JP2011212622A - Apparatus and method for treating waste water - Google Patents

Apparatus and method for treating waste water Download PDF

Info

Publication number
JP2011212622A
JP2011212622A JP2010084920A JP2010084920A JP2011212622A JP 2011212622 A JP2011212622 A JP 2011212622A JP 2010084920 A JP2010084920 A JP 2010084920A JP 2010084920 A JP2010084920 A JP 2010084920A JP 2011212622 A JP2011212622 A JP 2011212622A
Authority
JP
Japan
Prior art keywords
sulfuric acid
reduction reaction
tank
wastewater
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010084920A
Other languages
Japanese (ja)
Other versions
JP5481255B2 (en
Inventor
Hiroyuki Tokimoto
寛幸 時本
Nobuyuki Ashikaga
伸行 足利
Masahiko Tsutsumi
正彦 堤
Yasuhiko Nagamori
泰彦 永森
Takumi Obara
卓巳 小原
Shinobu Shigeniwa
忍 茂庭
Satomi Ebihara
聡美 海老原
Hiroshi Tamura
博 田村
Takeo Yamamori
武夫 山森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010084920A priority Critical patent/JP5481255B2/en
Publication of JP2011212622A publication Critical patent/JP2011212622A/en
Application granted granted Critical
Publication of JP5481255B2 publication Critical patent/JP5481255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a method for treating waste water, capable of treating waste water without degrading the activity of methanation treatment with methanogen in an anaerobic treatment environment.SOLUTION: The apparatus and method for treating waste water includes: a sulfuric acid reduction reaction vessel 2 for performing anaerobic treatment of throwing-in sulfate-reducing bacteria, taking-in waste water to be treated and reducing sulfate ions in waste water with sulfate-reducing bacteria to decompose an organism and generate hydrogen sulfide; a methane fermentation vessel 3 for performing anaerobic treatment of throwing-in methanogen, taking-in waste water treated in the sulfuric acid reduction reaction vessel 2 and decomposing an organism in the waste water not decomposed in the sulfuric acid reduction reaction vessel 2 with methanogen; and biological desulfurization treatment vessel 4 for throwing-in sulfur oxidation bacteria, taking-in hydrogen sulfide generated in the sulfuric acid reduction reaction vessel and performing desulfurization treatment with sulfur oxidation bacteria to generate sulfuric acid and to feed water to the sulfuric acid reduction reaction vessel for use of the generated sulfuric acid in the reduction of sulfuric acid ions.

Description

本発明は、産業排水、下水等の排水から、有機物を除去する排水処理装置および排水処理方法に関する。   The present invention relates to a wastewater treatment apparatus and a wastewater treatment method for removing organic substances from wastewater such as industrial wastewater and sewage.

従来、産業排水や下水等の排水を生物処理することにより、有機物を除去する技術がある。生物処理により排水を処理する技術を利用したものとして、例えば特許文献1に記載の排水処理装置がある。   Conventionally, there is a technique for removing organic substances by biologically treating wastewater such as industrial wastewater and sewage. For example, there is a wastewater treatment apparatus described in Patent Document 1 that uses a technique for treating wastewater by biological treatment.

この特許文献1に記載の排水処理装置100は、図13に示すように、嫌気性処理槽110において有機物の分解処理が行われた後、この嫌気性処理槽110における処理により発生した硫化水素を、好気性処理槽120および生物脱臭装置130において脱硫して嫌気性処理槽110に戻すことにより、効率的に排水処理を行っている。   As shown in FIG. 13, the wastewater treatment apparatus 100 described in Patent Document 1 is configured to remove hydrogen sulfide generated by the treatment in the anaerobic treatment tank 110 after the organic substance is decomposed in the anaerobic treatment tank 110. In the aerobic treatment tank 120 and the biological deodorization apparatus 130, the waste water is efficiently treated by desulfurization and returning to the anaerobic treatment tank 110.

具体的には、化1に示すように、嫌気性処理槽110において式(1)に示すようにまず加水分解菌により排水中の高分子有機物(炭水化物、たんぱく質、脂質)が低分子有機物へ分解された後、式(2)に示すように酸生成菌により低分子有機物が低級脂肪酸(酢酸、プロピオン酸など)へ分解され、最終的には、式(3)に示すようにメタン生成菌により酢酸等の低級脂肪酸からメタン(CH)と二酸化炭素(CO)とに分解される。 Specifically, as shown in Chemical Formula 1, in the anaerobic treatment tank 110, as shown in the formula (1), first, high molecular organic substances (carbohydrates, proteins, lipids) in the waste water are decomposed into low molecular organic substances by hydrolyzing bacteria. After that, low molecular organic substances are decomposed into lower fatty acids (acetic acid, propionic acid, etc.) by acid producing bacteria as shown in formula (2), and finally, by methanogenic bacteria as shown in formula (3). It is decomposed from lower fatty acids such as acetic acid into methane (CH 4 ) and carbon dioxide (CO 2 ).

また嫌気性処理槽110では、式(4)に示すように、硫酸還元菌が好気性処理槽120や生物脱臭装置130から戻される硫酸イオン(SO 2−)を還元させることにより、酢酸等の有機物が分解され、硫化水素(HS)、二酸化炭素、および水(HO)が生成される。 In the anaerobic treatment tank 110, as shown in the formula (4), the sulfate-reducing bacteria reduce the sulfate ions (SO 4 2− ) returned from the aerobic treatment tank 120 and the biological deodorization device 130, so Are decomposed to produce hydrogen sulfide (H 2 S), carbon dioxide, and water (H 2 O).

そして好気性処理槽では、硫黄酸化細菌を含む好気性微生物により、嫌気性処理槽で分解しきれなかった有機物が分解される。   In the aerobic treatment tank, organic substances that could not be decomposed in the anaerobic treatment tank are decomposed by aerobic microorganisms containing sulfur-oxidizing bacteria.

また好気性処理槽では、式(5)に示すように、硫黄酸化細菌が硫化水素を酸化させることで、硫酸イオンおよび水素イオン(H)が生成される。生成された硫酸イオンは嫌気性処理槽へと戻される。 Moreover, in an aerobic processing tank, as shown to Formula (5), a sulfur oxidation bacterium oxidizes hydrogen sulfide, and thereby a sulfate ion and a hydrogen ion (H + ) are generated. The produced sulfate ions are returned to the anaerobic treatment tank.

また生物脱臭装置130では、好気性処理槽120と同様に、硫黄酸化細菌が硫化水素を酸化させることで、硫酸イオンおよび水素イオンが生成される。生成された硫酸イオンは嫌気性処理槽へと戻される。   In the biological deodorization apparatus 130, as in the aerobic treatment tank 120, sulfate ions and hydrogen ions are generated by sulfur-oxidizing bacteria oxidizing hydrogen sulfide. The produced sulfate ions are returned to the anaerobic treatment tank.

[化1]
高分子有機物(炭水化物、たんぱく質、脂質) + H
→ 低分子有機物 (1)
低分子有機物 → 低級脂肪酸(酢酸、プロピオン酸など) (2)
CHCOOH → CH + CO (3)
SO 2− + CHCOOH + 2H → HS + 2CO +2H
(4)
S + 2O → SO 2− + 2H (5)
このように嫌気性処理槽110において式(4)に示す反応により生成された硫化水素(HS)が、好気性処理槽120および生物脱臭装置130において式(5)に示すように脱硫されて硫酸イオン(SO 2−)が生成され、嫌気性処理槽110に戻されることで、図14に示すように硫黄循環が形成される。
[Chemical 1]
High molecular organic substances (carbohydrates, proteins, lipids) + H 2 O
→ Low molecular weight organic matter (1)
Low molecular weight organic compounds → Lower fatty acids (acetic acid, propionic acid, etc.) (2)
CH 3 COOH → CH 4 + CO 2 (3)
SO 4 2− + CH 3 COOH + 2H + → H 2 S + 2CO 2 + 2H 2 O
(4)
H 2 S + 2O 2 → SO 4 2− + 2H + (5)
Thus, the hydrogen sulfide (H 2 S) generated by the reaction shown in the formula (4) in the anaerobic treatment tank 110 is desulfurized in the aerobic treatment tank 120 and the biological deodorization apparatus 130 as shown in the formula (5). In this way, sulfate ions (SO 4 2− ) are generated and returned to the anaerobic treatment tank 110, whereby a sulfur circulation is formed as shown in FIG.

上述した処理により、高分子、低分子、酢酸等の有機物は、メタンや二酸化炭素に分解され、排水中の有機物が低減されて公共用水域などに放流される。   By the above-described treatment, organic substances such as high molecules, low molecules, and acetic acid are decomposed into methane and carbon dioxide, and the organic substances in the wastewater are reduced and discharged into public water bodies.

特開2004−148242号公報JP 2004-148242 A

ところで、上述した嫌気性処理槽110では、メタン生成菌と硫酸還元菌とが共存しており、上記式(3)のメタン生成菌によるメタン生成処理および式(4)の硫酸還元菌による硫化水素生成処理が行われるが、これらのうち硫酸還元菌による硫化水素生成処理のほうがメタン生成菌によるメタン生成処理よりも処理速度が速いため、メタン生成菌よりも硫酸還元菌のほうが活性が優位となる。   By the way, in the anaerobic treatment tank 110 described above, methane-producing bacteria and sulfate-reducing bacteria coexist, and methane production treatment by the methane-producing bacteria of the above formula (3) and hydrogen sulfide by the sulfate-reducing bacteria of the formula (4). Of these, hydrogen sulfide generation treatment with sulfate-reducing bacteria is faster than methane formation treatment with methanogens, so sulfate-reducing bacteria are more active than methanogens .

また、好気性処理槽120と生物脱臭装置130で生成された硫酸イオンが嫌気性処理槽110に戻され、硫酸還元菌の基質である硫酸イオン濃度が高くなるため、さらに硫酸還元菌の活性が高くなる。   In addition, the sulfate ions generated in the aerobic treatment tank 120 and the biological deodorization apparatus 130 are returned to the anaerobic treatment tank 110, and the concentration of sulfate ions as a substrate of the sulfate-reducing bacteria is increased. Get higher.

しかし、硫化水素(HS)は人体に有毒であるとともに排水処理装置100内のダクト等を腐食させる原因になるため硫酸還元菌の活性を加速させることは好ましくなく、硫化水素生成処理と基質が競合するメタン生成菌によるメタン生成処理の活性を上げることが望まれている。 However, since hydrogen sulfide (H 2 S) is toxic to the human body and causes corrosion of the duct in the waste water treatment apparatus 100, it is not preferable to accelerate the activity of sulfate-reducing bacteria. It is desired to increase the activity of methanogenic treatment by competing methanogens.

本発明は上記事情に鑑みてなされたものであり、嫌気性処理環境において、メタン生成菌によるメタン生成処理の活性を低下させることなく排水処理を行うことが可能な排水処理装置および排水処理方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a wastewater treatment apparatus and a wastewater treatment method capable of performing wastewater treatment in an anaerobic treatment environment without reducing the activity of methane production treatment by methanogens. The purpose is to provide.

上記目的を達成するための本発明の排水処理装置は、硫酸還元菌が投入され、処理対象の排水を取り込んで前記硫酸還元菌により排水中の硫酸イオンを還元することで有機物を分解するとともに硫化水素を生成する嫌気処理を行う硫酸還元反応槽と、メタン生成菌が投入され、前記硫酸還元反応槽で処理された排水を取り込んで、前記硫酸還元反応槽で分解されなかった排水中の有機物を前記メタン生成菌により分解する嫌気処理を行うメタン発酵槽と、硫黄酸化菌が投入され、前記硫酸還元反応槽で生成された硫化水素を取り込んで前記硫黄酸化菌により脱硫処理を行うことで硫酸を生成し、生成した硫酸を前記硫酸イオンの還元に利用させるために硫酸還元反応槽に送水する生物脱硫処理槽とを有することを特徴とする。   In order to achieve the above object, the wastewater treatment apparatus of the present invention is provided with sulfate-reducing bacteria, which takes in the wastewater to be treated and reduces sulfate ions in the wastewater by the sulfate-reducing bacteria, thereby decomposing organic matter and sulfide. A sulfuric acid reduction reaction tank that performs anaerobic treatment to generate hydrogen, and a wastewater treated with the sulfuric acid reduction reaction tank, into which methanogenic bacteria are introduced, and organic matter in the wastewater that has not been decomposed in the sulfuric acid reduction reaction tank. A methane fermenter that performs anaerobic treatment that decomposes by the methanogen, and a sulfur-oxidizing bacterium are added, and the sulfuric acid is removed by taking in the hydrogen sulfide generated in the sulfuric acid reduction reaction tank and performing a desulfurization treatment by the sulfur-oxidizing bacterium. And a biodesulfurization treatment tank that feeds water to the sulfuric acid reduction reaction tank in order to use the produced sulfuric acid for the reduction of the sulfate ions.

またこの排水処理装置は、前記硫酸還元反応槽で生成された硫化水素を、当該硫酸還元反応槽の排水中に散気することで排水中の硫黄ストリッピングを行う第1硫黄ストリッピング手段と、前記硫酸還元反応槽で処理された排水を、当該硫酸還元反応槽の気相中に散水することで排水中の硫黄ストリッピングを行う第2硫黄ストリッピング手段とをさらに設けてもよい。   In addition, the waste water treatment apparatus includes a first sulfur stripping means for performing sulfur stripping in the waste water by aeration of the hydrogen sulfide generated in the sulfuric acid reduction reaction tank into the waste water of the sulfuric acid reduction reaction tank, You may further provide the 2nd sulfur stripping means which performs the sulfur stripping in waste_water | drain by sprinkling the waste_water | drain processed in the said sulfuric acid reduction reaction tank in the gaseous phase of the said sulfuric acid reduction reaction tank.

またこの排水処理装置は、好気性菌が投入され、前記メタン発酵槽で処理された排水を取り込んで、前記硫酸還元反応槽および前記メタン発酵槽で分解されなかった排水中の有機物を前記好気性菌により分解する好気処理を行う好気性処理槽をさらに設けてもよい。   In addition, the wastewater treatment apparatus takes in the wastewater treated with the aerobic bacteria and treated with the methane fermentation tank, and removes organic matter in the wastewater that has not been decomposed with the sulfuric acid reduction reaction tank and the methane fermentation tank. You may further provide the aerobic processing tank which performs the aerobic process decomposed | disassembled by microbe.

またこの排水処理装置は、前記メタン発酵槽で処理された排水を、前記生物脱硫処理槽へ供給する排水供給手段をさらに設けてもよい。   The waste water treatment apparatus may further include waste water supply means for supplying waste water treated in the methane fermentation tank to the biological desulfurization treatment tank.

またこの排水処理装置は、前記硫酸還元反応槽の上流に、浮遊物質を除去するろ過手段またはたんぱく質を分解する熱処理手段をさらに設けてもよい。   The wastewater treatment apparatus may further include a filtration means for removing suspended substances or a heat treatment means for decomposing proteins upstream of the sulfuric acid reduction reaction tank.

またこの排水処理装置は、前記硫酸還元反応槽に、硫黄を供給する硫黄供給手段をさらに設けてもよい。   The waste water treatment apparatus may further include a sulfur supply means for supplying sulfur to the sulfuric acid reduction reaction tank.

またこの排水処理装置の前記硫酸還元反応槽には硫酸還元菌が付着された担体が投入され、前記メタン発酵槽にはメタン生成菌の塊が投入され、前記生物脱硫処理槽には担体に付着された硫黄酸化菌が投入されるようにしてもよい。   In addition, a carrier to which sulfate-reducing bacteria are attached is introduced into the sulfuric acid reduction reaction tank of the wastewater treatment apparatus, a mass of methanogenic bacteria is introduced into the methane fermentation tank, and the biological desulfurization treatment tank is attached to the carrier. The sulfur-oxidizing bacteria that have been added may be introduced.

また本発明の排水処理方法は、排水処理装置が、硫酸還元反応槽に処理対象の排水を取り込んで、当該硫酸還元反応槽に投入された硫酸還元菌により排水中の硫酸イオンを還元することで有機物を分解するとともに硫化水素を生成する嫌気処理を行い、メタン発酵槽に前記硫酸還元反応槽で処理された排水を取り込んで、前記硫酸還元反応槽で分解されなかった排水中の有機物を、当該メタン発酵槽に投入されたメタン生成菌により分解する嫌気処理を行い、生物脱硫処理槽に前記硫酸還元反応槽で生成された硫化水素を取り込んで、当該生物脱硫処理槽に投入された硫黄酸化菌により脱硫処理を行うことで硫酸を生成し、生成した硫酸を前記硫酸イオンの還元に利用させるために硫酸還元反応槽に送水することを特徴とする。   In the wastewater treatment method of the present invention, the wastewater treatment apparatus takes the wastewater to be treated into the sulfuric acid reduction reaction tank and reduces sulfate ions in the wastewater by the sulfate reducing bacteria introduced into the sulfuric acid reduction reaction tank. Anaerobic treatment to decompose the organic matter and generate hydrogen sulfide is performed, and the wastewater treated in the sulfuric acid reduction reaction tank is taken into the methane fermentation tank, and the organic matter in the wastewater not decomposed in the sulfuric acid reduction reaction tank is Sulfur-oxidizing bacteria that are subjected to anaerobic treatment that is decomposed by the methane-producing bacteria charged in the methane fermentation tank, take in the hydrogen sulfide produced in the sulfuric acid reduction reaction tank to the biological desulfurization treatment tank, and are introduced into the biological desulfurization treatment tank In this method, sulfuric acid is generated by performing a desulfurization treatment by the above-described method, and water is sent to a sulfuric acid reduction reaction tank so that the generated sulfuric acid can be used for reduction of the sulfate ion.

本発明の排水処理装置および排水処理方法によれば、嫌気性処理環境において、メタン生成菌によるメタン生成処理の活性を低下させることなく安定した排水処理を行うことができる。   According to the waste water treatment apparatus and the waste water treatment method of the present invention, stable waste water treatment can be performed in an anaerobic treatment environment without reducing the activity of the methane production treatment by the methanogen.

本発明の第1実施形態による排水処理装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the waste water treatment equipment by 1st Embodiment of this invention. 本発明の第1実施形態による排水処理装置の硫酸還元反応槽の構成を示す説明図である。It is explanatory drawing which shows the structure of the sulfuric acid reduction reaction tank of the waste water treatment equipment by 1st Embodiment of this invention. 本発明の第1実施形態による排水処理装置のメタン発酵槽の構成を示す説明図である。It is explanatory drawing which shows the structure of the methane fermenter of the waste water treatment apparatus by 1st Embodiment of this invention. 本発明の第1実施形態による排水処理装置の生物脱硫処理槽の構成を示す説明図である。It is explanatory drawing which shows the structure of the biological desulfurization processing tank of the waste water treatment equipment by 1st Embodiment of this invention. 本発明の第1実施形態による排水処理装置の生物脱硫処理槽の硫黄酸化細菌付着担体の構成を示す斜視図である。It is a perspective view which shows the structure of the sulfur oxidation bacteria adhesion support | carrier of the biological desulfurization processing tank of the waste water treatment equipment by 1st Embodiment of this invention. 本発明の第2実施形態による排水処理装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the waste water treatment equipment by 2nd Embodiment of this invention. 本発明の第2実施形態による排水処理装置の第1の硫黄ストリッピング手段を設けた硫酸還元反応槽の構成を示す説明図である。It is explanatory drawing which shows the structure of the sulfuric acid reduction reaction tank which provided the 1st sulfur stripping means of the waste water treatment equipment by 2nd Embodiment of this invention. 本発明の第2実施形態による排水処理装置の第2の硫黄ストリッピング手段を設けた硫酸還元反応槽の構成を示す説明図である。It is explanatory drawing which shows the structure of the sulfuric acid reduction reaction tank provided with the 2nd sulfur stripping means of the waste water treatment equipment by 2nd Embodiment of this invention. 本発明の第3実施形態による排水処理装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the waste water treatment equipment by 3rd Embodiment of this invention. 本発明の第4実施形態による排水処理装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the waste water treatment equipment by 4th Embodiment of this invention. 本発明の第5実施形態による排水処理装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the waste water treatment equipment by 5th Embodiment of this invention. 本発明の第6実施形態による排水処理装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the waste water treatment equipment by 6th Embodiment of this invention. 従来の排水処理装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the conventional waste water treatment equipment. 従来の排水処理装置により行われる生物分解の内容を示す説明図である。It is explanatory drawing which shows the content of the biodegradation performed by the conventional waste water treatment equipment.

《第1実施形態》
本発明の第1実施形態による排水処理装置1Aの構成について、図1を参照して説明する。
<< First Embodiment >>
The configuration of the wastewater treatment apparatus 1A according to the first embodiment of the present invention will be described with reference to FIG.

本実施形態による排水処理装置1Aは、硫酸還元反応槽2と、メタン発酵槽3と、生物脱硫処理槽4とを有する。   A wastewater treatment apparatus 1 </ b> A according to this embodiment includes a sulfuric acid reduction reaction tank 2, a methane fermentation tank 3, and a biological desulfurization treatment tank 4.

この硫酸還元反応槽2には、処理対象の排水を流入するための管11が連結されている。また硫酸還元反応槽2とメタン発酵槽3とは、排水を送水するための管12で連結されている。また硫酸還元反応槽2の上部と生物脱硫処理槽4の下部とは、ガスの通路となるガス管13により連結されている。またメタン発酵槽3には、排水を下水道に流出させるための管14が連結されている。またメタン発酵槽3の上部と生物脱硫処理槽4の下部とは、ガスの通路となるガス管15により連結されている。また生物脱硫処理槽4には、反応に用いる水を流入するための管16、および空気を流入するためのガス管17が連結されている。また生物脱硫処理槽4の上部には、発生したメタンガスを放出するためのガス管18が連結されている。また生物脱硫処理槽4と硫酸還元反応槽2とは、処理水を送水するための管19で連結されている。   The sulfuric acid reduction reaction tank 2 is connected to a pipe 11 for flowing in wastewater to be treated. Moreover, the sulfuric acid reduction reaction tank 2 and the methane fermentation tank 3 are connected by a pipe 12 for feeding waste water. The upper part of the sulfuric acid reduction reaction tank 2 and the lower part of the biological desulfurization treatment tank 4 are connected by a gas pipe 13 serving as a gas passage. In addition, a pipe 14 is connected to the methane fermentation tank 3 for allowing the drainage to flow into the sewer. The upper part of the methane fermentation tank 3 and the lower part of the biological desulfurization treatment tank 4 are connected by a gas pipe 15 serving as a gas passage. The biological desulfurization treatment tank 4 is connected to a pipe 16 for flowing water used for the reaction and a gas pipe 17 for flowing air. A gas pipe 18 for discharging the generated methane gas is connected to the upper part of the biological desulfurization treatment tank 4. Further, the biological desulfurization treatment tank 4 and the sulfuric acid reduction reaction tank 2 are connected by a pipe 19 for feeding treated water.

また、硫酸還元反応槽2内には、図2に示すように硫酸還元菌201を付着させた比重1.5の球形のプラスチック担体202が投入されている。硫酸還元反応槽2内では硫酸還元菌が優位に働いているが、硫酸還元菌の他、加水分解菌、酸生成菌等が含まれている。   In addition, in the sulfuric acid reduction reaction tank 2, a spherical plastic carrier 202 having a specific gravity of 1.5, to which the sulfuric acid reducing bacteria 201 are attached, as shown in FIG. In the sulfate reduction reaction tank 2, sulfate-reducing bacteria work preferentially, but in addition to sulfate-reducing bacteria, hydrolyzing bacteria, acid-producing bacteria, and the like are included.

また、メタン発酵槽3内には、図3に示すようにメタン生成菌を塊とした粒状汚泥であり、粒子径1〜10mm、沈降速度1〜30m/hのグラニュール301が投入されている。メタン発酵槽3内ではメタン生成菌が優位に働いているが、メタン生成菌の他、硫酸還元菌、加水分解菌、酸生成菌等が含まれている。   Moreover, in the methane fermentation tank 3, as shown in FIG. 3, granular sludge having a mass of methane producing bacteria as a lump and having a particle diameter of 1 to 10 mm and a sedimentation speed of 1 to 30 m / h is introduced. . In the methane fermenter 3, methanogens work preferentially, but in addition to methanogens, sulfate-reducing bacteria, hydrolyzing bacteria, acid-producing bacteria, and the like are included.

これらの硫酸還元反応槽2およびメタン発酵槽3内では、上向流嫌気性スラッジブランケット法(Upflow Anaerobic Sludge Blanket:UASB)法を用いた嫌気処理を行うように構成されている。この上向流嫌気性スラッジブランケット法とは、上向流により嫌気性微生物が自己造粒して粒状汚泥を形成することを利用し、その粒状汚泥を用いて嫌気性消化槽内に高濃度に分解微生物を維持する事により、高効率に排水中の有機物を分解処理する方法である。   The sulfuric acid reduction reaction tank 2 and the methane fermentation tank 3 are configured to perform anaerobic treatment using an upflow anaerobic sludge blanket method (UASB). This upward flow anaerobic sludge blanket method is based on the fact that anaerobic microorganisms self-granulate by upward flow to form granular sludge, and the granular sludge is used to increase the concentration in the anaerobic digester. This is a method for efficiently decomposing organic matter in wastewater by maintaining decomposing microorganisms.

また、生物脱硫処理槽4内には、図4に示すように中段に硫黄酸化細菌付着担体401が投入されている。この硫黄酸化細菌付着担体401は、図5に示すように円筒形に形成された担体401Aの外側や内側に、硫黄酸化細菌401Bが付着されて構成されている。   Moreover, in the biological desulfurization treatment tank 4, as shown in FIG. As shown in FIG. 5, the sulfur-oxidizing bacteria adherent carrier 401 is configured such that sulfur-oxidizing bacteria 401B are adhered to the outside or inside of a carrier 401A formed in a cylindrical shape.

本実施形態による排水処理装置1Aにより、処理対象の排水が生物処理により有機物分解処理が行われるときの処理工程について説明する。   A treatment process when the wastewater to be treated is subjected to organic matter decomposition treatment by biological treatment by the wastewater treatment apparatus 1A according to the present embodiment will be described.

まず、硫酸還元反応槽2において連結された管11から処理対象の排水が流入され、下記式(1)に示すようにまず加水分解菌により排水中の高分子有機物(炭水化物、たんぱく質、脂質)が低分子有機物へ分解された後、式(2)に示すように酸生成菌により低分子有機物が低級脂肪酸(酢酸、プロピオン酸など)へ分解される。   First, wastewater to be treated is flowed from a pipe 11 connected in the sulfuric acid reduction reaction tank 2, and as shown in the following formula (1), first, macromolecular organic substances (carbohydrates, proteins, lipids) in the wastewater are hydrolyzed. After being decomposed into low molecular organic substances, as shown in the formula (2), the low molecular organic substances are decomposed into lower fatty acids (acetic acid, propionic acid, etc.) by acid producing bacteria.

さらに硫酸還元反応槽2では、後述するように生物脱硫処理槽4から管19を通って送水された硫酸溶液(HSO(l))に含まれる硫酸イオン(SO 2−)が、プラスチック担体202に付着された硫酸還元菌により還元されることで酢酸等の有機物が分解され、式(4)に示すように、硫化水素(HS)、二酸化炭素、および水(HO)が生成される。 Furthermore, in the sulfuric acid reduction reaction tank 2, as described later, sulfate ions (SO 4 2− ) contained in the sulfuric acid solution (H 2 SO 4 (l)) fed from the biological desulfurization treatment tank 4 through the pipe 19 are, Organic substances such as acetic acid are decomposed by being reduced by sulfate-reducing bacteria attached to the plastic carrier 202, and as shown in formula (4), hydrogen sulfide (H 2 S), carbon dioxide, and water (H 2 O ) Is generated.

[化2]
高分子有機物(炭水化物、たんぱく質、脂質) + H
→ 低分子有機物 (1)
低分子有機物 → 低級脂肪酸(酢酸、プロピオン酸など) (2)
CHCOOH → CH + CO (3)
SO 2− + CHCOOH + 2H → HS + 2CO +2H
(4)
S + 2O → SO 2− + 2H (5)
式(4)の反応により生成された硫化水素は、主に気相中へ硫化水素ガス(HS(g))として放出されるかまたは、排水のpHにより解離されて硫化物イオン(S2−)として排水中に放出される。
[Chemical 2]
High molecular organic substances (carbohydrates, proteins, lipids) + H 2 O
→ Low molecular weight organic matter (1)
Low molecular organic matter → Lower fatty acids (acetic acid, propionic acid, etc.) (2)
CH 3 COOH → CH 4 + CO 2 (3)
SO 4 2− + CH 3 COOH + 2H + → H 2 S + 2CO 2 + 2H 2 O
(4)
H 2 S + 2O 2 → SO 4 2− + 2H + (5)
The hydrogen sulfide generated by the reaction of the formula (4) is mainly released into the gas phase as hydrogen sulfide gas (H 2 S (g)), or is dissociated by the pH of the waste water and sulfide ions (S 2- ) Released into waste water.

そして、硫酸還元反応槽2において気相中へ放出された硫化水素ガス(HS(g))はガス管13を通って生物脱硫処理槽4に送出され、硫化物イオン(S2−)および硫酸還元反応槽2で分解しきれなかった有機物を含有する排水は、管12を通ってメタン発酵槽3に送水される。 Then, the hydrogen sulfide gas (H 2 S (g)) released into the gas phase in the sulfuric acid reduction reaction tank 2 is sent to the biological desulfurization treatment tank 4 through the gas pipe 13 and sulfide ions (S 2− ). The waste water containing organic matter that could not be decomposed in the sulfuric acid reduction reaction tank 2 is sent to the methane fermentation tank 3 through the pipe 12.

メタン発酵槽3では、硫酸還元反応槽2で硫酸還元菌による生物処理が行われ送水された排水が取り込まれ、硫酸還元反応槽2で分解しきれなかった有機物が上記式(1)に示すように加水分解菌により排水中の高分子有機物(炭水化物、たんぱく質、脂質)が低分子有機物へ分解された後、式(2)に示すように酸生成菌により低分子有機物が低級脂肪酸(酢酸、プロピオン酸など)へ分解される。   In the methane fermentation tank 3, the wastewater that has been subjected to biological treatment with sulfate-reducing bacteria in the sulfuric acid reduction reaction tank 2 and sent is taken in, and the organic matter that could not be decomposed in the sulfuric acid reduction reaction tank 2 is expressed by the above formula (1). After the high-molecular organic substances (carbohydrate, protein, lipid) in the wastewater are decomposed into low-molecular-weight organic substances by hydrolyzing bacteria, the low-molecular-weight organic substances are converted into lower fatty acids (acetic acid, propion by the acid-producing bacteria as shown in formula (2). Acid).

さらにメタン発酵槽3では、上記式(4)に示すように、メタン発酵槽3内の硫酸還元菌により酢酸等の有機物が分解され、硫化水素(HS)、二酸化炭素、および水(HO)が生成されるとともに、メタン発酵槽3内のグラニュール301により、上記式(3)に示すように酢酸等の低級脂肪酸がメタンガス(CH(g))と二酸化炭素(CO)とに分解される。 Further, in the methane fermentation tank 3, as shown in the above formula (4), organic substances such as acetic acid are decomposed by sulfate-reducing bacteria in the methane fermentation tank 3, and hydrogen sulfide (H 2 S), carbon dioxide, and water (H 2 O) is produced, and lower fatty acids such as acetic acid are converted into methane gas (CH 4 (g)) and carbon dioxide (CO 2 ) as shown in the above formula (3) by the granules 301 in the methane fermentation tank 3. And decomposed.

そして、メタン発酵槽3において式(4)の反応により生成された硫化水素ガス(HS(g))および式(3)の反応により生成されたメタンガス(CH(g))は気相中に放出され、ガス管15を通って生物脱硫処理槽4に送出される。 The hydrogen sulfide gas (H 2 S (g)) generated by the reaction of the formula (4) in the methane fermentation tank 3 and the methane gas (CH 4 (g)) generated by the reaction of the formula (3) are in the gas phase. The gas is discharged into the biological desulfurization treatment tank 4 through the gas pipe 15.

また、メタン発酵槽3で有機物が分解された処理済みの排水は、管14を通って下水道に流出される。   Further, the treated waste water in which the organic matter is decomposed in the methane fermentation tank 3 flows out to the sewer through the pipe 14.

次に生物脱硫処理槽4では、硫酸還元反応槽2から送出された硫化水素ガス(HS(g))と、メタン発酵槽3から送出された硫化水素ガス(HS(g))およびメタンガス(CH(g))が取り込まれるとともに、管16から水が取り込まれ、さらに管17から脱硫に必要な酸素を供給するための空気が取り込まれ、生物脱硫処理槽4内の硫黄酸化細菌付着担体401の硫黄酸化細菌401Bにより、上記式(5)に示すように硫化水素(HS)の脱硫が行われ、硫酸イオン(SO 2−)を含む硫酸溶液(HSO(l))が生成される。 Then the biological desulfurization treatment tank 4, the hydrogen sulfide gas delivered from the sulfate reduction reactor 2 and (H 2 S (g)) , hydrogen sulfide gas delivered from the methane fermentation tank 3 (H 2 S (g) ) And methane gas (CH 4 (g)) are taken in, water is taken in from the pipe 16, and air for supplying oxygen necessary for desulfurization is taken in from the pipe 17, and sulfur oxidation in the biological desulfurization treatment tank 4 is performed. Desulfurization of hydrogen sulfide (H 2 S) is performed by the sulfur-oxidizing bacteria 401 B of the bacterial adhesion carrier 401 as shown in the above formula (5), and a sulfuric acid solution (H 2 SO 4 ) containing sulfate ions (SO 4 2− ). (L)) is generated.

生成された硫酸溶液(HSO(l))は管19を通って、硫酸還元反応槽2に送水され、硫酸還元菌による酢酸等の還元反応に利用される。 The produced sulfuric acid solution (H 2 SO 4 (l)) is sent to the sulfuric acid reduction reaction tank 2 through the pipe 19 and used for the reduction reaction of acetic acid and the like by the sulfuric acid reducing bacteria.

また、生物脱硫処理槽4において脱硫が行われた後、取り込まれたメタンガス(CH(g))は、ガス管18から排出される。 Further, after desulfurization is performed in the biological desulfurization treatment tank 4, the taken-in methane gas (CH 4 (g)) is discharged from the gas pipe 18.

以上の第1実施形態によれば、嫌気性処理環境において有機物分解処理を行う硫酸還元菌とメタン生成菌とを、それぞれが優位に働く硫酸還元反応槽とメタン発酵槽とに分けて排水処理を行うように構成したことにより、メタン生成菌によるメタン生成処理の活性を低下させることなく安定した排水処理を行うことが可能になる。   According to the first embodiment described above, wastewater treatment is performed by dividing the sulfate-reducing bacteria and methanogenic bacteria that perform organic matter decomposition treatment in an anaerobic treatment environment into a sulfuric acid reduction reaction tank and a methane fermentation tank that each work predominantly. By having comprised so that it may perform, it becomes possible to perform the stable waste water treatment, without reducing the activity of the methane production process by a methanogen.

またこのとき、硫酸還元菌が優位に働く硫酸還元反応槽では、硫酸還元菌を付着させ且つ比重が大きいプラスチック担体を用いたため、排水の上向流速度よりもこのプラスチック担体の沈降速度が大きくなり、硫酸還元菌の槽外への流出を防止することができる。これにより、硫酸還元反応槽における硫酸還元処理の処理効率が安定化する。   At this time, in the sulfate reduction reaction tank where sulfate-reducing bacteria predominate, a plastic carrier that attaches sulfate-reducing bacteria and has a large specific gravity is used. Therefore, the sedimentation rate of this plastic carrier becomes larger than the upward flow rate of the waste water. The sulfate-reducing bacteria can be prevented from flowing out of the tank. Thereby, the processing efficiency of the sulfuric acid reduction process in a sulfuric acid reduction reaction tank is stabilized.

また、メタン生成菌が優位に働くメタン発酵槽では、メタン生成菌の塊であり粒子径および沈降速度が大きいグラニュールを用いたため、硫酸還元反応槽で処理された排水の上向流速度よりもこのグラニュールの沈降速度が大きくなり、メタン生成菌の槽外への流出を防止することができる。これにより、メタン発酵槽におけるメタン発酵処理の処理効率が安定化する。   Also, in the methane fermentation tank where methanogens predominate, granule that is a mass of methanogens and has a large particle size and sedimentation rate is used, so the upward flow rate of the wastewater treated in the sulfuric acid reduction reactor is higher. The sedimentation rate of the granules is increased, and the outflow of methanogens out of the tank can be prevented. Thereby, the process efficiency of the methane fermentation process in a methane fermenter is stabilized.

また、生物脱硫処理槽では、硫黄酸化細菌を付着させた硫黄酸化細菌付着担体を用いたため、硫酸還元反応槽およびメタン発酵槽から取り込まれた硫化水素ガス(HS(g))と硫黄酸化細菌との接触効率が高まり、脱硫速度を向上させることができる。 In addition, in the biological desulfurization treatment tank, since the sulfur-oxidizing bacteria adhesion carrier to which sulfur-oxidizing bacteria are attached is used, hydrogen sulfide gas (H 2 S (g)) taken from the sulfuric acid reduction reaction tank and the methane fermentation tank and sulfur oxidation are used. The contact efficiency with bacteria increases, and the desulfurization rate can be improved.

また、本実施形態においては、硫酸還元反応槽で使用したプラスチック担体が球形の場合について説明したが、これには限定されず、他の形状、例えばひも状担体としてもよい。また、メタン発酵槽で使用したメタン生成菌はグラニュールとする他、日本国内の下水処理場に多く存在し安価な消化汚泥を使用することも可能である。また、生物脱硫処理槽で使用した担体が筒状の場合について説明したが、これには限定されず、他の形状で構成してもよい。   In the present embodiment, the case where the plastic carrier used in the sulfuric acid reduction reaction vessel is spherical has been described. However, the present invention is not limited to this, and other shapes such as a string carrier may be used. In addition to granule, the methanogen used in the methane fermenter can also be used as an inexpensive digested sludge that exists in many sewage treatment plants in Japan. Moreover, although the case where the support | carrier used by the biological desulfurization processing tank was cylindrical was demonstrated, it is not limited to this, You may comprise in another shape.

《第2実施形態》
本発明の第2実施形態による排水処理装置1Bの構成について、図6〜8を参照して説明する。
<< Second Embodiment >>
The configuration of the wastewater treatment apparatus 1B according to the second embodiment of the present invention will be described with reference to FIGS.

第1実施形態において説明したように、硫酸還元反応槽2およびメタン発酵槽3内において処理された排水中には硫化物イオン(S2−)が溶存しているが、この硫化物イオン(S2−)は硫酸還元菌やメタン生成菌の働きを阻害しこれらの菌による反応速度を遅延させることになる。 As described in the first embodiment, sulfide ions (S 2− ) are dissolved in the wastewater treated in the sulfuric acid reduction reaction tank 2 and the methane fermentation tank 3. 2- ) inhibits the action of sulfate-reducing bacteria and methanogenic bacteria and delays the reaction rate of these bacteria.

そのため第2実施形態においては、第1実施形態の排水処理装置1Aに硫黄ストリッピングを行う手段をさらに設け、これにより排水中に溶存する硫化物イオン(S2−)を硫化水素ガス(HS(g))として気相中に放出させ反応効率を高めるようにする。 Therefore, in the second embodiment, the wastewater treatment apparatus 1A of the first embodiment is further provided with means for performing sulfur stripping, whereby sulfide ions (S 2− ) dissolved in the wastewater are converted into hydrogen sulfide gas (H 2 S (g)) is released into the gas phase to increase the reaction efficiency.

この硫黄ストリッピングを行う第1の手段として、硫酸還元反応槽2と生物脱硫処理槽4とを連結するガス管13から分岐して硫酸還元反応槽2に連結するガス管20と、ガス管13からガス管20に硫化水素ガス(HS(g))を取り込むポンプ21と、ポンプ21で取り込んだ硫化水素ガス(HS(g))を硫酸還元反応槽2内の排水中に投入されているプラスチック担体よりも上部の水面に近い位置にバブリングする散気管22とを有する。 As a first means for performing this sulfur stripping, a gas pipe 20 branched from the gas pipe 13 connecting the sulfuric acid reduction reaction tank 2 and the biological desulfurization treatment tank 4 and connected to the sulfuric acid reduction reaction tank 2, and a gas pipe 13 charged from the pump 21 to take in the hydrogen sulfide gas in the gas pipe 20 (H 2 S (g) ), the accepted hydrogen sulfide gas in the pump 21 (H 2 S (g) ) in the waste water in the sulfate reduction reactor 2 And a diffuser tube 22 that bubbles near the water surface above the plastic carrier.

このように形成された第1の硫黄ストリッピング手段により、硫酸還元反応槽2で生成された硫化水素ガス(HS(g))が、ガス管13および20を通って硫酸還元反応槽2に戻されバブリングされることで、排水中の硫化物イオン(S2−)が硫化水素ガスとして気相中へ追い出される。 The hydrogen sulfide gas (H 2 S (g)) generated in the sulfuric acid reduction reaction tank 2 by the first sulfur stripping means formed in this way passes through the gas pipes 13 and 20 and the sulfuric acid reduction reaction tank 2. By returning to bubbling, sulfide ions (S 2− ) in the waste water are expelled into the gas phase as hydrogen sulfide gas.

また硫黄ストリッピングを行う第2の手段として、硫酸還元反応槽2とメタン発酵槽3とを連結する管12から分岐して硫酸還元反応槽2に連結する管23と、管12から管23に排水を取り込むポンプ24と、ポンプ24で取り込んだ排水を硫酸還元反応槽内の気相中に散水する散水装置25とを有する。   Moreover, as a second means for performing sulfur stripping, a pipe 23 branched from the pipe 12 connecting the sulfuric acid reduction reaction tank 2 and the methane fermentation tank 3 and connected to the sulfuric acid reduction reaction tank 2, and a pipe 12 to the pipe 23 are connected. It has a pump 24 that takes in the waste water, and a watering device 25 that sprinkles the waste water taken in by the pump 24 into the gas phase in the sulfuric acid reduction reaction tank.

このように形成された第2の硫黄ストリッピング手段により、硫酸還元反応槽2で処理され硫化物イオン(S2−)を含む排水が、管12および23を通って硫酸還元反応槽2に戻され散水されることで、排水中の硫化物イオン(S2−)が硫化水素ガスとして気相中へ追い出される。 By the second sulfur stripping means formed in this way, the wastewater containing sulfide ions (S 2− ) treated in the sulfuric acid reduction reaction tank 2 returns to the sulfuric acid reduction reaction tank 2 through the pipes 12 and 23. By being sprinkled, the sulfide ions (S 2− ) in the wastewater are expelled into the gas phase as hydrogen sulfide gas.

また、メタン発酵槽3にも硫酸還元反応槽2と同様に、硫化水素ガス(HS(g))をメタン発酵槽3内に戻すためのガス管26、処理した排水をメタン発酵槽3内に戻すための管27等により第1および第2の硫黄ストリッピング手段を設けることで、排水中の硫化物イオン(S2−)が硫化水素ガスとして気相中へ追い出される。 Further, in the methane fermentation tank 3, as in the sulfuric acid reduction reaction tank 2, a gas pipe 26 for returning hydrogen sulfide gas (H 2 S (g)) into the methane fermentation tank 3, and the treated waste water are supplied to the methane fermentation tank 3. By providing the first and second sulfur stripping means by the pipe 27 or the like for returning to the inside, sulfide ions (S 2− ) in the waste water are expelled into the gas phase as hydrogen sulfide gas.

この硫黄ストリッピング以外の排水処理装置1Bにおける処理は、第1実施形態における排水処理装置1Aにおける処理と同様であるため、詳細な説明は省略する。   Since the treatment in the wastewater treatment apparatus 1B other than the sulfur stripping is the same as the treatment in the wastewater treatment apparatus 1A in the first embodiment, detailed description thereof is omitted.

以上の第2実施形態によれば、第1実施形態で得られる効果に加え、硫酸還元反応槽において硫黄ストリッピングを行うことにより、排水処理装置内の硫黄循環効率が高まるとともに、硫酸還元反応槽内における硫化物イオン(S2−)による硫酸還元菌の働きの阻害(生物阻害)を防止することができ、排水処理の効率を高めることができる。 According to the second embodiment described above, in addition to the effects obtained in the first embodiment, by performing sulfur stripping in the sulfuric acid reduction reaction tank, the sulfur circulation efficiency in the waste water treatment apparatus is increased, and the sulfuric acid reduction reaction tank. Inhibition of the action (biological inhibition) of sulfate-reducing bacteria by sulfide ions (S 2− ) can be prevented, and the efficiency of wastewater treatment can be increased.

また、メタン発酵槽においても硫黄ストリッピングを行うことにより、排水処理装置内の硫黄循環効率がさらに高まるとともに、メタン発酵槽内における硫化物イオン(S2−)によるメタン生成菌の働きの阻害(生物阻害)を防止することができ、排水の処理効率をさらに高めることができる。 In addition, by performing sulfur stripping also in the methane fermentation tank, the sulfur circulation efficiency in the wastewater treatment device is further increased, and the action of methane producing bacteria by sulfide ions (S 2− ) in the methane fermentation tank ( Biological inhibition) can be prevented, and wastewater treatment efficiency can be further increased.

また、第1の硫黄ストリッピング手段では、槽内に投入された担体よりも上部の水面に近い位置にバブリングを行うようにしたため、菌の流動に外乱を与えることがなく、安定した排水処理を行うことができる。   Further, in the first sulfur stripping means, since the bubbling is performed at a position closer to the water surface above the carrier put in the tank, no disturbance is given to the flow of bacteria, and stable drainage treatment is performed. It can be carried out.

また、第2の硫黄ストリッピング手段では、槽内の気相の高い位置から排水を散水することにより、硫黄ストリッピング効果を向上させることができる。   Further, in the second sulfur stripping means, the sulfur stripping effect can be improved by sprinkling the waste water from a high vapor phase position in the tank.

また、本実施形態においては、硫酸還元反応槽2およびメタン発酵槽3の第1の硫黄ストリッピング手段においては、それぞれの槽で生成された硫化水素ガス(HS(g))を戻し入れることでバブリングを行う場合について説明したが、窒素などの水処理に影響を与えないガスを硫酸還元反応槽2およびメタン発酵槽3に注入してバブリングを行うようにしてもよい。 In the present embodiment, putting back the in the first sulfur stripping means sulfate reduction reactor 2 and the methane fermentation tank 3, hydrogen sulfide gas generated in the respective bath (H 2 S (g)) However, bubbling may be performed by injecting a gas such as nitrogen that does not affect water treatment into the sulfuric acid reduction reaction tank 2 and the methane fermentation tank 3.

また、第1および第2の硫黄ストリッピング手段においてポンプの代わりにそれぞれの管に開閉弁を設け、これを制御することにより硫酸還元反応槽2およびメタン発酵槽3にガスや排水を送出するようにしてもよい。   In addition, in the first and second sulfur stripping means, an opening / closing valve is provided in each pipe instead of the pump, and by controlling this, gas and waste water are sent to the sulfuric acid reduction reaction tank 2 and the methane fermentation tank 3. It may be.

《第3実施形態》
本発明の第3実施形態による排水処理装置1Cの構成について、図9を参照して説明する。
<< Third Embodiment >>
The configuration of the wastewater treatment apparatus 1C according to the third embodiment of the present invention will be described with reference to FIG.

本実施形態による排水処理装置1Cは、第1実施形態の排水処理装置1Aまたは第2実施形態の排水処理装置1Bのメタン発酵槽3の下流に、好気性処理槽5を加えた構成となっている。   The wastewater treatment apparatus 1C according to the present embodiment has a configuration in which an aerobic treatment tank 5 is added downstream of the methane fermentation tank 3 of the wastewater treatment apparatus 1A of the first embodiment or the wastewater treatment apparatus 1B of the second embodiment. Yes.

排水処理装置1Cの硫酸還元反応槽2、メタン発酵槽3、および生物脱硫処理槽4において行われる処理については、第1実施形態または第2実施形態と同様であるため、詳細な説明は省略する。   Since the processing performed in the sulfuric acid reduction reaction tank 2, the methane fermentation tank 3, and the biological desulfurization processing tank 4 of the wastewater treatment apparatus 1C is the same as that in the first embodiment or the second embodiment, detailed description thereof is omitted. .

好気性処理槽5では、好気性菌が投入されており、メタン発酵槽3で処理された排水を取り込み、この処理済みの排水の中の分解しきれなかった有機物を、好気性菌によりさらに分解する。   In the aerobic treatment tank 5, aerobic bacteria are introduced, the wastewater treated in the methane fermentation tank 3 is taken in, and the organic matter in the treated wastewater that could not be decomposed is further decomposed by the aerobic bacteria. To do.

この好気性処理槽5で実行される分解処理には、「(社)日本下水道協会、高度処理施設設計マニュアル、平成6年」および「(社)日本下水道協会、下水道維持管理指針、2003年版」に記載の“活性汚泥法”、“嫌気−好気活性汚泥法”と“嫌気−無酸素−好気法”などを適用することが考えられる。   The decomposition process executed in the aerobic treatment tank 5 includes “(Japan) Sewerage Association, Advanced Treatment Facility Design Manual, 1994” and “(Japan) Sewerage Association, Sewerage Maintenance Guidelines, 2003 Edition”. It is conceivable to apply the “activated sludge method”, “anaerobic-aerobic activated sludge method”, “anaerobic-anoxic-aerobic method”, and the like.

この“活性汚泥法”を適用する場合は、好気性微生物による有機物の除去が可能となる。   When this “activated sludge method” is applied, organic substances can be removed by aerobic microorganisms.

また“膜分離式活性汚泥法”を適用する場合は、有機物除去に加えて、好気性処理槽5内に設置した精密ろ過膜(MF膜)により浮遊物質(SS)を除去することで、後段の沈殿池での固液分離を十分に行うことが可能となる。“嫌気−好気法”とした場合は、有機物除去に加えてリンを除去することが可能となる。   In addition, when applying the “membrane separation activated sludge method”, in addition to organic matter removal, the suspended matter (SS) is removed by a microfiltration membrane (MF membrane) installed in the aerobic treatment tank 5, so that It is possible to sufficiently perform solid-liquid separation in the sedimentation basin. In the case of the “anaerobic-aerobic method”, phosphorus can be removed in addition to organic matter removal.

また“嫌気−無酸素−好気法”を適用する場合は、有機物除去に加えて窒素とリンを除去することが可能となる。   In addition, when the “anaerobic-anoxic-aerobic method” is applied, it is possible to remove nitrogen and phosphorus in addition to organic matter removal.

以上の第3実施形態によれば、第1実施形態および第2実施形態で得られる効果に加え、好気性処理槽における処理で排水の水質をさらに向上させることができるため、硫酸還元反応槽およびメタン発酵槽により処理された排水が放流水質基準に適合していない場合にも、好気性処理槽の処理により適合させることが可能になる。   According to the above third embodiment, in addition to the effects obtained in the first embodiment and the second embodiment, the quality of the wastewater can be further improved by the treatment in the aerobic treatment tank. Even when the wastewater treated by the methane fermentation tank does not meet the effluent quality standard, it can be adapted by the treatment of the aerobic treatment tank.

《第4実施形態》
本発明の第4実施形態による排水処理装置1Dの構成について、図10を参照して説明する。
<< 4th Embodiment >>
A configuration of a wastewater treatment apparatus 1D according to the fourth embodiment of the present invention will be described with reference to FIG.

本実施形態による排水処理装置1Dの硫酸還元反応槽2、メタン発酵槽3、および生物脱硫処理槽4において行われる処理については、第1実施形態〜第3実施形態と同様であるため、詳細な説明は省略する。   Since the processing performed in the sulfuric acid reduction reaction tank 2, the methane fermentation tank 3, and the biological desulfurization processing tank 4 of the wastewater treatment apparatus 1D according to the present embodiment is the same as in the first to third embodiments, detailed description thereof is omitted. Description is omitted.

本実施形態による排水処理装置1Dは、第1実施形態の排水処理装置1A〜第3実施形態の排水処理装置1Cの生物脱硫処理槽4に水を流入する管16の代わりに、メタン発酵槽3で処理された排水を流出させる管14から分岐した管28を連結することにより、アルカリ度の高い排水を生物脱硫処理槽4に流入する排水供給手段を加えた構成となっている。   The wastewater treatment apparatus 1D according to the present embodiment is a methane fermentation tank 3 instead of the pipe 16 that flows water into the biological desulfurization treatment tank 4 of the wastewater treatment apparatus 1A of the first embodiment to the wastewater treatment apparatus 1C of the third embodiment. By connecting a pipe 28 branched from the pipe 14 for draining the wastewater treated in step 1, wastewater supply means for flowing wastewater with high alkalinity into the biological desulfurization treatment tank 4 is added.

このように排水供給手段を設けることにより、メタン発酵槽3で処理されたアルカリ度の高い排水が生物脱硫処理槽4に供給され、生物脱硫処理槽4内における硫酸生成処理に用いられる。   By providing the wastewater supply means in this manner, wastewater with high alkalinity treated in the methane fermentation tank 3 is supplied to the biological desulfurization treatment tank 4 and used for sulfuric acid generation treatment in the biological desulfurization treatment tank 4.

以上の第4実施形態によれば、第1実施形態〜第3実施形態で得られる効果に加え、生物脱硫処理槽4における脱硫処理をアルカリ度の高い排水を利用して行うことで、硫化水素ガスの吸収を高めて脱硫処理の速度を加速させ、排水の処理効率をさらに高めることができる。   According to the above 4th Embodiment, in addition to the effect acquired by 1st Embodiment-3rd Embodiment, by performing the desulfurization process in the biological desulfurization processing tank 4 using waste water with high alkalinity, hydrogen sulfide It is possible to increase the gas absorption to accelerate the desulfurization process and further increase the wastewater treatment efficiency.

《第5実施形態》
本発明の第5実施形態による排水処理装置1Eの構成について、図11を参照して説明する。
<< 5th Embodiment >>
A configuration of a wastewater treatment apparatus 1E according to a fifth embodiment of the present invention will be described with reference to FIG.

本実施形態による排水処理装置1Eは、第1実施形態の排水処理装置1A〜第4実施形態の排水処理装置1Dの硫酸還元反応槽2の上流に、前処理槽6を加えた構成となっている。   The wastewater treatment apparatus 1E according to the present embodiment has a configuration in which a pretreatment tank 6 is added upstream of the sulfuric acid reduction reaction tank 2 of the wastewater treatment apparatus 1A of the first embodiment to the wastewater treatment apparatus 1D of the fourth embodiment. Yes.

排水処理装置1Eの硫酸還元反応槽2、メタン発酵槽3、および生物脱硫処理槽4において行われる処理については、第1実施形態〜第4実施形態と同様であるため、詳細な説明は省略する。   About the process performed in the sulfuric acid reduction reaction tank 2, the methane fermentation tank 3, and the biological desulfurization processing tank 4 of the waste water treatment apparatus 1E, since it is the same as that of 1st Embodiment-4th Embodiment, detailed description is abbreviate | omitted. .

前処理槽6では、硫酸還元反応槽2に排水を流入する前に前処理を行い、硫酸還元反応槽2における硫酸還元処理やメタン発酵槽3におけるメタン発酵処理に悪影響を与える物質を予め除去する。   In the pretreatment tank 6, pretreatment is performed before drainage flows into the sulfuric acid reduction reaction tank 2, and substances that adversely affect the sulfuric acid reduction treatment in the sulfuric acid reduction reaction tank 2 and the methane fermentation treatment in the methane fermentation tank 3 are removed in advance. .

この前処理には、原水水質に応じて様々な方法がある。例えば、下水や浮遊物質(SS)が多く含まれる場合は、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)によるろ過や、砂ろ過などの適用が考えられる。また、たんぱく質が多く含まれる場合は熱処理などが考えられる。   There are various methods for this pretreatment depending on the quality of raw water. For example, when a lot of sewage and suspended solids (SS) are contained, it is possible to apply filtration using a microfiltration membrane (MF membrane) or ultrafiltration membrane (UF membrane), sand filtration, or the like. Further, when a large amount of protein is contained, heat treatment or the like can be considered.

精密ろ過膜(MF膜)とした場合は、懸濁物質や細菌、超微粒子など、おおむね0.1 〜 10(μm)の物質を除去することができる。また、限外ろ過膜(UF膜)とした場合は、たんぱく質や酸素、細菌類やウイルスなど1 〜 100(nm)の物質を除去することができる。また、砂ろ過とした場合は、mmオーダ以上の比較的大きな浮遊物質を除去することができる。   When a microfiltration membrane (MF membrane) is used, substances of about 0.1 to 10 (μm) such as suspended substances, bacteria, and ultrafine particles can be removed. Moreover, when it is set as an ultrafiltration membrane (UF membrane), 1-100 (nm) substances, such as protein, oxygen, bacteria, and a virus, can be removed. Moreover, when it is set as sand filtration, the comparatively big suspended | floating matter more than mm order can be removed.

熱処理とした場合は、食品排水などに含まれるたんぱく質を70(℃)程度に加熱し凝固させ、これを取除くことで排水中のたんぱく質を分解することができる。   In the case of heat treatment, the protein in the wastewater can be decomposed by heating it to about 70 (° C.) to solidify it and removing it.

以上の第5実施形態によれば、第1実施形態〜第4実施形態で得られる効果に加え、前処理槽において硫酸還元反応槽およびメタン発酵槽に悪影響を与える物質を予め除去することで、排水の処理効率、特に硫酸還元反応槽における硫酸還元処理の処理効率をさらに高めることができる。   According to the above fifth embodiment, in addition to the effects obtained in the first to fourth embodiments, by removing in advance a substance that adversely affects the sulfuric acid reduction reaction tank and the methane fermentation tank in the pretreatment tank, It is possible to further increase the wastewater treatment efficiency, particularly the sulfuric acid reduction treatment efficiency in the sulfuric acid reduction reaction tank.

《第6実施形態》
本発明の第6実施形態による排水処理装置1Fの構成について、図12を参照して説明する。
<< 6th Embodiment >>
The configuration of the wastewater treatment apparatus 1F according to the sixth embodiment of the present invention will be described with reference to FIG.

本実施形態による排水処理装置1Fは、第1実施形態の排水処理装置1A〜第5実施形態の排水処理装置1Eの硫酸還元反応槽2に、管29から硫黄を供給する硫黄供給手段を加えた構成となっている。   In the wastewater treatment apparatus 1F according to the present embodiment, sulfur supply means for supplying sulfur from the pipe 29 is added to the sulfuric acid reduction reaction tank 2 of the wastewater treatment apparatus 1A of the first embodiment to the wastewater treatment apparatus 1E of the fifth embodiment. It has a configuration.

排水処理装置1Fの硫酸還元反応槽2、メタン発酵槽3、および生物脱硫処理槽4において行われる処理については、第1実施形態〜第5実施形態と同様であるため、詳細な説明は省略する。   About the process performed in the sulfuric acid reduction reaction tank 2, the methane fermentation tank 3, and the biological desulfurization processing tank 4 of the waste water treatment apparatus 1F, since it is the same as that of 1st Embodiment-5th Embodiment, detailed description is abbreviate | omitted. .

本実施形態においては、硫黄供給手段により硫酸還元反応槽2に管29から硫黄が供給され、硫酸還元反応槽2における硫酸還元反応に利用される。   In the present embodiment, sulfur is supplied from the pipe 29 to the sulfuric acid reduction reaction tank 2 by the sulfur supply means, and is used for the sulfuric acid reduction reaction in the sulfuric acid reduction reaction tank 2.

以上の第6実施形態によれば、硫酸還元反応槽に硫黄を供給する硫黄供給手段を設けることにより、排水中に硫黄が含まれていない場合であっても、この硫黄供給手段により一度硫黄を供給することで排水処理装置内に硫黄循環が形成されるようになり、効率のよい排水処理の実行が可能になる。   According to the sixth embodiment described above, by providing the sulfur supply means for supplying sulfur to the sulfuric acid reduction reaction tank, even if sulfur is not contained in the waste water, the sulfur supply means once provides sulfur. By supplying, sulfur circulation is formed in the waste water treatment apparatus, and efficient waste water treatment can be performed.

1A〜1F…排水処理装置
2…硫酸還元反応槽
3…メタン発酵槽
4…生物脱硫処理槽
5…好気性処理槽
6…前処理槽
11〜20,23,26,27〜29…管
21…ポンプ
22…散気管
24…ポンプ
25…散水装置
201…硫酸還元菌
202…プラスチック担体
301…グラニュール
401…硫黄酸化細菌付着担体
401A…担体
401B…硫黄酸化細菌
DESCRIPTION OF SYMBOLS 1A-1F ... Waste water treatment apparatus 2 ... Sulfuric acid reduction reaction tank 3 ... Methane fermentation tank 4 ... Biological desulfurization treatment tank 5 ... Aerobic treatment tank 6 ... Pretreatment tank 11-20, 23, 26, 27-29 ... Pipe 21 ... Pump 22 ... Air diffuser 24 ... Pump 25 ... Water sprinkler 201 ... Sulfuric acid reducing bacteria 202 ... Plastic carrier 301 ... Granule 401 ... Sulfur oxidizing bacteria adherent carrier 401A ... Carrier 401B ... Sulfur oxidizing bacteria

Claims (8)

硫酸還元菌が投入され、処理対象の排水を取り込んで前記硫酸還元菌により排水中の硫酸イオンを還元することで有機物を分解するとともに硫化水素を生成する嫌気処理を行う硫酸還元反応槽と、
メタン生成菌が投入され、前記硫酸還元反応槽で処理された排水を取り込んで、前記硫酸還元反応槽で分解されなかった排水中の有機物を前記メタン生成菌により分解する嫌気処理を行うメタン発酵槽と、
硫黄酸化菌が投入され、前記硫酸還元反応槽で生成された硫化水素を取り込んで前記硫黄酸化菌により脱硫処理を行うことで硫酸を生成し、生成した硫酸を前記硫酸イオンの還元に利用させるために硫酸還元反応槽に送水する生物脱硫処理槽と、
を有することを特徴とする排水処理装置。
Sulfuric acid reduction bacteria are introduced, and the sulfuric acid reduction reaction tank that takes in the wastewater to be treated and performs anaerobic treatment to decompose organic substances by reducing sulfate ions in the wastewater by the sulfuric acid reducing bacteria and generate hydrogen sulfide,
A methane fermentation tank in which methanogenic bacteria are introduced and wastewater treated in the sulfuric acid reduction reaction tank is taken in and anaerobic treatment is performed in which the organic matter in the wastewater that has not been decomposed in the sulfuric acid reduction reaction tank is decomposed by the methanogenic bacteria When,
Sulfur oxidizing bacteria are introduced, hydrogen sulfide generated in the sulfuric acid reduction reaction tank is taken in, sulfuric acid is generated by performing desulfurization treatment with the sulfur oxidizing bacteria, and the generated sulfuric acid is used for the reduction of the sulfate ions A biological desulfurization treatment tank for sending water to the sulfuric acid reduction reaction tank,
A wastewater treatment apparatus comprising:
前記硫酸還元反応槽で生成された硫化水素を、当該硫酸還元反応槽の排水中に散気することで排水中の硫黄ストリッピングを行う第1硫黄ストリッピング手段と、
前記硫酸還元反応槽で処理された排水を、当該硫酸還元反応槽の気相中に散水することで排水中の硫黄ストリッピングを行う第2硫黄ストリッピング手段と、
をさらに有することを特徴とする請求項1に記載の排水処理装置。
First sulfur stripping means for performing sulfur stripping in the waste water by aeration of the hydrogen sulfide generated in the sulfuric acid reduction reaction tank into the waste water of the sulfuric acid reduction reaction tank;
A second sulfur stripping means for performing sulfur stripping in the waste water by sprinkling the waste water treated in the sulfuric acid reduction reaction tank into the gas phase of the sulfuric acid reduction reaction tank;
The wastewater treatment apparatus according to claim 1, further comprising:
好気性菌が投入され、前記メタン発酵槽で処理された排水を取り込んで、前記硫酸還元反応槽および前記メタン発酵槽で分解されなかった排水中の有機物を前記好気性菌により分解する好気処理を行う好気性処理槽をさらに有する
ことを特徴とする請求項1または2に記載の排水処理装置。
Aerobic treatment in which aerobic bacteria are introduced and wastewater treated in the methane fermentation tank is taken in, and organic substances in the wastewater not decomposed in the sulfuric acid reduction reaction tank and the methane fermentation tank are decomposed by the aerobic bacteria. The waste water treatment apparatus according to claim 1, further comprising an aerobic treatment tank for performing the above-described treatment.
前記メタン発酵槽で処理された排水を、前記生物脱硫処理槽へ供給する排水供給手段をさらに有する
ことを特徴とする請求項1〜3いずれか1項に記載の排水処理装置。
The wastewater treatment apparatus according to any one of claims 1 to 3, further comprising wastewater supply means for supplying wastewater treated in the methane fermentation tank to the biological desulfurization treatment tank.
前記硫酸還元反応槽の上流に、浮遊物質を除去するろ過手段またはたんぱく質を分解する熱処理手段をさらに有する
ことを特徴とする請求項1〜4いずれか1項に記載の排水処理装置。
The wastewater treatment apparatus according to any one of claims 1 to 4, further comprising a filtration means for removing suspended substances or a heat treatment means for decomposing proteins upstream of the sulfuric acid reduction reaction tank.
前記硫酸還元反応槽に、硫黄を供給する硫黄供給手段をさらに有する
ことを特徴とする請求項1〜5いずれか1項に記載の排水処理装置。
The wastewater treatment apparatus according to any one of claims 1 to 5, further comprising sulfur supply means for supplying sulfur to the sulfuric acid reduction reaction tank.
前記硫酸還元反応槽には硫酸還元菌が付着された担体が投入され、前記メタン発酵槽にはメタン生成菌の塊が投入され、前記生物脱硫処理槽には担体に付着された硫黄酸化菌が投入される
ことを特徴とする請求項1〜6いずれか1項に記載の排水処理装置。
The sulfate reduction reaction tank is loaded with a carrier with sulfate-reducing bacteria attached thereto, the methane fermentation tank is loaded with a mass of methanogenic bacteria, and the biological desulfurization treatment tank is filled with sulfur-oxidizing bacteria attached to the carrier. The waste water treatment apparatus according to claim 1, wherein the waste water treatment apparatus is introduced.
排水処理装置が、
硫酸還元反応槽に処理対象の排水を取り込んで、当該硫酸還元反応槽に投入された硫酸還元菌により排水中の硫酸イオンを還元することで有機物を分解するとともに硫化水素を生成する嫌気処理を行い、
メタン発酵槽に前記硫酸還元反応槽で処理された排水を取り込んで、前記硫酸還元反応槽で分解されなかった排水中の有機物を、当該メタン発酵槽に投入されたメタン生成菌により分解する嫌気処理を行い、
生物脱硫処理槽に前記硫酸還元反応槽で生成された硫化水素を取り込んで、当該生物脱硫処理槽に投入された硫黄酸化菌により脱硫処理を行うことで硫酸を生成し、生成した硫酸を前記硫酸イオンの還元に利用させるために硫酸還元反応槽に送水する
ことを特徴とする排水処理方法。
Wastewater treatment equipment
The wastewater to be treated is taken into the sulfuric acid reduction reaction tank, and the sulfate ions in the wastewater are reduced by the sulfuric acid reducing bacteria introduced into the sulfuric acid reduction reaction tank to decompose the organic matter and perform anaerobic treatment to generate hydrogen sulfide. ,
An anaerobic treatment in which wastewater treated in the sulfuric acid reduction reaction tank is taken into a methane fermentation tank, and organic matter in the wastewater that has not been decomposed in the sulfuric acid reduction reaction tank is decomposed by the methane-producing bacteria introduced into the methane fermentation tank. And
Hydrogen sulfide produced in the sulfuric acid reduction reaction tank is taken into a biological desulfurization treatment tank, and sulfuric acid is produced by performing desulfurization treatment with sulfur-oxidizing bacteria introduced into the biological desulfurization treatment tank, and the produced sulfuric acid is converted into the sulfuric acid. A wastewater treatment method characterized by sending water to a sulfuric acid reduction reaction tank for use in ion reduction.
JP2010084920A 2010-04-01 2010-04-01 Waste water treatment apparatus and waste water treatment method Expired - Fee Related JP5481255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010084920A JP5481255B2 (en) 2010-04-01 2010-04-01 Waste water treatment apparatus and waste water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010084920A JP5481255B2 (en) 2010-04-01 2010-04-01 Waste water treatment apparatus and waste water treatment method

Publications (2)

Publication Number Publication Date
JP2011212622A true JP2011212622A (en) 2011-10-27
JP5481255B2 JP5481255B2 (en) 2014-04-23

Family

ID=44942936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010084920A Expired - Fee Related JP5481255B2 (en) 2010-04-01 2010-04-01 Waste water treatment apparatus and waste water treatment method

Country Status (1)

Country Link
JP (1) JP5481255B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184123A (en) * 2012-03-08 2013-09-19 Toshiba Corp Water treatment apparatus and water treatment method
JP2014172003A (en) * 2013-03-11 2014-09-22 Toshiba Corp Apparatus and method for wastewater treatment
JP2014180620A (en) * 2013-03-19 2014-09-29 Sumitomo Heavy Industries Environment Co Ltd Anaerobic treatment system and method
CN104140155A (en) * 2014-08-04 2014-11-12 桂林电子科技大学 Method for generating elemental sulfur in biological treatment process of sulfate waste water
JPWO2015001708A1 (en) * 2013-07-03 2017-02-23 メタウォーター株式会社 Water treatment equipment
CN109879553A (en) * 2019-04-19 2019-06-14 四川省劲腾环保建材有限公司 A kind of control sulfide and sulfate device during preparing extruding dregs porcelain granule
CN112390376A (en) * 2020-10-20 2021-02-23 衡阳师范学院 Wastewater treatment composition and application
CN113149345A (en) * 2021-03-31 2021-07-23 衡阳师范学院 Wastewater treatment apparatus and wastewater treatment method

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638187A (en) * 1979-09-07 1981-04-13 Taki Chem Co Ltd Treatment of organic waste water
JPS5929090A (en) * 1982-08-10 1984-02-16 Saburo Matsui Anaerobic treatment of organic waste liquid
JPS6154292A (en) * 1984-08-24 1986-03-18 Hitachi Zosen Corp Two-phase mathane fermenting method by immobilized microbe
JPS6312399A (en) * 1986-07-03 1988-01-19 Hitachi Zosen Corp Treatment of waste liquor of 'shochu' (spirits) distillation
JPH02233198A (en) * 1989-03-06 1990-09-14 Takaoka Electric Mfg Co Ltd Two phase-type anaerobic water treatment apparatus
JPH03127696A (en) * 1989-10-13 1991-05-30 Kajima Corp Desulfurizer for waste water treating acid forming tank
JPH03278892A (en) * 1990-03-29 1991-12-10 Toshiba Corp Anaerobic water treatment apparatus
JPH07148495A (en) * 1993-11-29 1995-06-13 Mitsubishi Kakoki Kaisha Ltd Method for anaerobic treatment of organic waste water
JPH10156385A (en) * 1996-12-02 1998-06-16 Sumitomo Heavy Ind Ltd Treatment of organic waste water containing sulfuric acid radical
JPH11319880A (en) * 1998-05-14 1999-11-24 Kankyo Eng Co Ltd Biological treatment of organic waste water
JP2004148242A (en) * 2002-10-31 2004-05-27 Takashi Yamaguchi Waste water treatment method and waste water treatment equipment
JP2004261156A (en) * 2003-03-04 2004-09-24 Ishikawajima Harima Heavy Ind Co Ltd Method for treating protein-containing liquid and apparatus therefor
JP2005095783A (en) * 2003-09-25 2005-04-14 Mitsui Eng & Shipbuild Co Ltd Method and system for desulfurization
JP2005255700A (en) * 2004-03-09 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Biogas purification method and biogas purification system
JP2006035094A (en) * 2004-07-27 2006-02-09 Takashi Yamaguchi Method and apparatus for treating high concentration waste water
JP2006143780A (en) * 2004-11-16 2006-06-08 Toshiba Corp Biogas purification system
JP2006143781A (en) * 2004-11-16 2006-06-08 Toshiba Corp Biogas purification system
JP2006167512A (en) * 2004-12-13 2006-06-29 Tokyo Metropolitan Sewerage Service Corp Apparatus and method for treating methane fermented substance
JP2008012488A (en) * 2006-07-07 2008-01-24 Mitsui Eng & Shipbuild Co Ltd Anaerobic fermentation method and biological desulfurization method
JP2008188533A (en) * 2007-02-05 2008-08-21 Toshiba Corp Water treatment apparatus
JP2008208355A (en) * 2007-01-30 2008-09-11 Toshiba Corp Apparatus for biodesulfurization of biogas
JP2009148705A (en) * 2007-12-20 2009-07-09 Ebara Corp Method and apparatus for anaerobic treatment
JP2009161601A (en) * 2007-12-28 2009-07-23 Toshiba Corp Organism desulfurization apparatus
JP2009167300A (en) * 2008-01-16 2009-07-30 Toshiba Corp Biological desulfurization apparatus and start-up method thereof
JP2009190006A (en) * 2008-02-18 2009-08-27 Toshiba Corp Organism desulfurization apparatus
JP2009191166A (en) * 2008-02-14 2009-08-27 Toshiba Corp Biological desulfurization apparatus for biogas
JP2009254970A (en) * 2008-04-16 2009-11-05 Ihi Corp System and method for treating starch production wastewater
JP2010042327A (en) * 2008-08-08 2010-02-25 Toshiba Corp Water treatment system
JP2011078901A (en) * 2009-10-06 2011-04-21 Ihi Corp Water treatment apparatus, and water treatment method
JP2011189286A (en) * 2010-03-15 2011-09-29 Toshiba Corp Water treatment system for organic wastewater

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638187A (en) * 1979-09-07 1981-04-13 Taki Chem Co Ltd Treatment of organic waste water
JPS5929090A (en) * 1982-08-10 1984-02-16 Saburo Matsui Anaerobic treatment of organic waste liquid
JPS6154292A (en) * 1984-08-24 1986-03-18 Hitachi Zosen Corp Two-phase mathane fermenting method by immobilized microbe
JPS6312399A (en) * 1986-07-03 1988-01-19 Hitachi Zosen Corp Treatment of waste liquor of 'shochu' (spirits) distillation
JPH02233198A (en) * 1989-03-06 1990-09-14 Takaoka Electric Mfg Co Ltd Two phase-type anaerobic water treatment apparatus
JPH03127696A (en) * 1989-10-13 1991-05-30 Kajima Corp Desulfurizer for waste water treating acid forming tank
JPH03278892A (en) * 1990-03-29 1991-12-10 Toshiba Corp Anaerobic water treatment apparatus
JPH07148495A (en) * 1993-11-29 1995-06-13 Mitsubishi Kakoki Kaisha Ltd Method for anaerobic treatment of organic waste water
JPH10156385A (en) * 1996-12-02 1998-06-16 Sumitomo Heavy Ind Ltd Treatment of organic waste water containing sulfuric acid radical
JPH11319880A (en) * 1998-05-14 1999-11-24 Kankyo Eng Co Ltd Biological treatment of organic waste water
JP2004148242A (en) * 2002-10-31 2004-05-27 Takashi Yamaguchi Waste water treatment method and waste water treatment equipment
JP2004261156A (en) * 2003-03-04 2004-09-24 Ishikawajima Harima Heavy Ind Co Ltd Method for treating protein-containing liquid and apparatus therefor
JP2005095783A (en) * 2003-09-25 2005-04-14 Mitsui Eng & Shipbuild Co Ltd Method and system for desulfurization
JP2005255700A (en) * 2004-03-09 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Biogas purification method and biogas purification system
JP2006035094A (en) * 2004-07-27 2006-02-09 Takashi Yamaguchi Method and apparatus for treating high concentration waste water
JP2006143780A (en) * 2004-11-16 2006-06-08 Toshiba Corp Biogas purification system
JP2006143781A (en) * 2004-11-16 2006-06-08 Toshiba Corp Biogas purification system
JP2006167512A (en) * 2004-12-13 2006-06-29 Tokyo Metropolitan Sewerage Service Corp Apparatus and method for treating methane fermented substance
JP2008012488A (en) * 2006-07-07 2008-01-24 Mitsui Eng & Shipbuild Co Ltd Anaerobic fermentation method and biological desulfurization method
JP2008208355A (en) * 2007-01-30 2008-09-11 Toshiba Corp Apparatus for biodesulfurization of biogas
JP2008188533A (en) * 2007-02-05 2008-08-21 Toshiba Corp Water treatment apparatus
JP2009148705A (en) * 2007-12-20 2009-07-09 Ebara Corp Method and apparatus for anaerobic treatment
JP2009161601A (en) * 2007-12-28 2009-07-23 Toshiba Corp Organism desulfurization apparatus
JP2009167300A (en) * 2008-01-16 2009-07-30 Toshiba Corp Biological desulfurization apparatus and start-up method thereof
JP2009191166A (en) * 2008-02-14 2009-08-27 Toshiba Corp Biological desulfurization apparatus for biogas
JP2009190006A (en) * 2008-02-18 2009-08-27 Toshiba Corp Organism desulfurization apparatus
JP2009254970A (en) * 2008-04-16 2009-11-05 Ihi Corp System and method for treating starch production wastewater
JP2010042327A (en) * 2008-08-08 2010-02-25 Toshiba Corp Water treatment system
JP2011078901A (en) * 2009-10-06 2011-04-21 Ihi Corp Water treatment apparatus, and water treatment method
JP2011189286A (en) * 2010-03-15 2011-09-29 Toshiba Corp Water treatment system for organic wastewater

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184123A (en) * 2012-03-08 2013-09-19 Toshiba Corp Water treatment apparatus and water treatment method
JP2014172003A (en) * 2013-03-11 2014-09-22 Toshiba Corp Apparatus and method for wastewater treatment
JP2014180620A (en) * 2013-03-19 2014-09-29 Sumitomo Heavy Industries Environment Co Ltd Anaerobic treatment system and method
JPWO2015001708A1 (en) * 2013-07-03 2017-02-23 メタウォーター株式会社 Water treatment equipment
CN104140155A (en) * 2014-08-04 2014-11-12 桂林电子科技大学 Method for generating elemental sulfur in biological treatment process of sulfate waste water
CN104140155B (en) * 2014-08-04 2015-11-25 桂林电子科技大学 The method of elemental sulfur is generated in sulfate wastewater biological treatment process
CN109879553A (en) * 2019-04-19 2019-06-14 四川省劲腾环保建材有限公司 A kind of control sulfide and sulfate device during preparing extruding dregs porcelain granule
CN109879553B (en) * 2019-04-19 2024-05-14 四川省劲腾环保建材有限公司 Device for controlling sulfides and sulfates in process of preparing puffing slag ceramsite
CN112390376A (en) * 2020-10-20 2021-02-23 衡阳师范学院 Wastewater treatment composition and application
CN113149345A (en) * 2021-03-31 2021-07-23 衡阳师范学院 Wastewater treatment apparatus and wastewater treatment method

Also Published As

Publication number Publication date
JP5481255B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5481255B2 (en) Waste water treatment apparatus and waste water treatment method
JP4982789B2 (en) Wastewater treatment method and apparatus by methane fermentation
JP6448382B2 (en) Nitrogen-containing wastewater denitrification method and denitrification apparatus
JP6081623B2 (en) Wastewater treatment system
JP5197223B2 (en) Water treatment system
Sürmeli et al. Ammonia recovery from chicken manure digestate using polydimethylsiloxane membrane contactor
JP4625508B2 (en) Nitrate waste liquid treatment method and apparatus
CN105776775A (en) Anaerobic-autotrophic nitrogen removal-ozone oxidation coupling landfill leachate whole flow process zero emission processing process
JP6750930B6 (en) Sewage purification system
HK1076618A1 (en) Process and assembly for the treatment of waste water on ships
KR20100078401A (en) A apparatus and treatment method for wastewater including excrementitious matter of domestic animals, and a production method of liquid fertilizer using the apparatus
JP2011189286A (en) Water treatment system for organic wastewater
CN104531783B (en) The method that copper sulphate joint alkaline pH promotes excess sludge anaerobic fermentation production short chain fatty acids
JP4655974B2 (en) Waste water treatment method and treatment apparatus
WO2009099208A1 (en) Method and apparatus for treating radioactive nitrate waste liquid
CN108862827A (en) A kind of processing method of ammonia nitrogen waste water
JP2014008431A (en) Method and apparatus for anaerobic digestion treatment of organic wastewater
KR20100102818A (en) Advanced wastewater treatment apparatus for water reuse with sludge reduction in the process and wastewater treatment method using the same
JP2007007620A (en) Method for treating nitrogen-containing liquid waste
WO1997033836A1 (en) Method and apparatus for treating water
JP2006075779A (en) Sludge volume reduction device and method, and organic waste water treatment system
JP2014050767A (en) Water waste treatment apparatus and method
CN202430086U (en) Device for synthesizing and treating landfill leachate
CN205061679U (en) Sewage treatment system of gasification dephosphorization
JPH047099A (en) Waste water treatment apparatus for simultaneously removing organic matter, nitrogen and phosphorus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R151 Written notification of patent or utility model registration

Ref document number: 5481255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees