7.0 times the depth of the region, and tempering for a minimum hardness value at the boundary between the incomplete quenching region and the temper softening region A method of manufacturing a surface-quenched steel whose difference from the maximum hardness value in the softened region is within HV150 has been proposed (Patent Document 1).

この方法によれば、第1回熱処理で焼入れされたが第2回熱処理では焼入れされなかった個所全体を焼戻して軟化させるので、表面硬化領域全体に一様に高い圧縮応力が残存して高い疲労強度を得ることができるだけでなく、内部の引張応力を緩和して部材の破壊に対する信頼性を向上させることができる。   According to this method, the entire portion that has been quenched in the first heat treatment but not in the second heat treatment is tempered and softened, so that high compressive stress remains uniformly over the entire surface hardened region, resulting in high fatigue. Not only can the strength be obtained, but also the internal tensile stress can be relieved to improve the reliability of the member against breakage.

しかし、この方法に適用される素材は炭素鋼であるため、焼戻し軟化抵抗が低い。このため、例えばこの方法により製造された歯車は、使用時の摩擦抵抗で加熱された際に、焼戻し軟化されやすい。このような理由から、この方法により製造される歯車は、ピッチング特性を改善すべき余地が残されている。   However, since the material applied to this method is carbon steel, the temper softening resistance is low. For this reason, for example, a gear manufactured by this method is easily tempered and softened when heated with a frictional resistance during use. For this reason, there remains room for improving the pitching characteristics of the gear manufactured by this method.

ところで、炭素鋼にSi,V等を添加することにより、炭素鋼の焼戻し軟化抵抗を高めることが知られている(非特許文献1)。   By the way, it is known to increase the temper softening resistance of carbon steel by adding Si, V or the like to the carbon steel (Non-patent Document 1).

また、Si,V等を添加した炭素鋼に対して、2回の高周波焼入れを行なって、面疲労特性を向上する方法が知られている(特許文献2)。   Further, a method is known in which surface fatigue characteristics are improved by performing induction hardening twice on carbon steel added with Si, V, etc. (Patent Document 2).

特開2007−119825号公報JP 2007-111985 A 特開平7−118791号公報Japanese Patent Laid-Open No. 7-118791

「高周波焼入れ材のピッチング寿命に及ぼす有効硬化層深さとケイ素含有量の影響」、電気製鋼、71-1、(2000)、19−28頁、井上幸一郎、中村貞行、2000年発行"Effects of effective hardened layer depth and silicon content on pitching life of induction-hardened materials", Electric Steel, 71-1, (2000), pp. 19-28, Koichiro Inoue, Sadayuki Nakamura, 2000

しかしながら、炭素鋼にSi,V等を添加すると鋼素材の硬さが高くなり、硬さの高い鋼素材を歯車などに加工する際に、切削性等の加工性が悪化する。   However, when Si, V, or the like is added to carbon steel, the hardness of the steel material increases, and when a high hardness steel material is processed into a gear or the like, workability such as machinability deteriorates.

また、Siを添加すると、鋼のAC変態点が上昇するので、高周波加熱により鋼素材をオーステナイト化する際に、鋼素材をより高い温度としなければならない。この結果、鋼素材が変形する等の問題が生じやすい。 Moreover, since the AC 3 transformation point of steel rises when Si is added, the steel material must be at a higher temperature when the steel material is austenitized by high-frequency heating. As a result, problems such as deformation of the steel material tend to occur.

本発明は、焼戻し軟化抵抗を高める成分を添加した鋼素材を使用しても、加工性を悪化させることのない、機械構造部品の製造方法を提供するものであり、更に、鋼のAC変態点を上昇させる成分を添加した鋼素材を使用しても鋼素材の変形等を抑制できる機械構造部品の製造方法を提供するものであって、以下の工程を備えている。 The present invention provides a method for producing a machine structural component that does not deteriorate workability even when a steel material to which a component that enhances temper softening resistance is added is used. Further, the present invention provides an AC 3 transformation of steel. The present invention provides a method for manufacturing a machine structural component capable of suppressing deformation of a steel material even if a steel material to which a component for raising the point is added is used, and includes the following steps.

(1)質量%で、C:0.3〜1.5%と、Mn:0.2〜2.0%と、Si:0.5〜2.0%、Cr:0.1〜1.5%、Mo:0.1〜1.5%、V:0.05〜0.5%、及びNb:0.005〜0.2%からなるグループから選択された1種又は2種以上と、残部Fe及び不可避的不純物とからなる鋼素材を軟化処理して、フェライト面積率30%以上のフェライトとパーライトとからなる金属組織、フェライトと球状炭化物とからなる金属組織、及びフェライトと粒状セメンタイトからなる金属組織からなるグループから選択された金属組織とする工程と、
前記工程で軟化処理された鋼素材を、所定の形状に加工処理する工程と、
加工処理された鋼素材に少なくとも2回の高周波熱処理を行なって、その表層の金属組織をマルテンサイト、それに続く中間層を焼戻しマルテンサイト、又は、焼戻しマルテンサイトとフェライトとパーライトとする工程と、
を備えた機械構造部品の製造方法。
(1) By mass%, C: 0.3-1.5%, Mn: 0.2-2.0%, Si: 0.5-2.0%, Cr: 0.1-1.5%, Mo: 0.1-1.5%, V: 0.05-0.5% , And Nb: one or more selected from the group consisting of 0.005 to 0.2%, and a steel material composed of the balance Fe and unavoidable impurities, and a ferrite and pearlite having a ferrite area ratio of 30% or more A metal structure selected from the group consisting of a metal structure consisting of, a metal structure consisting of ferrite and spherical carbide, and a metal structure consisting of ferrite and granular cementite,
A process of processing the steel material softened in the process into a predetermined shape;
A process of performing at least two induction heat treatments on the processed steel material, and making the metal structure of the surface layer martensite, and subsequent intermediate layer tempered martensite, or tempered martensite and ferrite and pearlite,
A method for manufacturing a machine structural part comprising:

本発明は、鋼素材にSi、V、Nb等、鋼の焼戻し軟化抵抗を高める成分を添加して、ピッチング疲労特性を向上させた歯車等の鋼製品を製造する際に、所定の軟化処理をしてから鋼素材を加工することにより、加工性を確保することができる。   The present invention adds a component that increases the temper softening resistance of steel, such as Si, V, Nb, etc. to the steel material, and when producing steel products such as gears with improved pitching fatigue characteristics, a predetermined softening treatment is performed. Then, workability can be ensured by processing the steel material.

