JP2011214764A - Method of diagnosing adhesion of hematite scale - Google Patents

Method of diagnosing adhesion of hematite scale Download PDF

Info

Publication number
JP2011214764A
JP2011214764A JP2010082039A JP2010082039A JP2011214764A JP 2011214764 A JP2011214764 A JP 2011214764A JP 2010082039 A JP2010082039 A JP 2010082039A JP 2010082039 A JP2010082039 A JP 2010082039A JP 2011214764 A JP2011214764 A JP 2011214764A
Authority
JP
Japan
Prior art keywords
hematite
feed water
hematite scale
adhesion
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010082039A
Other languages
Japanese (ja)
Other versions
JP5592685B2 (en
Inventor
Masaru Shimizu
大 清水
Motoroku Nakao
元六 仲尾
Shunichi Sato
俊一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2010082039A priority Critical patent/JP5592685B2/en
Publication of JP2011214764A publication Critical patent/JP2011214764A/en
Application granted granted Critical
Publication of JP5592685B2 publication Critical patent/JP5592685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To predict an adhesion amount of a hematite scale film which actually adheres to an inner wall of a heat transfer pipe.SOLUTION: In a supercritical pressure boiler where hematite is generated by adding oxygen to supply water and performing the oxidation of Fe in the supply water and a film is formed by making the hematite adhere to the inner wall of the heat transfer pipe, the adhesion thickness of a hematite scale is predicted based on an evaluation formula where the adhesion thickness of the hematite scale, an Fe concentration in the supply water, a fluid temperature and fluid pressure are associated with one another.

Description

本発明は、ヘマタイトスケールの付着診断方法に係り、特に、超臨界圧ボイラの伝熱管の内壁に付着するヘマタイトスケールの付着厚さを予測する技術に関する。   The present invention relates to a method for diagnosing adhesion of a hematite scale, and more particularly to a technique for predicting the adhesion thickness of a hematite scale attached to the inner wall of a heat transfer tube of a supercritical pressure boiler.

例えば、超臨界圧ボイラにより水を臨界圧以上の圧力で加熱して沸騰現象がなく連続的に蒸気を発生させ、この蒸気を火力発電所等の蒸気タービンに供給して発電することが知られている。このような超臨界圧ボイラの給水処理として、例えば、給水に酸素を添加して給水中のFeを酸化してヘマタイト(Fe)を生成させ、このヘマタイトを伝熱管の内壁に付着させて皮膜を形成させる、所謂、酸素処理が採用されることがある。この酸素処理により形成されたヘマタイトスケールにより、伝熱管の腐食を防止するようにしている。 For example, it is known that water is heated at a pressure higher than the critical pressure by a supercritical pressure boiler to continuously generate steam without boiling phenomenon, and this steam is supplied to a steam turbine such as a thermal power plant to generate electricity. ing. As a feed water treatment for such a supercritical pressure boiler, for example, oxygen is added to the feed water to oxidize Fe in the feed water to produce hematite (Fe 2 O 3 ), and this hematite is attached to the inner wall of the heat transfer tube. Thus, a so-called oxygen treatment for forming a film may be employed. The hematite scale formed by the oxygen treatment prevents corrosion of the heat transfer tube.

一方、特許文献1には、酸素処理により形成されたヘマタイトスケールの付着量を測定するため、伝熱管と同一材質の電極と腐食しない貴金属の電極とにより形成した電極対を備える容器に、節炭器の入側から分岐して減圧した給水を通流させ、伝熱管と同一材質の電極側にヘマタイトスケールを付着させて電極間の電流値の変化を検出してヘマタイトスケールの付着量を測定することが記載されている。同文献によれば、電極にヘマタイトスケールが形成されると電極間の電流値が変化し、この電流値の変化が伝熱管の内壁におけるヘマタイトスケールの付着量に相関するから、電極間の電流値を計測することでヘマタイトスケールの付着量を測定できるとしている。   On the other hand, in Patent Document 1, in order to measure the amount of hematite scale formed by oxygen treatment, a container equipped with an electrode pair formed of an electrode made of the same material as the heat transfer tube and an electrode that does not corrode is saved. Measure the amount of hematite scale by detecting the change in the current value between the electrodes by allowing the hematite scale to adhere to the electrode side of the same material as the heat transfer tube. It is described. According to this document, when a hematite scale is formed on the electrode, the current value between the electrodes changes, and this change in current value correlates with the amount of hematite scale attached to the inner wall of the heat transfer tube. It is said that the adhesion amount of hematite scale can be measured by measuring.

特開2000−258381号公報JP 2000-258381 A

しかしながら、特許文献1によれば、ヘマタイトスケールを付着させる一方の電極は、節炭器の入側の温度が低く、かつ減圧された給水中に配置されるから、高温、高圧の給水が通流する伝熱管内とは、ヘマタイトスケールを生成、付着させる条件が異なる。したがって、通常運転条件において、伝熱管内の流体温度及び圧力により生成されるヘマタイトスケールの付着量に差があるとすれば、特許文献1に記載の技術では、伝熱管の内壁に実際に付着するヘマタイトスケールの付着量を予測できないおそれがある。   However, according to Patent Document 1, one electrode to which the hematite scale is attached has a low temperature on the inlet side of the economizer and is disposed in the depressurized feed water, so that high temperature and high pressure feed water flows. The conditions for generating and attaching the hematite scale are different from those in the heat transfer tube. Accordingly, if there is a difference in the amount of hematite scale produced by the fluid temperature and pressure in the heat transfer tube under normal operating conditions, the technique described in Patent Document 1 actually adheres to the inner wall of the heat transfer tube. The amount of hematite scale attached may not be predicted.

本発明が解決しようとする課題は、伝熱管の内壁に実際に付着するヘマタイトスケールの付着厚さを予測することにある。   The problem to be solved by the present invention is to predict the adhesion thickness of the hematite scale that actually adheres to the inner wall of the heat transfer tube.

本発明の発明者らは、給水処理として酸素処理を採用して通常運転した後の伝熱管を調べたところ、伝熱管の部位によってヘマタイトスケールの付着量、例えば、付着厚さに差があることを知見した。さらに、ヘマタイトスケールの付着厚さに差が生じる原因は、ヘマタイトスケールを生成、付着させる条件の違いであることを知見した。そして、ヘマタイトスケールの付着厚さに差を生じさせる条件は、伝熱管内の給水が超臨界水の状態にある場合において、超臨界水中のFe濃度、流体温度及び流体圧力であり、これらの条件とヘマタイトスケールの付着厚さとの間には、相関があることを見出した。なお、超臨界水とは、臨界点(臨界温度:374℃、臨界圧力:22MPa)以上の領域にある水のことで、この領域では、水蒸気のような粘度の小ささと拡散性を有し、かつ水の密度に近い状態であり、液体と気体の区別がつかない状態となっている。   The inventors of the present invention examined the heat transfer tube after normal operation by adopting oxygen treatment as the water supply treatment, and there was a difference in the amount of hematite scale attached, for example, the thickness of the attachment depending on the part of the heat transfer tube. I found out. Furthermore, it has been found that the cause of the difference in the thickness of the hematite scale is the difference in conditions for generating and attaching the hematite scale. The conditions that cause a difference in the adhesion thickness of the hematite scale are the Fe concentration, the fluid temperature, and the fluid pressure in the supercritical water when the water supply in the heat transfer tube is in the supercritical water state. We found that there is a correlation between the adhesion thickness of hematite scale and hematite scale. Supercritical water is water in the region above the critical point (critical temperature: 374 ° C., critical pressure: 22 MPa), and in this region, it has low viscosity and diffusivity like water vapor. And it is in a state close to the density of water, and it is in a state in which liquid and gas cannot be distinguished.

これらの知見に基づいて、上記課題を解決するため、本発明のヘマタイトスケールの付着診断方法は、給水に酸素を添加して給水中のFeを酸化してヘマタイトを生成させ、ヘマタイトを伝熱管の内壁に付着させて皮膜を形成させるようにした超臨界圧ボイラのヘマタイトスケールの付着診断方法であって、ヘマタイトスケールの付着厚さと、給水中のFe濃度と、流体温度と、流体圧力と、を関係付けた評価式に基づいてヘマタイトスケールの付着厚さを予測することを特徴とする。   Based on these findings, in order to solve the above problems, the method for diagnosing hematite scale adhesion according to the present invention is to add oxygen to feed water to oxidize Fe in the feed water to generate hematite, and to convert hematite into the heat transfer tube. A method for diagnosing hematite scale adhesion of a supercritical pressure boiler that is attached to an inner wall to form a film, comprising: hematite scale adhesion thickness, Fe concentration in feed water, fluid temperature, and fluid pressure. It is characterized by predicting the adhesion thickness of the hematite scale based on the related evaluation formula.

すなわち、本発明のヘマタイトスケールの付着診断方法は、ヘマタイトスケールの付着厚さと、給水中のFe濃度と、流体温度と、流体圧力と、を関係付けた評価式を予め設定し、この評価式と、通常運転時の給水中のFe濃度、流体温度及び流体圧力に基づいて伝熱管に実際に付着するヘマタイトスケールの付着厚さを予測するものである。   That is, the method for diagnosing hematite scale adhesion according to the present invention sets in advance an evaluation formula that correlates the hematite scale deposition thickness, the Fe concentration in the feed water, the fluid temperature, and the fluid pressure. The adhesion thickness of the hematite scale that actually adheres to the heat transfer tube is predicted based on the Fe concentration in the feed water during normal operation, the fluid temperature, and the fluid pressure.

これによれば、伝熱管の実際のヘマタイトスケールの付着厚さを予測できるから、伝熱管内の化学洗浄、伝熱管の交換等を実施すべき時期を予測できる。つまり、ヘマタイトスケールが厚くなると、伝熱管内の流動抵抗の増加、ヘマタイトスケールによる伝熱阻害等の問題が生じるおそれがある。そのため、伝熱管内の化学洗浄、伝熱管の交換等を適宜実施し、ヘマタイトスケールの厚さが設定値を超えないようにしている。したがって、伝熱管の実際のヘマタイトスケールの付着厚さを予測できれば、伝熱管内の化学洗浄、伝熱管の交換等を実施すべき時期を予測でき、超臨界圧ボイラを安定運転できる。   According to this, since the adhesion thickness of the actual hematite scale of the heat transfer tube can be predicted, it is possible to predict the time when chemical cleaning in the heat transfer tube, replacement of the heat transfer tube, and the like should be performed. That is, when the hematite scale becomes thick, there is a possibility that problems such as an increase in flow resistance in the heat transfer tube and heat transfer inhibition by the hematite scale may occur. For this reason, chemical cleaning in the heat transfer tube, replacement of the heat transfer tube, and the like are appropriately performed so that the thickness of the hematite scale does not exceed the set value. Therefore, if the actual thickness of the hematite scale on the heat transfer tube can be predicted, it is possible to predict when chemical cleaning in the heat transfer tube, replacement of the heat transfer tube, and the like should be performed, and the supercritical pressure boiler can be stably operated.

なお、ヘマタイトスケールの付着厚さを予測する際に用いる給水中のFe濃度、流体温度及び流体圧力は、実際に測定した実測値、又は設計時に設定される給水中のFe濃度、流体温度及び流体圧力に基づいて求めることができる。   The Fe concentration, fluid temperature, and fluid pressure in the feed water used when predicting the adhesion thickness of the hematite scale are actually measured values, or the Fe concentration, fluid temperature, and fluid in the feed water set at the time of design. It can be determined based on pressure.

また、ヘマタイトスケールの付着厚さを予測するための評価式としては、以下の(式1)〜(式3)のいずれか一つを用いることができる。これらの評価式は、実測データから導き出されたものである。実測データは、約6万時間運転後の伝熱管のヘマタイトスケールの付着厚さを実測し、この実測値と、運転時に超臨界圧ボイラに供給される給水中のFe濃度、伝熱管の各部位の流体温度及び流体圧力を関係付けて得られたものである。   In addition, as an evaluation formula for predicting the adhesion thickness of the hematite scale, any one of the following (Formula 1) to (Formula 3) can be used. These evaluation formulas are derived from actually measured data. Measured data were measured for the hematite scale adhesion thickness of the heat transfer tube after about 60,000 hours of operation, and this measured value, Fe concentration in the feed water supplied to the supercritical pressure boiler during operation, and each part of the heat transfer tube Obtained by relating the fluid temperature and the fluid pressure.

ST=1.6×10−4×Fe×T/μ・・・(式1)
ST:ヘマタイトスケールの付着厚さ
Fe:給水中のFe濃度
T:流体温度
μ:流体温度と流体圧力により決定される粘性係数
ST = 1.6 × 10 −4 × Fe 2 × T / μ (Equation 1)
ST: Adhesion thickness of hematite scale Fe: Fe concentration in feed water T: Fluid temperature μ: Viscosity coefficient determined by fluid temperature and fluid pressure

ST=0.0048×Fe0.3×SD−2.0―0.16・・・(式2)
ST:ヘマタイトスケールの付着厚さ
Fe:給水中のFe濃度
SD:流体温度と流体圧力により決定される超臨界水密度
ST = 0.0048 × Fe 0.3 × SD −2.0 −0.16 (Formula 2)
ST: adhesion thickness of hematite scale Fe: Fe concentration in feed water SD: Supercritical water density determined by fluid temperature and fluid pressure

ST=0.0048×Fe0.3×V2.0―0.16・・・(式3)
ST:ヘマタイトスケールの付着厚さ
Fe:給水中のFe濃度
V:流体温度と流体圧力により決定される比容積
ST = 0.0048 × Fe 0.3 × V 2.0 −0.16 (Equation 3)
ST: Hematite scale adhesion thickness Fe: Fe concentration in feed water V: Specific volume determined by fluid temperature and fluid pressure

また、上記評価式に代えて、伝熱管を複数の計測部位に区分し、各計測部位におけるヘマタイトスケールの付着厚さの実測データを、給水中のFe濃度と複数の計測部位における給水の粘性係数に対応させてプロットして作成した評価図に基づいて、ヘマタイトスケールの付着厚さを予測することができる。なお、評価図は、実測データ、例えば、超臨界圧ボイラを約6万時間運転した後の伝熱管の計測部位ごとのヘマタイトスケールの付着厚さ実測値を、給水中のFe濃度の実測値と、各計測部位における流体温度と流体圧力の設計値により決定される給水の粘性係数と、により整理して作成することができる。   Further, instead of the above evaluation formula, the heat transfer tube is divided into a plurality of measurement sites, and the measured data of the hematite scale adhesion thickness at each measurement site is obtained from the Fe concentration in the feed water and the viscosity coefficient of the feed water at the plurality of measurement sites. The adhesion thickness of the hematite scale can be predicted based on the evaluation chart created by plotting corresponding to the above. The evaluation chart shows actual measurement data, for example, the actual measured thickness of the hematite scale for each measurement site of the heat transfer tube after operating the supercritical pressure boiler for about 60,000 hours, and the actual measured value of Fe concentration in the feed water. The viscosity of the feed water determined by the design values of the fluid temperature and the fluid pressure at each measurement site can be arranged and created.

また、上記評価式に代えて、伝熱管の複数の計測部位におけるヘマタイトスケールの付着厚さの実測データを、給水中のFe濃度と複数の計測部位における超臨界水密度に対応させてプロットして作成した評価図に基づいて、ヘマタイトスケールの付着厚さを予測することができる。なお、評価図は、実測データ、例えば、超臨界圧ボイラを約6万時間運転した後の伝熱管の計測部位ごとのヘマタイトスケールの付着厚さの実測値を、給水中のFe濃度の実測値と、各計測部位における流体温度と流体圧力の設計値により決定される超臨界水密度と、により整理して作成することができる。   In addition, instead of the above evaluation formula, the measured data of the hematite scale adhesion thickness at a plurality of measurement sites of the heat transfer tube is plotted corresponding to the Fe concentration in the feed water and the supercritical water density at the plurality of measurement sites. The adhesion thickness of the hematite scale can be predicted based on the created evaluation chart. The evaluation chart shows measured data, for example, measured values of the adhesion thickness of the hematite scale at each measurement site of the heat transfer tube after operating the supercritical pressure boiler for about 60,000 hours, and measured values of Fe concentration in the feed water. And the supercritical water density determined by the design values of the fluid temperature and the fluid pressure at each measurement site.

本発明によれば、伝熱管の内壁に実際に付着するヘマタイトスケールの付着厚さを予測できる。   According to the present invention, the adhesion thickness of the hematite scale that actually adheres to the inner wall of the heat transfer tube can be predicted.

本発明のヘマタイトスケールの付着診断方法を適用可能な超臨界圧ボイラの概略図である。It is the schematic of the supercritical pressure boiler which can apply the adhesion diagnostic method of the hematite scale of this invention. 本発明の実施例1の給水中のFe濃度と粘性係数の関係を示す図である。It is a figure which shows the relationship between Fe density | concentration in the feed water of Example 1 of this invention, and a viscosity coefficient. 本発明の実施例1のヘマタイトスケールの付着厚さとブラウン凝集指数の関係を示す図である。It is a figure which shows the relationship between the adhesion thickness of the hematite scale of Example 1 of this invention, and a Brown cohesion index. 本発明の実施例1によりヘマタイトスケールの付着厚さを予測した例を示す図である。It is a figure which shows the example which estimated the adhesion thickness of the hematite scale by Example 1 of this invention. 本発明の実施例2の給水中のFe濃度と超臨界水密度の関係を示す図である。It is a figure which shows the relationship between the Fe density | concentration in the feed water of Example 2 of this invention, and a supercritical water density. 本発明の実施例2のヘマタイトスケールの付着厚さとパウダー状スケール指数との関係を示す図である。It is a figure which shows the relationship between the adhesion thickness of the hematite scale of Example 2 of this invention, and a powdery scale index | exponent. 本発明の実施例2によりヘマタイトスケールの付着厚さを予測した例を示す図である。It is a figure which shows the example which estimated the adhesion thickness of the hematite scale by Example 2 of this invention. 超臨界圧ボイラにおける給水の水質を示した図である。It is the figure which showed the quality of the water supply in a supercritical pressure boiler.

以下、本発明を実施の形態に基づいて説明する。まず、本発明のヘマタイトスケールの付着診断方法を実施可能な超臨界圧ボイラの給水の流れについて、図1を用いて説明する。超臨界圧ボイラには、例えば、図示していない給水設備が備えられ、給水設備から節炭器1に給水が供給されるようになっている。給水設備は、例えば、給水に酸素を添加する酸素添加装置と、給水にpH調整剤を添加してpHを設定範囲に維持するpH調整装置が設けられている。酸素添加装置とpH調整装置により、節炭器1に供給される給水は、例えば、溶存酸素30〜200μg/L、pH6.5〜9.3の範囲に調整されている。このように給水設備で給水の溶存酸素量とpHを調整することで、給水中の鉄(Fe)が酸化されて生成したヘマタイト(Fe)が伝熱管の内壁に付着して皮膜を形成する、所謂、酸素処理ができるようになっている。 Hereinafter, the present invention will be described based on embodiments. First, the flow of feed water of a supercritical pressure boiler capable of implementing the hematite scale adhesion diagnosis method of the present invention will be described with reference to FIG. The supercritical pressure boiler is provided with, for example, a water supply facility (not shown), and water is supplied to the economizer 1 from the water supply facility. The water supply equipment is provided with, for example, an oxygen addition device that adds oxygen to the water supply and a pH adjustment device that adds a pH adjuster to the water supply and maintains the pH within a set range. The water supply supplied to the economizer 1 is adjusted to a range of, for example, dissolved oxygen of 30 to 200 μg / L and pH of 6.5 to 9.3 by the oxygen adding device and the pH adjusting device. By adjusting the dissolved oxygen content and pH of the feed water in this way, hematite (Fe 2 O 3 ) produced by oxidation of iron (Fe) in the feed water adheres to the inner wall of the heat transfer tube and forms a film. The so-called oxygen treatment to be formed can be performed.

節炭器1に供給された給水は、節炭器1の伝熱管を通流し、超臨界圧ボイラの排ガスにより予熱される。予熱された給水は、火炉2の水冷壁の伝熱管及び伝熱管群を通流して、燃料の燃焼熱により加熱されて、臨界圧以上の水蒸気が発生するようになっている。臨界圧以上の水蒸気は、火炉2の上部の煙道に設けられた1次過熱器3、2次過熱器4、3次過熱器5の伝熱管を通流して排ガスにより過熱される。3次過熱器5から排出された水蒸気は、図示していない高圧の蒸気タービンに供給され、蒸気タービンの駆動力として用いられる。また、高圧の蒸気タービンを駆動して温度が下がった抽気蒸気は、火炉2の上部の煙道に設けられた1次再加熱器6、2次再加熱器7の伝熱管を通流して排ガスにより再加熱された後、中圧又は低圧の蒸気タービンに供給されて、蒸気タービンの駆動力として用いられる。なお、図1の網掛けで示した対象範囲は、本発明のヘマタイトスケールの付着診断方法が適用される伝熱管の位置を示している。以下、本発明のヘマタイトスケールの付着診断方法を実施例に基づいて説明する。   The feed water supplied to the economizer 1 flows through the heat transfer pipe of the economizer 1 and is preheated by the exhaust gas of the supercritical pressure boiler. The preheated feed water flows through the heat transfer tubes and the heat transfer tube group of the water cooling wall of the furnace 2 and is heated by the combustion heat of the fuel to generate water vapor above the critical pressure. Steam above the critical pressure flows through the heat transfer tubes of the primary superheater 3, the secondary superheater 4, and the tertiary superheater 5 provided in the flue at the top of the furnace 2, and is superheated by the exhaust gas. The steam discharged from the tertiary superheater 5 is supplied to a high-pressure steam turbine (not shown) and used as a driving force for the steam turbine. Further, the extracted steam whose temperature has been lowered by driving the high-pressure steam turbine flows through the heat transfer pipes of the primary reheater 6 and the secondary reheater 7 provided in the flue at the upper part of the furnace 2 and becomes exhaust gas. After being reheated by the above, it is supplied to an intermediate-pressure or low-pressure steam turbine and used as a driving force for the steam turbine. 1 indicates the position of the heat transfer tube to which the hematite scale adhesion diagnosis method of the present invention is applied. Hereinafter, the hematite scale adhesion diagnosis method of the present invention will be described based on examples.

本発明の発明者らは、図1の超臨界圧ボイラを約6万時間運転後に、火炉2の水冷壁の伝熱管を複数の計測部位に分割し、各計測部位のヘマタイトスケールの付着厚さを測定した。また、運転時における給水中のFe濃度の実測値を運転記録等から求めた。さらに、各計測部位の流体温度、流体圧力を設計値から求めた。これらの実測値及び設計値を整理して、図2、3のグラフを得た。なお、給水中のFe濃度は、超臨界圧ボイラに供給される給水中のFe濃度を、例えば、節炭器1の入口側に設置されるFe濃度検出センサで実測して求めた値である。   The inventors of the present invention divide the heat transfer tube of the water-cooled wall of the furnace 2 into a plurality of measurement parts after operating the supercritical pressure boiler of FIG. 1 for about 60,000 hours, and attach the hematite scale thickness of each measurement part. Was measured. Moreover, the actual measurement value of Fe concentration in the water supply during operation was obtained from operation records and the like. Furthermore, the fluid temperature and fluid pressure at each measurement site were determined from the design values. These measured values and design values were arranged to obtain the graphs of FIGS. Note that the Fe concentration in the feed water is a value obtained by actually measuring the Fe concentration in the feed water supplied to the supercritical pressure boiler with, for example, an Fe concentration detection sensor installed on the inlet side of the economizer 1. .

図2は、流体温度と流体圧力により決定される臨界点以上の領域(超臨界状態)にある給水の粘性係数を縦軸とし、給水中のFe濃度を横軸としたグラフである。また、図2の●点はヘマタイトスケールの付着厚さが0.1mm以下であった計測部位であり、■点はヘマタイトスケールの付着厚さが0.1mm以上であった計測部位である。また、同図のデータからヘマタイトスケールの付着厚さが0.1mmとなる境界は、グラフ中に示した曲線11のような、近似曲線になることが推定できる。   FIG. 2 is a graph in which the vertical axis represents the viscosity coefficient of the feed water in the region above the critical point (supercritical state) determined by the fluid temperature and the fluid pressure, and the horizontal axis represents the Fe concentration in the feed water. In FIG. 2, the point ● represents the measurement site where the adhesion thickness of the hematite scale was 0.1 mm or less, and the point ■ represents the measurement site where the adhesion thickness of the hematite scale was 0.1 mm or more. Moreover, it can be estimated from the data of the figure that the boundary where the adhesion thickness of the hematite scale is 0.1 mm is an approximate curve such as the curve 11 shown in the graph.

図2によれば、ヘマタイトスケールの付着厚さは、粘性係数が低くなる、つまり、給水の粘度が低くなると厚くなり、また、給水中のFe濃度が高くなると厚くなることがわかる。そこで、ブラウン運動の凝集理論に基づき、ブラウン凝集指数を求め、このブラウン凝集指数に基づいてヘマタイトスケールの厚さの実測値を整理して、図3のグラフを得た。   According to FIG. 2, it can be seen that the adhesion thickness of the hematite scale increases as the viscosity coefficient decreases, that is, increases as the viscosity of the feed water decreases, and increases as the Fe concentration in the feed water increases. Therefore, the Brownian aggregation index was obtained based on the Brownian aggregation theory, and the measured values of the thickness of the hematite scale were arranged based on the Brownian aggregation index to obtain the graph of FIG.

図3は、ヘマタイトスケールの付着厚さ(ST)を縦軸とし、ブラウン運動の凝集理論に基づき、下記の(式4)で定義されるブラウン凝集指数(JBI)を横軸としたグラフである。
JBI=Fe×T/μ・・・(式4)
(式4)のFeは超臨界圧ボイラに供給される給水中のFe濃度(μg/L)の実測値であり、Tは流体温度(K)の設計値であり、 μは流体温度の設計値と流体圧力の設計値により決定される給水の粘性係数(μPa・s)である。また、図3の●点は、各計測部位のヘマタイトスケールの付着厚さの実測値である。なお、(式4)のJBIは1次関数形式であるが、2次や3次関数など別の関数を使用することができる。
FIG. 3 is a graph with the hematite scale adhesion thickness (ST) as the vertical axis and the Brownian aggregation index (JBI) defined by the following (Equation 4) as the horizontal axis based on the Brownian aggregation theory. .
JBI = Fe 2 × T / μ (Formula 4)
Fe in (Equation 4) is an actual measurement value of Fe concentration (μg / L) in feed water supplied to the supercritical pressure boiler, T is a design value of fluid temperature (K), and μ is a design of fluid temperature. This is the viscosity coefficient (μPa · s) of the feed water determined by the value and the design value of the fluid pressure. In FIG. 3, points ● are measured values of the adhesion thickness of the hematite scale at each measurement site. Note that JBI in (Expression 4) has a linear function format, but other functions such as a quadratic function and a cubic function can be used.

図3によれば、ヘマタイトスケールの付着厚さ(ST)とブラウン凝集指数(JBI)とは、相関があることがわかる。したがって、給水中のFe濃度と、流体温度と、流体圧力から求めたブラウン凝集指数(JBI)に基づいて、ヘマタイトスケールの付着厚さを予測できることがわかる。そこで、ヘマタイトスケールの付着厚さを予測するため、図3の●点の近似式を求めた結果、下記の(式5)を得た。
ST=1.6×10-4×JBI…(式5)
すなわち、給水中のFe濃度と、予測対象となる伝熱管の部位の流体温度と、流体圧力とを求め、求めた値からブラウン凝集指数(JBI)を算出し、算出したブラウン凝集指数(JBI)を(式5)に代入することで、伝熱管の各部位の6万時間運転後の実際のヘマタイトスケールの付着厚さを予測できるのである。なお、(式5)は、1次関数で整理すると相関係数(R)が0.85と良好であったため、1次関数を採用したが、2次、3次関数等他の関数を評価式として使用できる。
According to FIG. 3, it can be seen that there is a correlation between the adhesion thickness (ST) of the hematite scale and the Brownian aggregation index (JBI). Therefore, it can be seen that the adhesion thickness of the hematite scale can be predicted based on the Brownian aggregation index (JBI) obtained from the Fe concentration in the feed water, the fluid temperature, and the fluid pressure. Therefore, in order to predict the adhesion thickness of the hematite scale, an approximate expression of the point ● in FIG. 3 was obtained, and the following (Expression 5) was obtained.
ST = 1.6 × 10 −4 × JBI (Formula 5)
That is, the Fe concentration in the feed water, the fluid temperature of the heat transfer tube to be predicted, and the fluid pressure are obtained, and the Brownian aggregation index (JBI) is calculated from the obtained values. The calculated Brownian aggregation index (JBI) By substituting for (Equation 5), it is possible to predict the actual hematite scale adhesion thickness after 60,000 hours of operation of each part of the heat transfer tube. Note that (Equation 5) has a good correlation coefficient (R 2 ) of 0.85 when arranged by a linear function, so the linear function is adopted. However, other functions such as a quadratic function and a cubic function are used. It can be used as an evaluation formula.

次に、(式5)を評価式として、ヘマタイトスケールの付着厚さが設定上限値、例えば、0.1mmを超える伝熱管の部位を予測する場合を、図4に基づいて説明する。図4は、伝熱管の流体温度を横軸とし、ヘマタイトスケール皮膜の厚さを縦軸としたグラフである。図示のとおり、例えば、伝熱管の給水中のFe濃度が3μg/L、流体圧力が30MPaであった場合、6万時間後に流体温度が約468℃以上となっている伝熱管の部位、例えば、火炉2の水冷壁のバーナより上方の伝熱管、又はノーズ壁の伝熱管のヘマタイトスケールの付着厚さが設定上限値0.1mmを超えると予測できる。なお、超臨界圧ボイラの定期点検は、6万時間運転後であったため、実施例1では6万時間運転後のヘマタイトスケールの厚さを予測している。したがって、評価式を求める実測データの採取は、定期点検の時期に応じて適宜選択できる。   Next, the case where the part of the heat transfer tube in which the adhesion thickness of the hematite scale exceeds the set upper limit value, for example, 0.1 mm is predicted based on FIG. FIG. 4 is a graph with the horizontal axis representing the fluid temperature of the heat transfer tube and the vertical axis representing the thickness of the hematite scale film. As shown in the figure, for example, when the Fe concentration in the feed water of the heat transfer tube is 3 μg / L and the fluid pressure is 30 MPa, the portion of the heat transfer tube where the fluid temperature becomes about 468 ° C. or more after 60,000 hours, for example, It can be predicted that the hematite scale adhesion thickness of the heat transfer tube above the water-cooled wall burner of the furnace 2 or the nose wall heat transfer tube exceeds the set upper limit of 0.1 mm. In addition, since the periodic inspection of the supercritical pressure boiler was after 60,000 hours of operation, in Example 1, the thickness of the hematite scale after 60,000 hours of operation is predicted. Therefore, the collection of the actual measurement data for obtaining the evaluation formula can be appropriately selected according to the period of the periodic inspection.

これによれば、実測データに基づいて、ヘマタイトスケールの厚さと、給水中のFe濃度と、流体温度と、流体圧力と、を関係付けた評価式(式5)を予め設定し、この評価式と、通常運転時の給水中のFe濃度と、流体温度と、流体圧力に基づいて伝熱管に実際に付着するヘマタイトスケールの付着厚さを予測することができる。その結果、ヘマタイトスケールの付着厚さを設定値以下に維持するための伝熱管の化学洗浄、交換等の実施時期を予測できる。また、予測結果に基づいて、ヘマタイトスケールが厚くなる点検個所を選定することができる。これらにより、超臨界圧ボイラを安定運転できる。   According to this, based on the actual measurement data, an evaluation formula (Formula 5) relating the thickness of the hematite scale, the Fe concentration in the feed water, the fluid temperature, and the fluid pressure is set in advance, and this evaluation formula Then, the adhesion thickness of the hematite scale that actually adheres to the heat transfer tube can be predicted based on the Fe concentration in the water supply during normal operation, the fluid temperature, and the fluid pressure. As a result, it is possible to predict the timing of chemical cleaning, replacement, etc. of the heat transfer tube in order to maintain the adhesion thickness of the hematite scale below the set value. Further, based on the prediction result, it is possible to select an inspection point where the hematite scale becomes thick. As a result, the supercritical pressure boiler can be stably operated.

また、給水中のFe濃度、流体温度、流体圧力のみ利用するため、特別な装置を必要とせず、かつ非破壊でヘマタイトスケールの付着厚さを予測できる。   Further, since only the Fe concentration, fluid temperature, and fluid pressure in the feed water are used, a special device is not required, and the adhesion thickness of the hematite scale can be predicted nondestructively.

また、超臨界圧ボイラの定期点検の時期に応じて、評価式(式5)を適宜設定でき、例えば、1万時間運転後、2万時間運転後、3万時間運転後等の実測データに基づいて設定できる。また、評価式(式5)が他の運転時間に相関する場合は、評価式(式5)を適宜変形して使用できる。   In addition, the evaluation formula (Formula 5) can be set as appropriate according to the period of periodic inspection of the supercritical pressure boiler. For example, the actual measurement data such as after 10,000 hours of operation, after 20,000 hours of operation, after 30,000 hours of operation, etc. Can be set based on. Further, when the evaluation formula (Formula 5) correlates with other operation times, the evaluation formula (Formula 5) can be appropriately modified and used.

また、実施例1は、給水中のFe濃度及び流体圧力を一定として、流体温度の変化に基づいてヘマタイトスケール皮膜の厚さを予測している。つまり、超臨界圧ボイラは、伝熱管の流体温度を上げるものであるから流体温度は変化する。一方、超臨界圧ボイラに供給される給水中のFe濃度と、伝熱管の流体圧力は、大きく変化するものではないから、給水中のFe濃度及び流体圧力を一定とし、流体温度の変化に基づいてヘマタイトスケールの付着厚さを予測することができる。   In Example 1, the thickness of the hematite scale film is predicted based on the change in fluid temperature, with the Fe concentration and fluid pressure in the feed water being constant. That is, since the supercritical pressure boiler increases the fluid temperature of the heat transfer tube, the fluid temperature changes. On the other hand, since the Fe concentration in the feed water supplied to the supercritical pressure boiler and the fluid pressure in the heat transfer tube do not change greatly, the Fe concentration and the fluid pressure in the feed water are kept constant, and based on the change in fluid temperature. Thus, the thickness of the hematite scale can be predicted.

また、ヘマタイトスケールの厚さを予測する際に必要な超臨界圧ボイラに供給される給水中のFe濃度、流体温度、流体圧力は、実際に測定した実測値、又は設計時に設定される給水中のFe濃度、流体温度、流体圧力の設計値に基づいて求めることができる。   In addition, the Fe concentration, fluid temperature, and fluid pressure in the feed water supplied to the supercritical pressure boiler necessary for predicting the thickness of the hematite scale are actually measured values or the feed water set at the time of design. The Fe concentration, fluid temperature, and fluid pressure can be determined based on the design values.

また、実施例1は、ヘマタイトスケールの付着厚さの設定上限値を0.1mmとしたが、これに限定されるものではなく、ヘマタイトスケールによる伝熱阻害等を考慮して適宜設定できる。   Further, in Example 1, the upper limit value of the adhesion thickness of the hematite scale is set to 0.1 mm. However, the upper limit value is not limited to this, and can be appropriately set in consideration of heat transfer inhibition by the hematite scale.

また、ヘマタイトスケールの付着厚さの予測は、常時行う必要はなく、例えば、超臨界圧ボイラの定期点検時に実施することができる。   Moreover, it is not necessary to always perform the prediction of the adhesion thickness of the hematite scale, and for example, it can be performed at the regular inspection of the supercritical pressure boiler.

また、評価式(5)に代えて、図2を評価図としてヘマタイトスケールの付着厚さを予測することができる。例えば、予測対象とする伝熱管の部位の流体温度が450℃、流体圧力が25MPaの場合、給水の粘性係数は29μPa・sとなる。この場合、超臨界圧ボイラに供給される給水中のFe濃度が5μg/L未満であれば、予測対象の伝熱管の部位における約6万時間運転後のヘマタイトスケールの付着厚さは、0.1mm以下であると予測できる。   Further, instead of the evaluation formula (5), the adhesion thickness of the hematite scale can be predicted using FIG. 2 as an evaluation diagram. For example, when the fluid temperature at the part of the heat transfer tube to be predicted is 450 ° C. and the fluid pressure is 25 MPa, the viscosity coefficient of the feed water is 29 μPa · s. In this case, if the Fe concentration in the feed water supplied to the supercritical pressure boiler is less than 5 μg / L, the adhesion thickness of the hematite scale after operation for about 60,000 hours at the site of the heat transfer tube to be predicted is 0. It can be predicted that it is 1 mm or less.

次に、実施例2のヘマタイトスケールの付着診断方法を説明する。本発明の発明者らは、実施例1で説明した実測データを基づいて、図5、6のグラフを得た。図5は、流体温度と流体圧力により決定される超臨界水密度を縦軸とし、給水中のFe濃度を横軸としたグラフである。また、図5の●点はヘマタイトスケールの付着厚さが0.1mm以下であった計測部位であり、■点はヘマタイトスケールの厚さが0.1mm以上であった計測部位である。同図のデータからヘマタイトスケールの厚さが0.1mmとなる境界は、グラフ中に示した曲線13のような近似曲線になることが推定できる。   Next, a method for diagnosing hematite scale adhesion in Example 2 will be described. The inventors of the present invention obtained the graphs of FIGS. 5 and 6 based on the actual measurement data described in the first embodiment. FIG. 5 is a graph in which the supercritical water density determined by the fluid temperature and the fluid pressure is the vertical axis, and the Fe concentration in the feed water is the horizontal axis. In FIG. 5, the point ● represents the measurement site where the adhesion thickness of the hematite scale was 0.1 mm or less, and the point ■ represents the measurement site where the thickness of the hematite scale was 0.1 mm or more. It can be estimated from the data in the figure that the boundary where the thickness of the hematite scale is 0.1 mm is an approximate curve such as the curve 13 shown in the graph.

図5によれば、ヘマタイトスケールの付着厚さは、給水の超臨界水密度が低くなると厚くなり、また、給水中のFe濃度が高くなると厚くなることがわかる。そこで、給水中のFe濃度と超臨界水密度で定義されるパウダー状スケール指数(PSI)を求め、このパウダー状スケール指数(PSI)に基づいてヘマタイトスケールの付着厚さの実測値を整理した結果、図6を得た。   According to FIG. 5, it can be seen that the adhesion thickness of the hematite scale increases as the supercritical water density of the feed water decreases and increases as the Fe concentration in the feed water increases. Therefore, the powdery scale index (PSI) defined by the Fe concentration in the feed water and the supercritical water density was determined, and the measured values of the adhesion thickness of the hematite scale were arranged based on the powdery scale index (PSI). FIG. 6 was obtained.

図6は、ヘマタイトスケールの付着厚さ(ST)を縦軸とし、下記の(式6)で定義されるパウダー状スケール指数(PSI)を横軸としたグラフである。
PSI=Fe0.3×SD−0.2・・・(式6)
(式6)のFeは超臨界圧ボイラに供給される給水中のFe濃度(μg/L)の実測値であり、SDは、流体温度の設計値と流体圧力の設計値により決定される超臨界水密度(kg/L)である。また、図6の●点は各計測部位のヘマタイトスケールの付着厚さの実測値である。なお,(式6)は、パウダー状スケール指数(PSI)の各パラメータを指数関数として整理したが、例えば、2次や3次関数など別の関数を使用することができる。
FIG. 6 is a graph with the adhesion thickness (ST) of the hematite scale as the vertical axis and the powdery scale index (PSI) defined by (Equation 6) below as the horizontal axis.
PSI = Fe 0.3 × SD −0.2 (Expression 6)
Fe in (Expression 6) is an actual measurement value of Fe concentration (μg / L) in the feed water supplied to the supercritical pressure boiler, and SD is a super value determined by the design value of the fluid temperature and the design value of the fluid pressure. It is a critical water density (kg / L). In FIG. 6, points ● are measured values of the adhesion thickness of the hematite scale at each measurement site. In (Equation 6), each parameter of the powder scale index (PSI) is organized as an exponential function, but other functions such as a quadratic function and a cubic function can be used.

図6によれば、ヘマタイトスケールの付着厚さ(ST)とパウダー状スケール指数(PSI)とは、相関があることがわかる。したがって、給水中のFe濃度と、流体温度と、流体圧力とにより求めたパウダー状スケール指数(PSI)に基づいて、ヘマタイトスケールの付着厚さを予測できることがわかる。そこで、ヘマタイトスケールの付着厚さを予測するため、図6の●点の近似式を求めた結果、下記の(式6)を得た。
ST=0.0048×PSI―0.16・・・(式6)
ここで、STは約6万時間運転後のヘマタイトスケールの付着厚さ(mm)である。すなわち、予測対象となる伝熱管の部位の、給水中のFe濃度と、流体温度と、流体圧力とを求め、求めた値からパウダー状スケール指数(PSI)を算出し、算出したパウダー状スケール指数(PSI)を(式6)に代入することで、伝熱管の各部位の6万時間運転後のヘマタイトスケールの付着厚さを予測できるのである。なお、実施例2では、1次関数で整理した結果、相関係数(R)が0.9と良好であったため1次関数を使用したが、2次、3次関数等の他の関数を使用することができる。
According to FIG. 6, it can be seen that there is a correlation between the adhesion thickness (ST) of the hematite scale and the powdery scale index (PSI). Therefore, it can be seen that the adhesion thickness of the hematite scale can be predicted based on the powdery scale index (PSI) obtained from the Fe concentration in the feed water, the fluid temperature, and the fluid pressure. Therefore, in order to predict the adhesion thickness of the hematite scale, an approximate expression of the point ● in FIG. 6 was obtained, and the following (Expression 6) was obtained.
ST = 0.0048 × PSI−0.16 (Formula 6)
Here, ST is the adhesion thickness (mm) of the hematite scale after operation for about 60,000 hours. That is, the Fe concentration in the feed water, the fluid temperature, and the fluid pressure of the heat transfer tube part to be predicted are obtained, and the powdery scale index (PSI) is calculated from the obtained values, and the calculated powdery scale index By substituting (PSI) into (Equation 6), the adhesion thickness of the hematite scale after 60,000 hours of operation of each part of the heat transfer tube can be predicted. In Example 2, the linear function was used because the correlation coefficient (R 2 ) was as good as 0.9 as a result of organizing with a linear function, but other functions such as a quadratic function and a cubic function were used. Can be used.

次に、(式6)を評価式として、ヘマタイトスケールの付着厚さが設定上限値、例えば、0.1mmを超える伝熱管の部位を予測する場合を、図7に基づいて説明する。図7は、ヘマタイトスケールの付着厚さ(ST)を縦軸とし、給水の超臨界水密度(SD)を下側の横軸とし、流体温度を上側の横軸としたグラフである。例えば、給水中のFe濃度を2μg/L、流体圧力を25MPaとすると、流体温度が420℃以上となっている伝熱管の部位で、約6万時間運転後にヘマタイトスケール皮膜の厚さが設定上限値0.1mmを超えると予測できる。   Next, the case where the part of the heat transfer tube in which the adhesion thickness of the hematite scale exceeds the set upper limit value, for example, 0.1 mm is predicted based on FIG. FIG. 7 is a graph in which the adhesion thickness (ST) of the hematite scale is the vertical axis, the supercritical water density (SD) of the feed water is the lower horizontal axis, and the fluid temperature is the upper horizontal axis. For example, when the Fe concentration in the feed water is 2 μg / L and the fluid pressure is 25 MPa, the thickness of the hematite scale film is set to the upper limit after about 60,000 hours of operation at the portion of the heat transfer tube where the fluid temperature is 420 ° C. or higher. It can be predicted that the value exceeds 0.1 mm.

これによれば、ヘマタイトスケールの付着厚さと、給水中のFe濃度と、流体温度及び流体圧力により決定される超臨界水密度を予め関係付けた評価式(式6)を用いて、ヘマタイトスケールの付着厚さを予測できる。   According to this, the hematite scale adhesion thickness, the Fe concentration in the feed water, and the supercritical water density determined in advance by the fluid temperature and the fluid pressure are used to evaluate the hematite scale. The adhesion thickness can be predicted.

なお、評価式(式6)の給水の超臨界水密度に代えて、給水の比容積を用いてヘマタイトスケールの厚さを予測することができる。つまり、超臨界状態における給水の比容積(V)は、超臨界水密度の逆数であるから、(式5)を変形して下記の(式7)に示すようにパウダー状スケール指数(PSI)を定義できる。
PSI=Fe0.3×V2.0・・・(式7)
このパウダー状スケール指数(PSI)を評価式(式6)に代入することで、ヘマタイトスケール皮膜の厚さを予測できる。
Note that the thickness of the hematite scale can be predicted using the specific volume of the feed water instead of the supercritical water density of the feed water in the evaluation formula (Formula 6). That is, the specific volume (V) of the feed water in the supercritical state is the reciprocal of the supercritical water density, so that (Formula 5) is modified and the powdery scale index (PSI) as shown in (Formula 7) below. Can be defined.
PSI = Fe 0.3 × V 2.0 (Expression 7)
By substituting this powdery scale index (PSI) into the evaluation formula (Formula 6), the thickness of the hematite scale film can be predicted.

また、評価式(式6)に代えて、図5を評価図としてヘマタイトスケールの厚さを予測することができる。例えば、予測対象とする伝熱管の部位の流体温度が450℃、流体圧力が30MPaの場合、超臨界水密度は0.15kg/Lとなる。この場合、超臨界圧ボイラに供給される給水中のFe濃度が2.5μg/L未満であれば、予測対象の伝熱管の部位における約6万時間運転後のヘマタイトスケールの付着厚さは、0.1mm以下であると予測できる。   Further, instead of the evaluation formula (Formula 6), the thickness of the hematite scale can be predicted using FIG. 5 as an evaluation chart. For example, when the fluid temperature at the part of the heat transfer tube to be predicted is 450 ° C. and the fluid pressure is 30 MPa, the supercritical water density is 0.15 kg / L. In this case, if the Fe concentration in the feed water supplied to the supercritical pressure boiler is less than 2.5 μg / L, the adhesion thickness of the hematite scale after operation for about 60,000 hours at the site of the heat transfer tube to be predicted is It can be predicted to be 0.1 mm or less.

また、実施例1、2で予測可能な超臨界圧ボイラは、例えば、最高使用圧力が15〜20MPa又は20MPaを超える超臨界圧ボイラである。このような超臨界圧ボイラは、給水処理として酸素処理を採用すると図5の網掛けで示すとおり超臨界圧ボイラに供給される給水中のFe濃度を5μgFe/L以下にする必要がある(日本工業規格 JIS B 8223:2006 ボイラの給水及びボイラ水の水質より)。   Moreover, the supercritical pressure boiler which can be predicted in Examples 1 and 2 is, for example, a supercritical pressure boiler whose maximum working pressure exceeds 15 to 20 MPa or 20 MPa. In such a supercritical pressure boiler, when oxygen treatment is adopted as the feed water treatment, the Fe concentration in the feed water supplied to the supercritical pressure boiler needs to be 5 μg Fe / L or less as shown in FIG. Industrial standard JIS B 8223: 2006 (from boiler water supply and boiler water quality).

このような管理状態において、例えば、給水中のFe濃度を5μgFe/Lよりも低い、例えば、2μgFe/Lに維持すると、ヘマタイトスケールの付着厚さは薄くなる傾向にある。しかし、本発明の発明者らは、給水が超臨界状態となる超臨界圧ボイラにおいては、給水中のFe濃度を2μgFe/Lに維持しても、ヘマタイトスケールの付着厚さが局所的に厚くなり、その部位だけヘマタイトスケールの付着厚さが設定上限値を超えることを知見した。このように局所的に厚くなる部位を予測することは、従来技術では困難である。そこで、実施例1、2のヘマタイトスケールの付着診断方法を採用することにより、局所的にヘマタイトスケールが厚くなる伝熱管の部位を予測でき、超臨界圧ボイラを安定運転できる。   In such a management state, for example, if the Fe concentration in the feed water is maintained to be lower than 5 μg Fe / L, for example, 2 μg Fe / L, the adhesion thickness of the hematite scale tends to be thin. However, in the supercritical pressure boiler in which the feed water is in a supercritical state, the inventors of the present invention have a locally thick hematite scale even if the Fe concentration in the feed water is maintained at 2 μg Fe / L. Thus, it was found that the adhesion thickness of the hematite scale exceeds the set upper limit value only at that portion. It is difficult for the conventional technique to predict a region where the thickness is locally increased. Therefore, by adopting the hematite scale adhesion diagnostic method of Embodiments 1 and 2, it is possible to predict the portion of the heat transfer tube where the hematite scale is locally thick, and the supercritical pressure boiler can be stably operated.

なお、図8の揮発性物質処理とは、給水のpH調整にアンモニア又は揮発性のアミンを用い、溶存酸素の除去にはヒドラジンを用い、揮発性物質だけで処理する方法である。これにより、給水中のFeからマグネタイト(Fe)を生成し、このマグネタイトを皮膜として、伝熱管の内壁に付着させる。しかし、揮発性物質処理を採用すると、酸素処理に比べて皮膜が多量に付着して、流動抵抗の増加、伝熱阻害等の問題が生じるので、本発明は、給水処理として酸素処理を採用している。 Note that the volatile substance treatment in FIG. 8 is a method in which ammonia or volatile amine is used for pH adjustment of feed water, hydrazine is used for removal of dissolved oxygen, and treatment is performed using only volatile substances. Thus, to produce the magnetite (Fe 3 O 4) of Fe in the feed water, the magnetite as a film, is deposited on the inner wall of the heat transfer tube. However, when volatile substance treatment is adopted, a large amount of film is deposited as compared with oxygen treatment, and problems such as increased flow resistance and heat transfer inhibition occur. Therefore, the present invention employs oxygen treatment as a water supply treatment. ing.

1 節炭器
2 火炉
3 1次過熱器
4 2次過熱器
5 3次過熱器
6 1次再加熱器
7 2次再加熱器
DESCRIPTION OF SYMBOLS 1 Eco-saving device 2 Furnace 3 Primary superheater 4 Secondary superheater 5 Tertiary superheater 6 Primary reheater 7 Secondary reheater

Claims (6)

給水に酸素を添加して給水中のFeを酸化してヘマタイトを生成させ、該ヘマタイトを伝熱管の内壁に付着させて皮膜を形成させるようにした超臨界圧ボイラのヘマタイトスケールの付着厚さを予測するヘマタイトスケールの付着診断方法であって、
前記ヘマタイトスケールの付着厚さと、前記給水中のFe濃度と、流体温度と、流体圧力と、を関係付けた評価式に基づいて前記ヘマタイトスケールの付着厚さを予測するヘマタイトスケールの付着診断方法。
Oxygen is added to the feed water to oxidize Fe in the feed water to produce hematite, and the hematite is deposited on the inner wall of the heat transfer tube to form a film, and the hematite scale thickness of the supercritical pressure boiler is A method for diagnosing hematite scale adhesion,
A hematite scale adhesion diagnostic method for predicting the adhesion thickness of the hematite scale based on an evaluation formula relating the adhesion thickness of the hematite scale, the Fe concentration in the feed water, the fluid temperature, and the fluid pressure.
請求項1に記載のヘマタイトスケールの付着診断方法において、
前記評価式は、以下に示す評価式であることを特徴とするヘマタイトスケールの付着診断方法。
ST=1.6×10−4×Fe×T/μ・・・(評価式)
ST:ヘマタイトスケールの付着厚さ
Fe:給水中のFe濃度
T:流体温度
μ:流体温度と流体圧力により決定される粘性係数
In the hematite scale adhesion diagnostic method according to claim 1,
The evaluation formula is an evaluation formula shown below. A method for diagnosing hematite scale adhesion.
ST = 1.6 × 10 −4 × Fe 2 × T / μ (evaluation formula)
ST: Adhesion thickness of hematite scale Fe: Fe concentration in feed water T: Fluid temperature μ: Viscosity coefficient determined by fluid temperature and fluid pressure
請求項1に記載のヘマタイトスケールの付着診断方法において、
前記評価式は、以下に示す評価式であることを特徴とするヘマタイトスケールの付着診断方法。
ST=0.0048×Fe0.3×SD−2.0―0.16・・・(評価式)
ST:ヘマタイトスケールの付着厚さ
Fe:給水中のFe濃度
SD:流体温度と流体圧力により決定される超臨界水密度
In the hematite scale adhesion diagnostic method according to claim 1,
The evaluation formula is an evaluation formula shown below. A method for diagnosing hematite scale adhesion.
ST = 0.0048 × Fe 0.3 × SD −2.0 −0.16 (evaluation formula)
ST: adhesion thickness of hematite scale Fe: Fe concentration in feed water SD: Supercritical water density determined by fluid temperature and fluid pressure
請求項1に記載のヘマタイトスケールの付着診断方法において、
前記評価式は、以下に示す評価式であることを特徴とするヘマタイトスケールの付着診断方法。
ST=0.0048×Fe0.3×V2.0―0.16・・・(評価式)
ST:ヘマタイトスケールの付着厚さ
Fe:給水中のFe濃度
V:流体温度と流体圧力により決定される比容積
In the hematite scale adhesion diagnostic method according to claim 1,
The evaluation formula is an evaluation formula shown below. A method for diagnosing hematite scale adhesion.
ST = 0.0048 × Fe 0.3 × V 2.0 −0.16 (evaluation formula)
ST: Hematite scale adhesion thickness Fe: Fe concentration in feed water V: Specific volume determined by fluid temperature and fluid pressure
給水に酸素を添加して給水中のFeを酸化してヘマタイトを生成させ、該ヘマタイトを伝熱管の内壁に付着させて皮膜を形成させるようにした超臨界圧ボイラのヘマタイトスケールの付着厚さを予測するヘマタイトスケールの付着診断方法であって、
前記伝熱管の複数の計測部位における前記ヘマタイトスケールの付着厚さの実測データを、前記給水中のFe濃度と前記複数の計測部位における給水の粘性係数に対応させてプロットして評価図を作成し、該評価図に基づいて前記ヘマタイトスケールの付着厚さを予測するヘマタイトスケールの付着診断方法。
Oxygen is added to the feed water to oxidize Fe in the feed water to produce hematite, and the hematite is deposited on the inner wall of the heat transfer tube to form a film, and the hematite scale thickness of the supercritical pressure boiler is A method for diagnosing hematite scale adhesion,
The actual measurement data of the adhesion thickness of the hematite scale at a plurality of measurement sites of the heat transfer tube is plotted in correspondence with the Fe concentration in the feed water and the viscosity coefficient of the feed water at the plurality of measurement sites to create an evaluation diagram. The hematite scale adhesion diagnostic method for predicting the hematite scale adhesion thickness based on the evaluation chart.
給水に酸素を添加して給水中のFeを酸化してヘマタイトを生成させ、該ヘマタイトを伝熱管の内壁に付着させて皮膜を形成させるようにした超臨界圧ボイラのヘマタイトスケールの付着厚さを予測するヘマタイトスケールの付着診断方法であって、
前記伝熱管の複数の計測部位における前記ヘマタイトスケールの付着厚さの実測データを、前記給水中のFe濃度と前記複数の計測部位における超臨界水密度に対応させてプロットして評価図を作成し、該評価図に基づいて前記ヘマタイトスケールの付着厚さを予測するヘマタイトスケールの付着診断方法。
Oxygen is added to the feed water to oxidize Fe in the feed water to produce hematite, and the hematite is deposited on the inner wall of the heat transfer tube to form a film, and the hematite scale thickness of the supercritical pressure boiler is A method for diagnosing hematite scale adhesion,
The actual measurement data of the adhesion thickness of the hematite scale at the plurality of measurement sites of the heat transfer tube is plotted in correspondence with the Fe concentration in the feed water and the supercritical water density at the plurality of measurement sites to create an evaluation diagram. The hematite scale adhesion diagnostic method for predicting the hematite scale adhesion thickness based on the evaluation chart.
JP2010082039A 2010-03-31 2010-03-31 Hematite scale adhesion diagnostic method Expired - Fee Related JP5592685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010082039A JP5592685B2 (en) 2010-03-31 2010-03-31 Hematite scale adhesion diagnostic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082039A JP5592685B2 (en) 2010-03-31 2010-03-31 Hematite scale adhesion diagnostic method

Publications (2)

Publication Number Publication Date
JP2011214764A true JP2011214764A (en) 2011-10-27
JP5592685B2 JP5592685B2 (en) 2014-09-17

Family

ID=44944694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010082039A Expired - Fee Related JP5592685B2 (en) 2010-03-31 2010-03-31 Hematite scale adhesion diagnostic method

Country Status (1)

Country Link
JP (1) JP5592685B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997214A (en) * 2012-12-26 2013-03-27 哈尔滨锅炉厂有限责任公司 1,000MW ultra-supercritical tower type baffle bitangent circular boil and working method
CN103528041A (en) * 2013-11-06 2014-01-22 江苏大唐国际吕四港发电有限责任公司 Super (super) critical boiler high temperature heating surface pipe wall temperature measuring point optimizing method
CN103528042A (en) * 2013-11-06 2014-01-22 江苏大唐国际吕四港发电有限责任公司 Technological method for preventing oxide skins in ultra-supercritical boiler from appearing and falling
JP2016044881A (en) * 2014-08-22 2016-04-04 三菱日立パワーシステムズ株式会社 Defect event occurrence prediction device, defect event occurrence prediction method and defect event occurrence prediction program
JP2018179401A (en) * 2017-04-12 2018-11-15 三菱日立パワーシステムズ株式会社 Scale removing method and scale removing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200605A (en) * 1995-01-20 1996-08-06 Miura Co Ltd Scale adhesion judging method for water tube of boiler
JP2005147797A (en) * 2003-11-13 2005-06-09 Tohoku Electric Power Co Inc Method of estimating damage ratio of boiler heat transfer piping material and method of determining time for chemical cleaning
JP2005221170A (en) * 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd Operating method of supercritical pressure boiler
JP2007205692A (en) * 2006-02-06 2007-08-16 Babcock Hitachi Kk Thermal fatigue crack damage diagnosis method of boiler heat transfer tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200605A (en) * 1995-01-20 1996-08-06 Miura Co Ltd Scale adhesion judging method for water tube of boiler
JP2005147797A (en) * 2003-11-13 2005-06-09 Tohoku Electric Power Co Inc Method of estimating damage ratio of boiler heat transfer piping material and method of determining time for chemical cleaning
JP2005221170A (en) * 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd Operating method of supercritical pressure boiler
JP2007205692A (en) * 2006-02-06 2007-08-16 Babcock Hitachi Kk Thermal fatigue crack damage diagnosis method of boiler heat transfer tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997214A (en) * 2012-12-26 2013-03-27 哈尔滨锅炉厂有限责任公司 1,000MW ultra-supercritical tower type baffle bitangent circular boil and working method
CN103528041A (en) * 2013-11-06 2014-01-22 江苏大唐国际吕四港发电有限责任公司 Super (super) critical boiler high temperature heating surface pipe wall temperature measuring point optimizing method
CN103528042A (en) * 2013-11-06 2014-01-22 江苏大唐国际吕四港发电有限责任公司 Technological method for preventing oxide skins in ultra-supercritical boiler from appearing and falling
JP2016044881A (en) * 2014-08-22 2016-04-04 三菱日立パワーシステムズ株式会社 Defect event occurrence prediction device, defect event occurrence prediction method and defect event occurrence prediction program
JP2018179401A (en) * 2017-04-12 2018-11-15 三菱日立パワーシステムズ株式会社 Scale removing method and scale removing device

Also Published As

Publication number Publication date
JP5592685B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5592685B2 (en) Hematite scale adhesion diagnostic method
Hosseini et al. Failure analysis of boiler tube at a petrochemical plant
Sabau et al. Oxide scale exfoliation and regrowth in TP347H superheater tubes
JP5380219B2 (en) Method for estimating metal temperature and life of boiler heat transfer tubes
JP2021110039A (en) Method of calculating thickness of oxide film of martensitic heat resistant steel by supercritical high-temperature steam
JP4630745B2 (en) Calculation method of flow accelerated corrosion thinning rate and remaining life diagnosis method
Purbolaksono et al. Prediction of oxide scale growth in superheater and reheater tubes
JP6680900B2 (en) Method for estimating operating temperature of austenitic heat-resistant steel containing Cu (copper), method for estimating creep damage life of austenitic heat-resistant steel containing Cu, method for estimating operating temperature of austenitic heat-resistant steel tube containing Cu, and Cu Method for Estimating Creep Damage Life of Heat Transfer Tube Made of Austenitic Heat Resisting Steel Containing Carbon
Chai et al. Advanced heat resistant austenitic stainless steels
Saha Boiler tube failures: Some case studies
JP5039606B2 (en) Corrosion rate estimation method for boiler heat transfer tubes
Pint et al. Effect of Environment on the Oxidation Behavior of Commercial and Model Ni-Based Alloys
JP4968734B2 (en) Operating temperature estimation method for austenitic steel
Salman et al. Determination of correlation functions of the oxide scale growth and the temperature increase
JP3892629B2 (en) Overheat damage diagnosis method for boiler water wall pipe
Asnavandi et al. Fire‐Side Corrosion: A Case Study of Failed Tubes of a Fossil Fuel Boiler
JP4831624B2 (en) Graphitization damage diagnosis method for carbon steel and Mo steel for boilers
JP5900888B2 (en) Operating temperature estimation method and life evaluation method of Ni-based alloy
Ghosh et al. Failure investigation of radiant platen superheater tube of thermal power plant boiler
Nurbanasari et al. Failure study of secondary superheater tube out header damage in a 600-MW coal power plant
Pronobis et al. Preliminary calculations of erosion wear resulting from exfoliation of iron oxides in austenitic superheaters
JP6469386B2 (en) Method for estimating operating temperature of member and apparatus for estimating operating temperature of member
Holcomb et al. Boiler corrosion and monitoring
Ang Development of iterative analytical procedure for boiler tube analysis in matlab
Li et al. Research on remaining life evaluation method of T92 steel for superheater tube based on oxide layer growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140801

R150 Certificate of patent or registration of utility model

Ref document number: 5592685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees