JP2011078901A - Water treatment apparatus, and water treatment method - Google Patents

Water treatment apparatus, and water treatment method Download PDF

Info

Publication number
JP2011078901A
JP2011078901A JP2009232545A JP2009232545A JP2011078901A JP 2011078901 A JP2011078901 A JP 2011078901A JP 2009232545 A JP2009232545 A JP 2009232545A JP 2009232545 A JP2009232545 A JP 2009232545A JP 2011078901 A JP2011078901 A JP 2011078901A
Authority
JP
Japan
Prior art keywords
water
reaction tank
sulfate
bod
organic wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009232545A
Other languages
Japanese (ja)
Other versions
JP5387310B2 (en
Inventor
Tomoaki Kuno
智明 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009232545A priority Critical patent/JP5387310B2/en
Publication of JP2011078901A publication Critical patent/JP2011078901A/en
Application granted granted Critical
Publication of JP5387310B2 publication Critical patent/JP5387310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To treat organic wastewater at a lower cost than before. <P>SOLUTION: The water treatment apparatus includes a sulfate ion adding device for adding sulfate ions to organic wastewater being raw water in an amount equivalent to BOD (Biochemical Oxygen Demand) of the organic wastewater, an anaerobic reaction tank for anaerobically treating the organic wastewater to which the sulfate ions are added and an oxidative reaction tank for applying oxidative treatment to the treated water of the anaerobic reaction tank. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水処理装置及び方法に関する。   The present invention relates to a water treatment apparatus and method.

下記特許文献1には、硫酸イオンを含む有機性排水の嫌気性処理方法が開示されている。この排水処理方法は、硫酸イオンを含む有機性排水をメタン発酵処理(嫌気性処理)するに際して、処理槽(発酵槽)の発生ガスを脱硫槽で脱硫した後、処理槽に戻すことにより発生ガス中の硫化水素濃度を低下させるものである。このような排水処理方法によれば、処理槽におけるメタン菌の活性の低下を抑制することができる。   Patent Document 1 below discloses an anaerobic treatment method for organic wastewater containing sulfate ions. In this wastewater treatment method, when organic wastewater containing sulfate ions is subjected to methane fermentation treatment (anaerobic treatment), the generated gas in the treatment tank (fermenter) is desulfurized in the desulfurization tank and then returned to the treatment tank. It reduces the hydrogen sulfide concentration inside. According to such a waste water treatment method, a decrease in the activity of methane bacteria in the treatment tank can be suppressed.

特開平05−007894号公報JP 05-007894 A

ところで、上記脱硫槽には、乾式のものと湿式のもの(生物処理も含む)とがあるが、何れも運転コストが高いと共に、湿式のものは余剰汚泥が多く発生するため、この余剰汚泥の処理にもコストがかかるという問題がある。   By the way, the desulfurization tank has a dry type and a wet type (including biological treatment), both of which have high operating costs, and the wet type generates a lot of excess sludge. There is a problem that processing is also expensive.

本発明は、上述した事情に鑑みてなされたものであり、有機性排水を従来よりも低コストで処理することを目的とするものである。   This invention is made | formed in view of the situation mentioned above, and aims at processing organic waste_water | drain at lower cost than before.

上記目的を達成するために、本発明では、水処理装置に係る第1の解決手段として、原水としての有機性排水に当該有機性排水のBOD(Biochemical Oxygen Demand)に当量する硫酸イオンを添加する硫酸イオン添加装置と、前記硫酸イオンが添加された有機性排水を嫌気性処理する嫌気性反応槽と、該嫌気性処理槽の処理水を酸化処理する酸化反応槽とを具備する、という手段を採用する。   In order to achieve the above-mentioned object, in the present invention, as a first solution for the water treatment apparatus, sulfate ion equivalent to BOD (Biochemical Oxygen Demand) of the organic waste water is added to the organic waste water as raw water. Means comprising: a sulfate ion addition device; an anaerobic reaction tank for anaerobically treating the organic wastewater to which the sulfate ion is added; and an oxidation reaction tank for oxidizing the treated water of the anaerobic treatment tank. adopt.

水処理装置に係る第2の解決手段として、上記第1の解決手段において、酸化反応槽は、好気性微生物が配置された気層部と該気層部の下に配置された液層部とからなる好気性反応槽であり、気層部に上方から嫌気性反応槽の処理水を供給し、液層部に下方から空気を供給する、という手段を採用する。   As a second solving means relating to the water treatment apparatus, in the first solving means, the oxidation reaction tank includes an air layer portion in which aerobic microorganisms are disposed, and a liquid layer portion disposed under the air layer portion. This is an aerobic reaction tank comprising: an anaerobic reaction tank treated water from above, and air supplied from below to the liquid layer part.

水処理装置に係る第3の解決手段として、上記第1または第2の解決手段において、酸化反応槽の処理水の一部を嫌気性反応槽に循環水として戻す、という手段を採用する。   As the third solving means relating to the water treatment apparatus, a means is adopted in which part of the treated water in the oxidation reaction tank is returned to the anaerobic reaction tank as circulating water in the first or second solving means.

水処理装置に係る第4の解決手段として、上記第1〜第3いずれかの解決手段において、硫酸イオン添加装置は、硫酸イオンを発生させる硫酸ナトリウム(NaSO)を有機性排水に添加する、という手段を採用する。 As a fourth solving means related to the water treatment apparatus, in any of the first to third solving means, the sulfate ion adding device adds sodium sulfate (Na 2 SO 4 ) for generating sulfate ions to the organic waste water. Adopt the means to do.

水処理装置に係る第5の解決手段として、上記第1〜第4いずれかの解決手段において、原水としての有機性排水が当該有機性排水のBODに当量する硫酸イオンよりも少ない量の硫酸イオンを含むものである場合、硫酸イオン添加装置は、有機性排水のBODに当量する硫酸イオンに不足する硫酸イオンを有機性排水に添加する、という手段を採用する。   As a fifth solving means related to the water treatment apparatus, in any one of the first to fourth solving means, the organic waste water as the raw water is less than the sulfate ion equivalent to the BOD of the organic waste water. In the case where it contains, the sulfate ion addition device adopts a means of adding sulfate ions, which are deficient in sulfate ions equivalent to the BOD of the organic waste water, to the organic waste water.

また、本発明では、水処理方法に係る第1の解決手段として、原水としての有機性排水に当該有機性排水のBOD(Biochemical Oxygen Demand)に当量する硫酸イオンを添加する硫酸イオン添加工程と、該硫酸イオン添加工程を経た有機性排水を嫌気性処理する嫌気性処理工程と、嫌気性処理工程の処理水を酸化処理する酸化処理工程とを有する、という手段を採用する。   Further, in the present invention, as a first solution for the water treatment method, a sulfate ion addition step of adding sulfate ions equivalent to BOD (Biochemical Oxygen Demand) of the organic wastewater to the organic wastewater as raw water, A means is adopted that includes an anaerobic treatment step for anaerobically treating the organic waste water that has undergone the sulfate ion addition step and an oxidation treatment step for oxidizing the treated water of the anaerobic treatment step.

水処理方法に係る第2の解決手段として、上記第1の解決手段において、酸化処理工程は、好気性微生物が配置された気層部と液層部とを上下に配置した好気性反応槽において、気層部に上方から嫌気性反応槽の処理水を供給し、液層部に下方から空気を供給して行う、という手段を採用する。   As a second solving means related to the water treatment method, in the first solving means, the oxidation treatment step is performed in an aerobic reaction tank in which an air layer part and a liquid layer part in which aerobic microorganisms are arranged are arranged vertically. In addition, a method is adopted in which the treated water in the anaerobic reaction tank is supplied to the gas layer portion from above and air is supplied to the liquid layer portion from below.

水処理方法に係る第3の解決手段として、上記第1または第2の解決手段において、酸化処理工程における処理水の一部を嫌気性処理工程に循環水として戻す、という手段を採用する。   As a third solving means relating to the water treatment method, a means is adopted in which part of the treated water in the oxidation treatment step is returned to the anaerobic treatment step as circulating water in the first or second solving means.

水処理方法に係る第4の解決手段として、上記第1〜第3いずれかの解決手段において、硫酸ナトリウム(NaSO)によって硫酸イオンを有機性排水に添加する、という手段を採用する。 As a fourth solving means relating to the water treatment method, a means is adopted in which sulfate ions are added to the organic waste water with sodium sulfate (Na 2 SO 4 ) in any of the first to third solving means.

水処理方法に係る第5の解決手段として、上記第1〜第4いずれかの解決手段において、原水としての有機性排水が当該有機性排水のBODに当量する硫酸イオンよりも少ない量の硫酸イオンを含むものである場合、有機性排水のBODに当量する硫酸イオンに不足する硫酸イオンを有機性排水に添加する、という手段を採用する。   As a fifth solving means related to the water treatment method, in any of the first to fourth solving means, the organic waste water as the raw water has a smaller amount of sulfate ion than the sulfate ion equivalent to the BOD of the organic waste water. In the case where the organic wastewater is contained, a method is adopted in which sulfate ions that are deficient in sulfate ions equivalent to the BOD of the organic wastewater are added to the organic wastewater.

本発明によれば、嫌気性処理によって収率良く硫化水素(HS)を発生させることができ、また当該硫化水素(HS)を酸化処理によって有価物である硫黄(S)を収率良く得ることができるので、硫化水素(HS)を脱硫槽で脱硫する従来技術よりも有機性排水を低コストで処理することが可能である。 According to the present invention, hydrogen sulfide (H 2 S) can be generated with good yield by anaerobic treatment, and valuable sulfur (S) is collected by oxidizing the hydrogen sulfide (H 2 S). Since it can be obtained efficiently, it is possible to treat organic wastewater at a lower cost than in the prior art in which hydrogen sulfide (H 2 S) is desulfurized in a desulfurization tank.

本発明の一実施形態に係る水処理装置Aのシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the water treatment apparatus A which concerns on one Embodiment of this invention.

以下、図面を参照して、本発明の一実施形態について説明する。
本実施形態に係る水処理装置Aは、図1に示すように、調整槽1、嫌気性反応槽2、好気性反応槽3(酸化反応槽)、BOD計測器4、硫酸ナトリウム添加装置5及び空気供給装置6から構成されている。このような水処理装置Aは、外部から供給される原水X1(硫酸イオンを含む有機性排水)のBOD(生物化学的酸素要求量;Biochemical Oxygen Demand)が事業所の排水基準あるいは環境基準以下となるように処理するものである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the water treatment apparatus A according to the present embodiment includes an adjustment tank 1, an anaerobic reaction tank 2, an aerobic reaction tank 3 (oxidation reaction tank), a BOD measuring device 4, a sodium sulfate addition device 5, and An air supply device 6 is used. In such a water treatment apparatus A, the BOD (Biochemical Oxygen Demand) of raw water X1 (organic wastewater containing sulfate ions) supplied from the outside is below the wastewater standard or environmental standard of the establishment. It is processed as follows.

なお、硫酸イオンを含む有機性排水である原水X1は、例えば食品製造排水、パルプ製造排水あるいは下水である。このような原水X1は、50〜2000mg-BOD/Lの有機物(≒BOD)を含むと共に、50〜3000mg-SO/Lの硫酸イオン(SO 2−)を含む排水である。このような原水X1における硫酸イオン(SO 2−)の含有量は、後述する嫌気性反応槽2内の硫酸還元反応、つまり原水X1に含まれる有機成分と硫酸イオン(SO 2−)とを過不足なく反応させて硫化水素(HS)化するために必要な量に対して不足する量である。 The raw water X1, which is an organic wastewater containing sulfate ions, is, for example, food production wastewater, pulp production wastewater, or sewage. Such raw water X1 is a wastewater containing 50 to 2000 mg-BOD / L of organic matter (≈BOD) and 50 to 3000 mg-SO 4 / L of sulfate ions (SO 4 2− ). The content of sulfate ion (SO 4 2− ) in such raw water X1 is the sulfuric acid reduction reaction in the anaerobic reaction tank 2 described later, that is, the organic component and sulfate ion (SO 4 2− ) contained in the raw water X1. The amount is insufficient with respect to the amount necessary for the reaction to form hydrogen sulfide (H 2 S) without excess or deficiency.

調整槽1は、外部から供給された原水X1と硫酸ナトリウム添加装置5から供給された硫酸ナトリウム水溶液X2とを混合・攪拌する所定容量の容器であり、混合・攪拌後の混合水X3を嫌気性反応槽2に排出する。   The adjustment tank 1 is a container having a predetermined capacity for mixing and stirring the raw water X1 supplied from the outside and the sodium sulfate aqueous solution X2 supplied from the sodium sulfate addition device 5, and the mixed water X3 after mixing and stirring is anaerobic. Discharge into reaction vessel 2.

嫌気性反応槽2は、嫌気性微生物であるメタン菌が汚泥床2aとして内部に設けられた反応槽であり、下部から注入された上記混合水X3及び後述する循環水X7をメタン生成菌の作用によってメタン発酵(嫌気性処理)するものである。   The anaerobic reaction tank 2 is a reaction tank in which methane bacteria, which are anaerobic microorganisms, are provided as a sludge bed 2a. The mixed water X3 injected from the lower part and the circulating water X7, which will be described later, act on the action of the methane producing bacteria. Methane fermentation (anaerobic treatment).

この嫌気性反応槽2では、メタン生成菌の作用によって原水X1に含まれる有機成分が分解されてメタンガス(CH)と二酸化炭素(CO)とが主に発生するが、メタン生成菌と共生する硫酸還元菌の作用によって上記混合水X3に含まれる硫酸イオン(SO 2−)が硫酸還元処理されて硫化水素(HS)が生成される。このような嫌気性反応槽2では、このような硫化水素(HS)が溶け込んだ上記上澄み液が中間処理水X4として上部から取り出されて好気性反応槽3に排水される。 In the anaerobic reaction tank 2, the organic components contained in the raw water X1 are decomposed by the action of the methanogen, and methane gas (CH 4 ) and carbon dioxide (CO 4 ) are mainly generated. The sulfate ions (SO 4 2− ) contained in the mixed water X 3 are subjected to a sulfuric acid reduction treatment to generate hydrogen sulfide (H 2 S). In such an anaerobic reaction tank 2, the supernatant liquid in which such hydrogen sulfide (H 2 S) is dissolved is taken out from the upper portion as intermediate treated water X 4 and drained into the aerobic reaction tank 3.

なお、この嫌気性反応槽2における処理条件は、pH5〜8(最適値:pH6)、温度15〜40℃(最適値:30℃)、また圧力は反応槽の保持液深相当(最適値:0.05MPa)である。   The treatment conditions in the anaerobic reaction tank 2 are pH 5-8 (optimum value: pH 6), temperature 15-40 ° C. (optimum value: 30 ° C.), and pressure is equivalent to the retentate depth in the reaction tank (optimum value: 0.05 MPa).

好気性反応槽3は、好気性微生物が汚泥床3aとして配置された気層部3b(上部)と該気層部3bの下に配置された液層部3c(下部)とからなり、気層部3bに上方から上記中間処理水X4が供給され、また中間処理水X4によって下部に溜まった液層部3cに下方から空気供給装置6の空気X5が供給されるようになっている。このような好気性反応槽3では、中間処理水X4が上方からシャワー状に落下して汚泥床3aを通過する一方、液層部3cを曝気(ばっき)した空気X5が下方から汚泥床3aを通過する。   The aerobic reaction tank 3 includes an air layer part 3b (upper part) in which aerobic microorganisms are arranged as a sludge bed 3a and a liquid layer part 3c (lower part) arranged under the gas layer part 3b. The intermediate treated water X4 is supplied to the part 3b from above, and the air X5 of the air supply device 6 is supplied to the liquid layer part 3c accumulated in the lower part by the intermediate treated water X4 from below. In such an aerobic reaction tank 3, the intermediate treated water X4 falls like a shower from above and passes through the sludge bed 3a, while the air X5 aerated (absorbed) from the liquid layer portion 3c is sludge bed 3a from below. Pass through.

この汚泥床3aでは、上記中間処理水X4に含まれる硫化水素(HS)と空気X5に含まれる酸素(O)とが硫化物酸化反応を起こして硫黄(S)と水(HO)とが生成される。このような好気性反応槽3は、上記硫黄(S)と水(HO)とを含む液層部3cの上澄み液が処理済水X6として外部に排出する一方、液層部3cの下部から取り出した処理水を上記循環水X7として嫌気性反応槽2の下部に供給する。 In the sludge bed 3a, hydrogen sulfide (H 2 S) contained in the intermediate treated water X4 and oxygen (O 2 ) contained in the air X5 cause a sulfide oxidation reaction to cause sulfur (S) and water (H 2 ). O). In such an aerobic reaction tank 3, while the supernatant of the liquid layer part 3c containing sulfur (S) and water (H 2 O) is discharged to the outside as treated water X6, the lower part of the liquid layer part 3c The treated water taken out from the water is supplied to the lower part of the anaerobic reaction tank 2 as the circulating water X7.

この好気性反応槽3における処理条件は、pH4〜8(最適値:pH6)、温度15〜40℃(最適値:30℃)、また圧力は反応槽の保持液深相当(最適値:0.05MPa)である。   The treatment conditions in the aerobic reaction tank 3 are pH 4-8 (optimum value: pH 6), temperature 15-40 ° C. (optimum value: 30 ° C.), and pressure is equivalent to the retentate depth in the reaction tank (optimum value: 0. 05 MPa).

BOD計測器4は、上記調整槽1における原水X1のBODを定期的あるいは不定期に計測する計測器であり、計測値を硫酸ナトリウム添加装置5に出力する。このBOD計測器4は、例えばJISに規定された溶存酸素の量を評価する比較的精度が高い測定方法あるいはバイオセンサーを用いた簡易的な測定方法等に基づいてBODを測定する。また、測定タイミングは、所定日数毎の定期的なタイミングあるいは食品製造排水、パルプ製造排水あるいは下水等の原水X1の種類が変更される不定期なタイミングの何れであっても良く、適宜適切なタイミングに設定される。   The BOD measuring device 4 is a measuring device that measures the BOD of the raw water X1 in the adjustment tank 1 regularly or irregularly, and outputs the measured value to the sodium sulfate addition device 5. The BOD measuring instrument 4 measures the BOD based on, for example, a comparatively high measuring method for evaluating the amount of dissolved oxygen specified in JIS or a simple measuring method using a biosensor. The measurement timing may be either a regular timing every predetermined number of days or an irregular timing at which the type of raw water X1 such as food production wastewater, pulp production wastewater, or sewage is changed. Set to

硫酸ナトリウム添加装置5は、硫酸塩の一種である硫酸ナトリウム(NaSO)の水溶液(硫酸ナトリウム水溶液)を硫酸イオン(SO 2−)として調整槽1に供給する。この硫酸ナトリウム添加装置5は、硫酸ナトリウム水溶液の調整槽1への添加量、BOD及び硫酸イオン量を食品製造排水、パルプ製造排水あるいは下水等の原水X1の種類毎に登録した原水テーブルを予め記憶しており、当該添加量テーブルに基づいて実際に処理する原水X1の種類に対応する添加量の硫酸ナトリウム水溶液を調整槽1に供給する。 The sodium sulfate addition device 5 supplies an aqueous solution (sodium sulfate aqueous solution) of sodium sulfate (Na 2 SO 4 ), which is a kind of sulfate, to the adjustment tank 1 as sulfate ions (SO 4 2− ). This sodium sulfate addition device 5 stores in advance a raw water table in which the amount of sodium sulfate aqueous solution added to the adjustment tank 1, the BOD and the amount of sulfate ions are registered for each type of raw water X1 such as food production wastewater, pulp production wastewater or sewage. The amount of sodium sulfate aqueous solution corresponding to the type of raw water X1 that is actually processed based on the addition amount table is supplied to the adjustment tank 1.

すなわち、原水X1に含まれる有機成分と硫酸イオン(SO 2−)とが嫌気性反応槽2において過不足なく反応して硫化水素(HS)化するために必要な硫酸イオン量M0、また原水X1にもともと含まれる硫酸イオン量M1とすると、硫酸ナトリウム添加装置5は、硫酸イオン量Mから硫酸イオン量M1を差し引いた量M2(=M0−M1)、つまり硫酸イオン量M0に対する硫酸イオン量M1の不足分の硫酸イオン(SO 2−)に相当する硫酸ナトリウム水溶液を調整槽1に供給する。 That is, the amount of sulfate ion M0 required for the organic component and sulfate ion (SO 4 2− ) contained in the raw water X 1 to react with each other without excess or deficiency in the anaerobic reaction tank 2 to form hydrogen sulfide (H 2 S), If the amount of sulfate ion M1 originally contained in the raw water X1 is M1, the sodium sulfate addition device 5 is an amount M2 (= M0−M1) obtained by subtracting the amount of sulfate ion M1 from the amount of sulfate ion M, that is, sulfate ion relative to the amount of sulfate ion M0. A sodium sulfate aqueous solution corresponding to a shortage of sulfate ions (SO 4 2− ) of an amount M 1 is supplied to the adjustment tank 1.

BODは原水X1の種類(食品製造排水、パルプ製造配排水、一般下水、等々)毎に予め見積もることができるので、硫酸ナトリウム添加装置5には上記固定量が原水X1の種類毎に予め記憶されている。また、空気供給装置6は、空気を液層部3cの下部に所定圧で送り込むブロワである。   Since the BOD can be estimated in advance for each type of raw water X1 (food manufacturing wastewater, pulp manufacturing and distribution wastewater, general sewage, etc.), the fixed amount is stored in advance in the sodium sulfate addition device 5 for each type of raw water X1. ing. The air supply device 6 is a blower that sends air to the lower portion of the liquid layer portion 3c at a predetermined pressure.

次に、このように構成された水処理装置Aの動作についてさらに詳しく説明する。
本水処理装置Aが稼働すると、BOD計測器4は予め設定されたタイミングで調整槽1に貯留された原水X1のBODを計測し、その計測値を硫酸ナトリウム添加装置5に出力する。この結果として、硫酸ナトリウム添加装置5は、原水X1のBODに応じた、つまりBODに対して化学的に当量となる硫酸ナトリウム(NaSO)が原水X1に添加されるように、硫酸ナトリウム水溶液X2を調整槽1に供給する。
Next, operation | movement of the water treatment apparatus A comprised in this way is demonstrated in detail.
When the water treatment apparatus A is in operation, the BOD measuring instrument 4 measures the BOD of the raw water X1 stored in the adjustment tank 1 at a preset timing, and outputs the measured value to the sodium sulfate addition apparatus 5. As a result, the sodium sulfate addition device 5 is configured so that sodium sulfate (Na 2 SO 4 ) corresponding to the BOD of the raw water X1, that is, chemically equivalent to the BOD is added to the raw water X1. The aqueous solution X2 is supplied to the adjustment tank 1.

なお、硫酸ナトリウム添加装置5は、原水テーブルに登録された原水X1のBODがBOD計測器4の計測結果と大幅に異なる場合には警報を発生して、この事態を水処理装置Aの管理者に知らせる。   The sodium sulfate addition device 5 generates an alarm when the BOD of the raw water X1 registered in the raw water table is significantly different from the measurement result of the BOD measuring device 4, and this situation is indicated by the administrator of the water treatment device A. To inform.

調整槽1は、このようにして硫酸ナトリウム添加装置5から供給された硫酸ナトリウム水溶液X2を原水X1と混合・攪拌し、その結果得られた混合水X3を嫌気性反応槽2に出力する。
なお、周知のように、硫酸塩の一種である硫酸ナトリウム(NaSO)は、水溶性であり、水に溶けることによってナトリウムイオン(Na)と硫酸イオン(SO 2−)とに分解する。
The adjustment tank 1 mixes and stirs the sodium sulfate aqueous solution X2 thus supplied from the sodium sulfate addition device 5 with the raw water X1, and outputs the resulting mixed water X3 to the anaerobic reaction tank 2.
As is well known, sodium sulfate (Na 2 SO 4 ), which is a kind of sulfate, is water-soluble and dissolves in water to form sodium ions (Na + ) and sulfate ions (SO 4 2− ). Decompose.

そして、このような混合水X3が流入する嫌気性反応槽2では、汚泥床2aのメタン生成菌の作用によって有機成分がメタン発酵(嫌気性処理)してメタンガス(CH)と二酸化炭素(CO)とが発生すると共に、同じく汚泥床2aに上記メタン生成菌と共生する硫酸還元菌の作用によって上記硫酸イオン(SO 2−)が硫酸還元処理されて硫化水素(HS)が生成される。すなわち、嫌気性反応槽2内では、有機成分である炭水化物が硫酸還元菌の作用によって硫酸イオン(SO 2−)と反応して二酸化炭素(CO)、硫化水素(HS)及び水(HO)に変化する。 In the anaerobic reaction tank 2 into which the mixed water X3 flows, the organic components are subjected to methane fermentation (anaerobic treatment) by the action of the methane-producing bacteria in the sludge bed 2a, and methane gas (CH 4 ) and carbon dioxide (CO 4 ), and the sulfate ions (SO 4 2− ) are sulfate-reduced by the action of sulfate-reducing bacteria coexisting with the methanogenic bacteria on the sludge bed 2a to produce hydrogen sulfide (H 2 S). Is done. That is, in the anaerobic reaction tank 2, carbohydrates that are organic components react with sulfate ions (SO 4 2− ) by the action of sulfate reducing bacteria to react with carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S), and water. Change to (H 2 O).

ここで、嫌気性反応槽2の処理対象である混合水X3は、硫酸ナトリウム添加装置5から調整槽1に硫酸ナトリウム水溶液が所定量添加されることにより、原水X1のBODに対して化学的に当量となる硫酸イオン(SO 2−)を含むものである。したがって、原水X1中に含まれる有機成分と硫酸イオン(SO 2−)とが過不足なく反応して硫化水素(HS)が生成される。すなわち、原水X1の硫酸イオン(SO 2−)に含まれる硫黄(S)成分の殆どが硫化水素(HS)に還元される。 Here, the mixed water X3 to be treated in the anaerobic reaction tank 2 is chemically added to the BOD of the raw water X1 by adding a predetermined amount of aqueous sodium sulfate solution from the sodium sulfate addition device 5 to the adjustment tank 1. It contains sulfate ions (SO 4 2− ) which are equivalent. Therefore, the organic component contained in the raw water X1 and sulfate ions (SO 4 2− ) react without excess or deficiency to generate hydrogen sulfide (H 2 S). That is, most of the sulfur (S) component contained in the sulfate ion (SO 4 2− ) of the raw water X1 is reduced to hydrogen sulfide (H 2 S).

嫌気性反応槽2は、このような硫化水素(HS)が溶存する中間処理水X4(上澄み液)を好気性反応槽3に排水する。好気性反応槽3では、中間処理水X4が汚泥床3aを上方から下方に向けて通過すると共に、空気X5が同じく汚泥床3aを下方から上方に通過する。このような対向流として中間処理水X4と空気X5とが汚泥床3aを通過すると、汚泥床3aの好気性微生物の作用によって、硫化水素(HS)が酸素(O)と硫化物酸化反応を起こして硫黄(S)と水(HO)とが生成する。 The anaerobic reaction tank 2 drains the intermediate treated water X4 (supernatant liquid) in which such hydrogen sulfide (H 2 S) is dissolved into the aerobic reaction tank 3. In the aerobic reaction tank 3, the intermediate treated water X4 passes through the sludge bed 3a downward from above, and the air X5 similarly passes through the sludge bed 3a upward from below. When the intermediate treated water X4 and air X5 pass through the sludge bed 3a as such counterflows, hydrogen sulfide (H 2 S) is oxidized with oxygen (O 2 ) and sulfide by the action of aerobic microorganisms in the sludge bed 3a. Reaction occurs to produce sulfur (S) and water (H 2 O).

すなわち、嫌気性反応槽2内では、以下の反応式(1)に沿った酸化反応が起こる。
S + O → SO 2− + H
→ S + HO (1)
That is, in the anaerobic reaction tank 2, an oxidation reaction along the following reaction formula (1) occurs.
H 2 S + O 2 → SO 4 2− + H 2 O
→ S + H 2 O (1)

ここで、硫化水素(HS)から転化した硫酸イオン(SO 2−)がさらに参加されて単独元素である硫黄(S)にまで酸化されるためには、硫化水素量に対して酸素量を最適設定する必要があるが、本実施形態では、硫酸ナトリウム添加装置5から調整槽1に硫酸ナトリウム水溶液を所定量添加することにより原水X1のBODに対して化学的に当量となる硫酸イオン(SO 2−)が含まれているので、嫌気性反応槽2における硫化水素(HS)の発生量を見積もることが可能である。したがって、本実施形態では、硫化水素(HS)の発生量に対して最適設定された量の酸素(O)を空気供給装置6から嫌気性反応槽2に供給することが容易である。 Here, in order for the sulfate ion (SO 4 2− ) converted from hydrogen sulfide (H 2 S) to further participate and be oxidized to sulfur (S), which is a single element, oxygen relative to the amount of hydrogen sulfide. It is necessary to optimally set the amount, but in this embodiment, sulfate ions that are chemically equivalent to the BOD of the raw water X1 by adding a predetermined amount of aqueous sodium sulfate solution from the sodium sulfate addition device 5 to the adjustment tank 1. Since (SO 4 2− ) is contained, the amount of hydrogen sulfide (H 2 S) generated in the anaerobic reaction tank 2 can be estimated. Therefore, in this embodiment, it is easy to supply oxygen (O 2 ) in an amount optimally set with respect to the generation amount of hydrogen sulfide (H 2 S) from the air supply device 6 to the anaerobic reaction tank 2. .

このような本実施形態によれば、硫酸ナトリウム添加装置5から調整槽1に硫酸ナトリウム水溶液を所定量添加することにより、嫌気性反応槽2の処理対象である混合水X3を原水X1のBODに対して化学的に当量となる硫酸イオン(SO 2−)を含むものとするので、収率良く硫化水素(HS)を発生させることができる。そして、このようにして得られた硫化水素(HS)を好気性反応槽3によって好気性処理(酸化処理)することにより有価物である硫黄(S)を収率良く得るので、硫化水素(HS)を脱硫槽で脱硫する従来技術よりも有機性排水を低コストで処理することが可能である。 According to this embodiment, by adding a predetermined amount of an aqueous sodium sulfate solution from the sodium sulfate addition device 5 to the adjustment tank 1, the mixed water X3, which is the treatment target of the anaerobic reaction tank 2, is converted into the BOD of the raw water X1. On the other hand, since it contains sulfate ions (SO 4 2− ) that are chemically equivalent, hydrogen sulfide (H 2 S) can be generated with good yield. Then, the hydrogen sulfide (H 2 S) thus obtained is subjected to aerobic treatment (oxidation treatment) in the aerobic reaction tank 3 to obtain valuable sulfur (S) in a high yield. Organic wastewater can be treated at a lower cost than in the prior art in which (H 2 S) is desulfurized in a desulfurization tank.

また、本実施形態によれば、好気性反応槽3から排出された循環水X7を嫌気性反応槽2に戻すので、好気性反応槽3で硫黄(S)に変換できなかった硫化水素(HS)を好気性反応槽3で再度処理することが可能であり、よって硫黄(S)の収率を向上させることができる。
また、好気性反応槽3は、中間処理水X4と空気X5とが対向流として汚泥床3aを通過するので、硫黄(S)が硫化水素(HS)から効率よく転化される。このような好気性反応槽3の構成によっても硫黄(S)の収率を向上させることができる。
Moreover, according to this embodiment, since the circulating water X7 discharged | emitted from the aerobic reaction tank 3 is returned to the anaerobic reaction tank 2, the hydrogen sulfide (H) which could not be converted into sulfur (S) in the aerobic reaction tank 3 2 S) can be treated again in the aerobic reactor 3, so that the yield of sulfur (S) can be improved.
In the aerobic reaction tank 3, since the intermediate treated water X4 and air X5 pass through the sludge bed 3a as counterflows, sulfur (S) is efficiently converted from hydrogen sulfide (H 2 S). Even with such a configuration of the aerobic reaction tank 3, the yield of sulfur (S) can be improved.

さらに、比較的廉価な硫酸ナトリウム(NaSO)を硫酸イオン(SO 2−)の発生源として用いるので、硫酸ナトリウム水溶液を原水X1に添加して消費することによるコストを低減することができる。 Furthermore, since relatively inexpensive sodium sulfate (Na 2 SO 4 ) is used as a source of sulfate ions (SO 4 2− ), the cost of adding and consuming an aqueous sodium sulfate solution to the raw water X1 can be reduced. it can.

なお、本発明は、上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記実施形態では、硫酸イオン(SO 2−)を含む有機性排水を処理対象水(原水X1)としたが、本発明はこれに限定されるものでない。硫酸イオン(SO 2−)を殆ど含まない処理対象水に本願発明を適用しても良い。
(2)上記実施形態では、酸化反応槽として好気性反応槽3を採用したが、本発明はこれに限定されない。好気性反応以外の原理に基づく酸化反応槽を用いても良い。
In addition, this invention is not limited to the said embodiment, For example, the following modifications can be considered.
(1) In the above embodiment, the organic waste water containing sulfate ions (SO 4 2− ) is treated water (raw water X 1), but the present invention is not limited to this. The present invention may be applied to water to be treated that hardly contains sulfate ions (SO 4 2− ).
(2) Although the aerobic reaction tank 3 is employed as the oxidation reaction tank in the above embodiment, the present invention is not limited to this. An oxidation reaction tank based on a principle other than the aerobic reaction may be used.

(3)上記実施形態では、BOD計測器4を原水X1のBODの異常を検知するために用いたが、本発明はこれに限定されない。例えば硫酸イオン(SO 2−)を殆ど含まない処理対象水に本願発明を適用する場合、BOD計測器4の検出結果に応じて当該検出結果が示すBODに当量する硫酸イオン(SO 2−)の供給量を算出して原水X1に添加するようにしても良い。このような原水X1に対する硫酸イオン(SO 2−)の添加制御によれば、原水X1のBODに応じて硫酸イオン(SO 2−)の添加量がフィードバック制御されるので、原水X1のBODが時間的に変動する場合であっても、原水X1のBODにより正確に当量する硫酸イオン(SO 2−)を添加することができる。したがって、硫黄(S)の収率を向上させることができる。 (3) In the above embodiment, the BOD measuring device 4 is used to detect an abnormality in the BOD of the raw water X1, but the present invention is not limited to this. For example, when applying the present invention to water to be treated containing little sulfate ion (SO 4 2-), sulfate ion equivalent to BOD of the detection result is shown in accordance with the detection result of the BOD meter 4 (SO 4 2- ) May be calculated and added to the raw water X1. According to such raw X1 to addition control of sulfate ions (SO 4 2-), since the addition amount of sulfate ions in accordance with the BOD of the raw water X1 (SO 4 2-) is feedback controlled, BOD of raw water X1 Even when fluctuates over time, sulfate ions (SO 4 2− ) equivalent to the BOD of the raw water X 1 can be added accurately. Therefore, the yield of sulfur (S) can be improved.

(4)さらには、BOD計測器4に加えて、原水X1の硫酸イオン濃度を計測するイオン濃度計を設け、BOD計測器4の計測値及びイオン濃度計の計測値に基づいて硫酸イオン(SO 2−)の添加量を調節するようにしても良い。 (4) Further, in addition to the BOD measuring device 4, an ion concentration meter for measuring the sulfate ion concentration of the raw water X1 is provided. Based on the measured value of the BOD measuring device 4 and the measured value of the ion concentration meter, sulfate ions (SO You may make it adjust the addition amount of 4 2- ).

1…調整槽、2…嫌気性反応槽、3…好気性反応槽(酸化反応槽)、4…BOD計測器、5…硫酸ナトリウム添加装置、6…空気供給装置   DESCRIPTION OF SYMBOLS 1 ... Adjustment tank, 2 ... Anaerobic reaction tank, 3 ... Aerobic reaction tank (oxidation reaction tank), 4 ... BOD measuring device, 5 ... Sodium sulfate addition apparatus, 6 ... Air supply apparatus

Claims (10)

原水としての有機性排水に当該有機性排水のBOD(Biochemical Oxygen Demand)に当量する硫酸イオンを添加する硫酸イオン添加装置と、
前記硫酸イオンが添加された有機性排水を嫌気性処理する嫌気性反応槽と、
該嫌気性処理槽の処理水を酸化処理する酸化反応槽と
を具備することを特徴とする水処理装置。
A sulfate ion addition device for adding sulfate ions equivalent to BOD (Biochemical Oxygen Demand) of the organic wastewater to the organic wastewater as raw water;
An anaerobic reaction tank for anaerobically treating the organic wastewater to which the sulfate ion is added;
An oxidation reaction tank that oxidizes the treated water of the anaerobic treatment tank.
酸化反応槽は、好気性微生物が配置された気層部と該気層部の下に配置された液層部とからなる好気性反応槽であり、気層部に上方から嫌気性反応槽の処理水を供給し、液層部に下方から空気を供給することを特徴とする請求項1記載の水処理装置。   The oxidation reaction tank is an aerobic reaction tank composed of an air layer part in which aerobic microorganisms are arranged and a liquid layer part arranged under the air layer part. The water treatment apparatus according to claim 1, wherein treated water is supplied and air is supplied to the liquid layer portion from below. 酸化反応槽の処理水の一部を嫌気性反応槽に循環水として戻すことを特徴とする請求項1または2記載の水処理装置。   The water treatment apparatus according to claim 1 or 2, wherein a part of the treated water in the oxidation reaction tank is returned to the anaerobic reaction tank as circulating water. 硫酸イオン添加装置は、硫酸イオンを発生させる硫酸ナトリウム(NaSO)を有機性排水に添加することを特徴とする請求項1〜3のいずれか一項に記載の水処理装置。 The water treatment device according to any one of claims 1 to 3, wherein the sulfate ion addition device adds sodium sulfate (Na 2 SO 4 ) that generates sulfate ions to the organic waste water. 原水としての有機性排水が当該有機性排水のBODに当量する硫酸イオンよりも少ない量の硫酸イオンを含むものである場合、硫酸イオン添加装置は、有機性排水のBODに当量する硫酸イオンに不足する硫酸イオンを有機性排水に添加することを特徴とする請求項1〜4のいずれか一項に記載の水処理装置。   When the organic waste water as raw water contains a smaller amount of sulfate ions than the sulfate ion equivalent to the BOD of the organic waste water, the sulfate ion addition device is a sulfuric acid deficient in the sulfate ion equivalent to the BOD of the organic waste water. Ion is added to organic waste water, The water treatment apparatus as described in any one of Claims 1-4 characterized by the above-mentioned. 原水としての有機性排水に当該有機性排水のBOD(Biochemical Oxygen Demand)に当量する硫酸イオンを添加する硫酸イオン添加工程と、
該硫酸イオン添加工程を経た有機性排水を嫌気性処理する嫌気性処理工程と、
嫌気性処理工程の処理水を酸化処理する酸化処理工程と
を有することを特徴とする水処理方法。
A sulfate ion addition step of adding sulfate ions equivalent to BOD (Biochemical Oxygen Demand) of the organic wastewater to the organic wastewater as raw water;
An anaerobic treatment step for anaerobically treating the organic wastewater that has undergone the sulfate ion addition step;
An oxidation treatment step of oxidizing the treated water in the anaerobic treatment step.
酸化処理工程は、好気性微生物が配置された気層部と液層部とを上下に配置した好気性反応槽において、気層部に上方から嫌気性反応槽の処理水を供給し、液層部に下方から空気を供給して行うことを特徴とする請求項6記載の水処理方法。   In the aerobic reaction tank in which the aerobic microorganisms are disposed in the aerobic reaction tank in which the aerobic microorganisms are arranged up and down, the treatment process of the anaerobic reaction tank is supplied to the air layer part from above. The water treatment method according to claim 6, wherein air is supplied to the part from below. 酸化処理工程における処理水の一部を嫌気性処理工程に循環水として戻すことを特徴とする請求項6または7記載の水処理方法。   The water treatment method according to claim 6 or 7, wherein a part of the treated water in the oxidation treatment step is returned to the anaerobic treatment step as circulating water. 硫酸ナトリウム(NaSO)によって硫酸イオンを有機性排水に添加することを特徴とする請求項6〜8のいずれか一項に記載の水処理方法。 The water treatment method according to any one of claims 6 to 8, wherein sulfate ions are added to the organic waste water with sodium sulfate (Na 2 SO 4 ). 原水としての有機性排水が当該有機性排水のBODに当量する硫酸イオンよりも少ない量の硫酸イオンを含むものである場合、有機性排水のBODに当量する硫酸イオンに不足する硫酸イオンを有機性排水に添加することを特徴とする請求項6〜9のいずれか一項に記載の水処理方法。   When organic wastewater as raw water contains a lower amount of sulfate ions than sulfate ions equivalent to the BOD of the organic wastewater, sulfate ions that are deficient in sulfate ions equivalent to the BOD of the organic wastewater are converted into organic wastewater. It adds, The water treatment method as described in any one of Claims 6-9 characterized by the above-mentioned.
JP2009232545A 2009-10-06 2009-10-06 Water treatment apparatus and method Expired - Fee Related JP5387310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009232545A JP5387310B2 (en) 2009-10-06 2009-10-06 Water treatment apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232545A JP5387310B2 (en) 2009-10-06 2009-10-06 Water treatment apparatus and method

Publications (2)

Publication Number Publication Date
JP2011078901A true JP2011078901A (en) 2011-04-21
JP5387310B2 JP5387310B2 (en) 2014-01-15

Family

ID=44073544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232545A Expired - Fee Related JP5387310B2 (en) 2009-10-06 2009-10-06 Water treatment apparatus and method

Country Status (1)

Country Link
JP (1) JP5387310B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212622A (en) * 2010-04-01 2011-10-27 Toshiba Corp Apparatus and method for treating waste water
US10309475B2 (en) * 2017-03-06 2019-06-04 Thyssenkrupp Elevator Ag Elevator brake pad mounting systems and methods for making and using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721152B1 (en) * 2016-08-18 2017-03-31 주식회사 이맥스아이엔시 Method of removal heavy metal ions from waste water using Na2SO4

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367798A (en) * 1991-06-14 1992-12-21 Ebara Infilco Co Ltd Method and apparatus for biological dephosphorization of organic sewage
JPH06246294A (en) * 1993-02-25 1994-09-06 Toshiba Corp Waste water treatment device
JPH11285696A (en) * 1998-04-01 1999-10-19 Tokyu Constr Co Ltd Device and method for sewage treatment
JPH11319880A (en) * 1998-05-14 1999-11-24 Kankyo Eng Co Ltd Biological treatment of organic waste water
JP2004148242A (en) * 2002-10-31 2004-05-27 Takashi Yamaguchi Waste water treatment method and waste water treatment equipment
JP2006055769A (en) * 2004-08-20 2006-03-02 Ebara Corp Method and apparatus for anaerobic treatment of organic contaminant
JP2006187704A (en) * 2005-01-05 2006-07-20 Ebara Corp Methane fermentation method and apparatus for organic waste water and/or organic waste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367798A (en) * 1991-06-14 1992-12-21 Ebara Infilco Co Ltd Method and apparatus for biological dephosphorization of organic sewage
JPH06246294A (en) * 1993-02-25 1994-09-06 Toshiba Corp Waste water treatment device
JPH11285696A (en) * 1998-04-01 1999-10-19 Tokyu Constr Co Ltd Device and method for sewage treatment
JPH11319880A (en) * 1998-05-14 1999-11-24 Kankyo Eng Co Ltd Biological treatment of organic waste water
JP2004148242A (en) * 2002-10-31 2004-05-27 Takashi Yamaguchi Waste water treatment method and waste water treatment equipment
JP2006055769A (en) * 2004-08-20 2006-03-02 Ebara Corp Method and apparatus for anaerobic treatment of organic contaminant
JP2006187704A (en) * 2005-01-05 2006-07-20 Ebara Corp Methane fermentation method and apparatus for organic waste water and/or organic waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212622A (en) * 2010-04-01 2011-10-27 Toshiba Corp Apparatus and method for treating waste water
US10309475B2 (en) * 2017-03-06 2019-06-04 Thyssenkrupp Elevator Ag Elevator brake pad mounting systems and methods for making and using same

Also Published As

Publication number Publication date
JP5387310B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
Liu et al. Optimization and evaluation of an air-recirculated stripping for ammonia removal from the anaerobic digestate of pig manure
Liu et al. Kinetic study of electrolytic ammonia removal using Ti/IrO2 as anode under different experimental conditions
JP5127200B2 (en) Wastewater treatment equipment containing ammonia nitrogen
Rodrigues et al. Influence of agitation rate on the performance of an anaerobic sequencing batch reactor containing granulated biomass treating low-strength wastewater
TW200631903A (en) Method of wastewater treatment and wastewater treatment equipment
KR101187004B1 (en) Selective multiphase absorption device and method for highly refining bio gas
WO2010016268A1 (en) Water treatment system and water treatment method
CN104609665A (en) Glyphosate-producing wastewater treatment integration technology
CN207227082U (en) A kind of micro-nano oxidation sewage-treatment plant of iron-carbon micro-electrolysis ozone
Wang et al. Treatment of landfill leachate membrane filtration concentrate by synergistic effect of electrocatalysis and electro-Fenton
CN105439368B (en) A kind of deep treatment method of ethylene waste lye
JP4782576B2 (en) Wastewater treatment equipment
KR20160042774A (en) Wastewater treatment system improving T-N quality of effluent water through pre-treatment of reducing nitrogen in returning water from dehydration process at the digestion tank of community sewage disposal plant
CN107986434A (en) A kind of half short distance nitration of kitchen waste water fermentation starts method
Wang et al. Enhancing post aerobic digestion of full-scale anaerobically digested sludge using free nitrous acid pretreatment
JP5387310B2 (en) Water treatment apparatus and method
Dai et al. Investigation of a sewage-integrated technology combining an expanded granular sludge bed (EGSB) and an electrochemical reactor in a pilot-scale plant
JP2007136293A (en) Method for treating liquid organic waste material
CN204342609U (en) A kind of refractory organic industrial sewage treatment system
CN110498490A (en) A kind of electric flocculation reactor and its application
JP2005218939A (en) Method for treating nitrogen-containing waste liquid
Collivignarelli et al. Drastic reduction of sludge in wastewater treatment plants: co-digestion of sewage sludge and aqueous waste in a thermophilic membrane reactor
CN113998827A (en) Advanced oxidation treatment device and treatment method for desulfurization wastewater of oil and gas field
JP2005329377A (en) Anaerobic treatment apparatus and method for anaerobically treating organic waste water
EP2522634A1 (en) Anaerobic treatment apparatus and anaerobic treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R151 Written notification of patent or utility model registration

Ref document number: 5387310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees