JP2011212526A - Coating pressure controller, coating pressure control method, program, and coating apparatus using the same - Google Patents

Coating pressure controller, coating pressure control method, program, and coating apparatus using the same Download PDF

Info

Publication number
JP2011212526A
JP2011212526A JP2010080932A JP2010080932A JP2011212526A JP 2011212526 A JP2011212526 A JP 2011212526A JP 2010080932 A JP2010080932 A JP 2010080932A JP 2010080932 A JP2010080932 A JP 2010080932A JP 2011212526 A JP2011212526 A JP 2011212526A
Authority
JP
Japan
Prior art keywords
application
liquid material
coating
application pressure
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010080932A
Other languages
Japanese (ja)
Other versions
JP5651981B2 (en
Inventor
Koichi Hasegawa
功一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2010080932A priority Critical patent/JP5651981B2/en
Publication of JP2011212526A publication Critical patent/JP2011212526A/en
Application granted granted Critical
Publication of JP5651981B2 publication Critical patent/JP5651981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating pressure controller or the like capable of stably controlling the coating amount of a liquid material in spite of simple constitution.SOLUTION: The coating pressure controller 10 includes a plane image input part 11 for inputting plane image data (a) containing the coating shape a1 and light and shade distribution a2 of the liquid material applied to a member to be coated, a plane direction measuring part 12 for calculating the data b1 in the plane direction of the liquid material on the basis of the coating shape a1, a height direction measuring part 13 for calculating the data b2 in the height direction of the liquid material on the basis of the light and shade distribution a2, a coating pressure data input part 14 for inputting the data (c) of the coating pressure required in coating the member to be coated with the liquid material, and a coating pressure correction data output part 15 for calculating the correction value of the coating pressure from the data (c) of the coating pressure, the data b1 in the plane direction and the data b2 in the height direction and outputting the calculation result as coating pressure correction data (d).

Description

本発明は、液状材料に対する塗布圧力を制御する塗布圧力制御装置等、及びこれを用いた塗布装置に関する。   The present invention relates to a coating pressure control device for controlling a coating pressure on a liquid material, and a coating device using the same.

近年、製品や部品の小型化や高性能化が進み、多様かつ高品質な品揃えが要求されている。このため生産現場では、多品種・少量生産を、最小限のタクト・生産コストで実現していかなければならい。このようなことから、ダイボンダやマウンタ等においては、接着に用いるエポキシ系樹脂等の液状材料の多様化かつ高品質化に伴い、塗布量の高精度化・安定化を安価に実現しなければならない。こうした状況に対応するには、高精度安定化を実現した機械式塗布方法が考えられるが、導入コストや液状材料交換などの運用コストが割高となってしまう。   In recent years, products and parts have been miniaturized and improved in performance, and a diverse and high-quality product lineup has been demanded. Therefore, on the production site, it is necessary to realize high-mix, low-volume production with minimum tact and production cost. For this reason, in die bonders, mounters, etc., with the diversification and improvement in quality of liquid materials such as epoxy resins used for bonding, it is necessary to realize high precision and stabilization of coating amount at low cost. . In order to cope with such a situation, a mechanical coating method that achieves high-accuracy stabilization can be considered, but the operation cost such as introduction cost and liquid material replacement becomes expensive.

そこで、導入コストや運用コストを抑制するエアー式塗布方法において高精度化・安定化を実現するために、塗布圧力や塗布速度や液状材料の温度管理といった塗布条件を制御することで、ある程度の安定化は図れる。しかし、塗布量という質量や体積を短タクトで測定することが困難なため、更なる高精度化を実現することが難しい。   Therefore, in order to achieve high accuracy and stabilization in the air-type coating method that suppresses introduction costs and operation costs, it is possible to achieve a certain level of stability by controlling coating conditions such as coating pressure, coating speed, and temperature management of liquid materials. Can be achieved. However, since it is difficult to measure the mass and volume of the coating amount in a short tact, it is difficult to realize further high accuracy.

特開2001−079472号公報Japanese Patent Laid-Open No. 2001-077942 特開2008−253876号公報JP 2008-253876 A 特開2007−250617号公報JP 2007-250617 A

ダイボンディングやマウント等の工程では、リードフレームや基板にエポキシ系樹脂やはんだ等の液状材料を塗布して、半導体ウェハから切り出したペレット等の電子部品を搭載する。このとき、塗布量が多すぎると電子部品に液状材料が這い上がり品質不適合が発生し、逆に塗布量が少ない場合にはシェア強度が得られなかったり完成後のクラック原因になったりするなどの品質不適合に繋がってしまうため、バラツキが少なく安定的な塗布量制御が要求される。また、これらの工程では、多品種生産に伴う品種切替が頻繁な上に、数時間〜数日という液状材料の使用期限があるため、液状材料を容易に交換できなければならない。   In processes such as die bonding and mounting, a liquid material such as epoxy resin or solder is applied to a lead frame or a substrate, and electronic parts such as pellets cut out from a semiconductor wafer are mounted. At this time, if the coating amount is too large, the liquid material will crawl up on the electronic parts, causing quality incompatibility. Conversely, if the coating amount is small, the shear strength may not be obtained or it may cause cracks after completion. Since this leads to quality incompatibility, stable coating amount control is required with little variation. Moreover, in these processes, since the product type change accompanying the multi-product production is frequent, and the liquid material has an expiration date of several hours to several days, the liquid material must be easily exchangeable.

液状材料の塗布方法としては、機械式及びエアー式の二種類があり、塗布量精度により使い分けされている。   There are two types of liquid material application methods, mechanical and pneumatic, which are properly used depending on the accuracy of application amount.

機械式は、液状材料が入った容器内にピストン等を押し込み、この押し込み量に比例した液状材料の塗布を行うことができるため、一般的に高粘度や塗布量の高精度・安定性が要求される場合に適用される。しかし、ピストンやそれを押し込むための機構が必要であり、構成が複雑になるので、エアー式と比較して装置価格が高価になる。しかも、液状材料を直接的に押し出すため液状材料の変更や定時交換などに際して、ピストン等の機構を分解して清掃しなければならず、運用コストが掛かってしまう。   The mechanical type can push a piston into a container containing a liquid material and apply the liquid material in proportion to the amount of the push, so generally high viscosity and high accuracy and stability of the application amount are required. Applies when However, since a piston and a mechanism for pushing it in are necessary and the configuration is complicated, the price of the apparatus is higher than that of the air type. In addition, since the liquid material is directly extruded, the mechanism such as the piston has to be disassembled and cleaned when changing the liquid material or replacing it on a regular basis, resulting in increased operating costs.

一方、エアー式は、エアー圧を直接又は使い捨てピストンを介して液状材料に印加して押し出すため、構成が単純で装置価格は安価である。しかも、液状材料の変更や定時交換も、容器を交換する程度で済むため運用コストを抑制することができる。しかし、エアーの膨張・収縮や材料の残量・粘性変化の影響を受けるため、塗布量が安定しないことが挙げられる。   On the other hand, in the air type, air pressure is applied directly or via a disposable piston to the liquid material and pushed out, so that the configuration is simple and the apparatus price is low. In addition, since the liquid material can be changed or regularly replaced, the operation cost can be suppressed because only the container needs to be replaced. However, it is affected by the expansion / contraction of air and the remaining amount / viscosity of the material.

上記の理由から、ダイボンディングやマウント等の工程では、導入・運用コストを抑制し、ロット単位での塗布量調整等を行うことで塗布量の安定化を図ることとし、エアー式が採用されている。ところが、近年、リードフレーム材質などに依存して電子部品搭載時の液状材料の広がり具合であるヌレ性と品質との相関性が高まり、塗布量の高精度・高安定性が要求されるようになった。このため、液状材料を交換後の塗布量調整直後は塗布量に精度的な問題はないが、液状材料の残量や経時的粘性変化の影響による塗布量の微少変動がヌレ性を悪化させて品質不適合が多発してしまう、という課題が発生するようになってきた。これに対しては、塗布量調整を頻繁に行なうことで対応可能であるが、数十分から数時間単位での調整が発生するため、調整工数による運用コストが掛かってしまう。   For the above reasons, in die bonding and mounting processes, the introduction and operation costs are suppressed, and the application amount is adjusted by adjusting the application amount in lot units, and the air method is adopted. Yes. However, in recent years, depending on the lead frame material, etc., the correlation between the wettability, which is the spread of the liquid material when mounting electronic components, and the quality has increased, and high accuracy and high stability of the coating amount have been required. became. For this reason, there is no problem with accuracy in the coating amount immediately after adjusting the coating amount after replacing the liquid material, but slight fluctuations in the coating amount due to the influence of the remaining amount of the liquid material and the change in viscosity over time deteriorate the wettability. The problem that quality nonconformity occurs frequently has come to occur. This can be dealt with by frequently adjusting the coating amount. However, since adjustment occurs in units of several tens of minutes to several hours, an operation cost due to adjustment man-hours is required.

こうした課題の解決を図ろうとするものとして、前述の特許文献1〜4が挙げられる。   The above-mentioned patent documents 1 to 4 can be cited as attempts to solve such problems.

特許文献1では、二種類の塗布圧力における塗布量を予め測定することで、測定時点における圧力と塗布量との比例関係を求め、所要の塗布量に応じた塗布圧力を算出するため、試行錯誤的な調整を行なう場合に比べて生産効率向上を図ろうとしている。また、この比例関係を定期的に求めることで、粘性変化等の影響を有効に取り除き、塗布量を高精度に維持しようとしている。しかし、比例関係を求める周期は液状材料の特性に起因するため、特性変化の大きい材料では頻繁に比例関係を求めなければならない。また、ダイボンディングやマウント等の工程においては、多種の液状材料を使い分けなければならないため、実際には生産効率向上が期待できない、という問題点がある。   In Patent Document 1, since the application amount at two kinds of application pressures is measured in advance, the proportional relationship between the pressure at the time of measurement and the application amount is obtained, and the application pressure corresponding to the required application amount is calculated. The company is trying to improve production efficiency compared with the case of making general adjustments. Further, by periodically obtaining this proportional relationship, it is intended to effectively remove the influence of viscosity change and maintain the coating amount with high accuracy. However, since the period for obtaining the proportional relationship is caused by the characteristics of the liquid material, it is necessary to frequently obtain the proportional relationship for a material having a large characteristic change. Further, in the processes such as die bonding and mounting, there is a problem that since it is necessary to use various liquid materials properly, it is not possible to expect improvement in production efficiency in practice.

特許文献2では、塗布量を測定するタイミングを計画するスケジューリング部からの要請により、生産稼働中に自動的に塗布量を測定して適切な塗布圧力を算出することで、効率化を図ろうとしている。しかし、塗布量を測定するための測定器が必要であり、更に測定器の校正や測定後の塗布物の清掃などの運用コストが必要となってしまう問題点がある。   In Patent Document 2, in response to a request from a scheduling unit that plans the timing for measuring the coating amount, an attempt is made to increase efficiency by automatically measuring the coating amount during production operation and calculating an appropriate coating pressure. Yes. However, there is a problem that a measuring instrument for measuring the coating amount is required, and further operation costs such as calibration of the measuring instrument and cleaning of the coated material after the measurement are required.

前述の二つの特許文献と比較して特許文献3では、塗布状態を撮像して画像処理により塗布面積を算出して塗布量を概算的に算出できるとして、塗布面積に応じた塗布圧力や描画速度、液状材料温度を制御して塗布量の安定化を効率的に行おうとしている。しかし、液状材料の粘性が変化すると、粘度が上昇した場合は塗布形状の水平方向広がりは鈍化して垂直方向の高さが増加し、粘度が下降した場合は水平方向の広がりが増加して垂直方向の高さが減少する。このように塗布面積では、水平方向の変化成分しか捉えることができないため、塗布量の精度的な問題点がある。これを回避するためステレオカメラなどの画像処理やレーザ測定等による三次元形状測定が考えられるが、設備コストや測定時間や複雑な画像処理等の増加に伴うタクトタイムが延びてしまい、生産効率を落としてしまう問題が生じる。   Compared with the above-mentioned two patent documents, in Patent Document 3, it is possible to roughly calculate the coating amount by imaging the coating state and calculating the coating area by image processing. The liquid material temperature is controlled to stabilize the coating amount efficiently. However, when the viscosity of the liquid material changes, if the viscosity increases, the horizontal spread of the coating shape slows down and the vertical height increases, and if the viscosity decreases, the horizontal spread increases and the vertical The direction height decreases. As described above, since only the horizontal change component can be captured in the application area, there is a problem in the accuracy of the application amount. In order to avoid this, three-dimensional shape measurement such as stereo camera image processing or laser measurement can be considered, but the tact time associated with the increase in equipment cost, measurement time, complicated image processing, etc. is extended, and production efficiency is increased. The problem of dropping occurs.

そこで、本発明の目的は、簡易な構成でありながら液状材料の塗布量を安定に制御し得る塗布圧力制御装置等を提供することにある。   Accordingly, an object of the present invention is to provide a coating pressure control device and the like that can stably control the coating amount of a liquid material with a simple configuration.

本発明に係る塗布圧力制御装置は、
被塗布部材に塗布された液状材料の塗布形状及び濃淡分布を含む平面画像データを入力する平面画像入力部と、
この平面画像入力部から入力された前記平面画像データに含まれる前記塗布形状に基づき、前記液状材料の平面方向の情報を求める平面方向測定部と、
前記平面画像入力部から入力された前記平面画像データに含まれる前記濃淡分布に基づき、前記液状材料の高さ方向の情報を求める高さ方向測定部と、
前記被塗布部材に前記液状材料を塗布するのに要した塗布圧力のデータを入力する塗布圧力データ入力部と、
この塗布圧力データ入力部から入力された塗布圧力のデータと前記平面方向測定部で求められた前記平面方向の情報と前記高さ方向測定部で求められた前記高さ方向の情報とから前記塗布圧力の補正値を算出し、その結果を塗布圧力補正データとして出力する塗布圧力補正データ出力部と、
を備えたものである。
The coating pressure control device according to the present invention is
A planar image input unit for inputting planar image data including the application shape and density distribution of the liquid material applied to the member to be coated;
A plane direction measurement unit for obtaining information on the plane direction of the liquid material based on the application shape included in the plane image data input from the plane image input unit,
A height direction measurement unit that obtains information on the height direction of the liquid material based on the density distribution included in the planar image data input from the planar image input unit;
An application pressure data input unit for inputting application pressure data required to apply the liquid material to the application member;
Based on the coating pressure data input from the coating pressure data input unit, the plane direction information obtained by the plane direction measuring unit, and the height direction information obtained by the height direction measuring unit, the coating is performed. An application pressure correction data output unit that calculates a correction value of pressure and outputs the result as application pressure correction data;
It is equipped with.

本発明に係る塗布圧力制御方法は、
被塗布部材に塗布された液状材料の塗布形状及び濃淡分布を含む平面画像データを入力し、
入力された前記平面画像データに含まれる前記塗布形状に基づき、前記液状材料の平面方向の情報を求め、
入力された前記平面画像データに含まれる前記濃淡分布に基づき、前記液状材料の高さ方向の情報を求め、
前記被塗布部材に前記液状材料を塗布するのに要した塗布圧力のデータを入力し、
入力された前記塗布圧力のデータと求められた前記平面方向の情報と求められた前記高さ方向の情報とから前記塗布圧力の補正値を算出する、
ものである。
The application pressure control method according to the present invention includes:
Input the plane image data including the application shape and density distribution of the liquid material applied to the coated member,
Based on the coating shape included in the input planar image data, obtain information on the planar direction of the liquid material,
Based on the density distribution included in the input planar image data, obtain information on the height direction of the liquid material,
Input application pressure data required to apply the liquid material to the application member,
The correction value of the application pressure is calculated from the input data of the application pressure, the obtained information on the plane direction, and the obtained information on the height direction.
Is.

本発明に係る塗布圧力制御プログラムは、
被塗布部材に塗布された液状材料の塗布形状及び濃淡分布を含む平面画像データを入力する平面画像入力手順と、
この平面画像入力手順で入力された前記平面画像データに含まれる前記塗布形状に基づき、前記液状材料の平面方向の情報を求める平面方向測定手順と、
前記平面画像入力手順で入力された前記平面画像データに含まれる前記濃淡分布に基づき、前記液状材料の高さ方向の情報を求める高さ方向測定手順と、
前記被塗布部材に前記液状材料を塗布するのに要した塗布圧力のデータを入力する塗布圧力データ入力手順と、
この塗布圧力データ入力手順で入力された塗布圧力のデータと前記平面方向測定手順で求められた前記平面方向の情報と前記高さ方向測定手順で求められた前記高さ方向の情報とから前記塗布圧力の補正値を算出し、その結果を塗布圧力補正データとして出力する塗布圧力補正データ出力手順と、
をコンピュータに実行させるためのものである。
The application pressure control program according to the present invention is:
Planar image input procedure for inputting planar image data including the application shape and density distribution of the liquid material applied to the member to be coated;
A plane direction measurement procedure for obtaining information on the plane direction of the liquid material based on the application shape included in the plane image data input in the plane image input procedure,
A height direction measurement procedure for obtaining information on the height direction of the liquid material based on the density distribution included in the planar image data input in the planar image input procedure,
Application pressure data input procedure for inputting application pressure data required to apply the liquid material to the application member;
From the coating pressure data input in the coating pressure data input procedure, the plane direction information obtained in the plane direction measurement procedure, and the height direction information obtained in the height direction measurement procedure, the coating is performed. Application pressure correction data output procedure for calculating a pressure correction value and outputting the result as application pressure correction data;
Is to make the computer execute.

本発明によれば、被塗布部材に塗布された液状材料の平面画像データにおいて塗布形状と濃淡分布に着目することにより、液状材料の塗布量と塗布圧力との関係を正確に把握することができるので、簡易な構成でありながら液状材料の塗布量を安定に制御し得る塗布圧力制御装置等を提供することができる。   According to the present invention, it is possible to accurately grasp the relationship between the coating amount and the coating pressure of the liquid material by paying attention to the coating shape and the density distribution in the planar image data of the liquid material applied to the member to be coated. Therefore, it is possible to provide a coating pressure control device and the like that can stably control the coating amount of the liquid material with a simple configuration.

本発明の一実施形態を示し、図1[1]は塗布圧力制御装置の機能ブロック図であり、図1[1]は塗布圧力制御方法のフロー図である。FIG. 1 [1] is a functional block diagram of a coating pressure control device, and FIG. 1 [1] is a flowchart of a coating pressure control method according to an embodiment of the present invention. 本発明の一実施形態における塗布装置を示す斜視図である。It is a perspective view which shows the coating device in one Embodiment of this invention. 図2の塗布装置の動作原理(その1)を示す説明図である。It is explanatory drawing which shows the operation principle (the 1) of the coating device of FIG. 図2の塗布装置の動作原理(その2)を示す説明図である。It is explanatory drawing which shows the operation principle (the 2) of the coating device of FIG. 図2の塗布装置の動作原理(その3)を示す説明図である。It is explanatory drawing which shows the operation principle (the 3) of the coating device of FIG. 図2の塗布装置の動作原理(その4)を示す説明図である。It is explanatory drawing which shows the operation principle (the 4) of the coating device of FIG.

以下、添付図面を参照しながら、本発明を実施するための形態(以下「実施形態」という。)について説明する。図1は本発明の一実施形態を示し、図1[1]は塗布圧力制御装置の機能ブロック図であり、図1[1]は塗布圧力制御方法のフロー図である。以下、この図面に基づき、本実施形態の概要について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described with reference to the accompanying drawings. FIG. 1 shows an embodiment of the present invention, FIG. 1 [1] is a functional block diagram of a coating pressure control device, and FIG. 1 [1] is a flowchart of a coating pressure control method. The outline of the present embodiment will be described below based on this drawing.

本実施形態の塗布圧力制御装置10は、被塗布部材に塗布された液状材料の塗布形状a1及び濃淡分布a2を含む平面画像データaを入力する平面画像入力部11と、平面画像入力部11から入力された平面画像データaに含まれる塗布形状a1に基づき、液状材料の平面方向の情報b1を求める平面方向測定部12と、平面画像入力部11から入力された平面画像データaに含まれる濃淡分布a2に基づき、液状材料の高さ方向の情報b2を求める高さ方向測定部13と、被塗布部材に液状材料を塗布するのに要した塗布圧力のデータcを入力する塗布圧力データ入力部14と、塗布圧力データ入力部14から入力された塗布圧力のデータcと平面方向測定部12で求められた平面方向の情報b1と高さ方向測定部13で求められた高さ方向の情報b2とから塗布圧力の補正値を算出し、その結果を塗布圧力補正データdとして出力する塗布圧力補正データ出力部15と、を備えたものである。   The application pressure control apparatus 10 according to the present embodiment includes a planar image input unit 11 that inputs planar image data a including an application shape a1 and a density distribution a2 of a liquid material applied to a member to be applied, and a planar image input unit 11. Based on the application shape a1 included in the input plane image data a, the plane direction measurement unit 12 that obtains information b1 on the plane direction of the liquid material, and the shading included in the plane image data a input from the plane image input unit 11 Based on the distribution a2, the height direction measuring unit 13 for obtaining the height direction information b2 of the liquid material, and the application pressure data input unit for inputting the application pressure data c required to apply the liquid material to the member to be applied 14, coating pressure data c input from the coating pressure data input unit 14, plane direction information b <b> 1 determined by the plane direction measuring unit 12, and height direction determined by the height direction measuring unit 13 And of calculating the correction value of the applied pressure from the information b2 Prefecture, the coating pressure correction data output unit 15 for outputting the result as applying pressure correction data d, are those having a.

例えば、塗布圧力補正データ出力部15は、平面方向の情報b1と高さ方向の情報b2とから液体材料の塗布量を算出し、この塗布量が適正値よりも大きければ塗布圧力を減らす補正値を算出し、塗布量が適正値よりも小さければ塗布圧力を増やす補正値を算出する。   For example, the application pressure correction data output unit 15 calculates the application amount of the liquid material from the plane direction information b1 and the height direction information b2, and corrects the application pressure if the application amount is larger than an appropriate value. If the coating amount is smaller than the appropriate value, a correction value for increasing the coating pressure is calculated.

例えば、高さ方向測定部13は、塗布形状a1の周辺が濃くなり(暗くなり)中央が淡くなる(明るくなる)場合に、濃い部分ほど液状材料の高さが低く淡い部分ほど液状材料の高さが高いと判断して、液状材料の高さ方向の情報b2を求める。このとき、高さ方向測定部13は、塗布形状の全体に占める淡い部分の割合が少ないほど液状材料の頂上の高さが高いと判断する、としてもよい。平面方向測定部12は、液状材料の平面方向の情報b1として、塗布形状a1の面積を求めてもよく、塗布形状a1の線幅を求めてもよい。なお、高さ方向とは、言うまでもなく平面方向に垂直な方向のことである。線幅とは、塗布形状が線状である場合の線の幅のことである。   For example, when the periphery of the application shape a1 is darkened (darkened) and the center is lightened (lightened), the height direction measuring unit 13 has a lower liquid material height and a lighter portion. Therefore, information b2 in the height direction of the liquid material is obtained. At this time, the height direction measurement unit 13 may determine that the height of the top of the liquid material is higher as the proportion of the light portion in the entire application shape is smaller. The plane direction measuring unit 12 may obtain the area of the application shape a1 or the line width of the application shape a1 as the information b1 in the plane direction of the liquid material. Needless to say, the height direction is a direction perpendicular to the plane direction. The line width is the width of a line when the coating shape is linear.

本発明者は、被塗布部材に塗布された液状材料の濃淡分布a2が液状材料の高さ方向の情報b2を反映していることを見出し、この知見に基づいて本発明をなすに至った。例えば、液状材料の平面画像データaにおいて塗布形状a1の周辺が濃くなり中央が淡くなる場合に、濃い部分ほど液状材料の高さが低くなり、淡い部分ほど液状材料の高さが高くなる。なぜなら、濃い部分は反射光が少ないので平面に対して垂直に近い面であり、淡い部分は反射光が多いので平面に対して平行に近い面であるからである。また、塗布形状の全体に占める淡い部分の割合が少ないほど、液状材料の頂上の高さが高くなる。なぜなら、被塗布部材に塗布された液状材料の縦断面は、量が少なければ略半円状となるが、量が多くなるにつれて重力によって押し潰され略台形状へと変化するからである。つまり、液状材料の縦断面が、略半円状であれば頂上付近の平面に対して平行に近い部分の割合が少なくなり、略台形状であれば頂上付近の平面に対して平行に近い部分の割合が多くなるからである。これにより、被塗布部材に塗布された液状材料の平面画像データaから、液状材料の立体形状を精度よく把握することができる。したがって、平面画像データaを取得することは簡易であるので、被塗布部材に塗布された液状材料の塗布量を高精度かつ簡易に算出できる。これにより、液状材料の塗布量と塗布圧力との関係を正確に把握できるので、簡易な構成でありながら液状材料の塗布量を安定に制御し得る塗布圧力制御装置10等を提供することができる。   The present inventor has found that the density distribution a2 of the liquid material applied to the member to be coated reflects the information b2 in the height direction of the liquid material, and has come to make the present invention based on this knowledge. For example, in the planar image data a of the liquid material, when the periphery of the application shape a1 becomes dark and the center becomes light, the darker portion has a lower liquid material height, and the lighter portion has a higher liquid material height. This is because the dark portion is a surface that is nearly perpendicular to the plane because of less reflected light, and the light portion is a surface that is nearly parallel to the plane because there is much reflected light. In addition, the smaller the proportion of the light portion in the entire coated shape, the higher the top of the liquid material. This is because the vertical cross section of the liquid material applied to the member to be coated is substantially semicircular if the amount is small, but is crushed by gravity and changes to a substantially trapezoid as the amount increases. That is, if the longitudinal section of the liquid material is substantially semicircular, the proportion of the portion that is nearly parallel to the plane near the top decreases, and if it is substantially trapezoidal, the portion that is nearly parallel to the plane near the top. This is because the proportion of Thereby, the three-dimensional shape of the liquid material can be accurately grasped from the planar image data a of the liquid material applied to the member to be coated. Therefore, since it is easy to acquire the planar image data a, it is possible to calculate the application amount of the liquid material applied to the member to be applied with high accuracy and simplicity. Thereby, since the relationship between the coating amount and the coating pressure of the liquid material can be accurately grasped, it is possible to provide the coating pressure control device 10 and the like that can stably control the coating amount of the liquid material with a simple configuration. .

本実施形態の塗布圧力制御方法は、塗布圧力制御装置10の動作として実現されている。すなわち、本実施形態の塗布圧力制御方法は、被塗布部材に塗布された液状材料の塗布形状a1及び濃淡分布a2を含む平面画像データaを入力し(ステップ101)、入力された平面画像データaに含まれる塗布形状a1に基づき、液状材料の平面方向の情報b1を求め(ステップ102)、入力された平面画像データaに含まれる濃淡分布a2に基づき、液状材料の高さ方向の情報b2を求め(ステップ103)、被塗布部材に液状材料を塗布するのに要した塗布圧力のデータを入力し(ステップ104)、入力された塗布圧力のデータと求められた平面方向の情報b1と求められた高さ方向の情報b2とから塗布圧力の補正値を算出する(ステップ105)ものである。ステップ101とステップ104とは、どちらが先でもよい。ステップ102とステップ103とは、どちらが先でもよい。   The application pressure control method of the present embodiment is realized as an operation of the application pressure control apparatus 10. That is, in the coating pressure control method of this embodiment, the planar image data a including the coating shape a1 and the density distribution a2 of the liquid material applied to the member to be coated is input (step 101), and the input planar image data a Information b1 in the planar direction of the liquid material is obtained based on the application shape a1 included in the liquid (step 102), and information b2 in the height direction of the liquid material is obtained based on the density distribution a2 included in the inputted planar image data a. Obtaining (step 103), inputting the application pressure data required to apply the liquid material to the member to be applied (step 104), and obtaining the inputted application pressure data and the obtained plane direction information b1. The correction value of the coating pressure is calculated from the height direction information b2 (step 105). Either step 101 or step 104 may be first. Either step 102 or step 103 may be first.

塗布圧力制御装置10は、コンピュータ及びそのプログラムによって実現することもできる。本実施形態の塗布圧力制御プログラムは、塗布圧力制御装置10の各部の動作をコンピュータに実現させるためのものである。すなわち、本実施形態の塗布圧力制御プログラムは、被塗布部材に塗布された液状材料の塗布形状a1及び濃淡分布a2を含む平面画像データaを入力する平面画像入力手順と、平面画像入力手順で入力された平面画像データaに含まれる塗布形状a1に基づき、液状材料の平面方向の情報b1を求める平面方向測定手順と、平面画像入力手順で入力された平面画像データaに含まれる濃淡分布a2に基づき、液状材料の高さ方向の情報b2を求める高さ方向測定手順と、被塗布部材に液状材料を塗布するのに要した塗布圧力のデータcを入力する塗布圧力データ入力手順と、塗布圧力データ入力手順で入力された塗布圧力のデータcと平面方向測定手順で求められた平面方向の情報b1と高さ方向測定手順で求められた高さ方向の情報b2とから塗布圧力の補正値を算出し、その結果を圧力補正データdとして出力する塗布圧力補正データ出力手順と、をコンピュータに実行させるためのものである。平面画像入力手順と塗布圧力データ入力手順とは、どちらが先でもよい。平面方向測定手順と高さ方向測定手順とは、どちらが先でもよい。ここで用いるコンピュータは、CPU、メモリ(ROM及びRAM)、入出力インタフェース等を有する一般的なものでよい。このとき、CPUが、メモリに記憶された本実施形態の塗布圧力制御プログラムを読み出し、解釈し、実行する。   The application pressure control device 10 can also be realized by a computer and its program. The application pressure control program of this embodiment is for causing a computer to realize the operation of each part of the application pressure control apparatus 10. That is, the application pressure control program of this embodiment is input by the planar image input procedure for inputting the planar image data a including the application shape a1 and the density distribution a2 of the liquid material applied to the member to be applied, and the planar image input procedure. Based on the coating shape a1 included in the planar image data a, the planar direction measurement procedure for obtaining the planar direction information b1 of the liquid material, and the density distribution a2 included in the planar image data a input in the planar image input procedure Based on the height direction measurement procedure for obtaining the height direction information b2 of the liquid material, the application pressure data input procedure for inputting the application pressure data c required to apply the liquid material to the member to be applied, and the application pressure Application pressure data c input in the data input procedure, plane direction information b1 obtained in the plane direction measurement procedure, and height direction information b2 obtained in the height direction measurement procedure It calculates a correction value of the coating pressure from, is intended for executing a coating pressure correction data output procedure to output the result as a pressure correction data d, to the computer. Either the planar image input procedure or the application pressure data input procedure may be performed first. Either the planar direction measurement procedure or the height direction measurement procedure may be first. The computer used here may be a general computer having a CPU, a memory (ROM and RAM), an input / output interface, and the like. At this time, the CPU reads, interprets, and executes the application pressure control program of the present embodiment stored in the memory.

本実施形態の塗布圧力制御方法及びプログラムによれば、塗布圧力制御装置10と同様の作用及び効果を奏する。また、本実施形態の塗布圧力制御方法及びプログラムは、塗布圧力制御装置10の構成に準じて様々な構成を採り得る。   According to the coating pressure control method and program of the present embodiment, the same operations and effects as the coating pressure control device 10 are achieved. In addition, the coating pressure control method and program of the present embodiment can take various configurations according to the configuration of the coating pressure control apparatus 10.

図2は、本実施形態の塗布装置を示す斜視図である。以下、この図面に基づき説明する。   FIG. 2 is a perspective view showing the coating apparatus of the present embodiment. Hereinafter, description will be given based on this drawing.

本実施形態の塗布装置20は、本実施形態の塗布圧力制御装置10と、塗布手段30と、撮像手段としてのカメラ21と、制御手段としてのコントローラ22とを備えている。塗布圧力制御装置10は、コントローラ22に内蔵されている。塗布手段30は、容器としてのシリンジ31に収容された液状材料41’に塗布圧力を加えることにより、液状材料41’をシリンジ31から吐出させて被塗布部材としてのリードフレーム42に塗布する。具体的には、塗布手段30は、液状材料41’を収容するシリンジ31と、シリンジ31の先端に設けられ液状材料41’が吐出するノズル32と、シリンジ31に収容された液状材料41’に圧力を加えるディスペンサ33と、シリンジ31とディスペンサ33とを連結するエアー配管34とを有する。カメラ21は、リードフレーム42に塗布された液状材料41の平面画像データを取り込んで塗布圧力制御装置10へ出力する。コントローラ22は、液状材料41’に加える塗布圧力を決定してディスペンサ33へ指示する。更に、コントローラ22は、現在の塗布圧力のデータを塗布圧力制御装置10へ出力するとともに、塗布圧力制御装置10から出力された塗布圧力補正データに基づいて次の塗布圧力を決定してディスペンサ33へ指示する機能を有する。   The coating apparatus 20 of the present embodiment includes the coating pressure control apparatus 10 of the present embodiment, a coating unit 30, a camera 21 as an imaging unit, and a controller 22 as a control unit. The coating pressure control device 10 is built in the controller 22. The application unit 30 applies an application pressure to the liquid material 41 ′ accommodated in the syringe 31 as a container, thereby discharging the liquid material 41 ′ from the syringe 31 and applying it to the lead frame 42 as the application target member. Specifically, the application means 30 includes a syringe 31 that stores the liquid material 41 ′, a nozzle 32 that is provided at the tip of the syringe 31 and discharges the liquid material 41 ′, and a liquid material 41 ′ that is stored in the syringe 31. It has a dispenser 33 that applies pressure, and an air pipe 34 that connects the syringe 31 and the dispenser 33. The camera 21 takes in the plane image data of the liquid material 41 applied to the lead frame 42 and outputs it to the application pressure control device 10. The controller 22 determines the application pressure applied to the liquid material 41 ′ and instructs the dispenser 33. Furthermore, the controller 22 outputs the current application pressure data to the application pressure control device 10 and determines the next application pressure based on the application pressure correction data output from the application pressure control device 10 to the dispenser 33. Has the function of indicating.

本実施形態は、ダイボンディングやマウント工程におけるエポキシ系樹脂等の液状材料41の塗布において、残量変化や経時変化に伴う粘性変化に適応する塗布量制御方法及び塗布量安定装置を提供する。つまり、塗布状態を撮像して画像処理を行うことにより、塗布面積と塗布部分の濃淡情報とに基づき塗布圧力を制御して、安定的な塗布量を実現する。これにより、エアー式塗布方法でも、必要最小限の運用コストにより高効率生産を実現する。以下に、本実施形態をより詳細に説明する。   The present embodiment provides a coating amount control method and a coating amount stabilizing device adapted to a change in remaining amount and a viscosity accompanying a change with time in application of a liquid material 41 such as an epoxy resin in a die bonding or mounting process. That is, by imaging the application state and performing image processing, the application pressure is controlled based on the application area and the density information of the application part, thereby realizing a stable application amount. This realizes high-efficiency production even with the air-type coating method at the minimum necessary operation cost. Hereinafter, the present embodiment will be described in more detail.

図2は、本実施形態の一例として、ダイボンディングにおける塗布量安定制御の構成を示している。ダイボンディング装置は、リードフレームなどの被接合体上に、接着剤となるエポキシ系樹脂を所定の描画形状に塗布し、これに半導体ウェハから切り出したペレットなどの接合体を搭載接合する装置である。本実施形態では、導入や運用コストを抑制するエアー式塗布装置を用いて、液状材料の残量や経時的粘性変化に対応した塗布量安定を目的とするため、ここではエポキシ系樹脂の塗布について示す。   FIG. 2 shows a configuration of coating amount stability control in die bonding as an example of the present embodiment. The die bonding apparatus is an apparatus for applying and bonding an epoxy resin as an adhesive in a predetermined drawing shape onto an object to be bonded such as a lead frame, and mounting and bonding a bonded body such as a pellet cut out from a semiconductor wafer. . In this embodiment, for the purpose of stabilizing the coating amount corresponding to the remaining amount of liquid material and the change in viscosity over time, using an air-type coating device that suppresses introduction and operation costs, here, about the application of epoxy resin Show.

容器となるシリンジ31に液状材料41’が収容され、液状材料41’はシリンジ31の先端に取り付けられたノズル32から塗布される。ディスペンサ33は、シリンジ31とエアー配管34を介して接続され、コントローラ22から設定された所定塗布圧力のエアーをシリンジ31に供給することにより液状材料41’に圧力を印加する。ここでは、ディスペンサ33を用いたが、電空レギュレータのようなエアー加圧力制御可能なものであればよい。シリンジ31とリードフレーム42とを駆動系(図示せず)によって相対的に移動させることにより、リードフレーム42上で液状材料41の描画塗布を行う。コントローラ22は、液状材料41の塗布状態をカメラ21で撮像した画像を取り込み、塗布量を算出して適切な塗布量となる設定すべき塗布圧力を、ディスペンサ33に対して設定する。   A liquid material 41 ′ is accommodated in a syringe 31 serving as a container, and the liquid material 41 ′ is applied from a nozzle 32 attached to the tip of the syringe 31. The dispenser 33 is connected to the syringe 31 via the air pipe 34 and applies pressure to the liquid material 41 ′ by supplying air of a predetermined application pressure set by the controller 22 to the syringe 31. Here, the dispenser 33 is used, but any device capable of controlling the air pressure such as an electropneumatic regulator may be used. The liquid material 41 is drawn and applied on the lead frame 42 by relatively moving the syringe 31 and the lead frame 42 by a drive system (not shown). The controller 22 captures an image obtained by capturing the application state of the liquid material 41 with the camera 21, calculates the application amount, and sets the application pressure to be set to an appropriate application amount for the dispenser 33.

次に、撮像した画像から設定すべき塗布圧力を算出する方法について説明する。図3は、線描画塗布により同量の液状材料を塗布した際における、低粘度の液状材料411(図3[1])と高粘度の液状材料412(図3[2])とのそれぞれの線幅L1,L2の違いを表している。図示するように、液状材料の塗布量が同じであっても、粘度に依存して塗布面積が異なる。これは、次のような理由による。   Next, a method for calculating the application pressure to be set from the captured image will be described. FIG. 3 shows a low-viscosity liquid material 411 (FIG. 3 [1]) and a high-viscosity liquid material 412 (FIG. 3 [2]) when the same amount of liquid material is applied by line drawing application. This shows the difference between the line widths L1 and L2. As shown in the figure, even when the application amount of the liquid material is the same, the application area varies depending on the viscosity. This is due to the following reason.

同量の液状材料を塗布した場合、それぞれの液状材料自体にかかる重力の影響を受けて水平方向に広がる。低粘度の液状材料411では、高粘度の液状材料412と比較して、小さな力で液状材料を変形することができるため水平方向に広がって線幅L1が太くなる。一方、高粘度の液状材料412では、低粘度の液状材料411と比較して線幅L2が狭くなる。これにより、塗布形状を画像処理して得られる塗布面積は、低粘度の液状材料411の方が広くなり高粘度の液状材料412では狭くなる。なお、図3及び図5における網目の大きさは、大きいほど淡く(明るく)、小さいほど濃い(暗い)ことを示している。   When the same amount of liquid material is applied, it spreads in the horizontal direction under the influence of gravity applied to each liquid material itself. In the low-viscosity liquid material 411, compared with the high-viscosity liquid material 412, the liquid material can be deformed with a small force, so that it spreads in the horizontal direction and the line width L1 becomes thick. On the other hand, in the high-viscosity liquid material 412, the line width L2 is narrower than that of the low-viscosity liquid material 411. As a result, the coating area obtained by image processing of the coating shape is wider for the low-viscosity liquid material 411 and narrower for the high-viscosity liquid material 412. 3 and 5 indicate that the mesh size is lighter (brighter) as it is larger, and darker (darker) as it is smaller.

図4は、図3における線描画塗布の断面と撮像時の照明の反射量とを表している。図示するように、液状材料の塗布量が同じであっても粘度に依存して高さが異なり、撮像した画像の濃淡度合いが変化する。これは、次のような理由による。   FIG. 4 shows the cross section of the line drawing application in FIG. 3 and the amount of illumination reflection during imaging. As shown in the figure, the height varies depending on the viscosity even when the application amount of the liquid material is the same, and the degree of shading of the captured image changes. This is due to the following reason.

低粘度の液状材料411(図4[1])では、水平方向に広がり易いため高さH1が低くなることにより、勾配が緩くなって塗布部分の反射光量が高粘度の液状材料412(図4[2])に比べて多くなる(すなわち明るくなる)。一方、高粘度の液状材料412(図では、水平方向に広がり難いため高さH2が高くなることにより、勾配が急になって塗布部分の反射光量が低粘度の液状材料411に比べて少なくなる(すなわち暗くなる)。なお、図4及び図5における矢印は、向きが光の方向を示し、長さが光の強さを示している。   In the low-viscosity liquid material 411 (FIG. 4 [1]), since it tends to spread in the horizontal direction, the height H1 is reduced, so that the gradient becomes gentle and the amount of reflected light at the coated portion is high-viscosity liquid material 412 (FIG. 4). More than (2)) (ie brighter). On the other hand, the high-viscosity liquid material 412 (in the figure, since it is difficult to spread in the horizontal direction, the height H2 is increased, so that the gradient becomes steep and the amount of reflected light at the application portion is smaller than that of the low-viscosity liquid material 411. 4 and 5, the direction of the arrow indicates the direction of light, and the length indicates the intensity of light.

ダイボンダなどで使われるエポキシ系樹脂などの液状材料は、熱や紫外線などにより硬化するが、硬化の前後で体積変化が少ない。液状材料の粘性が変化しても、体積や質量が変化しなければ、塗布量は安定しているといえる。そのため、液状材料の粘性変化を考慮する場合とは、塗布面積を一定にしても塗布体積が一定であるとはいえないことを意味している。つまり、図3及び図4に示すように、同量の液状材料が塗布された状態であっても、粘度の違いにより塗布面積が変動する。更に塗布形状は接合物であるペレットのサイズに依存して描画形状が異なるため、ペレットサイズに占める塗布量の比率に比例的な相関があっても、塗布量と塗布面積とは比例的な相関になるとは限らない。このことと品種毎に液状材料が変更されることとを考慮すると、品種毎に適正塗布圧力の算出を行わなければならない。そこで、本実施形態では、撮像した画像から次の算出式(1)により適正塗布圧力を算出する。   Liquid materials such as epoxy resins used in die bonders are cured by heat or ultraviolet rays, but have little volume change before and after curing. Even if the viscosity of the liquid material changes, it can be said that the coating amount is stable if the volume and mass do not change. Therefore, the case where the change in the viscosity of the liquid material is taken into account means that even if the application area is constant, it cannot be said that the application volume is constant. That is, as shown in FIGS. 3 and 4, even when the same amount of liquid material is applied, the application area varies due to the difference in viscosity. In addition, the drawing shape differs depending on the size of the pellets that are the joints, so even if there is a proportional correlation in the ratio of the coating amount to the pellet size, the coating amount and the coating area are proportional to each other. It does not always become. Considering this and the fact that the liquid material is changed for each product type, an appropriate application pressure must be calculated for each product type. Therefore, in the present embodiment, the appropriate application pressure is calculated from the captured image by the following calculation formula (1).

ΔP=α×ΔS+β ・・・(1)       ΔP = α × ΔS + β (1)

ΔP:現在塗布圧力からの補正量を示す。ΔPは、(設定すべき圧力)−(現在設定圧力)で表される。   ΔP: A correction amount from the current application pressure. ΔP is expressed by (pressure to be set) − (currently set pressure).

ΔS:適正塗布面積からの乖離を示す。ΔSは、(適正塗布面積)−(現在の塗布面積)で表される。ここで、適正塗布面積とは、予め調整により最適な塗布量となるように塗布条件を調整した際の塗布面積をいう。このときの塗布圧力を「適正塗布圧力」、同じく塗布量を「適正塗布量」という。   ΔS: Deviation from the appropriate application area. ΔS is expressed as (appropriate application area) − (current application area). Here, the appropriate application area refers to the application area when the application conditions are adjusted in advance so that the optimum application amount is obtained by adjustment. The application pressure at this time is referred to as “appropriate application pressure”, and the application amount is also referred to as “appropriate application amount”.

α:主に粘性変化以外の塗布量変化に依存する係数であり、例えばペレットサイズ、塗布描画形状、残量変化等に依存する係数である。αは、粘性変化が生じても適正塗布量を維持するための塗布圧力変化量、又は、適正塗布圧力に対する所定圧力間(±5kPaや±20kPa)、における塗布面積変動量の比で表される。例えば、適正塗布圧力が20kPaで所定圧力が±5kPaとした場合、α=(25kPaで塗布して測定した塗布面積)÷(15kPaで塗布して測定した塗布面積)のように表すことができる。   α: A coefficient mainly depending on a change in coating amount other than a viscosity change, for example, a coefficient depending on a pellet size, a coating drawing shape, a remaining amount change, and the like. α is expressed as a coating pressure change amount for maintaining a proper coating amount even when a viscosity change occurs, or a ratio of a coating area fluctuation amount between a predetermined pressure (± 5 kPa and ± 20 kPa) with respect to the proper coating pressure. . For example, when the appropriate application pressure is 20 kPa and the predetermined pressure is ± 5 kPa, α = (application area measured by applying at 25 kPa) ÷ (application area measured by applying at 15 kPa).

β:主に粘性に依存して算出される値であり、図4に示す塗布部断面の面積勾配(ここでは「断面積勾配」と呼ぶ。)により算出される値であって、粘性変化による高さと塗布面積の変化度合及び撮像により得られた画像の濃淡度合いに依存して算出する値である。   β: a value calculated mainly depending on viscosity, which is a value calculated by the area gradient (referred to herein as “cross-sectional area gradient”) of the cross section of the coating portion shown in FIG. This is a value calculated depending on the height, the degree of change in the coating area, and the degree of shading of the image obtained by imaging.

βは、粘性変化に応じて、同一形状かつ同量の液状材料を塗布した際の塗布面積変化又は面積変化率と、濃淡変化又は濃淡変化率の割合であるが、これを測定するためには粘性変化具合を時系列に把握しなければならず手間が掛かり生産現場では受け入れられない。そこで、液状材料の表面張力や比重などが分かる場合には、塗布時の線幅と体積から断面の勾配曲線を算出して、照明の反射角度とカメラの撮像面とのなす角から濃淡の変化度合いを算出すればよい。また、粘性変化が生じない、又は影響がない短時間において、塗布速度を一定にしたまま塗布高さを微少に変更して塗布することで、塗布量がほぼ一定で塗布面積と塗布高さの違う塗布形状を再現できるため、断面積勾配を塗布面積変化又は面積変化率と濃淡変化又は濃淡変化率との割合として算出してもよい。   β is the ratio of the application area change or area change rate when applying the same shape and the same amount of liquid material according to the viscosity change, and the ratio of the density change or the density change rate. Viscosity changes must be grasped in time series, which is time consuming and unacceptable at the production site. Therefore, if the surface tension or specific gravity of the liquid material is known, the gradient curve of the cross section is calculated from the line width and volume at the time of application, and the change in shading from the angle formed by the reflection angle of the illumination and the imaging surface of the camera What is necessary is just to calculate a degree. Also, in a short time when there is no change in viscosity or there is no effect, the application amount is almost constant and the application area and the application height are kept constant by changing the application height slightly while keeping the application speed constant. Since different application shapes can be reproduced, the cross-sectional area gradient may be calculated as the ratio between the application area change or area change rate and the shade change or shade change rate.

上述の説明から塗布量変化に伴う演算について考える。例えば粘性変化を伴わず、塗布ノズルの詰まりや残量変化による水頭差の影響などに起因する塗布量が変化し、これによって塗布量が減少した場合について考える。この場合は、粘性変化がないため、同一塗布条件では高さが変動せずに液状材料の水平に広がる力に変化がないため、塗布面積は小さくなる。つまり、ΔSが変動するものの断面積勾配は変化しないため、α×ΔSは塗布圧力補正量に影響を与えるが、βの値は0に近い値となって、結果的にα×ΔSが塗布圧力補正量を支配的に決定する。   From the above description, the calculation associated with the change in coating amount will be considered. For example, let us consider a case where the application amount changes due to clogging of the application nozzle or the effect of water head difference due to a change in the remaining amount without changing the viscosity, thereby reducing the application amount. In this case, since there is no change in viscosity, there is no change in the force that spreads the liquid material horizontally without changing the height under the same application conditions, so the application area becomes small. That is, although ΔS varies, the cross-sectional area gradient does not change. Therefore, α × ΔS affects the application pressure correction amount, but the value of β is close to 0, and as a result, α × ΔS becomes the application pressure. The amount of correction is determined predominantly.

逆に、粘性が上昇する変化が生じたにもかかわらず、塗布ノズルの詰まりが取れた等の理由が重なり、塗布量が一定となった場合(図4)について考える。この場合は、液状材料の水平方向に広がる力が粘度上昇により弱くなるため、面積が減少して高さが上昇する。このとき、測定される塗布面積が減少するため、α×ΔSは塗布圧力を上昇するように作用する。一方、塗布部分の断面積勾配が急になることから、画像濃淡変化が生じてβは塗布圧力を下降させるように作用する。その結果、塗布量に変化がない場合は、α×ΔSとβとが相殺され塗布圧力の補正は0となる。   On the contrary, a case will be considered in which the application amount becomes constant (FIG. 4) due to reasons such as the application nozzle being clogged despite the occurrence of a change in viscosity. In this case, the force that spreads in the horizontal direction of the liquid material is weakened by the increase in viscosity, so the area is reduced and the height is increased. At this time, since the coating area to be measured decreases, α × ΔS acts to increase the coating pressure. On the other hand, since the gradient of the cross-sectional area of the coating portion becomes steep, an image density change occurs and β acts to lower the coating pressure. As a result, when there is no change in the coating amount, α × ΔS and β are offset and the coating pressure is corrected to zero.

このため、一般的に生じる粘性上昇の場合を考えると、塗布量は減少するが塗布断面における高さに変化はなく、液状材料の水平方向の広がる力が減少するため、塗布断面は小さくなり測定される塗布面積は小さくなる。したがって、α×ΔSは塗布圧力を上昇するように作用する。一方、βに関しても、粘性変化前と比べて高さが同じで断面積が小さくなることから、断面積勾配が大きくなるので、塗布圧力を上昇するように作用する。   For this reason, in the case of a viscosity increase that generally occurs, the coating amount decreases, but the height in the coating cross section does not change, and the horizontal spreading force of the liquid material decreases. The applied area is reduced. Therefore, α × ΔS acts to increase the coating pressure. On the other hand, β also has the same height and a smaller cross-sectional area than before the viscosity change, so that the cross-sectional area gradient is increased, so that the application pressure is increased.

以上により、粘性変化に伴う塗布量変化において、水平方向に広がる力の変化に起因する塗布面積変化量だけでなく、塗布量を体積として捕らえるため断面積勾配を用いることによって高精度に塗布量の変化を捕らえることが可能であり、塗布量を安定化するための補正量を適切に算出することができる。   As described above, in the application amount change accompanying the viscosity change, not only the application area change amount due to the change in the force spreading in the horizontal direction, but also the application amount of the application amount can be accurately determined by using the cross-sectional area gradient to capture the application amount as a volume. A change can be captured, and a correction amount for stabilizing the coating amount can be appropriately calculated.

こうして、算出式(1)に示したα,ΔS,βを品種毎のパラメータとして持ち、適時カメラ21により塗布状態を撮像して、コントローラ22により画像処理及び現在塗布圧力からの補正量であるΔPの算出を行い、ディスペンサ33に対して塗布圧力をΔPだけ塗布圧力を補正する指示を出すことで、液状材料の残量変化や経時的粘性変化に適応した塗布量の安定化を実現することが可能となる。   In this way, α, ΔS, β shown in the calculation formula (1) are used as parameters for each product type, the application state is imaged by the camera 21 in a timely manner, and ΔP which is a correction amount from the image processing and the current application pressure by the controller 22. By calculating the above and giving an instruction to the dispenser 33 to correct the application pressure by ΔP, it is possible to realize stabilization of the application amount adapted to a change in the remaining amount of liquid material and a change in viscosity over time. It becomes possible.

次に、本実施形態の効果について説明する。第一の効果として、エポキシ系樹脂などの液状材料塗布において、残量変化や経時的粘性変化に依存せず、適正な塗布量を安定して確保することができるため、ダイボンダやマウンタなど樹脂系液状材料の塗布量のバラツキを抑制し、品質を向上することができる。第二の効果として、液状材料塗布において、機構が複雑で高価な機械式塗布方式を使用せず、機構が単純で機械式より安価に構成できるエアー式を用いるため、導入コストを抑制することができる。第三の効果として、エアー式を用いることで単純な機構であるため、液状材料の変更や定期的交換やメンテナンスなどの工数を削減し、生産コストを抑制することができる。   Next, the effect of this embodiment will be described. As a first effect, in the application of liquid materials such as epoxy resins, it is possible to stably secure an appropriate application amount without depending on the remaining amount change or viscosity change over time. Variations in the amount of liquid material applied can be suppressed and quality can be improved. As a second effect, in the application of liquid material, the mechanical mechanism is complicated and expensive, and the air type that is simple and can be configured at a lower cost than the mechanical method is used. it can. As a third effect, since it is a simple mechanism by using an air type, it is possible to reduce man-hours such as change of the liquid material, periodic replacement and maintenance, and to suppress the production cost.

次に、本実施形態の塗布装置20における他の動作例について説明する。   Next, another example of operation in the coating apparatus 20 of the present embodiment will be described.

前述の例においては、塗布部分の面積変化による塗布圧力補正と、塗布面積と濃淡度合とから算出される断面勾配による塗布圧力補正とにより、塗布量の高精度安定化を図った。しかし、塗布形状全体の面積ではなく、1つ以上の所定の塗布形状の断面として捉えた線幅を用いてもよい。本例では、前述の例と同じ構成において、他の塗布圧力補正演算方法を図5を用いて説明する。   In the above-described example, high-precision stabilization of the coating amount is achieved by coating pressure correction based on change in the area of the coating portion and coating pressure correction based on the cross-sectional gradient calculated from the coating area and the degree of shading. However, the line width captured as a cross section of one or more predetermined application shapes may be used instead of the area of the entire application shape. In this example, another application pressure correction calculation method will be described with reference to FIG. 5 in the same configuration as the above example.

図5は、粘性変化により生じる低粘度の液状材料と高粘度の液状材料とを同量塗布した状態における、予め指定された所定部分の線塗布描画について撮像した画像とその断面とを表している。この場合、塗布量が同じであるため両者の断面積は一定である。低粘度の液状材料411(図5[1])は、高粘度の液状材料412(図5[2])に比べて、水平方向に広がる力が大きいため、線幅L1は大きいが高さH1が低くなり、撮像時の照明からの反射は一様であるため前述の例で説明した断面積勾配も小さい。一方、高粘度の液状材料412は、低粘度の液状材料411に比べて、水平方向に広がる力が小さいため、線幅L2は小さいが高さH2は高くなり、撮像時の照明からの反射は変化が激しくなり断面積勾配は大きい。このため、本例では、撮像した画像から次の算出式(2)により適正塗布圧力を算出する。   FIG. 5 shows an image and a cross section of a predetermined portion of line coating drawing in a state where the same amount of a low-viscosity liquid material and a high-viscosity liquid material generated by viscosity change are applied. . In this case, since the application amount is the same, the cross-sectional area of both is constant. Since the low-viscosity liquid material 411 (FIG. 5 [1]) has a larger force spreading in the horizontal direction than the high-viscosity liquid material 412 (FIG. 5 [2]), the line width L1 is large but the height H1 is large. Since the reflection from the illumination during imaging is uniform, the cross-sectional area gradient described in the above example is also small. On the other hand, the high-viscosity liquid material 412 has a smaller force that spreads in the horizontal direction than the low-viscosity liquid material 411. Therefore, the line width L2 is small but the height H2 is high, and reflection from the illumination during imaging is low. The change is intense and the cross-sectional area gradient is large. For this reason, in this example, the appropriate application pressure is calculated from the captured image by the following calculation formula (2).

ΔP=α×ΔL+β ・・・(2)       ΔP = α × ΔL + β (2)

ΔP:前述の例と同じ値であって、現在塗布圧力からの補正量を示す。ΔPは、(設定すべき圧力)−(現在設定圧力)で表される。   ΔP: The same value as in the above example, and indicates the correction amount from the current application pressure. ΔP is expressed by (pressure to be set) − (currently set pressure).

ΔL:適正塗布幅からの乖離を示す。ΔLは、(適正塗布幅)−(現在の塗布幅)で表される。ここで、塗布幅とは、所定部分の線塗布描画の断面における底辺の長さをいう。適正塗布幅とは、予め調整により最適な塗布量となるように塗布条件を調整した際の塗布幅をいう。   ΔL: Deviation from the appropriate coating width. ΔL is expressed by (appropriate application width) − (current application width). Here, the coating width refers to the length of the base in the cross section of the line coating drawing of a predetermined portion. The proper application width refers to the application width when the application conditions are adjusted in advance so as to obtain an optimum application amount.

α:前述の例と同様の値であって、主に粘性変化以外の塗布量変化に依存する係数であり、例えばペレットサイズや塗布描画形状及び残量変化等に依存する係数である。αは、粘性変化が生じても適正塗布量を維持するための塗布圧力変化量、又は、適正塗布圧力に対する所定圧力間(±5kPaや±20kPa)、における塗布幅変動量の比で表される。例えば、適正塗布圧力が20kPaで所定圧力が±5kPaとした場合、α=(25kPaで塗布して測定した塗布幅)÷(15kPaで塗布して測定した塗布幅)のように表すことができる。   α: The same value as in the above-described example, which is a coefficient mainly depending on a change in coating amount other than a change in viscosity, for example, a coefficient depending on a pellet size, a coating drawing shape, and a remaining amount change. α is expressed as a coating pressure change amount for maintaining a proper coating amount even when a viscosity change occurs, or a ratio of a coating width fluctuation amount between a predetermined pressure (± 5 kPa and ± 20 kPa) with respect to the proper coating pressure. . For example, when the appropriate application pressure is 20 kPa and the predetermined pressure is ± 5 kPa, α = (application width measured by applying at 25 kPa) ÷ (application width measured by applying at 15 kPa).

β:前述の例と同様の値であって、主に粘性に依存して算出される値であり、図5に示す塗布部断面の面積勾配(ここでは「断面積勾配」と呼ぶ。)により算出され、粘性変化による高さと塗布幅の変化度合及び撮像により得られた画像の濃淡度合いに依存して算出される値である。   β: The same value as in the above-mentioned example, which is a value calculated mainly depending on the viscosity, and is based on the area gradient (herein referred to as “cross-sectional area gradient”) of the coating section shown in FIG. It is a calculated value that is calculated depending on the degree of change in height and coating width due to a change in viscosity and the degree of shading of an image obtained by imaging.

βは、粘性変化に応じて、同一形状かつ同量の液状材料を塗布した際の塗布幅変化又は塗布幅変化率と、濃淡変化又は濃淡変化率の割合であるが、これを測定するためには粘性変化具合を時系列に把握しなければならず手間が掛かり生産現場では受け入れられない。そこで、液状材料の表面張力や比重などが分かる場合には、塗布時の線幅と体積から断面の勾配曲線を算出して、照明の反射角度とカメラの撮像面とのなす角から濃淡の変化度合いを算出すればよい。また、粘性変化が生じない、又は影響がない短時間において、塗布速度を一定にしたまま塗布高さを微少に変更して塗布することで、塗布量がほぼ一定で塗布幅と塗布高さの違う塗布形状を再現できるため、断面積勾配を塗布幅変化又は塗布幅変化率と濃淡変化又は濃淡変化率との割合として算出してもよい。   β is a ratio of change in application width or change in application width when applying the same shape and the same amount of liquid material according to viscosity change, and ratio of change in density or change in density, in order to measure this However, it takes time and effort to grasp the change in viscosity in time series, which is unacceptable at the production site. Therefore, if the surface tension or specific gravity of the liquid material is known, the gradient curve of the cross section is calculated from the line width and volume at the time of application, and the change in shading from the angle formed by the reflection angle of the illumination and the imaging surface of the camera What is necessary is just to calculate a degree. Also, in a short period of time when there is no change in viscosity or there is no effect, the coating height can be changed slightly while applying at a constant coating speed. Since different application shapes can be reproduced, the cross-sectional area gradient may be calculated as the ratio between the application width change or application width change rate and the density change or density change rate.

ここで、所定部分は、一箇所でも良いが、特に高粘度においては線塗布描画における線幅が安定せず塗布幅が変動することがあるため、複数の点を用いることが好ましい。この複数点における総和や平均や分散に応じた重み付けなどの統計的処理を行う方が、精度は高まる。図6では、液状材料41の×字の線塗布描画における点線で示した四つの交点41a,41b,41c,41dを、複数の所定部分として示す。この例のように、中心から等距離であってもよいし、ランダムであってもよいが、線描画に対して垂直な断面での塗布幅を算出する。   Here, the predetermined portion may be a single portion, but it is preferable to use a plurality of points because the line width in line coating drawing may not be stable and the coating width may fluctuate particularly at high viscosity. The accuracy increases when statistical processing such as weighting according to the sum, average, and variance at the plurality of points is performed. In FIG. 6, four intersections 41a, 41b, 41c, and 41d indicated by dotted lines in the X-line coating drawing of the liquid material 41 are shown as a plurality of predetermined portions. As in this example, it may be equidistant from the center or may be random, but the coating width in a cross section perpendicular to the line drawing is calculated.

上述の説明から塗布量変化に伴う演算について考える。例えば粘性変化を伴わず、塗布ノズルの詰まりや残量変化による水頭差の影響などに起因する塗布量が変化して、塗布量が減少した場合について考える。この場合、粘性変化がないことにより、同一塗布条件では高さが変動せずに、液状材料の水平に広がる力に変化がないため、塗布幅は狭くなる。つまり、ΔLが変動するものの断面積勾配は変化しないため、α×ΔLは塗布圧力補正量に影響を与える。一方、βの値は0に近い値となるので、結果的にα×ΔLが塗布圧力補正量を支配的に決定する。   From the above description, the calculation associated with the change in coating amount will be considered. For example, let us consider a case in which the application amount is reduced due to a change in the application amount due to the clogging of the application nozzle or the effect of a water head difference due to a change in the remaining amount without causing a change in viscosity. In this case, since there is no change in the viscosity, the height does not fluctuate under the same application condition, and the horizontal spreading force of the liquid material does not change, so the application width becomes narrow. That is, although ΔL varies, the cross-sectional area gradient does not change, so α × ΔL affects the application pressure correction amount. On the other hand, since the value of β is close to 0, as a result, α × ΔL predominantly determines the application pressure correction amount.

逆に、粘性が上昇する変化が生じたにもかかわらず、塗布ノズルの詰まりが取れた等の理由が重なり、塗布量が一定となった場合(図5)を考える。この場合は、液状材料の水平方向に広がる力が粘度上昇により弱くなるため、塗布幅が減少して高さが上昇する。このとき、測定される塗布幅が減少するため、α×ΔLは塗布圧力を上昇するように作用する。一方、塗布部分の断面積勾配が急になることから、画像濃淡変化が生じて、βは塗布圧力を下降させるように作用する。そのため、塗布量に変化がない場合は、α×ΔLとβとが相殺され、塗布圧力の補正は0となる。   On the other hand, consider the case where the application amount becomes constant (FIG. 5) due to reasons such as the application nozzle being clogged despite the occurrence of a change in increasing viscosity. In this case, since the force spreading in the horizontal direction of the liquid material is weakened due to the increase in viscosity, the coating width is reduced and the height is increased. At this time, since the measured application width decreases, α × ΔL acts to increase the application pressure. On the other hand, since the gradient of the cross-sectional area of the coating portion becomes steep, image density changes occur, and β acts to lower the coating pressure. Therefore, when there is no change in the coating amount, α × ΔL and β cancel each other, and the correction of the coating pressure becomes zero.

一般的に生じる粘性上昇の場合を考える。この場合は、塗布量が減少するものの塗布断面における高さに変化はなく、液状材料の水平方向の広がる力が減少するため、塗布断面は小さくなり測定される塗布幅は小さくなる。したがって、α×ΔLは塗布圧力を上昇するように作用する。一方、βに関しても、粘性変化前と比べて高さが同じで断面積が小さくなることから、断面積勾配が大きくなり塗布圧力を上昇するように作用する。   Consider the case of a viscosity increase that generally occurs. In this case, although the coating amount decreases, the height in the coating cross section does not change, and the spreading force of the liquid material in the horizontal direction decreases, so the coating cross section becomes small and the measured coating width becomes small. Therefore, α × ΔL acts to increase the coating pressure. On the other hand, β also has the same height and a smaller cross-sectional area than before the viscosity change, so that the cross-sectional area gradient increases and acts to increase the coating pressure.

以上により、粘性変化に伴う塗布量変化において、水平方向に広がる力の変化に起因する塗布幅変化量だけでなく、塗布量を体積として捕らえるため断面積勾配を用いることによって高精度に塗布量の変化を捕らえることが可能であり、塗布量を安定化するための補正量を適切に算出することができる。   As described above, in the application amount change accompanying the viscosity change, not only the application width change amount due to the change in the force spreading in the horizontal direction, but also the application amount can be accurately determined by using the cross-sectional area gradient in order to capture the application amount as a volume. A change can be captured, and a correction amount for stabilizing the coating amount can be appropriately calculated.

こうして、算出式(2)に示したα,ΔL,βを品種毎のパラメータとして持ち、適時カメラ21により塗布状態を撮像して、コントローラ22により画像処理及び現在塗布圧力からの補正量であるΔPの算出を行い、ディスペンサ33に対して塗布圧力をΔPだけ塗布圧力を補正することで、液状材料の残量変化や経時的粘性変化に適応した塗布量の安定化を実現することが可能となる。   In this way, α, ΔL, β shown in the calculation formula (2) are used as parameters for each product type, the application state is imaged by the camera 21 in a timely manner, and ΔP, which is a correction amount from the image processing and the current application pressure by the controller 22. And by correcting the application pressure to the dispenser 33 by ΔP, it is possible to realize stabilization of the application amount adapted to the change in the remaining amount of liquid material and the change in viscosity over time. .

以上、上記実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細については、当業者が理解し得るさまざまな変更を加えることができる。例えば、上記算出式(1)(2)は例示であって、もちろん他の算出式を用いてもよい。   The present invention has been described above with reference to the above embodiment, but the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention. For example, the calculation formulas (1) and (2) are merely examples, and other calculation formulas may be used.

上記の実施形態の一部又は全部は以下の付記のようにも記載され得るが、本発明は以下の構成に限定されるものではない。   Although a part or all of the above embodiments can be described as the following supplementary notes, the present invention is not limited to the following configurations.

(付記1)電子部品等の搭載や接合等を行う際、接着・接合に液状材料を用いて予め液状材料を塗布する工程において、
容器に収容された液状材料と、
前記容器を所定の圧力で加圧することにより前記液状材料を塗布する塗布手段と、
前記液状材料を所定の形状に塗布するための駆動手段と、
前記液状材料の塗布状態を撮像する撮像手段と、
前記駆動手段を制御するとともに前記撮像手段から得られた画像を処理して最適な塗布圧力を算出して前記塗布手段に適切な圧力を指定するコントローラと、
を有することを特徴とする塗布装置。
(Appendix 1) In the step of applying a liquid material in advance using a liquid material for bonding and joining when mounting or joining an electronic component or the like,
A liquid material contained in a container;
Application means for applying the liquid material by pressurizing the container at a predetermined pressure;
Driving means for applying the liquid material in a predetermined shape;
Imaging means for imaging the application state of the liquid material;
A controller for controlling the driving means and processing an image obtained from the imaging means to calculate an optimum application pressure and designating an appropriate pressure for the application means;
A coating apparatus comprising:

(付記2)付記1記載の塗布装置において、
前記液状材料は、液体でゲル状の流体であって、当該液状材料の残量や当該液状材料自体の経時的粘性変化等の影響を受けて、同一塗布条件であっても塗布量がばらつく、
ことを特徴とする塗布装置
(Appendix 2) In the coating apparatus according to Appendix 1,
The liquid material is a liquid fluid in the form of a gel, and the amount of application varies even under the same application conditions due to the influence of the remaining amount of the liquid material and the change in viscosity over time of the liquid material itself.
Coating apparatus characterized by that

(付記3)付記1又は2記載の塗布装置において、
前記画像処理は、前記液状材料の塗布形状から得られた塗布部分の面積及び濃淡情報を用いて演算処理することによって塗布量を算出することを特徴とし、塗布量を高精度かつ安定的に保つために塗布圧力を算出する、
ことを特徴とする塗布装置。
(Appendix 3) In the coating apparatus according to Appendix 1 or 2,
The image processing is characterized in that the application amount is calculated by performing arithmetic processing using the area and density information of the application portion obtained from the application shape of the liquid material, and the application amount is maintained with high accuracy and stability. To calculate the application pressure for
An applicator characterized by that.

(付記4)付記1乃至3のいずれか一つに記載の塗布装置において、
前記画像処理は、前記液状材料の塗布形状から得られた1つ以上の所定部分における塗布幅及び濃淡情報を用いて演算処理することによって塗布量を算出することを特徴とし、塗布量を高精度かつ安定的に保つために塗布圧力を算出する、
ことを特徴とする塗布装置。
(Appendix 4) In the coating apparatus according to any one of appendices 1 to 3,
The image processing is characterized in that a coating amount is calculated by performing arithmetic processing using the coating width and shading information in one or more predetermined portions obtained from the coating shape of the liquid material, and the coating amount is highly accurate. And calculate the application pressure to keep it stable,
An applicator characterized by that.

(付記11)被塗布部材に塗布された液状材料の塗布形状及び濃淡分布を含む平面画像データを入力する平面画像入力部と、
この平面画像入力部から入力された前記平面画像データに含まれる前記塗布形状に基づき、前記液状材料の平面方向の情報を求める平面方向測定部と、
前記平面画像入力部から入力された前記平面画像データに含まれる前記濃淡分布に基づき、前記液状材料の高さ方向の情報を求める高さ方向測定部と、
前記平面方向測定部で求められた前記平面方向の情報と前記高さ方向測定部で求められた前記高さ方向の情報とから前記液状材料の塗布量を算出し、その結果を塗布量データとして出力する塗布量出力部と、
を備えた塗布量算出装置。
(Additional remark 11) The plane image input part which inputs the plane image data containing the application | coating shape and density distribution of the liquid material apply | coated to the to-be-coated member,
A plane direction measurement unit for obtaining information on the plane direction of the liquid material based on the application shape included in the plane image data input from the plane image input unit,
A height direction measurement unit that obtains information on the height direction of the liquid material based on the density distribution included in the planar image data input from the planar image input unit;
The application amount of the liquid material is calculated from the information on the plane direction obtained by the plane direction measurement unit and the information on the height direction obtained by the height direction measurement unit, and the result is used as application amount data. A coating amount output section to output,
A coating amount calculation device comprising:

(付記12)付記11記載の塗布量算出装置において、
前記高さ方向測定部は、前記塗布形状の周辺が濃くなり中央が淡くなる場合に、濃い部分ほど前記液状材料の高さが低く淡い部分ほど前記液状材料の高さが高いと判断して、前記液状材料の高さ方向の情報を求める、
塗布量算出装置。
(Supplementary note 12) In the application amount calculation apparatus according to supplementary note 11,
The height direction measurement unit, when the periphery of the application shape is dark and the center is light, it is determined that the height of the liquid material is lower as the darker part is higher and the height of the liquid material is higher as the lighter part, Find information on the height direction of the liquid material,
Application amount calculation device.

(付記13)付記12記載の塗布量算出装置において、
前記高さ方向測定部は、前記塗布形状の全体に占める前記淡い部分の割合が少ないほど前記液状材料の頂上の高さが高いと判断する、
塗布量算出装置。
(Supplementary note 13) In the application amount calculation apparatus according to supplementary note 12,
The height direction measurement unit determines that the height of the top of the liquid material is higher as the proportion of the light portion in the entire application shape is smaller.
Application amount calculation device.

(付記14)付記11乃至13のいずれか一つに記載の塗布量算出装置において、
前記平面方向測定部は、前記液状材料の平面方向の情報として、前記塗布形状の面積を求める、
塗布量算出装置。
(Supplementary note 14) In the application amount calculation device according to any one of supplementary notes 11 to 13,
The plane direction measurement unit obtains the area of the application shape as information on the plane direction of the liquid material.
Application amount calculation device.

(付記15)付記11乃至13のいずれか一つに記載の塗布量算出装置において、
前記平面方向測定部は、前記液状材料の平面方向の情報として、前記塗布形状の幅を求める、
塗布量算出装置。
(Supplementary note 15) In the application amount calculation device according to any one of Supplementary notes 11 to 13,
The plane direction measurement unit obtains the width of the application shape as information on the plane direction of the liquid material,
Application amount calculation device.

(付記16)付記11乃至15のいずれか一つに記載の塗布量算出装置と、
容器に収容された液状材料に圧力を加えることにより、前記液状材料を前記容器から吐出させて被塗布部材に塗布する塗布手段と、
前記被塗布部材に塗布された前記液状材料の前記平面画像データを取り込んで前記塗布量算出装置へ出力する撮像手段と、
前記液状材料に加える圧力を決定して前記塗布手段へ指示する制御手段とを備え、
前記制御手段は、前記塗布量算出装置から出力された前記塗布量データに基づいて最適な前記圧力を決定して前記塗布手段へ指示する機能を有する、
塗布装置。
(Supplementary Note 16) The application amount calculation device according to any one of Supplementary Notes 11 to 15,
An applying means for applying a pressure to the liquid material contained in the container to discharge the liquid material from the container and applying the liquid material to the application member;
Imaging means for taking in the planar image data of the liquid material applied to the member to be applied and outputting it to the application amount calculation device;
Control means for determining the pressure applied to the liquid material and instructing the application means;
The control unit has a function of determining the optimum pressure based on the coating amount data output from the coating amount calculating device and instructing the coating unit.
Coating device.

(付記17)被塗布部材に塗布された液状材料の塗布形状及び濃淡分布を含む平面画像データを入力し、
入力された前記平面画像データに含まれる前記塗布形状に基づき、前記液状材料の平面方向の情報を求め、
入力された前記平面画像データに含まれる前記濃淡分布に基づき、前記液状材料の高さ方向の情報を求め、
求められた前記平面方向の情報と求められた前記高さ方向の情報とから前記液状材料の塗布量を算出する、
塗布量算出方法。
(Additional remark 17) The plane image data containing the application | coating shape and density distribution of the liquid material apply | coated to the to-be-coated member are input,
Based on the coating shape included in the input planar image data, obtain information on the planar direction of the liquid material,
Based on the density distribution included in the input planar image data, obtain information on the height direction of the liquid material,
Calculate the coating amount of the liquid material from the obtained plane direction information and the obtained height direction information,
Application amount calculation method.

(付記18)付記17記載の塗布量算出方法において、
前記塗布形状の周辺が濃くなり中央が淡くなる場合に、濃い部分ほど前記液状材料の高さが低く淡い部分ほど前記液状材料の高さが高いと判断して、前記液状材料の高さ方向の情報を求める、
塗布量算出方法。
(Supplementary note 18) In the application amount calculation method according to supplementary note 17,
When the periphery of the coating shape is dark and the center is light, it is determined that the darker portion has a lower height of the liquid material and the lighter portion has a higher height of the liquid material. Ask for information,
Application amount calculation method.

(付記19)付記18記載の塗布量算出方法において、
前記塗布形状の全体に占める前記淡い部分の割合が少ないほど前記液状材料の頂上の高さが高いと判断する、
塗布量算出方法。
(Supplementary note 19) In the application amount calculation method according to supplementary note 18,
It is judged that the height of the top of the liquid material is higher as the proportion of the light part in the entire coating shape is smaller.
Application amount calculation method.

(付記20)付記17乃至19のいずれか一つに記載の塗布量算出方法において、
前記液状材料の平面方向の情報として、前記塗布形状の面積を求める、
塗布量算出方法。
(Supplementary note 20) In the coating amount calculation method according to any one of supplementary notes 17 to 19,
As information on the planar direction of the liquid material, the area of the application shape is obtained.
Application amount calculation method.

(付記21)付記17乃至19のいずれか一つに記載の塗布量算出方法において、
前記液状材料の平面方向の情報として、前記塗布形状の幅を求める、
塗布量算出方法。
(Supplementary note 21) In the coating amount calculation method according to any one of supplementary notes 17 to 19,
As information on the planar direction of the liquid material, the width of the coating shape is obtained.
Application amount calculation method.

(付記22)被塗布部材に塗布された液状材料の塗布形状及び濃淡分布を含む平面画像データを入力する平面画像入力手順と、
この平面画像入力手順で入力された前記平面画像データに含まれる前記塗布形状に基づき、前記液状材料の平面方向の情報を求める平面方向測定手順と、
前記平面画像入力手順で入力された前記平面画像データに含まれる前記濃淡分布に基づき、前記液状材料の高さ方向の情報を求める高さ方向測定手順と、
前記平面方向測定手順で求められた前記平面方向の情報と前記高さ方向測定手順で求められた前記高さ方向の情報とから前記液状材料の塗布量を算出し、その結果を塗布量データとして出力する塗布量出力手順と、
をコンピュータに実行させるための塗布量算出プログラム。
(Appendix 22) Plane image input procedure for inputting plane image data including the application shape and density distribution of the liquid material applied to the member to be coated;
A plane direction measurement procedure for obtaining information on the plane direction of the liquid material based on the application shape included in the plane image data input in the plane image input procedure,
A height direction measurement procedure for obtaining information on the height direction of the liquid material based on the density distribution included in the planar image data input in the planar image input procedure,
The application amount of the liquid material is calculated from the information on the planar direction obtained in the planar direction measurement procedure and the information on the height direction obtained in the height direction measurement procedure, and the result is used as application amount data. A procedure for outputting the coating amount to be output,
A coating amount calculation program for causing a computer to execute.

(付記23)付記22記載の塗布量算出プログラムにおいて、
前記高さ方向測定手順では、前記塗布形状の周辺が濃くなり中央が淡くなる場合に、濃い部分ほど前記液状材料の高さが低く淡い部分ほど前記液状材料の高さが高いと判断して、前記液状材料の高さ方向の情報を求める、
塗布量算出プログラム。
(Supplementary note 23) In the application amount calculation program according to supplementary note 22,
In the height direction measurement procedure, when the periphery of the application shape is dark and the center is light, it is determined that the height of the liquid material is lower as the dark part is higher and the height of the liquid material is higher as the lighter part, Find information on the height direction of the liquid material,
Application amount calculation program.

(付記24)付記13記載の塗布量算出プログラムにおいて、
前記高さ方向測定手順では、前記塗布形状の全体に占める前記淡い部分の割合が少ないほど前記液状材料の頂上の高さが高いと判断する、
塗布量算出プログラム。
(Supplementary Note 24) In the application amount calculation program described in Supplementary Note 13,
In the height direction measurement procedure, it is determined that the height of the top of the liquid material is higher as the proportion of the light portion in the entire coating shape is smaller.
Application amount calculation program.

(付記25)付記22乃至24のいずれか一つに記載の塗布量算出プログラムにおいて、
前記平面方向測定手順では、前記液状材料の平面方向の情報として、前記塗布形状の面積を求める、
塗布量算出プログラム。
(Supplementary Note 25) In the application amount calculation program according to any one of Supplementary Notes 22 to 24,
In the plane direction measurement procedure, the area of the application shape is obtained as information on the plane direction of the liquid material.
Application amount calculation program.

(付記26)付記22乃至24のいずれか一つに記載の塗布量算出プログラムにおいて、
前記平面方向測定手順では、前記液状材料の平面方向の情報として、前記塗布形状の幅を求める、
塗布量算出プログラム。
(Supplementary note 26) In the coating amount calculation program according to any one of supplementary notes 22 to 24,
In the planar direction measurement procedure, the width of the application shape is obtained as information on the planar direction of the liquid material.
Application amount calculation program.

(付記31)被塗布部材に塗布された液状材料の塗布形状及び濃淡分布を含む平面画像データを入力する平面画像入力部と、
この平面画像入力部から入力された前記平面画像データに含まれる前記塗布形状に基づき、前記液状材料の平面方向の情報を求める平面方向測定部と、
前記平面画像入力部から入力された前記平面画像データに含まれる前記濃淡分布に基づき、前記液状材料の高さ方向の情報を求める高さ方向測定部と、
前記被塗布部材に前記液状材料を塗布するのに要した塗布圧力のデータを入力する塗布圧力データ入力部と、
この塗布圧力データ入力部から入力された塗布圧力のデータと前記平面方向測定部で求められた前記平面方向の情報と前記高さ方向測定部で求められた前記高さ方向の情報とから前記塗布圧力の補正値を算出し、その結果を塗布圧力補正データとして出力する塗布圧力補正データ出力部と、
を備えた塗布圧力制御装置。
(Additional remark 31) The plane image input part which inputs the plane image data containing the application | coating shape and density distribution of the liquid material apply | coated to the to-be-coated member,
A plane direction measurement unit for obtaining information on the plane direction of the liquid material based on the application shape included in the plane image data input from the plane image input unit,
A height direction measurement unit that obtains information on the height direction of the liquid material based on the density distribution included in the planar image data input from the planar image input unit;
An application pressure data input unit for inputting application pressure data required to apply the liquid material to the application member;
Based on the coating pressure data input from the coating pressure data input unit, the plane direction information obtained by the plane direction measuring unit, and the height direction information obtained by the height direction measuring unit, the coating is performed. An application pressure correction data output unit that calculates a correction value of pressure and outputs the result as application pressure correction data;
A coating pressure control device.

(付記32)付記31記載の塗布圧力制御装置において、
前記塗布圧力補正データ出力部は、前記平面方向の情報と前記高さ方向の情報とから前記液体材料の塗布量を算出し、この塗布量が適正値よりも大きければ前記塗布圧力を減らす補正値を算出し、前記塗布量が前記適正値よりも小さければ前記塗布圧力を増やす補正値を算出する、
塗布圧力制御装置。
(Supplementary Note 32) In the coating pressure control apparatus according to Supplementary Note 31,
The application pressure correction data output unit calculates the application amount of the liquid material from the information in the plane direction and the information in the height direction, and a correction value for reducing the application pressure if the application amount is larger than an appropriate value. Calculating a correction value to increase the application pressure if the application amount is smaller than the appropriate value,
Application pressure control device.

(付記33)付記31又は32記載の塗布圧力制御装置において、
前記高さ方向測定部は、前記塗布形状の周辺が濃くなり中央が淡くなる場合に、濃い部分ほど前記液状材料の高さが低く淡い部分ほど前記液状材料の高さが高いと判断して、前記液状材料の高さ方向の情報を求める、
塗布圧力制御装置。
(Appendix 33) In the coating pressure control apparatus according to Appendix 31 or 32,
The height direction measurement unit, when the periphery of the application shape is dark and the center is light, it is determined that the height of the liquid material is lower as the darker part is higher and the height of the liquid material is higher as the lighter part, Find information on the height direction of the liquid material,
Application pressure control device.

(付記34)付記31乃至33のいずれか一項記載の塗布圧力制御装置において、
前記高さ方向測定部は、前記塗布形状の全体に占める前記淡い部分の割合が少ないほど前記液状材料の頂上の高さが高いと判断する、
塗布圧力制御装置。
(Appendix 34) In the coating pressure control device according to any one of appendices 31 to 33,
The height direction measurement unit determines that the height of the top of the liquid material is higher as the proportion of the light portion in the entire application shape is smaller.
Application pressure control device.

(付記35)付記31乃至34のいずれか一項記載の塗布圧力制御装置において、
前記平面方向測定部は、前記液状材料の平面方向の情報として、前記塗布形状の面積を求める、
塗布圧力制御装置。
(Appendix 35) In the coating pressure control device according to any one of appendices 31 to 34,
The plane direction measurement unit obtains the area of the application shape as information on the plane direction of the liquid material.
Application pressure control device.

(付記36)付記31乃至35のいずれか一項記載の塗布圧力制御装置において、
前記平面方向測定部は、前記液状材料の平面方向の情報として、前記塗布形状の幅を求める、
塗布圧力制御装置。
(Supplementary note 36) In the coating pressure control device according to any one of supplementary notes 31 to 35,
The plane direction measurement unit obtains the width of the application shape as information on the plane direction of the liquid material,
Application pressure control device.

(付記37)付記31乃至36のいずれか一項記載の塗布圧力制御装置と、
容器に収容された液状材料に塗布圧力を加えることにより、前記液状材料を前記容器から吐出させて被塗布部材に塗布する塗布手段と、
前記被塗布部材に塗布された前記液状材料の前記平面画像データを取り込んで前記塗布圧力制御装置へ出力する撮像手段と、
前記液状材料に加える前記塗布圧力を決定して前記塗布手段へ指示する制御手段とを備え、
前記制御手段は、現在の前記塗布圧力のデータを前記塗布圧力制御装置へ出力するとともに、前記塗布圧力制御装置から出力された前記塗布圧力補正データに基づいて次の前記塗布圧力を決定して前記塗布手段へ指示する機能を有する、
塗布装置。
(Supplementary note 37) The application pressure control device according to any one of supplementary notes 31 to 36;
An application means for applying the application pressure to the liquid material contained in the container to cause the liquid material to be discharged from the container and applied to the member to be applied;
Imaging means for taking in the planar image data of the liquid material applied to the application member and outputting the data to the application pressure control device;
Control means for determining the application pressure applied to the liquid material and instructing the application means;
The control means outputs the current application pressure data to the application pressure control device and determines the next application pressure based on the application pressure correction data output from the application pressure control device. Having the function of instructing the application means;
Coating device.

(付記38)被塗布部材に塗布された液状材料の塗布形状及び濃淡分布を含む平面画像データを入力し、
入力された前記平面画像データに含まれる前記塗布形状に基づき、前記液状材料の平面方向の情報を求め、
入力された前記平面画像データに含まれる前記濃淡分布に基づき、前記液状材料の高さ方向の情報を求め、
前記被塗布部材に前記液状材料を塗布するのに要した塗布圧力のデータを入力し、
入力された前記塗布圧力のデータと求められた前記平面方向の情報と求められた前記高さ方向の情報とから前記塗布圧力の補正値を算出する、
塗布圧力制御方法。
(Supplementary Note 38) Input planar image data including application shape and density distribution of liquid material applied to member to be applied;
Based on the coating shape included in the input planar image data, obtain information on the planar direction of the liquid material,
Based on the density distribution included in the input planar image data, obtain information on the height direction of the liquid material,
Input application pressure data required to apply the liquid material to the application member,
The correction value of the application pressure is calculated from the input data of the application pressure, the obtained information on the plane direction, and the obtained information on the height direction.
Application pressure control method.

(付記39)付記38記載の塗布圧力制御方法において、
前記塗布圧力の補正値を算出する際に、前記平面方向の情報と前記高さ方向の情報とから前記液体材料の塗布量を算出し、この塗布量が適正値よりも大きければ前記塗布圧力を減らす補正値を算出し、前記塗布量が前記適正値よりも小さければ前記塗布圧力を増やす補正値を算出する、
塗布圧力制御方法。
(Supplementary note 39) In the coating pressure control method according to supplementary note 38,
When calculating the correction value of the application pressure, the application amount of the liquid material is calculated from the information in the plane direction and the information in the height direction, and if the application amount is larger than an appropriate value, the application pressure is set. Calculating a correction value to reduce, and calculating a correction value to increase the application pressure if the application amount is smaller than the appropriate value;
Application pressure control method.

(付記40)被塗布部材に塗布された液状材料の塗布形状及び濃淡分布を含む平面画像データを入力する平面画像入力手順と、
この平面画像入力手順で入力された前記平面画像データに含まれる前記塗布形状に基づき、前記液状材料の平面方向の情報を求める平面方向測定手順と、
前記平面画像入力手順で入力された前記平面画像データに含まれる前記濃淡分布に基づき、前記液状材料の高さ方向の情報を求める高さ方向測定手順と、
前記被塗布部材に前記液状材料を塗布するのに要した塗布圧力のデータを入力する塗布圧力データ入力手順と、
この塗布圧力データ入力手順で入力された塗布圧力のデータと前記平面方向測定手順で求められた前記平面方向の情報と前記高さ方向測定手順で求められた前記高さ方向の情報とから前記塗布圧力の補正値を算出し、その結果を塗布圧力補正データとして出力する塗布圧力補正データ出力手順と、
をコンピュータに実行させるための塗布圧力補正制御プログラム。
(Supplementary Note 40) A planar image input procedure for inputting planar image data including the application shape and density distribution of the liquid material applied to the member to be coated;
A plane direction measurement procedure for obtaining information on the plane direction of the liquid material based on the application shape included in the plane image data input in the plane image input procedure,
A height direction measurement procedure for obtaining information on the height direction of the liquid material based on the density distribution included in the planar image data input in the planar image input procedure,
Application pressure data input procedure for inputting application pressure data required to apply the liquid material to the application member;
From the coating pressure data input in the coating pressure data input procedure, the plane direction information obtained in the plane direction measurement procedure, and the height direction information obtained in the height direction measurement procedure, the coating is performed. Application pressure correction data output procedure for calculating a pressure correction value and outputting the result as application pressure correction data;
Coating pressure correction control program for causing a computer to execute.

本発明の利用例として、ダイボンダやマウンタなどの接合・搭載装置において、接合のために液状材料の塗布を行なう装置等が挙げられる。   As an application example of the present invention, in a joining / mounting apparatus such as a die bonder or a mounter, an apparatus for applying a liquid material for joining can be cited.

10 塗布圧力制御装置
11 平面画像入力部
12 平面方向測定部
13 高さ方向測定部
14 塗布圧力データ入力部
15 塗布圧力補正データ出力部
a 平面画像データ
a1 塗布形状
a2 濃淡分布
b1 液状材料の平面方向の情報
b2 液状材料の高さ方向の情報
c 塗布圧力のデータ
d 塗布圧力補正データ
20 塗布装置
21 カメラ(撮像手段)
22 コントローラ(制御手段)
30 塗布手段
31 シリンジ(容器)
32 ノズル
33 ディスペンサ
34 エアー配管
41,41’,411,412 液状材料
41a,41b,41c,41d 交点
42 リードフレーム(被塗布部材)
DESCRIPTION OF SYMBOLS 10 Application | coating pressure control apparatus 11 Plane image input part 12 Plane direction measurement part 13 Height direction measurement part 14 Application pressure data input part 15 Application pressure correction data output part a Plane image data a1 Application shape a2 Concentration distribution b1 Plane direction of liquid material Information of b2 Height direction of liquid material c Application pressure data d Application pressure correction data 20 Application device 21 Camera (imaging means)
22 Controller (control means)
30 Application means 31 Syringe (container)
32 Nozzle 33 Dispenser 34 Air piping 41, 41 ', 411, 412 Liquid material 41a, 41b, 41c, 41d Intersection 42 Lead frame (applied member)

Claims (10)

被塗布部材に塗布された液状材料の塗布形状及び濃淡分布を含む平面画像データを入力する平面画像入力部と、
この平面画像入力部から入力された前記平面画像データに含まれる前記塗布形状に基づき、前記液状材料の平面方向の情報を求める平面方向測定部と、
前記平面画像入力部から入力された前記平面画像データに含まれる前記濃淡分布に基づき、前記液状材料の高さ方向の情報を求める高さ方向測定部と、
前記被塗布部材に前記液状材料を塗布するのに要した塗布圧力のデータを入力する塗布圧力データ入力部と、
この塗布圧力データ入力部から入力された塗布圧力のデータと前記平面方向測定部で求められた前記平面方向の情報と前記高さ方向測定部で求められた前記高さ方向の情報とから前記塗布圧力の補正値を算出し、その結果を塗布圧力補正データとして出力する塗布圧力補正データ出力部と、
を備えた塗布圧力制御装置。
A planar image input unit for inputting planar image data including the application shape and density distribution of the liquid material applied to the member to be coated;
A plane direction measurement unit for obtaining information on the plane direction of the liquid material based on the application shape included in the plane image data input from the plane image input unit,
A height direction measurement unit that obtains information on the height direction of the liquid material based on the density distribution included in the planar image data input from the planar image input unit;
An application pressure data input unit for inputting application pressure data required to apply the liquid material to the application member;
Based on the coating pressure data input from the coating pressure data input unit, the plane direction information obtained by the plane direction measuring unit, and the height direction information obtained by the height direction measuring unit, the coating is performed. An application pressure correction data output unit that calculates a correction value of pressure and outputs the result as application pressure correction data;
A coating pressure control device.
請求項1記載の塗布圧力制御装置において、
前記塗布圧力補正データ出力部は、前記平面方向の情報と前記高さ方向の情報とから前記液体材料の塗布量を算出し、この塗布量が適正値よりも大きければ前記塗布圧力を減らす補正値を算出し、前記塗布量が前記適正値よりも小さければ前記塗布圧力を増やす補正値を算出する、
塗布圧力制御装置。
The application pressure control device according to claim 1,
The application pressure correction data output unit calculates the application amount of the liquid material from the information in the plane direction and the information in the height direction, and a correction value for reducing the application pressure if the application amount is larger than an appropriate value. Calculating a correction value to increase the application pressure if the application amount is smaller than the appropriate value,
Application pressure control device.
請求項1又は2記載の塗布圧力制御装置において、
前記高さ方向測定部は、前記塗布形状の周辺が濃くなり中央が淡くなる場合に、濃い部分ほど前記液状材料の高さが低く淡い部分ほど前記液状材料の高さが高いと判断して、前記液状材料の高さ方向の情報を求める、
塗布圧力制御装置。
In the application pressure control device according to claim 1 or 2,
The height direction measurement unit, when the periphery of the application shape is dark and the center is light, it is determined that the height of the liquid material is lower as the darker part is higher and the height of the liquid material is higher as the lighter part, Find information on the height direction of the liquid material,
Application pressure control device.
請求項1乃至3のいずれか一項記載の塗布圧力制御装置において、
前記高さ方向測定部は、前記塗布形状の全体に占める前記淡い部分の割合が少ないほど前記液状材料の頂上の高さが高いと判断する、
塗布圧力制御装置。
In the application pressure control device according to any one of claims 1 to 3,
The height direction measurement unit determines that the height of the top of the liquid material is higher as the proportion of the light portion in the entire application shape is smaller.
Application pressure control device.
請求項1乃至4のいずれか一項記載の塗布圧力制御装置において、
前記平面方向測定部は、前記液状材料の平面方向の情報として、前記塗布形状の面積を求める、
塗布圧力制御装置。
In the application pressure control device according to any one of claims 1 to 4,
The plane direction measurement unit obtains the area of the application shape as information on the plane direction of the liquid material.
Application pressure control device.
請求項1乃至4のいずれか一項記載の塗布圧力制御装置において、
前記平面方向測定部は、前記液状材料の平面方向の情報として、前記塗布形状の線幅を求める、
塗布圧力制御装置。
In the application pressure control device according to any one of claims 1 to 4,
The plane direction measurement unit obtains the line width of the coating shape as information on the plane direction of the liquid material.
Application pressure control device.
請求項1乃至6のいずれか一項記載の塗布圧力制御装置と、
容器に収容された液状材料に塗布圧力を加えることにより、前記液状材料を前記容器から吐出させて被塗布部材に塗布する塗布手段と、
前記被塗布部材に塗布された前記液状材料の前記平面画像データを取り込んで前記塗布圧力制御装置へ出力する撮像手段と、
前記液状材料に加える前記塗布圧力を決定して前記塗布手段へ指示する制御手段とを備え、
前記制御手段は、現在の前記塗布圧力のデータを前記塗布圧力制御装置へ出力するとともに、前記塗布圧力制御装置から出力された前記塗布圧力補正データに基づいて次の前記塗布圧力を決定して前記塗布手段へ指示する機能を有する、
塗布装置。
An application pressure control device according to any one of claims 1 to 6,
An application means for applying the application pressure to the liquid material contained in the container to cause the liquid material to be discharged from the container and applied to the member to be applied;
Imaging means for taking in the planar image data of the liquid material applied to the application member and outputting the data to the application pressure control device;
Control means for determining the application pressure applied to the liquid material and instructing the application means;
The control means outputs the current application pressure data to the application pressure control device and determines the next application pressure based on the application pressure correction data output from the application pressure control device. Having the function of instructing the application means;
Coating device.
被塗布部材に塗布された液状材料の塗布形状及び濃淡分布を含む平面画像データを入力し、
入力された前記平面画像データに含まれる前記塗布形状に基づき、前記液状材料の平面方向の情報を求め、
入力された前記平面画像データに含まれる前記濃淡分布に基づき、前記液状材料の高さ方向の情報を求め、
前記被塗布部材に前記液状材料を塗布するのに要した塗布圧力のデータを入力し、
入力された前記塗布圧力のデータと求められた前記平面方向の情報と求められた前記高さ方向の情報とから前記塗布圧力の補正値を算出する、
塗布圧力制御方法。
Input the plane image data including the application shape and density distribution of the liquid material applied to the coated member,
Based on the coating shape included in the input planar image data, obtain information on the planar direction of the liquid material,
Based on the density distribution included in the input planar image data, obtain information on the height direction of the liquid material,
Input application pressure data required to apply the liquid material to the application member,
The correction value of the application pressure is calculated from the input data of the application pressure, the obtained information on the plane direction, and the obtained information on the height direction.
Application pressure control method.
請求項8記載の塗布圧力制御方法において、
前記塗布圧力の補正値を算出する際に、前記平面方向の情報と前記高さ方向の情報とから前記液体材料の塗布量を算出し、この塗布量が適正値よりも大きければ前記塗布圧力を減らす補正値を算出し、前記塗布量が前記適正値よりも小さければ前記塗布圧力を増やす補正値を算出する、
塗布圧力制御方法。
In the application pressure control method according to claim 8,
When calculating the correction value of the application pressure, the application amount of the liquid material is calculated from the information in the plane direction and the information in the height direction, and if the application amount is larger than an appropriate value, the application pressure is set. Calculating a correction value to reduce, and calculating a correction value to increase the application pressure if the application amount is smaller than the appropriate value;
Application pressure control method.
被塗布部材に塗布された液状材料の塗布形状及び濃淡分布を含む平面画像データを入力する平面画像入力手順と、
この平面画像入力手順で入力された前記平面画像データに含まれる前記塗布形状に基づき、前記液状材料の平面方向の情報を求める平面方向測定手順と、
前記平面画像入力手順で入力された前記平面画像データに含まれる前記濃淡分布に基づき、前記液状材料の高さ方向の情報を求める高さ方向測定手順と、
前記被塗布部材に前記液状材料を塗布するのに要した塗布圧力のデータを入力する塗布圧力データ入力手順と、
この塗布圧力データ入力手順で入力された塗布圧力のデータと前記平面方向測定手順で求められた前記平面方向の情報と前記高さ方向測定手順で求められた前記高さ方向の情報とから前記塗布圧力の補正値を算出し、その結果を塗布圧力補正データとして出力する塗布圧力補正データ出力手順と、
をコンピュータに実行させるための塗布圧力制御プログラム。
Planar image input procedure for inputting planar image data including the application shape and density distribution of the liquid material applied to the member to be coated;
A plane direction measurement procedure for obtaining information on the plane direction of the liquid material based on the application shape included in the plane image data input in the plane image input procedure,
A height direction measurement procedure for obtaining information on the height direction of the liquid material based on the density distribution included in the planar image data input in the planar image input procedure,
Application pressure data input procedure for inputting application pressure data required to apply the liquid material to the application member;
From the coating pressure data input in the coating pressure data input procedure, the plane direction information obtained in the plane direction measurement procedure, and the height direction information obtained in the height direction measurement procedure, the coating is performed. Application pressure correction data output procedure for calculating a pressure correction value and outputting the result as application pressure correction data;
A coating pressure control program for causing a computer to execute.
JP2010080932A 2010-03-31 2010-03-31 Coating pressure control device, method and program, and coating device using the same Active JP5651981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080932A JP5651981B2 (en) 2010-03-31 2010-03-31 Coating pressure control device, method and program, and coating device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080932A JP5651981B2 (en) 2010-03-31 2010-03-31 Coating pressure control device, method and program, and coating device using the same

Publications (2)

Publication Number Publication Date
JP2011212526A true JP2011212526A (en) 2011-10-27
JP5651981B2 JP5651981B2 (en) 2015-01-14

Family

ID=44942848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080932A Active JP5651981B2 (en) 2010-03-31 2010-03-31 Coating pressure control device, method and program, and coating device using the same

Country Status (1)

Country Link
JP (1) JP5651981B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009231A (en) * 2013-07-02 2015-01-19 株式会社キーレックス Sealer coating apparatus
JP2015528388A (en) * 2012-08-30 2015-09-28 イリノイ トゥール ワークス インコーポレイティド Method and apparatus for calibrating supplied deposits
JP2017121629A (en) * 2017-02-28 2017-07-13 株式会社キーレックス Sealer coating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11119232A (en) * 1997-10-17 1999-04-30 Toshiba Corp Applicator for coating sealant
JP2004136582A (en) * 2002-10-18 2004-05-13 Seiko Epson Corp Method for inspecting liquid droplet discharge of liquid droplet discharge head, device for inspecting liquid droplet discharge, and liquid droplet discharge apparatus
JP2007263599A (en) * 2006-03-27 2007-10-11 Mazda Motor Corp Method and apparatus for evaluating state of application
JP2009050828A (en) * 2007-08-29 2009-03-12 Shibaura Mechatronics Corp Paste coating device and paste coating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11119232A (en) * 1997-10-17 1999-04-30 Toshiba Corp Applicator for coating sealant
JP2004136582A (en) * 2002-10-18 2004-05-13 Seiko Epson Corp Method for inspecting liquid droplet discharge of liquid droplet discharge head, device for inspecting liquid droplet discharge, and liquid droplet discharge apparatus
JP2007263599A (en) * 2006-03-27 2007-10-11 Mazda Motor Corp Method and apparatus for evaluating state of application
JP2009050828A (en) * 2007-08-29 2009-03-12 Shibaura Mechatronics Corp Paste coating device and paste coating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528388A (en) * 2012-08-30 2015-09-28 イリノイ トゥール ワークス インコーポレイティド Method and apparatus for calibrating supplied deposits
JP2015009231A (en) * 2013-07-02 2015-01-19 株式会社キーレックス Sealer coating apparatus
JP2017121629A (en) * 2017-02-28 2017-07-13 株式会社キーレックス Sealer coating device

Also Published As

Publication number Publication date
JP5651981B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
US9393586B2 (en) Dispenser and method of dispensing and controlling with a flow meter
JP5779353B2 (en) Liquid material coating method, coating apparatus and program
TWI293260B (en) Method of dispensing viscous material onto a substrate from a dispenser
JP4435044B2 (en) Liquid material ejection apparatus and method
US9847265B2 (en) Flow metering for dispense monitoring and control
JP5651981B2 (en) Coating pressure control device, method and program, and coating device using the same
KR101463488B1 (en) Method and apparatus for applying liquid material, and storage medium for program
JP4871093B2 (en) Method, apparatus and program for filling liquid material
JP4868515B2 (en) Method, apparatus and program for filling liquid material
JP2011025229A (en) Device for coating with paste and method for coating with the same
JP2012239962A (en) Coating method, and coating apparatus
EP3349916A1 (en) Dispense monitoring and control
JP2015528388A (en) Method and apparatus for calibrating supplied deposits
TWI498168B (en) Method and device for adjusting cohesive material coating
JP4894109B2 (en) Die coat control method
JP2010142789A (en) Method and apparatus for applying coating liquid
JP2004158529A (en) Apparatus and method for coating with paste and drawing property determining device in paste coating
JP2006324494A (en) Coater
JP7360364B2 (en) Resin molding equipment and method for manufacturing resin molded products
KR100566408B1 (en) Apparatus and method for controlling thickness of coating layer in semiconductor manufactoring process
JP3399426B2 (en) Liquid supply method
JP2009090234A (en) Adhesive applying apparatus
JP2010113071A (en) Method for producing flat display device
TWI550258B (en) Material feeding device with real-time monitoring
JP2021126623A (en) Coating device and coating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141103

R150 Certificate of patent or registration of utility model

Ref document number: 5651981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150