また、例えば、SiはAC,AC3を上昇させる元素である。このため、鋼素材を、1回の超急速短時間高周波焼入れで実施すると、AC3点が上昇することと、前組織のフェライト面積が多いため、高温に加熱する必要がある。この結果、鋼素材の変形が大きくなる。さらに、超急速で高温加熱しても十分なオーステナイト化ができずに、未溶解のフェライト等が焼入組織に残存することにより、部品に必要な強度を得ることができない。 For example, Si is an element that raises AC 1 and AC 3 . For this reason, if the steel material is subjected to one ultra-rapid short-time induction hardening, the AC 3 point increases and the ferrite area of the previous structure is large, so it is necessary to heat it to a high temperature. As a result, the deformation of the steel material increases. Furthermore, sufficient austenite cannot be obtained even when heated at a high temperature, and undissolved ferrite or the like remains in the quenched structure, so that the required strength of the part cannot be obtained.

本発明では、低い加熱温度で長時間高周波焼入れすることにより、変形の変化量が一定でその値も少ない(定低変形)。さらにその時点で組織はマルテンサイトになるため、2回目の高周波焼入れでは1回の高温短時間よりも低い温度で加熱してもオーステナイト化が可能になる。このため、次の2回目の加熱で超急速短時間加熱低温高周波焼入れをすることにより、定低変形が得られ、さらに均一なマルテンサイト組織が得られる。この結果、高強度定低変形部品を作ることができる。   In the present invention, by induction hardening for a long time at a low heating temperature, the amount of change in deformation is constant and the value is small (constant deformation). Furthermore, since the structure becomes martensite at that time, it becomes possible to austenite even if it is heated at a temperature lower than one high temperature short time in the second induction hardening. For this reason, a constant low deformation can be obtained and a more uniform martensite structure can be obtained by performing ultra-rapid short-time heating and low-temperature induction hardening in the next second heating. As a result, a high strength constant low deformation part can be made.

また1回目焼入部の組織が焼戻しマルテンサイトになることにより、硬さが素地部より高くなる。この結果、高い疲労強度や高静曲げ強度が得られる。   Moreover, hardness becomes higher than a base part by the structure | tissue of a 1st hardening part becoming a tempered martensite. As a result, high fatigue strength and high static bending strength can be obtained.

本発明の実施例、比較例に係る製品(歯車:W)の外観図である。It is an external view of the product (gear: W) concerning the example and comparative example of the present invention.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(鋼素材)
この鋼素材は、高曲げ強度を必要とする歯車等の鋼製品を製造する際に必要とする成分を所定量含むとともに、鋼の焼戻し軟化抵抗を高める成分を所定量含む。更に鋼素材は、必要により更に、鋼の焼入性を向上する元素を含む。また、鋼製品の用途に応じて必要とする特性により各成分は本発明の範囲内で適宜調整される。
(Steel material)
This steel material includes a predetermined amount of components necessary for manufacturing steel products such as gears that require high bending strength, and also includes a predetermined amount of components that increase the temper softening resistance of the steel. Furthermore, the steel material further contains an element that improves the hardenability of the steel, if necessary. Moreover, each component is suitably adjusted within the scope of the present invention depending on the characteristics required depending on the application of the steel product.

本発明に係る鋼素材は、C:0.3〜1.5%と、Mn:0.2〜2.0%と、Si:0.5〜2.0%、Cr:0.1〜1.5%、Mo:0.1〜1.5%、V:0.05〜0.5%、Nb:0.005〜0.2%からなるグループから選択された1種又は2種以上と、残部Fe及び不可避的不純物とからなる組成を有する。さらに必要により、B:0.0005〜0.05%、Ti:0.02〜0.05%及びNi:0.01〜1.5%からなるグループから選択された1種又は2種を含む。   Steel materials according to the present invention are: C: 0.3-1.5%, Mn: 0.2-2.0%, Si: 0.5-2.0%, Cr: 0.1-1.5%, Mo: 0.1-1.5%, V: 0.05-0.5 %, Nb: one or two or more selected from the group consisting of 0.005 to 0.2%, and the balance Fe and unavoidable impurities. Furthermore, 1 type or 2 types selected from the group which consists of B: 0.0005-0.05%, Ti: 0.02-0.05%, and Ni: 0.01-1.5% are included as needed.

以下、各添加成分の添加理由及び添加範囲の限定理由を説明する。 Hereinafter, the reason for addition of each additive component and the reason for limiting the addition range will be described.

C:0.3〜1.5%
Cは強度確保のために必要な元素であり、また、焼入後の硬さを決定する。その量は0.3%未満の場合は硬さが550HV以下と低くなるため、歯車などの摺動部品には適用が困難である。このため下限を0.3%とした。一方、1.5%を超えると靱性が低下するので、上限を1.5%とした。
C: 0.3-1.5%
C is an element necessary for ensuring strength, and determines the hardness after quenching. When the amount is less than 0.3%, the hardness is as low as 550 HV or less, and thus it is difficult to apply to sliding parts such as gears. For this reason, the lower limit was made 0.3%. On the other hand, if it exceeds 1.5%, the toughness decreases, so the upper limit was made 1.5%.

Mn:0.2〜1.5%
Mnは焼入性を向上させる元素である.焼入性を確保するために、0.2%以上必要である。このため、下限を0.2%とした。一方、1.5%を超えて添加しても焼入性が過剰となり靱性が劣化する.また、加工性も低下するので、上限を1.5%とした。
Mn: 0.2-1.5%
Mn is an element that improves hardenability. In order to ensure hardenability, 0.2% or more is necessary. For this reason, the lower limit was made 0.2%. On the other hand, even if added over 1.5%, the hardenability becomes excessive and the toughness deteriorates. In addition, the workability also decreases, so the upper limit was made 1.5%.

[選択元素:Si,Cr,Mo,V,Nb]
これら元素は、何れも焼戻し軟化抵抗を高める元素である。
[Selective elements: Si, Cr, Mo, V, Nb]
These elements are all elements that increase the temper softening resistance.

Si:0.5〜2.0%
Siは焼戻し軟化抵抗を高める元素である。このことにより歯面強度を向上させるが、従来の浸炭焼入れと同等の歯面強度を確保するためには0.5%以上必要である。このため、下限を0.5%とした。一方、2.0%を超えるとフェライトの固溶強化により硬さが上昇し、被削性の低下を招くので、上限を2.0%とした。
Si: 0.5-2.0%
Si is an element that increases the temper softening resistance. This improves the tooth surface strength, but 0.5% or more is necessary to ensure the same tooth surface strength as that of conventional carburizing and quenching. For this reason, the lower limit was made 0.5%. On the other hand, if the content exceeds 2.0%, the hardness increases due to the solid solution strengthening of ferrite, leading to a decrease in machinability, so the upper limit was made 2.0%.

Cr:0.1〜1.5%
Crは焼戻し軟化抵抗を高めるとともに焼入性も向上させる。0.1%未満では焼戻し軟化抵抗を高める効果が発揮され難いため、下限を0.1%とした。一方、1.5%を超える場合には軟化抵抗を高める効果は飽和し、また、加工性も低下するので、上限を1.5%とした。
Cr: 0.1-1.5%
Cr increases temper softening resistance and also improves hardenability. If it is less than 0.1%, the effect of increasing the temper softening resistance is hardly exhibited, so the lower limit was made 0.1%. On the other hand, when it exceeds 1.5%, the effect of increasing the softening resistance is saturated and the workability is also lowered, so the upper limit was made 1.5%.

Mo:0.1〜1.5%
Moは焼戻し軟化抵抗を高めるとともに、焼入層を強靱化して曲げ疲労強度を向上する効果がある。0.1%未満では、この効果は発揮し難いので、下限を0.1%とした。一方、1.5%を超えるとその効果は飽和し、加工性も悪化するので、上限を1.5%とした。
Mo: 0.1-1.5%
Mo has the effects of increasing the resistance to temper softening and strengthening the hardened layer to improve the bending fatigue strength. If it is less than 0.1%, this effect is hardly exhibited, so the lower limit was made 0.1%. On the other hand, if it exceeds 1.5%, the effect is saturated and the workability deteriorates, so the upper limit was made 1.5%.

V:0.05〜0.5%
Vは特にSiと共存する場合、相乗的に焼戻し軟化抵抗を高める効果を持つ。特に、転動疲労によって短寿命で破壊する現象を防止するのに有効な元素である。またVは、鋼の結晶粒界を微細化する効果を持つ。これらの効果を発揮するために、上記Si含有範囲で、0.05%以上を必要とする。しかし、過剰に添加してもその効果は飽和するので上限を0.5%とする。
V: 0.05-0.5%
V particularly has the effect of synergistically increasing the temper softening resistance when coexisting with Si. In particular, it is an effective element for preventing the phenomenon of breaking in a short life due to rolling fatigue. V has the effect of refining the grain boundaries of the steel. In order to exhibit these effects, 0.05% or more is required in the Si-containing range. However, the effect is saturated even if it is added excessively, so the upper limit is made 0.5%.

Nb:0.005〜0.2%
Nbは特にSiと共存する場合、相乗的に焼戻し軟化抵抗を高める効果を持つ。特に、転動疲労によって短寿命で破壊する現象を防止するのに有効な元素である。またNbは、鋼の結晶粒界を微細化する効果を持つ。これらの効果を発揮するために、上記Si含有範囲で、0.005%以上を必要とする。しかし、過剰に添加してもその効果は飽和するので上限を0.2%とする。
Nb: 0.005-0.2%
Nb has the effect of synergistically increasing the temper softening resistance, particularly when coexisting with Si. In particular, it is an effective element for preventing the phenomenon of breaking in a short life due to rolling fatigue. Nb also has the effect of refining the grain boundaries of steel. In order to exert these effects, 0.005% or more is required in the Si-containing range. However, the effect is saturated even if it is added excessively, so the upper limit is made 0.2%.

[選択元素:B,Ti,Ni]
これら元素は、焼入性を向上させる元素である。
[Selective elements: B, Ti, Ni]
These elements are elements that improve hardenability.

B:0.0005〜0.05%
Bは焼入性を向上させるとともに、粒界強化により疲労特性を改善するだけでなく、強度を向上させる元素である。その効果のためには0.0005%以上必要で、0.05%を超えて添加してもその効果は飽和する。
B: 0.0005-0.05%
B is an element that improves hardenability and not only improves fatigue properties by strengthening grain boundaries but also improves strength. For that effect, 0.0005% or more is necessary, and even if added over 0.05%, the effect is saturated.

Ti:0.02〜0.05%
Tiは焼入性を向上させるとともに、炭窒化物形成により結晶粒を微細化させ、歯元曲げ疲労強度を向上させる元素である。結晶粒微細化のためには0.02%以上必要で、0.05%を超えて添加してもその効果は飽和する。
Ti: 0.02 to 0.05%
Ti is an element that improves hardenability, refines crystal grains by forming carbonitride, and improves tooth root bending fatigue strength. 0.02% or more is required for grain refinement, and the effect is saturated even if added over 0.05%.

その他の成分
Ni:0.01〜1.5%
Niは焼入性を向上させる元素である。0.01%未満では、この効果は発揮し難いので、下限を0.01%とした。一方、Niは高価な元素であり、かつ多すぎると焼き割れを生じる原因になるので1.5%を上限とした。
Other ingredients Ni: 0.01-1.5%
Ni is an element that improves hardenability. If it is less than 0.01%, this effect is hardly exhibited, so the lower limit was made 0.01%. On the other hand, Ni is an expensive element, and if it is too much, it causes burning cracks, so 1.5% was made the upper limit.

なお、本発明方法に適用される鋼素材は、本発明の特性を阻害させない範囲であれば、その用途(各種機械構造部品)に応じて他の成分(例えばTe,Ca,Mg,Zr等)を含むことが許容される。   In addition, if the steel raw material applied to this invention method is a range which does not inhibit the characteristic of this invention, another component (for example, Te, Ca, Mg, Zr etc.) according to the use (various machine structural components). It is allowed to contain.

(軟化処理)
上記組成の鋼素材は、そのままでは硬度が高く、そのため加工処理に手間と時間がかかる。このため、本発明では、この鋼素材に加工処理前に予め軟化処理を施して、鋼素材を加工処理しやすい軟らかい金属組織とする。この軟らかい金属組織としては、フェライト面積率30%以上のフェライトとパーライトとからなる金属組織、フェライトと球状炭化物とからなる金属組織、又はフェライトと粒状化パーライトからなる金属組織が挙げられる。フェライトとパーライトとからなる金属組織において、フェライト面積率の下限を規定するのは、フェライト面積率が30%未満では加工性が悪化するためである。そして、本発明の軟化処理をした金属組織は、通常、硬さが280HV以下、好適には190〜270HV程度である。これは、加工性の良好な炭素鋼素材の硬さと同程度若しくはそれ以下である。なお、フェライト面積率は、画像解析装置によって測定される。
(Softening treatment)
The steel material having the above composition is high in hardness as it is, and therefore, processing takes time and effort. For this reason, in the present invention, the steel material is preliminarily softened before the processing, so that the steel material has a soft metal structure that is easy to process. Examples of the soft metal structure include a metal structure composed of ferrite and pearlite having a ferrite area ratio of 30% or more, a metal structure composed of ferrite and spherical carbide, or a metal structure composed of ferrite and granulated pearlite. The reason why the lower limit of the ferrite area ratio is specified in the metal structure composed of ferrite and pearlite is that the workability deteriorates when the ferrite area ratio is less than 30%. The metal structure subjected to the softening treatment of the present invention usually has a hardness of 280 HV or less, preferably about 190 to 270 HV. This is about the same as or less than the hardness of a carbon steel material with good workability. The ferrite area ratio is measured by an image analyzer.

上記金属組織、硬さを得るための具体的な熱処理方法(軟化処理)として、例えば以下の方法 イ)〜ニ)が挙げられる。   Specific heat treatment methods (softening treatments) for obtaining the metal structure and hardness include, for example, the following methods i) to d).

イ)鋼素材を完全焼きなまし処理:AC3またはAC1以上の温度に保持した後、Ar1以下の温度まで徐冷する。 B) Complete annealing of the steel material: After maintaining at a temperature of AC 3 or AC 1 or higher, the steel material is gradually cooled to a temperature of Ar 1 or lower.

ロ)球状化焼きなまし処理:鋼素材を(a) AC1点直下の温度で長時間保持する、(b) AC1点直上直下の温度で加熱冷却を繰り返す、又は(c) AC1点直下またはAC1とACmの間の温度に加熱した後、非常にゆっくり炉冷するかまたはAC1点直下の温度に保持する等の処理をする。 B) Spherical annealing treatment: (a) Hold steel material at a temperature just below AC 1 point for a long time, (b) Repeat heating and cooling at a temperature just below AC 1 point, or (c) Directly below AC 1 point or After heating to a temperature between AC 1 and ACm, the furnace is cooled very slowly or maintained at a temperature just below the AC 1 point.

ハ)焼きならし処理:AC3またはACm以上の温度に加熱してオーステナイトにした後、静かな大気中で冷却する。 C) Normalizing treatment: After heating to a temperature of AC 3 or ACm to austenite, cooling in a quiet atmosphere.

ニ)熱間、温間による鍛造や圧延後の冷却時に冷却制御を行うことにより処理される焼きならしや焼きなましをおこなう。 D) Normalizing and annealing are performed by performing cooling control during hot and warm forging and cooling after rolling.

上記処理自体は当業者に広く知られている。従って、当業者は上記記載にもとづいて軟化処理を行なって、鋼素材の金属組織及び硬さを所望の加工しやすいもの(例えば190〜270HV程度)とすることができる。   The above processing itself is widely known to those skilled in the art. Therefore, those skilled in the art can perform the softening process based on the above description to make the metal structure and hardness of the steel material easily processed (for example, about 190 to 270 HV).

(加工処理)
本発明に係る機械構造部品を製造するに際して、各種の加工(鍛造、冷間鍛造、転造等、圧延、プレス、切削加工、旋削加工、穿孔などの任意の加工処理及びこれら加工処理の組合せ)を行うが、ここでいう加工処理は、熱処理前におこなう切削、旋削、穿孔などの機械加工を意味する。
(Processing)
Various types of processing (forging, cold forging, rolling, etc., arbitrary processing such as rolling, pressing, cutting, turning, drilling, etc., and combinations of these processing) when manufacturing the machine structural component according to the present invention However, the processing described here means machining such as cutting, turning, and drilling performed before the heat treatment.

本発明によれば、鋼素材に対して予め軟化処理しているので、加工処理(機械加工)を容易におこなうことができる。   According to the present invention, since the steel material is softened in advance, the processing (machining) can be easily performed.

(高周波焼入れ)
本発明では、加工処理後、少なくとも2回の高周波焼入れをおこなって、鋼素材の金属組織を、表面から、マルテンサイト、それに続いて焼戻しマルテンサイト、焼戻しマルテンサイトとフェライトとパーライトとからなる中間層、素地組織とする。
(Induction hardening)
In the present invention, after the processing, induction hardening is performed at least twice, so that the metal structure of the steel material is martensite from the surface, followed by tempered martensite, tempered martensite, ferrite and pearlite. Suppose it is a base organization

このような組織を得るために、特許文献1、特許文献2、これら文献で引用している文献等に記載された公知の少なくとも2回の高周波焼入れを行う方法をそのまま、或いはその原理を利用し処理条件を適宜修正して適用することができる。   In order to obtain such a structure, a known method of performing induction hardening at least twice described in Patent Document 1, Patent Document 2, and documents cited in these documents is used as it is or using its principle. The processing conditions can be appropriately modified and applied.

これら公知の2段の高周波焼入れ方法を総括的かつ概略的に説明すれば、まず、第1回目の高周波焼入れにより、所望する機械構造部品の「マルテンサイト、焼戻しマルテンサイト、焼戻しマルテンサイトとフェライトとパーライトとからなる中間層」とすべき領域をターゲットとして、この領域をオーステナイト組織とした後急冷(焼入れ)してマルテンサイト組織とする。   When these known two-stage induction hardening methods are described generally and schematically, first, by the first induction hardening, the desired mechanical structural parts “martensite, tempered martensite, tempered martensite and ferrite and Targeting a region to be an “interlayer composed of pearlite”, this region is made an austenite structure and then rapidly cooled (quenched) to obtain a martensite structure.

次いで、第1回目の高周波焼入れのターゲット領域よりも浅い領域、すなわち、最終製品としてマルテンサイト層とすべき領域(表面層)をターゲットとして、第2回目の高周波焼入れをおこなう。この焼入れにより、表面層をマルテンサイト層とし、この層に続く前記中間層を、焼戻しマルテンサイト、焼戻しマルテンサイトとフェライトとパーライトの金属組織とする。   Next, the second induction hardening is performed by using a region shallower than the target region of the first induction hardening, that is, a region (surface layer) to be a martensite layer as a final product as a target. By this quenching, the surface layer is a martensite layer, and the intermediate layer following this layer is a tempered martensite, a tempered martensite, and a metal structure of ferrite and pearlite.

(第1回目の高周波焼入れ)
第1回目の高周波焼入れ前の鋼素材は、軟化処理された金属組織を有している。このため、第1回目の高周波焼入れの加熱温度を高くし、また、加熱時間を長くとって、表面から所定の深さの領域(「マルテンサイト、焼戻しマルテンサイト、焼戻しマルテンサイトとフェライトとパーライトとからなる中間層とすべき領域」)が十分なオーステナイト組織となるようにする。十分なオーステナイト組織とは、亜共析鋼では実質的に100%オーステナイトを意味し、過共析鋼では、実質的にオーステナイト組織と炭化物を意味する。
(First induction hardening)
The steel material before the first induction hardening has a softened metal structure. For this reason, the heating temperature of the first induction hardening is increased, and the heating time is increased to obtain a region of a predetermined depth from the surface (“martensite, tempered martensite, tempered martensite, ferrite, pearlite, The region to be an intermediate layer consisting of “) is made to have a sufficient austenite structure. Sufficient austenitic structure means substantially 100% austenite in hypoeutectoid steel and substantially austenite structure and carbide in hypereutectoid steel.

このような金属組織にするために、第1回目の加熱処理温度、加熱処理時間は、得ようとするオーステナイト組織の領域の深さにより異なる。例えば、歯車のような小形の機械構造部品では、加熱温度は、950℃以上が好ましいが、1150℃を越えると結晶粒が粗大化するので好ましくない。また、加熱時間は所望の深さの硬化層に十分なオーステナイトを得るために10秒又はそれ以上が好ましいが、60秒を越えると硬化層が深くなり、また、変形が大きくなり、さらには、結晶粒が粗大化するので好ましくない。   In order to obtain such a metal structure, the first heat treatment temperature and heat treatment time vary depending on the depth of the region of the austenite structure to be obtained. For example, in a small mechanical structure component such as a gear, the heating temperature is preferably 950 ° C. or higher, but if it exceeds 1150 ° C., crystal grains become coarse, which is not preferable. In addition, the heating time is preferably 10 seconds or more in order to obtain sufficient austenite for the cured layer having a desired depth, but if it exceeds 60 seconds, the cured layer becomes deeper, the deformation becomes larger, This is not preferable because the crystal grains become coarse.

第1回目の高周波熱処理に使用される周波数は特に限定されるものではないが、硬化層深さを深くする観点から、3kHz〜30kHzが好ましい。そして、このような加熱後に焼入れする。   The frequency used for the first high frequency heat treatment is not particularly limited, but is preferably 3 kHz to 30 kHz from the viewpoint of increasing the depth of the hardened layer. And it quenches after such a heating.

(第2回目の高周波焼入れ)
第2回目の高周波焼入れは、第1回目の高周波焼入れよりも浅く、即ち、第1回目の高周波焼入れで得られたマルテンサイト組織のうち、マルテンサイト層とすべき表層の領域に高周波焼入れを行なう。このことにより、表層はマルテンサイト層となり、表層に続く中間層は、焼戻しマルテンサイト、焼戻しマルテンサイトとフェライトとパーライトとなる。
(Second induction hardening)
The second induction hardening is shallower than the first induction hardening, that is, in the martensite structure obtained by the first induction hardening, induction hardening is performed on the surface layer region to be the martensite layer. . As a result, the surface layer becomes a martensite layer, and the intermediate layer following the surface layer becomes tempered martensite, tempered martensite, ferrite and pearlite.

このような金属組織にするための第2回目の加熱処理温度、加熱処理時間等の加熱条件は、得ようとするオーステナイト組織の領域の深さにより異なる。歯車のような小形の機械構造部品では、一例として、600℃まで5秒で加熱後3秒間放冷し、950℃で0.5秒加熱後、焼入れする方法が挙げられる。 Heating conditions such as the second heat treatment temperature and heat treatment time for obtaining such a metal structure vary depending on the depth of the region of the austenite structure to be obtained. For small mechanical structural parts such as gears, an example is a method of heating to 600 ° C. in 5 seconds, then allowing to cool for 3 seconds, heating at 950 ° C. for 0.5 seconds, and then quenching.

加熱温度は、900℃以上が好ましいが、1100℃を越えると結晶粒が粗大化するので、900℃以上1100℃以下が好ましい。また、加熱時間は所望の深さの硬化層に十分なオーステナイトを得るために0.3秒以上が好ましいが、1秒を越えると硬化層が深くなり、また、変形が大きくなり、さらには、結晶粒が粗大化するので好ましくない。 The heating temperature is preferably 900 ° C. or higher, but if it exceeds 1100 ° C., the crystal grains become coarse, so 900 ° C. or higher and 1100 ° C. or lower is preferable. In addition, the heating time is preferably 0.3 seconds or more in order to obtain sufficient austenite for the cured layer having a desired depth, but if it exceeds 1 second, the cured layer becomes deeper and deformation becomes larger. This is not preferable because the crystal grains become coarse.

第2回目の高周波熱処理に使用される周波数は特に限定されるものではないが、硬化層を1回目より浅くする観点から、25kHz〜200kHzが好ましい。   The frequency used for the second high-frequency heat treatment is not particularly limited, but is preferably 25 kHz to 200 kHz from the viewpoint of making the hardened layer shallower than the first time.

そして、第2回目の高周波熱処理後に焼戻しを行って、本発明に係る製品が得られる。   Then, tempering is performed after the second induction heat treatment to obtain the product according to the present invention.

なお、本発明は、本発明の目的を阻害しない限り、第1回目の焼入れと第2回目の焼入れとの間に、又は、第2回目の焼入れの後に別の熱処理を施したりすることも、可能である。   In addition, as long as the object of the present invention is not hindered, the present invention may be subjected to another heat treatment between the first quenching and the second quenching or after the second quenching, Is possible.

(製品の特性)
本発明方法で作られた製品は、鋼に焼戻し軟化抵抗を高める成分が含まれているために、例えば2800〜3000MPa程度のローラピッチング特性が得られる。
(Product characteristics)
The product made by the method of the present invention has a roller pitching characteristic of, for example, about 2800 to 3000 MPa because the steel contains a component that increases the temper softening resistance.

(用途)
本発明方法は、疲労特性や磨耗特性を必要とする機械構造部品、特に歯車等の小形の機械構造部品の製造に有効である。
(Use)
The method of the present invention is effective in the manufacture of mechanical structural parts that require fatigue characteristics and wear characteristics, particularly small mechanical structural parts such as gears.

表1に記載された成分を含有する鋼素材(実施例1〜8、比較例1〜3)をそれぞれ用意した。実施例鋼種1〜8は、本発明に係る鋼素材で、ピッチング特性に優れているが、素材硬さが硬く難加工性の鋼種である。比較鋼種1〜3は、素材硬さが低く加工性に優れているが、ピッチング特性に劣る鋼種である。   Steel materials (Examples 1 to 8 and Comparative Examples 1 to 3) containing the components described in Table 1 were prepared. Example steel types 1 to 8 are steel materials according to the present invention, which are excellent in pitching characteristics, but are hard-to-process steel types having a high material hardness. Comparative steel types 1 to 3 are steel types having low material hardness and excellent workability but inferior pitching characteristics.

本発明の実施例では、実施例鋼種を鍛造後、軟化処理(前熱処理)して所定の金属組織とし、次いで所定の形状に加工処理(ホブ切り加工後歯研仕上げ)して、所望の歯型形状とした。その後、所定の高周波焼入れ・焼戻しをして、所望の製品(歯車)を得た。軟化処理条件及び加工処理前(軟化処理後)の鋼素材の金属組織を表2に、加工処理前の鋼素材の硬さ(HV),加工性(ドリル抵抗N・cm)を表3に示す。また、第1回の高周波焼入れの熱処理条件を表4に、第2回の高周波焼入れの熱処理条件を表5、表6に示す。また、試験に供した歯車の諸元は以下のとおりである。   In the embodiment of the present invention, after forging the steel grade of the embodiment, softening treatment (pre-heat treatment) is performed to obtain a predetermined metal structure, and then processing to a predetermined shape (post-hobbing and grinding) is performed to obtain a desired tooth. The shape was a mold. Thereafter, predetermined induction hardening and tempering were performed to obtain a desired product (gear). Table 2 shows the softening conditions and the metal structure of the steel material before processing (after softening), and Table 3 shows the hardness (HV) and workability (drill resistance N · cm) of the steel material before processing. . Table 4 shows the heat treatment conditions for the first induction hardening, and Tables 5 and 6 show the heat treatment conditions for the second induction hardening. The specifications of the gears used for the test are as follows.

モジュール 3
歯数 40
圧力角 20°
歯幅 20
外径 126
これらの実施例と比較するために、鋼素材を鍛造後、所定の前熱処理をした後、所定の加工処理(機械加工)をして、所望の歯型形状とした。その後、所定の高周波焼入れ・焼戻しをして、所望の製品(歯車)を得た。これらを比較例1〜8とし、前熱処理条件及び加工処理前(前熱処理後)の鋼素材の金属組織を表2に、加工処理前の鋼素材の硬さ(HV),加工性(ドリル抵抗N・cm)を表3に併記する。また、高周波焼入れの熱処理条件を表5、表6に併記する。
Module 3
40 teeth
Pressure angle 20 °
Tooth width 20
Outer diameter 126
For comparison with these examples, the steel material was forged, subjected to a predetermined pre-heat treatment, and then subjected to a predetermined processing (machining) to obtain a desired tooth shape. Thereafter, predetermined induction hardening and tempering were performed to obtain a desired product (gear). These are referred to as Comparative Examples 1 to 8, and the heat treatment conditions and the metal structure of the steel material before processing (after pre-heat treatment) are shown in Table 2, the hardness (HV) and workability (drill resistance) of the steel material before processing. N · cm) is also shown in Table 3. The heat treatment conditions for induction hardening are also shown in Tables 5 and 6.

また、比較鋼種についても、鋼素材を鍛造後、所定の前熱処理をした後所定の形状に加工処理(機械加工)して、所望の歯型形状とした。その後、所定の高周波焼入れ・焼戻しをして、所望の製品(歯車)を得た。これらを比較例9〜11とし、前熱処理条件及び加工処理前(前熱処理後)の鋼素材の金属組織を表2に、加工処理前の鋼素材の硬さ(HV),加工性(ドリル抵抗N・cm)を表3に示す。また、高周波焼入れの熱処理条件を表5、表6に併記する。

Figure 2011219846
Moreover, also about the comparison steel grade, after forging the steel raw material, after carrying out predetermined | prescribed heat processing, it processed into a predetermined shape (machine processing), and was set as the desired tooth-type shape. Thereafter, predetermined induction hardening and tempering were performed to obtain a desired product (gear). These are referred to as Comparative Examples 9 to 11, and the pre-heat treatment conditions and the metal structure of the steel material before processing (after pre-heat treatment) are shown in Table 2, the hardness (HV) and workability (drill resistance) of the steel material before processing. N · cm) is shown in Table 3. The heat treatment conditions for induction hardening are also shown in Tables 5 and 6.
Figure 2011219846

Figure 2011219846
Figure 2011219846

表2中
F+P(Fn):フェライト+パーライト(数値nはフェライト面積率%を示す)
焼戻M:焼戻しマルテンサイト
F+球状C:フェライト+球状セメンタイト

Figure 2011219846
In Table 2, F + P (Fn): Ferrite + Pearlite (Numerical value n indicates ferrite area percentage)
Tempering M: Tempered martensite F + Spherical C: Ferrite + Spherical cementite
Figure 2011219846

Figure 2011219846
Figure 2011219846

Figure 2011219846
Figure 2011219846

Figure 2011219846
Figure 2011219846

Claims (4)

質量%で、C:0.3〜1.5%と、Mn:0.2〜2.0%と、Si:0.5〜2.0%、Cr:0.1〜1.5%、Mo:0.1〜1.5%、V:0.05〜0.5%及びNb:0.005〜0.2%からなるグループから選択された1種又は2種以上と、残部Fe及び不可避的不純物とからなる鋼素材を軟化処理して、フェライト面積率30%以上のフェライトとパーライトとからなる金属組織、フェライトと球状炭化物とからなる金属組織、及びフェライトと粒状セメンタイトからなる金属組織からなるグループから選択された金属組織とする工程と、
前記工程で軟化処理された鋼素材を、所定の形状に加工処理する工程と、
加工処理された鋼素材に少なくとも2回の高周波熱処理を行なって、その表層の金属組織をマルテンサイト、それに続く中間層を焼戻しマルテンサイト、又は、焼戻しマルテンサイトとフェライトとパーライトとする工程と、
を備えた機械構造部品の製造方法。
In mass%, C: 0.3-1.5%, Mn: 0.2-2.0%, Si: 0.5-2.0%, Cr: 0.1-1.5%, Mo: 0.1-1.5%, V: 0.05-0.5% and Nb: A metal consisting of ferrite and pearlite with a ferrite area ratio of 30% or more by softening a steel material consisting of one or more selected from the group consisting of 0.005 to 0.2% and the balance Fe and inevitable impurities A structure, a metal structure consisting of ferrite and spherical carbide, and a metal structure selected from the group consisting of a metal structure consisting of ferrite and granular cementite;
A process of processing the steel material softened in the process into a predetermined shape;
A process of performing at least two induction heat treatments on the processed steel material, and making the metal structure of the surface layer martensite, and subsequent intermediate layer tempered martensite, or tempered martensite and ferrite and pearlite,
A method for manufacturing a machine structural part comprising:
鋼素材は、質量%で、B:0.0005〜0.05%、Ti:0.02〜0.05%及びNi:0.01〜1.5%、からなるグループから選択された1種又は2種を含有してなる請求項1記載の機械構造部品の製造方法。   The steel material contains one or two selected from the group consisting of B: 0.0005 to 0.05%, Ti: 0.02 to 0.05% and Ni: 0.01 to 1.5% in mass%. Manufacturing method for machine structural parts. 鋼素材を軟化処理して鋼素材の硬さを280HV以下する、請求項1又は2に記載の機械構造部品の製造方法。   The manufacturing method of the machine structural component of Claim 1 or 2 which softens a steel raw material and makes the hardness of a steel raw material 280HV or less. 加工処理された鋼素材に対して行う第1回目の熱処理は、高周波熱処理により鋼素材の所定の領域をマルテンサイト層とし、第2回目の熱処理は、第1回の熱処理で得られたマルテンサイト層のうち、表層側をマルテンサイトとし、表層に続く中間層を、焼戻しマルテンサイト、又は焼戻しマルテンサイトとフェライトとパーライトとする、請求項1〜3のいずれかに記載の鋼材の機械構造部品の製造方法。   The first heat treatment performed on the processed steel material is a martensite layer in a predetermined region of the steel material by high-frequency heat treatment, and the second heat treatment is martensite obtained by the first heat treatment. Among the layers, the surface layer side is martensite, and the intermediate layer subsequent to the surface layer is tempered martensite, or tempered martensite and ferrite and pearlite. Production method.
JP2010093397A 2010-04-14 2010-04-14 Manufacturing method of machine structural parts Active JP5582855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093397A JP5582855B2 (en) 2010-04-14 2010-04-14 Manufacturing method of machine structural parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093397A JP5582855B2 (en) 2010-04-14 2010-04-14 Manufacturing method of machine structural parts

Publications (2)

Publication Number Publication Date
JP2011219846A true JP2011219846A (en) 2011-11-04
JP5582855B2 JP5582855B2 (en) 2014-09-03

Family

ID=45037184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093397A Active JP5582855B2 (en) 2010-04-14 2010-04-14 Manufacturing method of machine structural parts

Country Status (1)

Country Link
JP (1) JP5582855B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014148720A (en) * 2013-02-01 2014-08-21 Neturen Co Ltd Heat treatment method of steel material and steel material obtained by heat treatment method
KR101527336B1 (en) * 2012-03-30 2015-06-09 가부시키가이샤 고베 세이코쇼 Bearing steel material having superior rolling fatigue characteristics and a method for producing same
JP2015175023A (en) * 2014-03-14 2015-10-05 新日鐵住金株式会社 Induction-hardened gear and induction hardening method of gear
JP2019073793A (en) * 2017-10-11 2019-05-16 トヨタ自動車株式会社 Steel sheet member and manufacturing method of same
JP2019528414A (en) * 2016-08-31 2019-10-10 西安理工大学 Self-lubricating rolling bearing and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156242A (en) * 1984-08-24 1986-03-20 Toyota Motor Corp Method for manufacturing high strength gear
JP2007119825A (en) * 2005-10-26 2007-05-17 High Frequency Heattreat Co Ltd Surface-quenched steel and method for quenching surface of steel
JP2007146284A (en) * 2005-10-31 2007-06-14 Jfe Steel Kk High-strength steel excellent in delayed fracture resistance characteristic and metal bolt
JP2009242918A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Component for machine structure having excellent rolling fatigue property, and method for producing the same
JP2009242920A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Bearing component having excellent fatigue property in foreign matter environment, and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156242A (en) * 1984-08-24 1986-03-20 Toyota Motor Corp Method for manufacturing high strength gear
JP2007119825A (en) * 2005-10-26 2007-05-17 High Frequency Heattreat Co Ltd Surface-quenched steel and method for quenching surface of steel
JP2007146284A (en) * 2005-10-31 2007-06-14 Jfe Steel Kk High-strength steel excellent in delayed fracture resistance characteristic and metal bolt
JP2009242918A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Component for machine structure having excellent rolling fatigue property, and method for producing the same
JP2009242920A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Bearing component having excellent fatigue property in foreign matter environment, and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101527336B1 (en) * 2012-03-30 2015-06-09 가부시키가이샤 고베 세이코쇼 Bearing steel material having superior rolling fatigue characteristics and a method for producing same
JP2014148720A (en) * 2013-02-01 2014-08-21 Neturen Co Ltd Heat treatment method of steel material and steel material obtained by heat treatment method
JP2015175023A (en) * 2014-03-14 2015-10-05 新日鐵住金株式会社 Induction-hardened gear and induction hardening method of gear
JP2019528414A (en) * 2016-08-31 2019-10-10 西安理工大学 Self-lubricating rolling bearing and manufacturing method thereof
US11085097B2 (en) 2016-08-31 2021-08-10 Xi'an University Of Technology Self-lubricating rolling bearing and preparation method therefor
JP2019073793A (en) * 2017-10-11 2019-05-16 トヨタ自動車株式会社 Steel sheet member and manufacturing method of same
JP7043958B2 (en) 2017-10-11 2022-03-30 トヨタ自動車株式会社 Steel plate member and its manufacturing method

Also Published As

Publication number Publication date
JP5582855B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
KR101124019B1 (en) High-strength part using carburizing and high-frequency hardening
CN104981556B (en) Tufftride high-frequency quenching steel part
JP5135558B2 (en) Induction hardened steel, induction hardened rough shape, method for producing the same, and induction hardened steel parts
JP2010285689A (en) Carburized steel component excellent in low-cycle bending fatigue strength
JPS59232220A (en) Manufacture of high strength steel with superior resistance to sulfide corrosion cracking
JP2012125838A (en) Method for producing hot-forged product for case hardened steel
US20050103777A1 (en) Gear part and method of producing thereof
JP5582855B2 (en) Manufacturing method of machine structural parts
JP4771745B2 (en) Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
JP4676993B2 (en) Bush making
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JP4631618B2 (en) Manufacturing method of steel parts for bearings with excellent fatigue characteristics
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP3989138B2 (en) Steel material for low distortion type carburized and hardened gears excellent in machinability and gear manufacturing method using the steel materials
JP5332410B2 (en) Manufacturing method of carburizing steel
JPWO2007097043A1 (en) Clutch member and manufacturing method thereof
JP4757831B2 (en) Induction hardening part and manufacturing method thereof
CN104726777A (en) Material for high carburizing steel and method for producing a gear using the same
JP6447064B2 (en) Steel parts
JPH0967644A (en) Carburizing steel for gear, excellent in gear cutting property
JP2012112024A (en) Case hardening steel with little heat-treatment strain
JP4175933B2 (en) Nitride steel parts capable of obtaining high surface hardness and deep hardening depth by nitriding for a short time and method for producing the same
KR101461731B1 (en) Boron-added high carbon steel for nitriding, nitriding method for the same and nitrided boron-added high carbon steel
KR20170070967A (en) Method of manufacturing cold forging steel capable of being carburized at high temperature
JP2023144640A (en) Steel for nitriding having excellent cold forging property and cold forged nitrided component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R150 Certificate of patent or registration of utility model

Ref document number: 5582855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250