JP2011211137A - Semiconductor device and method of manufacturing the same, and electronic device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same, and electronic device and method of manufacturing the same Download PDF

Info

Publication number
JP2011211137A
JP2011211137A JP2010093487A JP2010093487A JP2011211137A JP 2011211137 A JP2011211137 A JP 2011211137A JP 2010093487 A JP2010093487 A JP 2010093487A JP 2010093487 A JP2010093487 A JP 2010093487A JP 2011211137 A JP2011211137 A JP 2011211137A
Authority
JP
Japan
Prior art keywords
solder
semiconductor device
oxygen concentration
lead
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010093487A
Other languages
Japanese (ja)
Inventor
Hisao Ishikawa
久雄 石川
Masanori Yokoyama
正▲徳▼ 横山
Takashi Kamiya
隆 神谷
Mitsuyoshi Kimura
光芳 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HORIZON GIJUTSU KENKYUSHO KK
Original Assignee
HORIZON GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HORIZON GIJUTSU KENKYUSHO KK filed Critical HORIZON GIJUTSU KENKYUSHO KK
Priority to JP2010093487A priority Critical patent/JP2011211137A/en
Publication of JP2011211137A publication Critical patent/JP2011211137A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

PROBLEM TO BE SOLVED: To greatly improve bonding reliability of fine junctions of a semiconductor device and an electronic device.SOLUTION: A bump or solder coating is formed through a first process and a second process. In the first process, at least one or more tin or solder particles are bonded to metal surfaces of electrode pads or lead parts to be solder-bonded in a state wherein the tin or solder particles are scattered on the cleaned surfaces of all the exposed fine-pitch electrode pads or leads of a chip, a wafer, an interposer (wiring board), or a mounting substrate covered with a heat-resistive organic insulating protective film except electrode pads or lead parts to be solder-bonded. In the second process, the pad or lead metal surfaces are brought into contact with a solution containing a 1 to 95 mass% of an organic compound which is dissolved in an oil-based solvent of 180 to 300°C in liquid temperature and molecule-structurally stable, and has at least a carboxyl group (-COOH), a low-oxygen-concentration molten solder liquid of 5 ppm or below in oxygen concentration, and the organic compound solution again.

Description

本発明は、半導体装置及びその製造技術、ならびに電子装置及びその製造方法に関し、特に半導体装置の狭ピッチで並列する多数の電極パッドにそれぞれ微小なはんだバンプを形成する技術と、同様に実装基板の狭ピッチで並列する多数の電極パッドまたはリード部金属表面に微小なはんだ皮膜を被覆する技術、また、多数の電極パッドが狭ピッチで並列した半導体チップを多数個並列的に保有する半導体ウエハーの全てのチップ内に存在する全ての電極パッドまたはリードにそれぞれ微小なはんだバンプを形成した半導体装置及びその製造技術、更にはこれらの半導体装置とその他の電子部品を実装基板にはんだ接合してなる電子装置及びその製造技術に関するものである。  The present invention relates to a semiconductor device and a manufacturing technique thereof, and an electronic device and a manufacturing method thereof, and more particularly, a technique for forming small solder bumps on a large number of electrode pads arranged in parallel at a narrow pitch of a semiconductor device, and a mounting board as well. A technology that coats a small solder film on the surface of a large number of electrode pads or leads that are arranged in parallel at a narrow pitch, and all semiconductor wafers that have a large number of semiconductor chips in which a large number of electrode pads are arranged in parallel at a narrow pitch Semiconductor device in which minute solder bumps are formed on all electrode pads or leads existing in the chip and its manufacturing technology, and further, an electronic device formed by soldering these semiconductor devices and other electronic components to a mounting board And its manufacturing technology.

近年、電子機器、とりわけ半導体チップや半導体装置はますます高集積高密度小型軽量化し品質的に高信頼性が要求されている。これに相応して、抵抗器、コンデンサー、コネクターなどの電子部品も小型高密度化され、これらを実装基板に搭載しはんだ接合された電子装置もますます小型高密度化されている。
半導体装置の中でも、特にLSI,BGA(Ball Grid Array)、CSP(Chip Size Package)の半導体チップやインターポーザー(配線基板)は小型微小化に伴いバンプやはんだ接合部も狭ピッチ微細化が進み、かつますます高信頼性が要求されている。とりわけ半導体チップならびにそれを搭載するインターポーザー間の微小はんだ接合品質には極めて厳しい信頼性が要求されている。
このため、錫またははんだ接合に使用する錫またははんだ合金側にも接合強度、とりわけ半導体チップ、およびその他の電子部品の電極パッドまたはリードの接合面積および隣接ピッチの微小狭小化に伴う錫またははんだ微小接合部の高信頼性が要求されている。
In recent years, electronic devices, in particular semiconductor chips and semiconductor devices, are increasingly required to be highly integrated, high density, small and light, and to have high quality. Correspondingly, electronic components such as resistors, capacitors, and connectors have been miniaturized and densified, and electronic devices that are mounted on a mounting board and soldered are increasingly miniaturized and densified.
Among semiconductor devices, semiconductor chips and interposers (wiring boards) of LSI, BGA (Ball Grid Array), CSP (Chip Size Package), etc., have been increasingly miniaturized and bumps and solder joints have also been made finer and finer. In addition, higher reliability is required. In particular, extremely strict reliability is required for the quality of the fine solder joint between the semiconductor chip and the interposer on which it is mounted.
For this reason, the bonding strength of the tin or solder alloy used for tin or solder bonding, especially the bonding area of electrode pads or leads of semiconductor chips and other electronic components, and the fineness of tin or solder accompanying the narrowing of adjacent pitches High reliability of the joint is required.

また一方では、近年、環境汚染ならびに人体に対する有害性の問題で鉛の使用禁止または規制化が進み、特に電子部品分野においては鉛を含有しない所謂「鉛フリーはんだ合金」がはんだ付け加工に広く使用されており、特に、錫・銀・銅系はんだ合金、及びそれにアンチモンを添加したはんだ合金(特許文献1)、錫・銀・銅系はんだ合金にニッケルまたはゲルマニウムなどを添加したはんだ合金(特許文献2)などが提案され、実用化されている。このほかにも、錫・亜鉛・ニッケル系はんだ合金及び更に銀、銅、ビスマスなどを添加したはんだ合金(特許文献3)など数多くの各種はんだ合金が提案されている。  On the other hand, in recent years, the use of lead has been banned or regulated due to environmental pollution and harm to the human body, and so-called “lead-free solder alloys” that do not contain lead are widely used for soldering, especially in the field of electronic components. In particular, tin / silver / copper solder alloys and solder alloys with antimony added thereto (patent document 1), tin / silver / copper solder alloys with nickel or germanium added, etc. (patent document) 2) etc. are proposed and put into practical use. In addition to these, a number of various solder alloys have been proposed, such as a tin / zinc / nickel solder alloy and a solder alloy further added with silver, copper, bismuth, etc. (Patent Document 3).

一般に、CSP用チップの微小な電極パッドに微小なバンプを形成させるには、バンプを形成させる電極パッド部を除いてそれ以外の表面全てに保護膜を塗布し被覆保護した後、開口している該電極パッド金属表面(一般に下地Niめっきの上にAuフラッシュめっきが施されている)に数10μmの厚さまで金バンプまたははんだバンプを電鋳めっきして使用されている。しかしながら、この場合、金は高価なこと、電鋳めっきは長時間かかり、管理も複雑で効率が悪く、原価が高い難点がある。
また、はんだバンプの大きさおよび隣接ピッチは、CSPを実装基板に搭載してはんだ接合する際の現行はんだの物性上および接合技術上の制約から、現行のはんだを溶融して使用すると、はんだ接合部に必要以上の容量ではんだが盛り上がる所謂「オーバーボリューム」(ツノ、ツララ)や隣接リードへブリッジしてリーク不良を生じやすい難点があるから、ハンダボールまたは溶融はんだ浸漬により形成されるはんだバンプ径は高々80μm程度、隣接ピッチとしては200μm程度の微小狭小化が現状では限界といわれ、例えば、バンプ径が80μm以下、隣接ピッチが150μm以下の微小微細はんだバンプは前記電鋳めっきバンプ以外は未だに完全には実用化されていない。
In general, in order to form a minute bump on a minute electrode pad of a CSP chip, a protective film is applied to all other surfaces except for the electrode pad part where the bump is formed, and the openings are opened after covering and protecting. The electrode pad metal surface (generally Au flash plating is applied on the underlying Ni plating) is used by electroforming gold bumps or solder bumps to a thickness of several tens of μm. However, in this case, gold is expensive, electroforming plating takes a long time, management is complicated and inefficient, and costs are high.
Also, the size and adjacent pitch of the solder bumps can be determined by using the current solder melted and used due to restrictions on the physical properties and joining technology of the current solder when the CSP is mounted on the mounting board and soldered. Solder ball or solder bump diameter formed by immersion of solder ball or solder due to the so-called “over volume” (tsuno, tsura) where the solder rises in the part with more capacity than necessary and the difficulty of leaking by bridging to adjacent leads Currently, it is said that the narrowing of about 80 μm and the adjacent pitch of about 200 μm is the limit at present. For example, the minute fine solder bumps having a bump diameter of 80 μm or less and an adjacent pitch of 150 μm or less are still completely other than the electroformed plating bumps. Has not been put to practical use.

一方、実装基板のパッドまたはリード表面に半導体装置、またはそれ以外の電子部品、例えば、コンデンサー、抵抗器、コネクターなどをはんだ接合し実装する方法としては、実装基板のはんだ接合するパッドまたはリードを除いてそれ以外の表面全てを保護膜で被覆した後、前記実装基板のパッドまたはリードに相当する個所のみ開口したメタルマスクを実装基板に重ねてローラーまたはスキージーで実装基板のパッドまたはリードに所定の厚さのソルダーペーストを印刷塗布し、その後、メタルマスクを外して自動表面実装機(マウンター)で実装基板上の所定のパッドまたはリード位置に所定の電子部品を自動搭載し、ソルダーペーストが融解してはんだ付けが出来る温度に加熱したリフロー炉を通過させることにより、各種部品を実装基板にはんだ接合して半導体装置または電子装置を生産している。
しかしながら、現行の錫またははんだ合金には一般的に数百ppmの酸化金属が存在するために溶融時の粘性が比較的高く、ぬれ性は比較的低いため、特にパッドまたはリード幅が80μ以下でピッチが150μm以下の微小微細な実装基板に半導体装置やその他の電子部品をはんだ接合する際には、譬え、適切なフラックスを使用しても接合部に必要以上の容量ではんだが盛り上がる所謂「オーバーボリューム」(ツノ、ツララ)や隣接リードへブリッジしてリーク不良を生じやすい難点があるばかりか、はんだ未着や、フラックスまたはソルダーペーストなどに含まれている溶剤や樹脂分がはんだ接合時に気化してマクロボイドを生ずる難点もある(特許文献4)。また、接合はんだの物理的機械的特性の1つである伸びが小さいために電子回路として半導体装置や電子装置に組み込まれた後、通電on−offを繰返すと、ヒートサイクルによりはんだ接合部が疲労破断して導通不良など生じやすく、微小化した電子機器の接続信頼性を損なうことが広く知られている。(特許文献4)
On the other hand, as a method of soldering and mounting a semiconductor device or other electronic components such as capacitors, resistors, connectors, etc. on the surface of the mounting board pad or lead, the soldering pad or lead of the mounting board is excluded. Then, after covering all other surfaces with a protective film, a metal mask having openings corresponding to the pads or leads of the mounting board is overlaid on the mounting board, and a predetermined thickness is applied to the pads or leads of the mounting board with a roller or squeegee. The solder paste is printed and applied, then the metal mask is removed, and the automatic surface mounter (mounter) automatically mounts the specified electronic components on the specified pads or lead positions on the mounting board. Various parts are put into practice by passing them through a reflow oven heated to a temperature where soldering is possible. It has produced semiconductor devices or electronic devices soldered to the substrate.
However, current tin or solder alloys generally have several hundred ppm of metal oxide, so the viscosity at the time of melting is relatively high and the wettability is relatively low, so that the pad or lead width is particularly less than 80μ. When soldering a semiconductor device or other electronic component to a fine mounting substrate with a pitch of 150 μm or less, the solder rises with a capacity more than necessary even if an appropriate flux is used. In addition to the difficulty of leaking by bridging to “volume” (horns and wigs) and adjacent leads, the solvent and resin components contained in solder unattached, flux or solder paste, etc. are vaporized during soldering. Therefore, there is also a difficulty in producing macro voids (Patent Document 4). In addition, since the elongation, which is one of the physical and mechanical characteristics of the solder joint, is small, after being energized on-off after being incorporated into a semiconductor device or electronic device as an electronic circuit, the solder joint becomes fatigued due to heat cycles. It is widely known that breakage tends to occur, such as poor conduction, and impairs connection reliability of miniaturized electronic devices. (Patent Document 4)

特開平5−50286(特許3027441)  JP 5-50286 (Patent 3027441) 特開平11−77366(特許3296289)  JP 11-77366 (Patent 3296289) 特開平9−94688(特許3299091)  Japanese Patent Laid-Open No. 9-94688 (Patent 3299091) 特開2001−237536(特許32216709)  JP2001-237536 (Patent 3216709) 特開2003−334498(特許第4153723号)  JP2003-334498 (Patent No. 4153723) 特開2002−233994(特許第4203281号)  JP 2002-233994 (Patent No. 4203281)

本発明は、従来より実用されている電子部品用錫またははんだ合金および接合技術上の上記難点、即ち、「オーバーボリューム」(ツノ、ツララ)や隣接リードへブリッジオーバーによるリーク不良問題を排除し、溶融はんだを使用した従来技術では不可能であったバンプ径、またはリード幅が80μm以下で隣接ピッチが150μm以下の狭ピッチ微小微細チップとインターポーザーの溶融はんだ使用による直接はんだ接合を可能して回路を形成させた半導体装置とその製造技術、同様に幅が80μm以下で隣接ピッチが150μm以下の狭ピッチのパッドまたはリード金属表面に溶融はんだで直接はんだ被覆した実装基板上の所定の位置に半導体装置やそれ以外の電子部品を溶融はんだで直接はんだ接合して表面実装した電子装置およびその製造技術を提供することにある。
これにより、従来の高価なメタルマスクやソルダーペーストを使用せず、簡便で利便性に富み経済的かつ効率的で品質的に信頼性の高い半導体装置及びその製造技術、ならびに電子装置とその製造技術を提供することにある。
The present invention eliminates the above-mentioned disadvantages in tin or solder alloy for electronic parts and joining technology that have been practically used in the past, that is, "over volume" (horn, tsura) and leakage failure due to bridge over to adjacent leads, Bump diameter or lead width that was not possible with conventional technology using molten solder, and a circuit that enables direct soldering by using molten solder of a narrow pitch micro-fine chip with an adjacent pitch of 150 μm or less and an interposer that is less than 80 μm. And a manufacturing technique thereof, similarly, a semiconductor device at a predetermined position on a mounting substrate in which a surface of a narrow pitch pad or lead metal having a width of 80 μm or less and an adjacent pitch of 150 μm or less is directly solder-coated with molten solder And other electronic components that are surface-mounted by direct solder bonding with molten solder It is to provide a manufacturing technique.
As a result, a semiconductor device that is simple, convenient, economical, efficient, and reliable in quality without using a conventional expensive metal mask or solder paste, and its manufacturing technology, as well as an electronic device and its manufacturing technology Is to provide.

本発明の半導体装置およびその製造方法、ならびに電子装置及びその製造方法は、はんだ接合されるパッドまたはリード以外は保護膜で覆われているチップ、そのチップを多数個並列したウエハー、BGAのインターポーザー、または実装基板の露出している全てのパッドまたはリードの清浄な金属表面内に錫またははんだ粒子を散布し少なくとも1個以上の前記粒子を散在させて各パッドまたはリードの清浄な金属表面に接着させる第1のプロセスと、次に前記パッドまたはリードに錫またははんだ粒子が接着したチップ、ウエハー、インターポーザー、または実装基板を液温180〜300℃の油系溶媒に溶解しかつ分子構造的に安定かつ少なくともカルボキシル基(−COOH)を有する有機化合物1質量%以上を含有する溶液または100%有機化合物単体液と接触させた後、直ちに酸素濃度5ppm以下の低酸素濃度溶融はんだ液に接触させ、再び直ちに前記溶液または100%単体液と接触させる第2のプロセスにより、前記パッドまたはリード表面に直接はんだバンプまたははんだ皮膜を形成させる。これにより狭ピッチの隣接回路に前記錫またははんだがブリッジすることなく微小はんだバンプまたは微小はんだ皮膜を形成させたリードを有するチップ、ウエハー、インターポーザー、または実装基板、更にはこれらを組合わせて信頼性の高い半導体装置、ならびに電子装置の製造が可能になる。
例えば、BGA半導体装置などは前記第1および第2プロセスにより、狭ピッチで微小バンプが形成されたチップ上のバンプをインターポーザーのパッドの位置に対応させて搭載して加熱雰囲気中で前記バンプのはんだを融解してチップとインターポーザーの電極間をはんだ接合することにより回路形成させて半導体装置を製造することができる。
また、前記チップをインターポーザーに搭載する際、前記バンプ以外の保護膜の一部と、これに位置的に対応するインターポーザーのパッド以外の保護膜個所とを耐熱性接着剤を介して接着させて位置を固定した後、再び液温180〜300℃の油系溶媒に溶解しかつ分子構造的に安定かつ少なくともカルボキシル基(−COOH)を有する有機化合物1質量%以上を含有する溶液または100%有機化合物単体液と接触させた後、直ちに酸素濃度5ppm以下の低酸素濃度溶融はんだ液に接触させ、再び直ちに前記有機化合物溶液または100%単体液と接触させることによっても、狭ピッチの隣接回路がブリッジオーバーリークすることなくチップをインターポーザーの電極パッドまたはリードにはんだ接合してより信頼性の高い半導体装置の製造が可能である。
同様に、電子装置においては、前記第1および第2プロセスにより狭ピッチで微小バンプが形成されたCSP、BGAなどの半導体装置の前記バンプ、およびアウターリードがはんだ被覆されているその他の電子部品のリードを、これらに位置的に対応する電極パッドまたはリードが露出していて、それ以外の表面は保護膜で覆われた実装基板の所定の位置に搭載して、加熱雰囲気中で前記バンプ、アウターリードのはんだを融解して半導体装置およびその他の電子部品と実装基板のパッドまたはリードをはんだ接合することにより回路形成させて電子装置を製造することができる。この場合も、前記半導体装置およびその他の電子部品を実装基板に搭載する際、前記半導体装置の前記バンプ以外の保護膜の一部、およびその他の電子部品のアウターリード以外の絶縁部位と、これらに位置的に対応する実装基板のパッドまたはリード以外の保護個所とを耐熱性接着剤を介して接着させて位置を固定した後、液温180〜300℃の油系溶媒に溶解しかつ分子構造的に安定かつ少なくともカルボキシル基を有する有機化合物1質量%以上を含有する有機化合物溶液または100%単体液と接触させた後、直ちに酸素濃度5ppm以下の低酸素濃度溶融はんだ液に接触させ、再び直ちに前記溶液または100%単体液と接触させることにより、狭ピッチの隣接回路がブリッジオーバーリークすることなく半導体装置およびその他の電子部品を実装基板の電極パッドまたはリードにはんだ接合して信頼性の高い電子装置の製造を可能にするものである。
A semiconductor device and a manufacturing method thereof, and an electronic device and a manufacturing method thereof according to the present invention include a chip covered with a protective film other than pads or leads to be soldered, a wafer in which a large number of chips are arranged in parallel, and a BGA interposer. Alternatively, tin or solder particles are dispersed in a clean metal surface of all exposed pads or leads of the mounting substrate, and at least one or more of the particles are dispersed to adhere to the clean metal surface of each pad or lead. A first process, and then a chip, a wafer, an interposer, or a mounting substrate having tin or solder particles bonded to the pad or lead is dissolved in an oil-based solvent having a liquid temperature of 180 to 300 ° C. A solution containing 1% by mass or more of an organic compound which is stable and has at least a carboxyl group (—COOH), or After the contact with the 00% organic compound simple substance liquid, the pad or lead is immediately brought into contact with the low oxygen concentration molten solder liquid having an oxygen concentration of 5 ppm or less, and again immediately brought into contact with the solution or the 100% simple substance liquid. A solder bump or solder film is formed directly on the surface. As a result, a chip, a wafer, an interposer, or a mounting substrate having a lead in which a fine solder bump or a fine solder film is formed without bridging the tin or solder on an adjacent circuit having a narrow pitch, and a combination thereof, can be trusted. High-performance semiconductor devices and electronic devices can be manufactured.
For example, a BGA semiconductor device or the like mounts bumps on a chip on which micro bumps are formed at a narrow pitch in accordance with the first and second processes in accordance with the positions of interposer pads. A semiconductor device can be manufactured by forming a circuit by melting the solder and solder-bonding between the chip and the electrodes of the interposer.
Further, when the chip is mounted on the interposer, a part of the protective film other than the bump and a protective film part other than the interposer pad corresponding to the position of the chip are bonded via a heat-resistant adhesive. After fixing the position, a solution containing 1% by mass or more of an organic compound which is dissolved in an oil-based solvent having a liquid temperature of 180 to 300 ° C. and which is stable in molecular structure and has at least a carboxyl group (—COOH) or 100% After contacting with the organic compound simple substance liquid, it is immediately brought into contact with a low oxygen concentration molten solder liquid having an oxygen concentration of 5 ppm or less, and immediately again with the organic compound solution or 100% simple substance liquid, the adjacent circuit with a narrow pitch can be obtained. More reliable semiconductor by soldering the chip to the electrode pad or lead of the interposer without bridge over leak It is possible to manufacture the location.
Similarly, in an electronic device, the bumps of a semiconductor device such as CSP and BGA in which minute bumps are formed at a narrow pitch by the first and second processes, and other electronic components whose outer leads are coated with solder The electrode pads or leads corresponding to the positions of these leads are exposed, and the other surfaces are mounted at predetermined positions on the mounting substrate covered with a protective film, and the bumps, outer An electronic device can be manufactured by forming a circuit by melting the lead solder and soldering the pads or leads of the mounting substrate to the semiconductor device and other electronic components. Also in this case, when mounting the semiconductor device and other electronic components on a mounting substrate, a part of the protective film other than the bumps of the semiconductor device, and insulating portions other than outer leads of the other electronic components, After fixing the position with a protective part other than the pad or lead of the mounting board corresponding to the position via a heat-resistant adhesive, it is dissolved in an oil-based solvent having a liquid temperature of 180 to 300 ° C. and has a molecular structure In contact with an organic compound solution containing 1% by mass or more of an organic compound having at least a carboxyl group or a 100% simple substance solution, and immediately brought into contact with a low oxygen concentration molten solder solution having an oxygen concentration of 5 ppm or less. By contacting with a solution or 100% simple substance solution, a semiconductor device and its adjacent circuit without a bridge over leak in a narrow pitch adjacent circuit The electrode pads or leads of a mounting board electronic component is to enable the production of a solder joint to highly reliable electronic device.

また、例えば、前記第1および第2プロセスにより狭ピッチで微小バンプが形成されたチップ上のバンプを、前記第1のプロセスで処理したインターポーザーまたは前記第1および第2のプロセスで処理したインターポーザーの電極パッドの位置に対応させて搭載して加熱雰囲気中で前記バンプのはんだを融解してチップとインターポーザーの電極間をはんだ接合することにより回路形成させて半導体装置を製造することもできる。この場合も、望ましくは、前記チップをインターポーザーに搭載する際、該チップの該バンプ以外の保護膜の一部と、これに位置的に対応するインターポーザーの電極パッド以外の保護膜個所とを耐熱性接着剤を介して接着させて位置を固定した後、再び液温180〜300℃の油系溶媒に溶解しかつ分子構造的に安定かつ少なくともカルボキシル基(−COOH)を有する有機化合物1質量%以上を含有する有機化合物溶液または該有機化合物100質量%単体液と接触させた後、直ちに酸素濃度5ppm以下の低酸素濃度溶融はんだ液に接触させ、再び直ちに前記有機化合物溶液と接触させるプロセスを行うことにより、狭ピッチの隣接回路がブリッジオーバーリークすることなくチップをインターポーザーの電極パッドにはんだ接合してより信頼性の高い半導体装置の製造を可能にするものである。
同様に、電子装置においても、前記第1および第2プロセスにより狭ピッチで微小バンプが形成されたCSP、BGAなどの半導体装置の該バンプ、およびアウターリードがはんだ被覆されているその他の電子部品のリードを、前記第1のプロセスで処理した実装基板または前記第1および第2のプロセスで処理した実装基板の電極パッドまたはリードの位置に対応させて搭載して加熱雰囲気中で前記バンプまたはリードのはんだを融解して半導体装置およびその他の電子部品と実装基板の電極パッドまたはリードをはんだ接合することにより回路形成させて電子装置を製造することができる。この場合も望ましくは、前記半導体装置およびその他の電子部品を実装基板に搭載する際、前記半導体装置の前記バンプ以外の絶縁保護膜の一部、およびその他の電子部品のアウターリード以外の絶縁部位と、これらに位置的に対応する実装基板の電極パッドまたはリード以外の保護膜個所とを耐熱性接着剤を介して接着させた後、液温180〜300℃の油系溶媒に溶解しかつ分子構造的に安定かつ少なくともカルボキシル基(−COOH)を有する有機化合物1質量%以上を含有する有機化合物溶液または前記有機化合物100質量%単体液と接触させた後、直ちに酸素濃度5ppm以下の低酸素濃度溶融はんだ液に接触させ、再び直ちに前記有機化合物溶液または該単体液と接触させるプロセスを行うことにより、狭ピッチの隣接回路がブリッジすることなく半導体装置およびその他の電子部品を実装基板の電極パッドまたはリードにはんだ接合して信頼性の高い電子装置の製造を可能にするものである。
Further, for example, an interposer processed by the first process or an interposer processed by the first and second processes on a chip on which micro bumps are formed at a narrow pitch by the first and second processes. It is also possible to manufacture a semiconductor device by forming a circuit by mounting corresponding to the position of the electrode pad of the poser, melting the solder of the bump in a heated atmosphere, and solder-bonding between the chip and the electrode of the interposer. . Also in this case, desirably, when the chip is mounted on the interposer, a part of the protective film other than the bump of the chip and a protective film portion other than the electrode pad of the interposer corresponding to the position are provided. 1 mass of an organic compound having a molecular structure stable and having at least a carboxyl group (—COOH) dissolved in an oil-based solvent having a liquid temperature of 180 to 300 ° C. % Or more of the organic compound solution containing 100% by mass or more, and immediately contacting with a low oxygen concentration molten solder solution having an oxygen concentration of 5 ppm or less, and immediately contacting with the organic compound solution again. By doing so, the chip is soldered to the electrode pad of the interposer without the bridge over leak of the adjacent circuit with a narrow pitch. It is intended to allow the production of more highly reliable semiconductor device.
Similarly, in the electronic device, the bumps of a semiconductor device such as CSP and BGA in which minute bumps are formed at a narrow pitch by the first and second processes, and other electronic components whose outer leads are coated with solder Leads are mounted corresponding to the positions of electrode pads or leads on the mounting substrate processed in the first process or the mounting substrates processed in the first and second processes, and the bumps or leads are mounted in a heated atmosphere. An electronic device can be manufactured by forming a circuit by melting the solder and soldering the semiconductor device and other electronic components to the electrode pads or leads of the mounting substrate. In this case also, preferably, when mounting the semiconductor device and other electronic components on a mounting substrate, a part of the insulating protective film other than the bumps of the semiconductor device and an insulating portion other than the outer leads of the other electronic components , And a protective film other than the electrode pads or leads of the mounting substrate corresponding to these positions are bonded via a heat-resistant adhesive, and then dissolved in an oil-based solvent at a liquid temperature of 180 to 300 ° C. and have a molecular structure After being brought into contact with an organic compound solution containing at least 1% by mass of an organic compound having a carboxyl group (—COOH) or 100% by mass of the organic compound, the oxygen concentration melts immediately at an oxygen concentration of 5 ppm or less. Narrow-pitch adjacent circuits are brought into contact with the solder solution and immediately again brought into contact with the organic compound solution or the single solution. The semiconductor device and the other electrode pads or leads of a mounting board electronic components without bridging is to enable the production of a solder joint to highly reliable electronic device.

更に詳しく述べると、先ず第1のプロセスで「全ての電極パッドまたはリードの清浄な金属表面内に錫またははんだ粒子を散布し少なくとも1個以上の前記粒子を散在させて高温加熱して各電極パッドまたはリードの清浄な金属表面に接着させる」目的は溶融はんだを電極パッドまたはリード内に呼び込み、良好なはんだバンプまたははんだ皮膜を形成させることにある。即ち、チップ、インターポーザー、または実装基板は電極パッドまたはリードのみ金属表面が露出しているが、それ以外の表面は厚さが数μmから数10μmの保護膜で覆われており(電極パッドまたはリードの最小幅、隣接ピッチ、更には用途と目的により異なる)、特に、最小幅が狭くかつ周囲を厚い保護膜で囲まれている電極パッドまたはリード(例えば、幅20μm、保護膜厚さ20μm以上など)は譬えぬれ性の良い溶融はんだ液を使用しても溶融はんだ特有のぬれ角の問題や前記保護膜で囲まれている部分に存在するエアーが障害となり、底部の電極パッドまたはリード表面に溶融はんだが接触できないためはんだバンプもはんだ皮膜の形成は殆ど不可能である。このため、本発明の方法では、電極パッドまたはリードの最小幅に応じて0.5〜20μmφの錫またははんだ粒子を溶融はんだ液呼び込みの核として使用する。  More specifically, in the first process, “each electrode pad is dispersed by spraying tin or solder particles in the clean metal surface of all electrode pads or leads, and at least one or more of the particles are dispersed and heated at a high temperature. The purpose of “adhering to the clean metal surface of the lead” is to draw molten solder into the electrode pad or lead to form a good solder bump or solder film. That is, the surface of the chip, interposer, or mounting substrate is exposed only on the electrode pad or lead, but the other surfaces are covered with a protective film having a thickness of several μm to several tens of μm (electrode pad or Minimum width of lead, adjacent pitch, and also varies depending on application and purpose), especially electrode pad or lead with minimum width and surrounded by thick protective film (for example, width 20 μm, protective film thickness 20 μm or more Etc.), even when a molten solder solution with good wettability is used, the problem of the wetting angle peculiar to molten solder and the air existing in the part surrounded by the protective film become obstacles, and the bottom electrode pad or lead surface Since molten solder cannot be contacted, it is almost impossible to form a solder film on the solder bump. For this reason, in the method of the present invention, tin or solder particles having a diameter of 0.5 to 20 μmφ are used as a core for attracting the molten solder liquid depending on the minimum width of the electrode pad or lead.

この粒子の材質は純錫でも、また通常の錫を主成分とし銀、銅、亜鉛、鉛、ビスマス、アンチモン、ニッケル、ゲルマニウム、インジウムなどのいずれか1種以上を含有する通常のはんだ合金で良いが、酸素濃度が5ppm以下であることが望ましい。粒形は転がり性の観点から真円に近い球形状で表面が平滑なほど好ましく、また、内部に所謂ボイドまたはマイクロボイドが存在しないものが望ましい。表面が粗なものまたは多孔状のものは転がり性が悪いためあまり好ましくない。また、内部にボイドやマイクロボイドが存在するものあるいは粒子全体が多孔質なものは、第2のプロセスで溶融はんだと合体してはんだバンプもしくははんだ皮膜を形成させる際、バンプもしくははんだ皮膜の内部や電極パッドまたはリードとの接合界面にマイクロボイドを点在させる恐れがあり、経時的に接合強度を劣化させる原因となるため好ましくない。  The material of the particles may be pure tin or a normal solder alloy containing normal tin as a main component and containing at least one of silver, copper, zinc, lead, bismuth, antimony, nickel, germanium, indium and the like. However, the oxygen concentration is desirably 5 ppm or less. From the viewpoint of rolling properties, the particle shape is preferably a spherical shape that is close to a perfect circle and has a smooth surface, and preferably has no so-called voids or microvoids inside. Those having a rough surface or a porous surface are not preferred because of their poor rolling properties. Also, in the case where voids or microvoids are present inside or the whole particles are porous, when the solder bump or solder film is formed by combining with the molten solder in the second process, There is a possibility that microvoids may be scattered at the bonding interface with the electrode pad or lead, and this is not preferable because it causes deterioration of bonding strength over time.

また、粒径は0.5μmφ未満の小粒子または粉状物は転がりにくいこと、静電気の影響をより受けやすく、均一に散布することが難しく、また必要以上の数量が電極パッドまたはリード内部に多数個の粒子が堆積し、核を形成させる際に多孔質状になり、第2のプロセスで溶融はんだと合体してはんだバンプもしくははんだ皮膜を形成させる際、バンプもしくははんだ皮膜の内部や電極パッドまたはリードとの接合界面にマイクロボイドを存在させる恐れがあり、経時的に接合強度を劣化させる原因となるから好ましくない。
従って、望ましい粒径は5〜40μmφであるが、電極パッドまたはリードの最小幅で上限は制約され、囲まれている前記保護膜厚さより低く、かつ前記パッドまたはリードの最小幅の0.3〜0.8倍程度の直径の球状体が最適である。
In addition, small particles or powders with a particle size of less than 0.5 μmφ are less likely to roll, more susceptible to static electricity, difficult to spread evenly, and many more than necessary inside electrode pads or leads. When particles are deposited and become nuclei when forming nuclei, and when they are combined with molten solder in the second process to form solder bumps or solder films, the interior of the bumps or solder films, electrode pads or There is a possibility that microvoids may be present at the bonding interface with the lead, which is not preferable because it causes deterioration in bonding strength over time.
Accordingly, the desirable particle diameter is 5 to 40 μmφ, but the upper limit is limited by the minimum width of the electrode pad or lead, which is lower than the enclosed protective film thickness and is 0.3 to 0.3 mm which is the minimum width of the pad or lead. A spherical body with a diameter of about 0.8 times is optimal.

前記錫またははんだ粒子を散布して、周囲を保護膜で囲われた電極パッドまたはリード表面に1個以上散在させる方法としては、単純に電極パッドまたはリード表面が上面になるように配置して上部から機械的に前記粒子を全面に振りかける方法、振動を利用して振込む方法、超純水の中に該粒子を分散させて超純水と一緒に吹きかける方法、超純水の代わりに揮発性溶媒に前記粒子を分散させてスプレーで吹きかける方法、あるいは電極パッドまたはリード部の配列と形状に対応して開口部が設けられたマスクと刷毛を使用して振込む方法、更には溶融錫または溶融はんだに直接超音波を照射しながらノズルから溶融錫またははんだ粒子を噴射散布する方法などがある。また、各電極パッドまたはリードの中心位置に対応し、かつ振込む粒子の大きさに対応した半球状の孔を有する粉末焼結で作られた専用治具を使用して、半球内に1〜3個の粒子を吸引し、それを各電極パッドまたはリードに振込む自動振込機を使用しても良い。
尚、前記専用マスク治具や自動振込機を使わず、チップ、ウエハー、インターポーザー、あるいは実装基板の全面に単純に振り掛ける場合は、電極パッドまたはリード以外の保護膜に残存する余分な粒子は排除するに越したことはないが、排除しなくとも、第2のプロセスで有機化合物溶液で洗い流すことも可能であるし、また溶融はんだ液の中に取り込まれるので支障はない。但し、前記粒子の組成と本発明に使用する前記溶融はんだ液の組成が異なると、本体である該溶融はんだ液中の成分比率が経時的に変化するため、好ましくない。この場合は核に使用する粒子は第2のプロセスで使用するはんだと同一の組成のはんだを使用することが望ましい。
As a method of dispersing one or more tin or solder particles to disperse one or more electrode pads or lead surfaces surrounded by a protective film, simply place the electrode pads or lead surfaces on the upper surface. The method of mechanically sprinkling the particles from the whole surface, the method of using the vibration, the method of dispersing the particles in ultrapure water and spraying with the ultrapure water, the volatile solvent instead of the ultrapure water A method in which the above particles are dispersed and sprayed, or a method in which an electrode pad or a lead having a mask corresponding to the arrangement and shape of the lead portion and a brush are used for transfer, and further on molten tin or molten solder. There is a method of spraying molten tin or solder particles from a nozzle while directly irradiating ultrasonic waves. Also, using a special jig made of powder sintering corresponding to the center position of each electrode pad or lead and having a hemispherical hole corresponding to the size of the transferred particles, 1 to 3 in the hemisphere An automatic transfer machine that sucks individual particles and transfers them to each electrode pad or lead may be used.
In addition, when using the dedicated mask jig or automatic transfer machine and simply sprinkling the entire surface of the chip, wafer, interposer, or mounting substrate, excess particles remaining on the protective film other than the electrode pads or leads Although it has never been eliminated, there is no problem even if it is not eliminated, since it can be washed away with an organic compound solution in the second process and is taken into the molten solder solution. However, if the composition of the particles and the composition of the molten solder solution used in the present invention are different, the component ratio in the molten solder solution that is the main body changes with time, which is not preferable. In this case, it is desirable to use a solder having the same composition as the solder used in the second process as the particles used for the core.

周囲を保護膜で囲われた電極パッドまたはリード表面に1個以上散在する前記錫またははんだ粒子を該表面に接着させる方法としては、該粒子の融点〜+50℃以内で0.5〜10秒程度加熱して接着させれば充分である。また、予め加温された対象物(ワーク)に該粒子を振りかけて粒子がワークの電極パッドまたはリード表面に到達するとそのまま接着する方式を取る効率的な方法もある。あるいは前記粒子の融点〜+50℃以内の高温の有機脂肪酸溶液中を通過させながら、電極パッドまたはリード表面上に散布して接着させることも有効である。  As a method for adhering one or more of the tin or solder particles scattered on the surface of the electrode pad or lead surrounded by a protective film to the surface, the melting point of the particles is within + 50 ° C. and about 0.5 to 10 seconds. It is sufficient to bond by heating. There is also an efficient method in which the particles are sprinkled onto a pre-warmed object (work) and the particles are directly bonded when they reach the electrode pad or lead surface of the work. Alternatively, it is also effective to disperse and adhere to the electrode pad or the lead surface while passing through a high-temperature organic fatty acid solution within the melting point to + 50 ° C. of the particles.

一方、第2のプロセス、即ち、「電極パッドまたはリード部に錫またははんだ合金が部分接着したチップ、ウエハー、インターポーザー(配線基板)、または実装基板を液温180〜300℃の油系溶媒に溶解しかつ分子構造的に安定かつ少なくともカルボキシル基(−COOH)を有する有機化合物1質量%以上を含有する有機化合物溶液または該有機化合物100質量%単体液と接触させた後、直ちに酸素濃度5ppm以下の低酸素濃度溶融はんだ液に接触させ、再び直ちに前記有機化合物溶液と接触させる」目的は、酸素濃度5ppm以下に精製した特殊はんだの溶融状態における特異で優れた特性、即ち、同一組成の一般のはんだ(酸素濃度が数百ppm含有)に較べて、溶融状態における粘性が著しく低く、凝固温度も10〜30℃低いため、特に液温180〜300℃の油系溶媒に溶解しかつ分子構造的に安定かつ少なくともカルボキシル基(−COOH)を有する有機化合物1質量%以上を含有する溶液または該有機化合物100質量%単体液と併用するとはんだの「切れ」が良く、ボリュームオーバーになりにくく、従ってブリッジを発生し難い特性を活用して狭ピッチで微小バンプや微細リードの回路形成すること、更にはそれにより半導体装置および電子装置の高信頼性を確保しながら更なる小型化を達成することにある。  On the other hand, the second process, that is, “chip, wafer, interposer (wiring board) or mounting board in which tin or solder alloy is partially bonded to the electrode pad or lead part is made into an oil-based solvent having a liquid temperature of 180 to 300 ° C. After contacting with an organic compound solution containing 1% by mass or more of an organic compound which is dissolved and stable in molecular structure and has at least a carboxyl group (—COOH) or 100% by mass of the organic compound, an oxygen concentration of 5 ppm or less immediately The purpose of “contacting with a low oxygen concentration molten solder solution of the above and immediately contacting with the organic compound solution again” is a unique and excellent characteristic in the molten state of a special solder refined to an oxygen concentration of 5 ppm or less, that is, the general composition of the same composition Compared to solder (containing several hundred ppm of oxygen), the viscosity in the molten state is remarkably low, and the solidification temperature is 10-30. In particular, a solution containing 1% by mass or more of an organic compound which is dissolved in an oil-based solvent having a liquid temperature of 180 to 300 ° C. and which is stable in molecular structure and has at least a carboxyl group (—COOH) or 100% by mass of the organic compound When used in combination with a single solution, solder "cuts" well, making it difficult to over-volume, thus making it difficult to generate bridges, and forming circuits with fine bumps and fine leads at narrow pitches. Another object is to achieve further downsizing while ensuring high reliability of the electronic device.

このプロセスにカルボキシル基(−COOH)を有する有機化合物溶液を使用する目的は、パッドまたはリードの金属表面をケン化反応により酸化膜を除去し清浄活性化することと、同時に清浄活性化された表面を保護すること、更には併用する酸素濃度5ppm以下の低酸素濃度溶融はんだ液の酸化を防止し混入する酸化物を前記溶融はんだ液から取り除く役割を果たすとともに、形成されたはんだバンプおよびはんだ皮膜の表面にも化学吸着保護膜としてコーティングすることにある。この他に付随的に第1のプロセスでワークの保護膜表面に付着した余分な粒子をある程度洗い流す効果もある。尚、これらの作用、効果ならびに表面処理技術としては既に特許文献5および6により公知である。  The purpose of using an organic compound solution having a carboxyl group (—COOH) in this process is to clean and activate the pad or lead metal surface by removing the oxide film by a saponification reaction, and at the same time clean and activated surface. In addition to preventing oxidation of the low oxygen concentration molten solder solution having an oxygen concentration of 5 ppm or less to be used together and removing the mixed oxide from the molten solder solution, The surface is also coated as a chemisorption protective film. In addition to this, there is an effect that the extra particles adhering to the surface of the workpiece protective film in the first process are washed away to some extent. These functions, effects, and surface treatment techniques are already known from Patent Documents 5 and 6.

また、本発明のプロセスで用いる有機化合物は、少なくともカルボキシル基(−COOH)を有する有機化合物であることが必須であり、例えば、メタン酸(蟻酸)、エタン酸(酢酸)、プロピオン酸、酪酸、イソ酪酸、α−メチル−βオキシ酪酸、吉草酸、イソ吉草酸、活性吉草酸、ピバル酸(トリメチル酢酸)、2−エチル酪酸、カプロン酸、カプリル酸、2−エチルヘキ酸、ノナン酸、カプリン酸、ウンデカン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキジン酸、アラキドン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸、シクロヘキサンカルボン酸、蓚酸、マロイン酸、コハク酸、グルタル酸、エチルマロン酸、アジピン酸、ピメリン酸、セバシン酸、シクロペンタンジカルボン酸、シクロヘキサンジカルボン酸およびその異性体、安息香酸、トルイル酸、フェニル酢酸、フェニルコハク酸、フタール酸、イソフタル酸、サリチル酸、α−ナフトエ酸、β−ナフトエ酸、カルセイン、シクロプロパンジカルボン酸、ニトロフタール酸、グリシン、アスパラギン酸、グルタミン酸、アラニン、フェニルアラニン、トレオニン、メチオニン、リジン、ヒスチジンなどの有機酸や有機脂肪酸、エチレンジアミン四酢酸、ニトリロ三酢酸、1,2−シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸などのキレート化合物などの有機化合物が挙げられる。。
これらの内、望ましくは180〜300℃で使用する溶媒に溶解し分解などせず安定している有機化合物がよい。沸点が低い有機化合物の場合は高圧にして使用することも可能であるが、安全性、実用性の点で好ましくない。経済性や取扱い上から工業的により実用に適するものは、例えば、炭素数13〜20の有機脂肪酸、即ち、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキジン酸、アラキドン酸などであり、本発明の目的に合致した効果が大きく、特に有用である。
有機脂肪酸は炭素数12以下でも使用可能ではあるが吸水性があり、高温で使用する関係からあまり好ましくないこと、更に接合後のはんだ表面に保護膜としてコーティングされても吸水性があるため長期保存時の品質に障害をもたらすこともあり好ましくない。また、炭素数21以上の有機脂肪酸でも使用は可能であるが、融点が高いこと及び浸透性が悪くまた取扱いし難く処理後の錫またははんだ合金の防錆効果もやや不充分になる。特に望ましいのは、工業的にも大量に生産され使用されて入手もしやすい炭素数16のパルミチン酸、炭素数18のステアリン酸が最適であり、そのいずれか1種以上を1〜95重量%と残部が180℃〜350℃の高温領域で安定な油系溶媒からなる液温180〜300℃の溶液を使用すると本発明の効果も大きい。
In addition, the organic compound used in the process of the present invention is essential to be an organic compound having at least a carboxyl group (—COOH). For example, methanoic acid (formic acid), ethanoic acid (acetic acid), propionic acid, butyric acid, Isobutyric acid, α-methyl-β-oxybutyric acid, valeric acid, isovaleric acid, active valeric acid, pivalic acid (trimethylacetic acid), 2-ethylbutyric acid, caproic acid, caprylic acid, 2-ethylhexic acid, nonanoic acid, capric acid , Undecanoic acid, myristic acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid, arachidonic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, melicic acid, cyclohexanecarboxylic acid, Succinic acid, malonic acid, succinic acid, glutaric acid, ethylmalonic acid, adipic acid, pimelic acid, Vacic acid, cyclopentanedicarboxylic acid, cyclohexanedicarboxylic acid and its isomers, benzoic acid, toluic acid, phenylacetic acid, phenylsuccinic acid, phthalic acid, isophthalic acid, salicylic acid, α-naphthoic acid, β-naphthoic acid, calcein, cyclohexane Organic acids and organic fatty acids such as propanedicarboxylic acid, nitrophthalic acid, glycine, aspartic acid, glutamic acid, alanine, phenylalanine, threonine, methionine, lysine, histidine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, 1,2-cyclohexanediaminetetraacetic acid, Examples include organic compounds such as chelate compounds such as glycol ether diamine tetraacetic acid. .
Among these, an organic compound which is desirably dissolved in a solvent used at 180 to 300 ° C. and stable without decomposition is preferable. In the case of an organic compound having a low boiling point, it can be used at a high pressure, but it is not preferable in terms of safety and practicality. Industrially more suitable for practical use in view of economy and handling, for example, organic fatty acids having 13 to 20 carbon atoms, that is, myristic acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidin Acid, arachidonic acid and the like, which are particularly useful because they have a great effect in accordance with the object of the present invention.
Although organic fatty acids can be used even with carbon atoms of 12 or less, they are water-absorbing and are not very desirable due to their use at high temperatures. Furthermore, even if they are coated as a protective film on the solder surface after bonding, they are water-absorbing and thus are stored for a long time. It is not preferable because it may cause trouble in quality of time. Although organic fatty acids having 21 or more carbon atoms can be used, they have a high melting point, poor permeability and are difficult to handle, and the rust preventive effect of the treated tin or solder alloy is somewhat insufficient. Particularly preferable is industrially produced in large quantities and easily used because it is readily available, and 16-carbon palmitic acid and 18-carbon stearic acid are suitable, and one or more of them is 1 to 95% by weight. The effect of the present invention is also great when a solution having a liquid temperature of 180 to 300 ° C. made of an oil-based solvent that is stable in the high temperature region of 180 to 350 ° C. is used.

前記液有機化合物の濃度については1質量%以下でも充分効果はあるが、連続して大量に処理に使用する場合は補充管理などが煩雑なこと、また80質量%以上あるいは100質量%単体でも本発明の効果はあり使用可能であるが、発煙性と臭気の問題もきつくなるため、好ましくは5〜80質量%である。
液温は使用する溶融はんだ液の温度で決まり、その溶融はんだの液温より±20℃の範囲内であることが効率的で望ましい。但し、上限温度は発火性、発煙性、安全性を考慮すると、320℃程度であるが、臭気の問題、更には省エネの観点から300℃程度以下が望ましい。
Even if the concentration of the liquid organic compound is 1% by mass or less, a sufficient effect is obtained, but replenishment management is complicated when it is continuously used in large quantities, and 80% by mass or more or 100% by mass alone can be used. Although the effect of the invention is present and can be used, it is preferably 5 to 80% by mass because the problem of smoke generation and odor is also severe.
The liquid temperature is determined by the temperature of the molten solder to be used, and it is efficient and desirable to be within a range of ± 20 ° C. from the liquid temperature of the molten solder. However, the upper limit temperature is about 320 ° C. in consideration of ignitability, smoke generation and safety, but about 300 ° C. or less is desirable from the viewpoint of odor and further energy saving.

また本発明に使用する有機脂肪酸の溶媒としては、前記有機化合物を溶かし前記高温領域で安定な溶媒であれば、鉱物油、植物油、合成油のいずれでもよいが、特に安定性、安全性、経済性、取扱い性の点でエステル合成油が最適である。高温で安定な溶媒を使用する目的と理由は、効果上からは特にないが、強いて言えば、前記有機化合物の高温発煙性ならびに臭気の緩和抑制にあり、また若干粘性を下げ浸透性も多少改善される。その濃度は前記有機化合物濃度で決まる。  The organic fatty acid solvent used in the present invention may be any of mineral oil, vegetable oil, and synthetic oil as long as it is a solvent that dissolves the organic compound and is stable in the high temperature range, but is particularly stable, safe and economical. Ester synthetic oil is the most suitable in terms of the properties and handling properties. The purpose and reason for using a solvent that is stable at high temperatures is not particularly effective, but to put it in a strong sense, it is to suppress high-temperature smoke generation and odor mitigation of the organic compounds, and slightly lower the viscosity and slightly improve permeability. Is done. The concentration is determined by the concentration of the organic compound.

一方、この第2のプロセスで併用する溶融はんだ液は、酸素濃度が5ppm以下に精製された溶融はんだを使用することが必須である。その理由は、はんだの主原料である市販の精製純錫および各種はんだ母合金には数百ppmの微量微小の錫酸化物が存在するため、それを溶融してはんだ接合に使用すると、本発明に使用する酸素濃度5ppm以下の溶融はんだ液と比較して粘性と凝固温度が高いため、はんだ接合後に被はんだ接合部を溶融はんだ液から引き出す際のはんだの「切れ」が悪く、従って、はんだの盛り上がりが大きく、所謂オーバーボリューム(ツノ、ツララ)を生じ易く、狭ピッチ回路では隣接回路にブリッジしてリーク不良を多発する難点がある(図3−3b)のに対して、本発明に使用する酸素濃度5ppm以下のはんだは溶融した状態での粘性と凝固温度が相対的に非常に低く、明らかにさらさらしており、はんだ接合後に被はんだ接合部を溶融はんだ液から引き出す際のはんだの「切れ」が著しく良いため、例えば、リード幅が20μmで隣接ビッチが60μmの回路においてもオーバーボリュームにならず、従ってブリッジオーバーもなくそれによるリーク不良も発生しない(図3−3a、3c)。  On the other hand, the molten solder liquid used in combination in the second process must use a molten solder refined to an oxygen concentration of 5 ppm or less. The reason for this is that, since commercially available pure tin, which is the main raw material of solder, and various solder master alloys have a minute amount of tin oxide of several hundred ppm, when they are melted and used for solder joining, the present invention Since the viscosity and the solidification temperature are higher than those of the molten solder solution with an oxygen concentration of 5 ppm or less used for the solder, the “cut” of the solder when the soldered joint is drawn out from the molten solder solution after soldering is poor. This is used in the present invention because it has a large swell and is likely to generate so-called over-volume (horn, icicle), and in a narrow pitch circuit, it bridges to an adjacent circuit and frequently causes a leak failure (FIG. 3-3b). Solder with an oxygen concentration of 5 ppm or less has a relatively low viscosity and solidification temperature in the melted state, and it is clearly free-flowing. Since the “cut” of the solder at the time of drawing out from the liquid is remarkably good, for example, even in a circuit where the lead width is 20 μm and the adjacent bitch is 60 μm, there is no overvolume, so there is no bridge over and no leak failure is caused (see FIG. 3-3a, 3c).

本発明に使用する酸素濃度5ppm以下のはんだを製造する方法としては、市販の精製錫およびはんだ組成に必要な精製金属またははんだ母合金を融解した溶融はんだ液を、本発明でも使用している液温180〜300℃の油系溶媒に溶解しかつ分子構造的に安定かつ少なくともカルボキシル基(−COOH)を有する有機化合物1〜95質量%を含有する溶液の中に注入して激しく撹拌処理することにより、有機脂肪酸のケン化反応により該溶融はんだ内部に存在する微小な酸化物や不純金属が除去され、酸素濃度を5ppm以下に精製することが出来る。
具体的には、例えば、市販のAg2.5質量%、Cu0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、残部錫からなる錫銀銅系鉛フリーはんだ合金を融解した液温260℃の溶融はんだ液を、パルミチン酸50重量%と残部エステル合成油からなる液温260℃の溶液中に滴下しながら1時間激しく撹拌混合処理することにより、ケン化反応を促進すれば、溶融はんだ液内部に存在する微小な酸化物や不純金属が除去され、酸素濃度5ppm以下のはんだが得られる。はんだ中の酸素濃度が5ppm以下になると、酸素濃度数十から数百ppmのはんだに較べて、溶融したときの粘性が圧倒的に低く、また温度降下過程において、凝固の核になる酸化物が少ないから、結晶化凝固点も低く、このためはんだ液からワークを引き上げるときの所謂「はんだ切れ」が非常に良く、過剰なはんだ盛り上がりがなく所謂「オーバーボリューム」や「ツノ」「ツララ」現象を引き起こし難いこと、従って、微小狭ピッチ回路におけるはんだブリッジによるリーク不良を生じにくいメリットがあることが判った
As a method for producing a solder having an oxygen concentration of 5 ppm or less used in the present invention, a commercially available refined tin and a molten solder solution obtained by melting a refined metal or a solder mother alloy necessary for a solder composition are used in the present invention. Injecting into a solution containing 1 to 95% by mass of an organic compound dissolved in an oil-based solvent having a temperature of 180 to 300 ° C. and having a stable molecular structure and having at least a carboxyl group (—COOH), and vigorously stirring treatment Thus, the fine oxides and impure metals present in the molten solder are removed by the saponification reaction of the organic fatty acid, and the oxygen concentration can be refined to 5 ppm or less.
Specifically, for example, a commercially available Ag 2.5 mass% Ag, 0.5 mass% Cu, 0.01 mass% nickel, 0.005 mass% germanium, and a tin-silver-copper-based lead-free solder alloy composed of the remaining tin were melted. If the molten solder solution with a liquid temperature of 260 ° C. is dripped into a solution with a liquid temperature of 260 ° C. composed of 50% by weight of palmitic acid and the remaining ester synthetic oil while vigorously stirring and mixing for 1 hour, the saponification reaction is promoted. Then, fine oxides and impure metals present in the molten solder solution are removed, and a solder having an oxygen concentration of 5 ppm or less is obtained. When the oxygen concentration in the solder is 5 ppm or less, the viscosity when melted is overwhelmingly lower than that of solder with an oxygen concentration of several tens to several hundred ppm. The crystallization and freezing point is low, so the so-called “solder breakage” when pulling up the workpiece from the soldering solution is very good, and there is no excessive solder bulging, which causes the so-called “over volume”, “tsuno” and “smooth” phenomenon. It has been found that there is a merit that it is difficult to cause a leak failure due to a solder bridge in a minute narrow pitch circuit.

本発明に適用できる錫またははんだ合金の種類は、通常電子部品の接合に使用されるもので、前記同様の処理をして酸素濃度5ppm以下に精製すれば全て使用可能であるが、環境問題および接合信頼性の観点から、望ましくは、錫、または錫を主成分とし銀、銅、亜鉛、ビスマス、アンチモン、ニッケル、ゲルマニウムのいずれか1種以上の金属を添加した溶融鉛フリーはんだ合金を用いることが好ましい。
本発明の実施検証例としては、実際に錫・銀・銅系とそれにニッケル、ゲルマニウムを添加したはんだおよび錫・亜鉛系合金にニッケル、銀を添加した酸素濃度5ppm以下の低酸素濃度はんだを中心にその効果を検証したが、これ以外の鉛フリーはんだ合金、純錫、錫鉛系はんだ合金でも酸素濃度5ppm以下に精製して本発明の第2のプロセスに適用すれば同様の効果が得られるものと推定される。何故なら、精製された原料錫中には数十ナノミクロン程度の極微小錫酸化物粒子が点在しており、それを原料にして製造され市販されているはんだ合金にも同等以上の数十ナノミクロン程度の極微小錫酸化物粒子が点在しているからである。
繰り返すが、酸素濃度5ppm以下に精製した低酸素濃度はんだは、従来のはんだにない物理的機械的化学的物性、即ち。特に柔軟で伸び、靭性に富み、溶融時の粘性が明らかに著しく低く(見た目の感覚でも従来の錫、はんだ合金と比較して明らかに「さらさら」感がある)、ぬれ性が良いので、溶融したはんだ液から引き出す時の「はんだ切れ」がよく、これを用いることにより、従来の溶融はんだでは殆ど不可能な回路幅80μm以下で隣接回路ピッチが150μm以下の微小リード・狭リードピッチ回路はもとより、回路幅10〜20μm隣接ピッチ20〜50μmの回路でさえ、ツノ、ツララも、はんだブリッジを発生することもなく、接合信頼性の高い高密度微細電子回路、更にはそれを組み立てた高接合信頼性高密度半導体装置および電子装置の製造を可能にするものである。
これに対して、酸素濃度が10ppm以上では酸素濃度が大きくなるに連れて、粘性も高く、溶融はんだ液から引き出す時の「はんだ切れ」が悪く、凝固点も高く、明らかにブリッジを生じやすい。発明者らは酸素濃度と「はんだ切れ」及び「ブリッジ」の関係を詳細に研究した結果、酸素濃度5ppm付近に前述の通り、物理的機械的化学的物性、即ち、特に柔軟で伸び、靭性に富み、凝固温度降下、更には溶融時の粘性の変曲点が存在することを突き止め、5ppmが臨界点であることを知見した。
The kind of tin or solder alloy applicable to the present invention is usually used for joining electronic components, and can be used if it is purified to an oxygen concentration of 5 ppm or less by performing the same treatment as described above. From the viewpoint of bonding reliability, it is desirable to use tin or a molten lead-free solder alloy containing tin as a main component and at least one of silver, copper, zinc, bismuth, antimony, nickel, and germanium. Is preferred.
Examples of practical verification of the present invention are mainly tin / silver / copper and nickel / germanium-added solder and tin / zinc-based nickel / silver added low oxygen concentration solder with oxygen concentration of 5 ppm or less. However, other lead-free solder alloys, pure tin, and tin-lead solder alloys can be obtained by refining them to an oxygen concentration of 5 ppm or less and applying them to the second process of the present invention. Estimated. This is because the refined raw material tin is dotted with ultrafine tin oxide particles of about several tens of nanomicrons, and the solder alloys manufactured using the raw materials as raw materials are equivalent to several tens or more. This is because ultrafine tin oxide particles of about nano microns are scattered.
Again, the low oxygen concentration solder refined to an oxygen concentration of 5 ppm or less has physical, mechanical and chemical properties that are not found in conventional solders. In particular, it is flexible, stretchable, tough, and has a markedly lower viscosity when melted (the apparent sensation is clearly “smooth” compared to conventional tin and solder alloys), and has good wettability, so it melts. "Solder breakage" when drawing out from the solder solution is good. By using this, it is possible not only for micro lead / narrow lead pitch circuits with a circuit width of 80 μm or less and an adjacent circuit pitch of 150 μm or less, which is almost impossible with conventional molten solder. Even a circuit with a circuit width of 10 to 20 μm and an adjacent pitch of 20 to 50 μm does not generate horns, wiggles, solder bridges, high-density microelectronic circuits with high bonding reliability, and high bonding reliability in which they are assembled High-density semiconductor device and electronic device can be manufactured.
On the other hand, when the oxygen concentration is 10 ppm or more, as the oxygen concentration increases, the viscosity increases, the “solder breakage” when drawn from the molten solder solution is poor, the freezing point is high, and a bridge is clearly easily formed. As a result of detailed studies on the relationship between the oxygen concentration and “solder breakage” and “bridge”, the inventors have found that the physical, mechanical and chemical properties, that is, particularly flexible and stretchable, and toughness, are around 5 ppm as described above. It was found that there was an inflection point of richness, solidification temperature drop, and viscosity at the time of melting, and 5 ppm was found to be a critical point.

また、本発明の方法の第2のプロセスにおいては、電子回路のパッドまたはリードにはんだバンプまたははんだ被覆する対象物(ワーク)の被はんだ接合表面に前記有機脂肪酸溶液、および酸素濃度5ppm以下の低酸素濃度溶融はんだ液を接触させることも必須条件であるが、その最も簡便な具体的方法としては両液を1つの槽に入れて一定の温度範囲に制御しながら放置して比重差により前記有機脂肪酸溶液が上層に該溶融はんだ液が下層になった上下2層の液に上部からワークを浸漬すると、先ず上層の有機脂肪酸溶液でワークの被はんだ表面が清浄活性化され、かつ保護皮膜が形成される。つぎに、そのままワークを押し下げて下層の該溶融はんだ液に浸漬すると、ぬれ性が良いため瞬時に、例えば0.1〜1秒程度(パッドまたはリード表面状態やそれを取り囲む耐熱/絶縁保護膜の厚さ即ち壁の高さや第1のプロセスで接着した核粒子の形状にもよる)で、前記溶融はんだ液が引き込まれて前記表面にはんだ接合される。その後、ワークを引き上げると下層からはんだ接合部が出る際にはんだ「切れ」が良いため接合はんだ量はオーバーボリュームならず、従って、隣接回路同士がブリッジも生ずることもなく適量のはんだバンプもしくははんだ皮膜が形成できる。更にワークを引き上げると必然的に再び上層の有機脂肪酸溶液の中を通過するので、その際に接合されたはんだバンプまたははんだ皮膜の表面に有機脂肪酸が化学吸着して保護膜が形成される。
その他の対象物(ワーク)の被はんだ接合表面に前記有機脂肪酸溶液、および酸素濃度10ppm以下の低酸素濃度溶融はんだ液を接触させる方法としては、それぞれの液をポンプでノズルに循環給液して噴流させて吹きかける方式と、それぞれの液をポンプで別々の槽に循環給液して溢流させながらその中をワークを通過させて処理する方式もある。いずれの場合も個別に該有機脂肪酸溶液、該溶融はんだ液、そして再び該有機脂肪酸溶液の順に接触させる処理する必要がある。いずれも前記上下2層方式と同じ効果が得られ、有効である。
噴流させる方式の場合はノズルはワークの大きさと形状により適宜工夫が必要であるが、一般的にはスリット状のノズルを用いると良い。
また、前記有機脂肪酸溶液を充満させた槽内に前記溶融はんだの噴流スリットノズルを設けて前記有機脂肪酸溶液中で前記溶融はんだ液を噴流させワークを上部から浸漬して、前記有機脂肪酸溶液、前記溶融はんだ液、そして再び前記有機脂肪酸溶液の順に接触させる方法もある。この場合は、ワークは垂直に移動させても良いし、被はんだ接合面を斜め上もしくは斜め下に傾斜角をつけて移動させても良い。
Further, in the second process of the method of the present invention, the organic fatty acid solution and a low oxygen concentration of 5 ppm or less on the solder-bonded surface of an object (workpiece) to be solder bumped or solder-covered on a pad or lead of an electronic circuit. Although it is an indispensable condition to contact the oxygen concentration molten solder solution, the simplest concrete method is to put both solutions in one tank and leave them in a certain temperature range, and leave the organic matter due to the difference in specific gravity. When the workpiece is immersed in the upper and lower layers of the fatty acid solution on the upper layer and the molten solder solution on the lower layer, the workpiece surface of the workpiece is first cleaned and activated with the upper organic fatty acid solution, and a protective film is formed. Is done. Next, when the workpiece is pushed down and immersed in the molten solder solution in the lower layer, the wettability is good, and for example, about 0.1 to 1 second (pad or lead surface condition or heat / insulation protective film surrounding it) Depending on the thickness or height of the walls and the shape of the core particles adhered in the first process, the molten solder solution is drawn and soldered to the surface. After that, when the work is pulled up, the solder "cut" is good when the solder joint comes out from the lower layer, so the amount of solder to be joined does not over-volume, and therefore the appropriate amount of solder bump or solder film without bridging between adjacent circuits Can be formed. When the workpiece is further pulled up, it inevitably passes again through the upper organic fatty acid solution, so that the organic fatty acid is chemically adsorbed on the surface of the solder bump or solder film joined at that time, and a protective film is formed.
As a method of bringing the organic fatty acid solution and the low oxygen concentration molten solder solution having an oxygen concentration of 10 ppm or less into contact with the soldered joining surface of other objects (workpieces), each solution is circulated and supplied to the nozzle by a pump. There are also a method of spraying and spraying, and a method of circulating and supplying each liquid to separate tanks with a pump and passing the workpiece through the work, and processing. In any case, it is necessary to individually treat the organic fatty acid solution, the molten solder solution, and the organic fatty acid solution again in this order. In either case, the same effect as the upper and lower two-layer method is obtained and effective.
In the case of the jet method, the nozzle needs to be appropriately devised depending on the size and shape of the work, but in general, a slit-like nozzle is preferably used.
In addition, a jet slit nozzle for the molten solder is provided in a tank filled with the organic fatty acid solution, and the molten solder liquid is jetted in the organic fatty acid solution to immerse a work from above, the organic fatty acid solution, There is also a method in which the molten solder solution and the organic fatty acid solution are contacted again in this order. In this case, the workpiece may be moved vertically, or the soldered joint surface may be moved with an inclination angle obliquely upward or obliquely downward.

上述の通り、本発明の方法、即ち、電極パッドまたはリードが露出し、それ以外の部分が保護膜で覆われているチップ、ウエハー、インターポーザーまたは実装基板の電極パッドまたはリードの清浄な金属表面に、大きさが0.5〜40μmφの錫またははんだ粒子を散布して全ての該電極パッドまたはリード内に該粒子を少なくとも1個以上散在させた後、該実装基板を加熱雰囲気中で前記電極パッドまたはリード金属表面に接着させる第1のプロセスと、該チップ、ウエハー、インターポーザーまたは実装基板を液温180〜300℃の油系溶媒に溶解しかつ分子構造的に安定かつ少なくともカルボキシル基(−COOH)を有する有機化合物1質量%以上を含有する有機化合物溶液または該有機化合物100質量%単体液と接触させた後、直ちに酸素濃度5ppm以下の低酸素濃度溶融はんだ液に接触させ、その後、直ちに再び前記有機化合物溶液または100質量%有機化合物単体液と接触させることにより該電極パッドまたはリード表面にはんだ皮膜を形成させる第2のプロセスにより、パッドまたはリード幅が80μm以下でかつ隣接ピッチが150μm以下の微小狭ピッチで、オーバーボリュームもなく隣接回路とのはんだブリッジ不良もない安定した良好なはんだバンプおよびはんだ皮膜を形成できることが判った。即ち、本発明の技術を使用すれば、パッドまたはリードの幅が10〜50μm、隣接ピッチ20〜120μ(リード幅に応じて隣接最小空間幅で10μm)の微小微細狭ピッチ電子回路でさえ、安定して製造することが可能になり、これにより、チップ、それを多数個配列したウエハー、インターポーザー、または実装基板の微小微細狭ピッチ電子回路上のパッドまたはリードに微小なはんだバンプや微小はんだ皮膜をオーバーボリュームもなく隣接回路とのブリッジリーク不良もなく安定して製造でき、半導体装置および電子装置の更なる微小小型化ができる効果がある。これは従来の溶融はんだ接合技術では殆ど不可能なことであり、本発明の効果は工業的に極めて価値が高いものである。
これを更に詳しく具体的事例で以下に説明する。
As described above, the method of the present invention, that is, a clean metal surface of an electrode pad or lead of a chip, wafer, interposer or mounting substrate in which the electrode pad or lead is exposed and the other part is covered with a protective film Further, after spraying tin or solder particles having a size of 0.5 to 40 μmφ to disperse at least one of the particles in all the electrode pads or leads, the mounting substrate is heated in the heating atmosphere. A first process for adhering to the surface of the pad or lead metal, and dissolving the chip, wafer, interposer or mounting substrate in an oil-based solvent having a liquid temperature of 180 to 300 ° C. and stable in molecular structure and at least a carboxyl group (− After contact with an organic compound solution containing 1% by mass or more of an organic compound having COOH) or 100% by mass of the organic compound alone Immediately contact with a low oxygen concentration molten solder solution having an oxygen concentration of 5 ppm or less, and then immediately contact again with the organic compound solution or 100% by mass organic compound simple substance solution to form a solder film on the electrode pad or lead surface. The second process forms a stable and good solder bump and solder film with a very narrow pitch with a pad or lead width of 80 μm or less and an adjacent pitch of 150 μm or less, no over-volume and no solder bridge failure with the adjacent circuit. I found that I can do it. That is, if the technology of the present invention is used, even a minute and fine pitch electronic circuit having a pad or lead width of 10 to 50 μm and an adjacent pitch of 20 to 120 μm (adjacent minimum space width is 10 μm depending on the lead width) is stable. As a result, it is possible to manufacture a small solder bump or a small solder film on a pad or a lead on a minute fine pitch electronic circuit of a chip, a wafer on which a large number of chips are arranged, an interposer, or a mounting substrate. Can be stably manufactured without over-volume and without bridging leakage with the adjacent circuit, and the semiconductor device and the electronic device can be further miniaturized. This is almost impossible with the conventional molten solder joining technique, and the effect of the present invention is extremely valuable industrially.
This will be described in more detail below with specific examples.

本発明の実施形態である半導体装置事例および電子装置事例の構造を模式的に示した概略図で、1aはCSP(Chip Size Package)の断面事例、1bはBGA(Ball Grid Array)の断面の事例、1cは半導体装置およびその他の電子部品を搭載した電子装置の平面の事例、1dは半導体装置およびその他の電子部品を搭載した電子装置の断面の事例、である。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which showed typically the structure of the semiconductor device example which is embodiment of this invention, and the electronic device example, 1a is a cross-sectional example of CSP (Chip Size Package), 1b is a cross-sectional example of BGA (Ball Grid Array) 1c is an example of a plane of an electronic device on which a semiconductor device and other electronic components are mounted, and 1d is an example of a cross section of an electronic device on which a semiconductor device and other electronic components are mounted. 本発明の実施例および比較例のはんだ合金の内部断面結晶組織を示したもので、2aは実施例1、2bは比較例1、2cは実施例2、2dは比較例2の事例である。The internal cross-sectional crystal structure of the solder alloy of the Example of this invention and a comparative example is shown, 2a is Example 1, 2b is Comparative Example 1, 2c is Example 2, 2d is the example of Comparative Example 2. 本発明の実施例2および従来の比較例2の鉛フリーはんだ合金をそれぞれ微小幅20μmで隣接回路との間隔が60μmの狭ピッチ実装基板(ワークA)に適用してはんだ被覆した工業的応用事例のはんだ被覆状態を示した写真であり、3aは上部から拡大撮影した実施例2の外観写真、3bは上部から拡大撮影した比較例2の外観写真、3cは上記2aを斜め上部から拡大撮影した写真である。Industrial application examples in which the lead-free solder alloys of Example 2 of the present invention and the conventional comparative example 2 are applied to a narrow-pitch mounting board (work A) having a very small width of 20 μm and an interval between adjacent circuits of 60 μm. 3a is an appearance photograph of Example 2 enlarged from the top, 3b is an appearance photograph of Comparative Example 2 that is enlarged from the top, and 3c is an enlarged photograph of the above 2a from the oblique upper part. It is a photograph.

1 電極パッド
2 はんだ粒子を電極バッド表面に接着させた核
3 電極パッドまたはリード表面に接合させた低酸素濃度はんだをバンプまたははんだ皮膜
4 保護膜
5 封止樹脂
6 チップ
7 インターポーザー
8 Au線ボンディングワイヤー
9 実装基板
10 BGA半導体装置
11 CSP半導体装置
12 DIP半導体装置
13 BGA半導体装置
14 ミニトランジスター
15 チップコンデンサー
16 抵抗器
17 電子装置(モジュール)
DESCRIPTION OF SYMBOLS 1 Electrode pad 2 Core which adhered solder particle to electrode pad surface 3 Low oxygen concentration solder joined to electrode pad or lead surface Bump or solder film 4 Protective film 5 Sealing resin 6 Chip 7 Interposer 8 Au wire bonding Wire 9 Mounting substrate 10 BGA semiconductor device 11 CSP semiconductor device 12 DIP semiconductor device 13 BGA semiconductor device 14 Mini transistor 15 Chip capacitor 16 Resistor 17 Electronic device (module)

先ず、実施例と比較例に使用したはんだ組成と実験条件を[表1]に示す。
尚、共通の実験条件として、リード幅20μmX長さ360μmが隣接ピッチ60μの微細狭ピッチパターンがマトリックス状に100X50本配列されたテスト用実装基板ワークA(図1−1a)と、面積40μmX40μmの電極パッドが隣接ピッチ100μmでマトリックス状に20X20個配列されたチップがマトリックス状に10X10個配列された試験用ウエハーワークB(図1−1b)を使用し、
1)実施例1〜3および比較例2については、本発明の第1のプロセス、即ち、前記Aの全てのリード、および前記Bの全ての電極パッドの清浄な金属表面内に実施例1と同一組成で粒径が8〜18μのはんだ粒子を散布して1〜数個散在させて260℃のリフロー炉中に5秒放置してはんだ粒子(ワークAには粒子径をそれぞれ該バッドまたはリードに接着させ、次に第2のプロセスとして、ワークAおよびBを温260℃のカルボニル基(−COOH)を有する各有機化合物溶液と接触させた後、直ちに各溶融はんだ液に接触させ、再び直ちに各有機化合物溶液と接触させて、ワークAのリードにははんだ皮膜を、ワークBの電極パッドにははんだバンプを形成させた。
2)一方、比較例1および3については、ワークAおよびBのリードまたは電極パッドにメタルマスクを使い市販のソルダーペーストを塗布した後、260℃のリフロー炉中に5秒放置した
First, the solder compositions and experimental conditions used in the examples and comparative examples are shown in [Table 1].
As a common experimental condition, a test mounting substrate work A (FIG. 1-1a) in which 100 × 50 fine narrow pitch patterns having a lead width of 20 μm × a length of 360 μm and an adjacent pitch of 60 μ are arranged in a matrix and an electrode having an area of 40 μm × 40 μm Using test wafer work B (FIG. 1-1b) in which 20 × 20 pads arranged in a matrix with pads of adjacent pitch of 100 μm are arranged in a matrix of 10 × 10,
1) For Examples 1-3 and Comparative Example 2, the first process of the present invention, i.e. Example 1 in the clean metal surface of all the leads of A and all the electrode pads of B One to several particles of solder particles having the same composition and particle size of 8 to 18 μm are dispersed and left to stand in a reflow furnace at 260 ° C. for 5 seconds. Then, as a second process, after the workpieces A and B are brought into contact with each organic compound solution having a carbonyl group (—COOH) at a temperature of 260 ° C., the workpieces A and B are immediately brought into contact with each molten solder solution and immediately again. In contact with each organic compound solution, a solder film was formed on the lead of the work A, and a solder bump was formed on the electrode pad of the work B.
2) On the other hand, for Comparative Examples 1 and 3, a commercially available solder paste was applied to the leads or electrode pads of the workpieces A and B using a metal mask, and then left in a reflow oven at 260 ° C. for 5 seconds.

Figure 2011211137
Figure 2011211137
Figure 2011211137
Figure 2011211137

まず、上記実験に先立ち、各比較例および実施例の鉛フリーはんだ中の酸素濃度分析、および物理的機械的特性、化学的特性について調べた。
酸素濃度については、TOF−SIMS分析装置により比較例1〜3、実施例1〜4の鉛フリーはんだの内部(表面から深さ10μmまで)の酸素濃度を測定した。
粘度アルミナ坩堝の中にそれぞれのはんだを個別に入れ、アルゴン雰囲気中で溶解して、300℃から徐々に温度を下げて凝固点までアルミナ振動片式粘度計を用いて測定した。
また、はんだぬれ性については、上記比較例および実施例の各はんだ合金をそれぞれ別々に溶融させ液温260℃に自動温度制御したはんだ浴槽中に、0.4mmφの純銅線を測定ピンとして使用し、メニスコグラフによるはんだぬれ性試験方法によりそれぞれ繰返し4(n=4)でゼロクロス時間を測定した。
また、各実施例および比較例に使用したはんだの融解温度および凝固温度については示差熱分析装置を使用して温度プロファイルを記録し解析した。
物理的機械的評価方法としては、上記比較例および実施例の各はんだ合金をそれぞれステンレス(SUS 304)製鋳造金型(JIS 6号)を用い、評点間距離 L=50mm、直径 8mmφ、チャッキング部長さ L=20mm、直径 10mmφの試験片を作成し、JIS Z 4421)の試験方法により島津製作所製引張り試験機(AG100型)を用い、室温25℃において、それぞれ繰返し2(n=2)で、荷重負荷速度 5mm/minで試験測定した
更に、オーバーボリューム性(ツノ、ツララの発生有無)、ブリッジ性については、双眼式実体顕微鏡(10〜40倍ズーム)に上記比較例および実施例の各実験で作成した試料をそれぞれ観察して評価した。
First, prior to the above experiment, oxygen concentration analysis, physical mechanical characteristics, and chemical characteristics in the lead-free solders of the comparative examples and examples were examined.
About oxygen concentration, the oxygen concentration inside the lead-free solder of Comparative Examples 1 to 3 and Examples 1 to 4 (from the surface to a depth of 10 μm) was measured by a TOF-SIMS analyzer.
Each solder was individually put into a viscosity alumina crucible, dissolved in an argon atmosphere, and the temperature was gradually lowered from 300 ° C. to the freezing point, and measurement was performed using an alumina vibrating piece viscometer.
For solder wettability, a 0.4 mmφ pure copper wire was used as a measuring pin in a solder bath in which the solder alloys of the comparative examples and examples were separately melted and automatically controlled at a liquid temperature of 260 ° C. The zero-crossing time was measured repeatedly 4 (n = 4) by a solder wettability test method using a meniscograph.
The melting temperature and solidification temperature of the solder used in each example and comparative example were recorded and analyzed using a differential thermal analyzer.
As a physical-mechanical evaluation method, each of the solder alloys of the comparative example and the example was made of a cast metal mold (JIS No. 6) made of stainless steel (SUS 304), the distance between ratings L = 50 mm, diameter 8 mmφ, chucking A test piece having a part length of L = 20 mm and a diameter of 10 mmφ was prepared, and repeatedly using a tensile tester (AG100 type) manufactured by Shimadzu Corporation according to the test method of JIS Z 4421) at a room temperature of 25 ° C. with 2 (n = 2) each. Further, the test load was measured at a load load speed of 5 mm / min. Further, for over-volume characteristics (whether horns and wigs were generated) and bridging characteristics, the binocular stereomicroscope (10 to 40 times zoom) was used for each of the comparative examples and examples. Each sample prepared in the experiment was observed and evaluated.

その結果はまず、各はんだの各種特性値は下記[表2]の通りで、実施例1〜4に使用した各低酸素濃度はんだは酸素濃度がいずれも5ppm以下であるのに対し、比較例は70〜140ppmで微細な酸化物が内部に散在していることが覗える。また、機械的特性値でも実施例の各はんだは伸びが比較例のそれに対し顕著に大きく、引っ張り強さは大差ないことから、実施例は靭性に優れていることが判った。逆に比較例の通常のはんだは伸びが小さく硬く脆弱であることが確認された。
一方、溶融状態における粘度(粘性)については300℃から凝固点付近まで徐々に温度を下げて5℃おきに測定した結果、比較例が0.005〜0.007Pa・Sであったのに対して、本発明の実施例に使用したはんだは0.003〜0.004Pa・Sで圧倒的に低粘性を有することが知見され、これも「はんだぬれ性」を良くし、溶融はんだ液からワークを引き出す時の「はんだ切れ」が良い一因と思われ、「オーバーボリューム」と「ブリッジ不良」抑制に大いなる寄与をしていると考えられる。但し、特に実施例の「はんだ切れ」の良さ、「オーバーボリュームにならないこと」、従って「ブリッジ不良のないこと」に関しては低酸素濃度はんだ固有の特性の効果だけではなく、カルボキシル基を有する有機化合物溶液または該有機化合物単体液と共用する相乗効果である。
また更に、実施例と比較例について示差熱分析装置で分析した結果は、昇温時の融点は両者とも実験に用いた錫銀銅系はんだでは217℃近辺でほぼ同じであるにも拘らず、降温時の凝固特性は比較例が218℃付近で凝固が始まり、213℃付近でで凝固完了するのに対し、本発明の実施例ではほんの一部は218℃付近で凝固しかけるものもあるが殆どのものは215℃付近で凝固し始め、204℃付近に下がってもまだ約半量ぐらいしか凝固せず、最終的に凝固完了するのは189℃付近であり、凝固時の結晶形態も実施例が細かい粒状結晶になるのに対して(図2−2a、2c)、比較例はいずれも比較的大きな柱状結晶を多く含む粗い結晶形態(図2−2b、2d)を呈していることが知見され、明らかに物性上有意差があることが判った。
以上をまとめて考察すると、はんだの金属組成は実施例1と比較例1、同様に実施例2と比較例2、実施例3と比較例3はそれぞれ対として同一組成で対応しているにも拘らず、上述の通り、実施例はそれに対応する比較例のはんだを精製して酸素濃度を5ppm以下にしただけで、溶融状態における粘性(粘度)、伸び、靭性、凝固温度、結晶粒の大きさ、はんだぬれ性のいずれの特性にも著しい差があり、本発明の実施例が優れていることが検証された。これにより、本発明の第1のプロセスおよび第2のプロセスを組合わせることにより、微小狭ピッチはんだバンプおよびはんだ皮膜形成が可能になり、この技術を適用すれば半導体装置および電子装置の更なる小型化が実現できる。
As a result, first, various characteristic values of each solder are as shown in the following [Table 2]. Each low oxygen concentration solder used in Examples 1 to 4 has an oxygen concentration of 5 ppm or less. It can be seen that fine oxides are scattered inside at 70 to 140 ppm. Further, even in the case of mechanical characteristic values, each of the solders of the example had a significantly larger elongation than that of the comparative example, and the tensile strength was not significantly different. Therefore, it was found that the example was excellent in toughness. On the contrary, it was confirmed that the normal solder of the comparative example had a small elongation and was hard and fragile.
On the other hand, the viscosity in the molten state (viscosity) was measured by gradually decreasing the temperature from 300 ° C. to the vicinity of the freezing point and measuring every 5 ° C., whereas the comparative example was 0.005 to 0.007 Pa · S. The solder used in the examples of the present invention was found to have an overwhelmingly low viscosity at 0.003 to 0.004 Pa · S, which also improved the “solder wettability” and removed the workpiece from the molten solder liquid. “Solder breakage” at the time of drawing out seems to be a good cause, and it is thought that it greatly contributes to the suppression of “over volume” and “bridge failure”. However, in particular, regarding the goodness of “solder breakage” in the examples, “not to be over-volume”, and therefore “no bridging failure”, not only the effect of the characteristic of low oxygen concentration solder, but also an organic compound having a carboxyl group This is a synergistic effect shared with the solution or the organic compound simple substance solution.
Furthermore, the results of analysis with the differential thermal analyzer for the examples and comparative examples show that although the melting point at the time of temperature rise is almost the same at around 217 ° C. in the tin-silver-copper solder used in the experiment, As for the solidification characteristics when the temperature is lowered, the comparative example starts to solidify at around 218 ° C. and completes at around 213 ° C., whereas in the examples of the present invention, only a part of the solidification starts to occur at around 218 ° C. The product started to solidify at around 215 ° C, and even when it dropped to around 204 ° C, it still solidified only about half, and finally solidification was completed at around 189 ° C. In contrast to the fine granular crystals (FIGS. 2-2a and 2c), it has been found that all of the comparative examples have a coarse crystal form (FIGS. 2-2b and 2d) containing a relatively large amount of columnar crystals. Clearly, there is a significant difference in physical properties It was found.
Considering the above together, the metal composition of the solder corresponds to Example 1 and Comparative Example 1, as well as Example 2 and Comparative Example 2, and Example 3 and Comparative Example 3 correspond to each other in the same composition. Regardless, as described above, in the examples, the solder of the comparative example corresponding thereto was purified to make the oxygen concentration 5 ppm or less, and the viscosity (viscosity), elongation, toughness, solidification temperature, crystal grain size in the molten state were reduced. There was a significant difference in any of the characteristics of solder wettability, and it was verified that the examples of the present invention were excellent. Thus, by combining the first process and the second process of the present invention, it becomes possible to form a fine narrow pitch solder bump and a solder film. By applying this technique, the semiconductor device and the electronic device can be further reduced in size. Can be realized.

Figure 2011211137
Figure 2011211137

一方、実際のチップおよび実装基板に近似させた試作用チップおよび実装基板に本発明技術を適用した試作品(実施例1〜4)と、従来技術で試作した同様の試作用チップおよび実装基板の試作品(比較例1〜3)について微小狭ピッチ回路におけるオーバーボリューム性とブリッジ(不良)性について調べた結果は、実施例1〜4には全てオーバーボリュームもブリッジ不良がなかったのに対して(図3−3a、3c)、比較例には全て局部的あるいは大半の個所で隣接部にオーバーボリュームとブリッジが認められた(図3−3b)[表3]。  On the other hand, a prototype (Examples 1 to 4) in which the technology of the present invention is applied to a prototype chip and a mounting substrate approximated to an actual chip and a mounting substrate, and a similar prototype chip and mounting substrate prototyped by the conventional technology For the prototypes (Comparative Examples 1 to 3), the results of examining the over-volume property and the bridging (defect) property in the minute narrow-pitch circuit showed that all the Examples 1 to 4 had no over-volume and no bridging failure (FIGS. 3-3a and 3c) In all of the comparative examples, overvolume and bridges were observed in the local part or most of the adjacent parts (FIG. 3-3b) [Table 3].

Figure 2011211137
Figure 2011211137

以上の通り、本発明の技術は明らかに従来の溶融はんだを使用する技術では全く不可能な幅50μm以下の微小パッドまたはリード、隣接ピッチ120μ以下の微小/狭ピッチ電子回路のはんだバンプまたははんだ皮膜形成をも可能にし、オーバーボリュームも隣接回路とのブリッジ不良もない信頼性の高い半導体装置、および電子装置の製造を可能にする技術を提供するものであり、工業的価値が極めて高い画期的な技術である。  As described above, the technology of the present invention is obviously a fine pad or lead having a width of 50 μm or less, a solder bump or a solder film of a minute / narrow pitch electronic circuit having an adjacent pitch of 120 μ or less, which is completely impossible by the conventional technology using a molten solder. Providing technology that enables the manufacture of highly reliable semiconductor devices and electronic devices that can be formed and that has no over-volume or bridging with adjacent circuits, and is revolutionary in terms of industrial value. Technology.

Claims (10)

幅120μm以下、隣接ピッチ200μm以下の狭ピッチで多数個配列された電極パッドまたはリードを有する半導体装置において、前記電極パッドまたはリード表面が大きさ0.5〜40μmの錫またははんだ粒子を核として、少なくとも酸素濃度5ppm以下の低酸素濃度はんだ皮膜で形成された半導体チップまたはインターポーザーで構成されたこと特徴とする半導体装置。  In a semiconductor device having a large number of electrode pads or leads arranged in a narrow pitch with a width of 120 μm or less and an adjacent pitch of 200 μm or less, the electrode pad or lead surface has tin or solder particles having a size of 0.5 to 40 μm as nuclei, A semiconductor device comprising a semiconductor chip or an interposer formed of a low oxygen concentration solder film having an oxygen concentration of 5 ppm or less. 幅120μm以下、隣接ピッチ200μm以下の狭ピッチで多数個配列された電極パッドまたはリードを有する半導体装置において、複数の電極パッドまたはリードの表面上に大きさが0.5〜40μmφの錫またははんだ粒子を少なくとも1個以上を散布して前記錫またははんだ粒子を前記パッドまたはリード表面に接着させた上で、前記パッドまたはリードを液温180〜300℃の油系溶媒に溶解しかつ分子構造的に安定かつ少なくともカルボキシル基(−COOH)を有する有機化合物1質量%以上を含有する有機化合物溶液または該有機化合物100質量%単体液と接触させ、その後、直ちに酸素濃度5ppm以下の低酸素濃度溶融はんだ液と接触させ、再び前記有機化合物溶液と接触させることにより、前記パッドまたはリード表面にはんだバンプまたははんだ皮膜を形成させることを特徴とする半導体装置の製造方法。  In a semiconductor device having a large number of electrode pads or leads arranged in a narrow pitch with a width of 120 μm or less and an adjacent pitch of 200 μm or less, tin or solder particles having a size of 0.5 to 40 μmφ on the surface of the plurality of electrode pads or leads Is applied to the surface of the pad or the lead, and the pad or the lead is dissolved in an oil-based solvent having a liquid temperature of 180 to 300 ° C. Contact with an organic compound solution that is stable and contains at least 1% by mass of an organic compound having a carboxyl group (—COOH) or 100% by mass of the organic compound, and then immediately a low oxygen concentration molten solder solution having an oxygen concentration of 5 ppm or less Contact with the organic compound solution and contact the pad or lead surface again. The method of manufacturing a semiconductor device characterized by the formation of bumps or solder film solder. 前記請求項2に記載の半導体装置の製造方法において、半導体装置の電極パッドまたはリードを前記有機化合物溶液または低酸素濃度溶融はんだ液に接触させる方法として、液温180〜300℃のパルミチン酸またはステアリン酸のいずれか1種以上を5〜80質量%と残部エステル合成油からなる有機脂肪酸溶液を上層に配し、下層が錫を主成分とし銀、銅、ニッケル、ゲルマニウムのいずれか1種類以上の金属を添加した酸素濃度5ppm以下の溶融はんだ液で構成された上下2層の液中に該半導体装置を上層液、下層液の順に浸漬し再び上層液中を通過させて引き出すことを特徴とする半導体装置の製造方法。  3. The method of manufacturing a semiconductor device according to claim 2, wherein the electrode pad or the lead of the semiconductor device is brought into contact with the organic compound solution or the low oxygen concentration molten solder solution. An organic fatty acid solution composed of 5 to 80% by mass of any one or more acids and the remaining ester synthetic oil is arranged in the upper layer, and the lower layer contains tin as a main component and one or more of silver, copper, nickel, and germanium. The semiconductor device is immersed in an upper layer liquid and a lower layer liquid in the order of an upper layer liquid and a lower layer liquid in an upper and lower layer liquid composed of a molten solder liquid with an oxygen concentration of 5 ppm or less to which a metal is added. A method for manufacturing a semiconductor device. 前記請求項2に記載の半導体装置の製造方法において、半導体装置の電極パッドまたはリードを前記有機化合物溶液または低酸素濃度溶融はんだ液に接触させる方法として、液温180〜300℃のパルミチン酸またはステアリン酸のいずれか1種以上を5〜80質量%と残部エステル合成油からなる有機脂肪酸溶液と、錫を主成分とし銀、銅、ニッケル、ゲルマニウムのいずれか1種類以上の金属を添加した酸素濃度5ppm以下の溶融はんだ液とをそれぞれの給液管またはノズルから噴流させて電極パッドに吹きかけることを特徴とする半導体装置の製造方法。  3. The method of manufacturing a semiconductor device according to claim 2, wherein the electrode pad or the lead of the semiconductor device is brought into contact with the organic compound solution or the low oxygen concentration molten solder solution. Oxygen concentration of organic fatty acid solution consisting of 5 to 80% by mass of any one or more acids and the remaining ester synthetic oil, and one or more metals of silver, copper, nickel, and germanium containing tin as the main component A manufacturing method of a semiconductor device, wherein a molten solder solution of 5 ppm or less is sprayed from each liquid supply pipe or nozzle and sprayed onto an electrode pad. 前記請求項2、3、および4に記載の半導体装置の製造方法において、半導体チップが多数個並列した半導体ウエハー内の複数の電極パッドまたはリード内に大きさが0.5〜40μmφのはんだ粒子を少なくとも1個以上散布して前記錫またははんだ粒子を各電極パッドまたはリードに融着後、上層が液温180〜300℃のパルミチン酸またはステアリン酸のいずれか1種以上を1〜95質量%と残部エステル合成油からなる有機脂肪酸溶液で、下層が錫を主成分とし銀、銅、ニッケル、ゲルマニウムのいずれか1種類以上の金属を添加した酸素濃度5ppm以下の溶融はんだ液で構成された上下2層の液中に該ウエハーを上層液、下層液の順に浸漬し再び上層液中を通過させて引き出す工程を経てはんだバンプを形成させたことを特徴とする半導体装置の製造方法。  5. The method of manufacturing a semiconductor device according to claim 2, 3, and 4, wherein solder particles having a size of 0.5 to 40 [mu] m are provided in a plurality of electrode pads or leads in a semiconductor wafer in which a large number of semiconductor chips are arranged in parallel. After spraying at least one or more and fusing the tin or solder particles to each electrode pad or lead, the upper layer is 1 to 95% by mass of any one or more of palmitic acid or stearic acid having a liquid temperature of 180 to 300 ° C. An organic fatty acid solution composed of the remaining ester synthetic oil, the upper and lower layers made of a molten solder solution having an oxygen concentration of 5 ppm or less, the lower layer of which is mainly composed of tin and containing one or more of silver, copper, nickel, and germanium. It is characterized in that the solder bumps are formed through a process of immersing the wafer in the upper layer liquid and the lower layer liquid in this order and passing the wafer through the upper layer liquid and drawing it out again. A method for manufacturing a semiconductor device. 実装基板に少なくとも半導体装置がはんだ接合により搭載された電子装置において、幅120μm以下、隣接ピッチ200μm以下の狭ピッチの電極パッドまたはリード表面上に接着した、大きさが0.5〜40μmφの錫またははんだ粒子の核と、その上に酸素濃度5ppm以下の低酸素濃度はんだを融合させたバンプまたははんだ皮膜を有する半導体装置を、前記半導体装置のバンプ位置に対応した電極パッドまたはリードを有する実装基板上の所定の対応位置にはんだ接合した構造を有することを特徴とする電子装置。  In an electronic device in which at least a semiconductor device is mounted on a mounting substrate by solder bonding, tin having a size of 0.5 to 40 μmφ bonded to a narrow pitch electrode pad or lead surface having a width of 120 μm or less and an adjacent pitch of 200 μm or less, or A semiconductor device having a solder particle nucleus and a bump or solder film in which a low oxygen concentration solder having an oxygen concentration of 5 ppm or less is fused thereon is mounted on a mounting substrate having electrode pads or leads corresponding to the bump positions of the semiconductor device. An electronic device having a structure in which solder bonding is performed at a predetermined corresponding position. 前記請求項6に記載の電子装置において、前記半導体装置のバンプ位置に対応した電極パッドとそれ以外の半導体装置およびその他の電子部品の電極パッドまたはリードに対応したパッドまたはリードを有し、かつ全てのパッドまたはリード表面が大きさ0.5〜40μmφのはんだ粒子を核として酸素濃度5ppm以下の低酸素濃度はんだで被覆された実装基板に、半導体装置およびその他の電子部品を搭載して構成されたことを特徴とする電子装置。  7. The electronic device according to claim 6, further comprising electrode pads corresponding to bump positions of the semiconductor device and pads or leads corresponding to electrode pads or leads of other semiconductor devices and other electronic components. The semiconductor device and other electronic components are mounted on a mounting substrate coated with a low oxygen concentration solder having an oxygen concentration of 5 ppm or less with a solder particle having a size of 0.5 to 40 μmφ as a nucleus. An electronic device characterized by that. 実装基板に半導体装置または電子部品をはんだ接合した電子装置の製造方法において、はんだ接合される電極パッドまたはリード部以外が保護膜で覆われている実装基板の露出している電極パッドまたはリードの清浄な金属表面に、大きさが0.5〜40μmφの錫またははんだ粒子を散布して全ての前記電極パッドまたはリード内に該粒子を少なくとも1個以上散在させた後、加熱雰囲気中で前記電極パッドまたはリード金属表面に該粒子を接着させる第1のプロセスと、その後前記金属表面を液温180〜300℃の油系溶媒に溶解しかつ分子構造的に安定かつ少なくともカルボキシル基(−COOH)を有する有機化合物1質量%以上を含有する有機化合物溶液または前記有機化合物100質量%単体液と接触させた後、直ちに酸素濃度5ppm以下の低酸素濃度溶融はんだ液に接触させ、その後、直ちに再び前記有機化合物溶液または100質量%有機化合物単体液と接触させることにより前記電極パッドまたはリード表面にはんだ皮膜を形成させる第2のプロセスを経てはんだ皮膜が形成された実装基板の、所定のパッドまたはリード上に半導体装置およびそれ以外の電子部品を搭載してはんだ接合することを特徴とする電子装置の製造方法。  In an electronic device manufacturing method in which a semiconductor device or an electronic component is solder-bonded to a mounting substrate, the electrode pad or lead exposed on the mounting substrate is cleaned except for the electrode pad or lead portion to be solder-bonded. After spraying tin or solder particles having a size of 0.5 to 40 μmφ on a simple metal surface to disperse at least one of the particles in all the electrode pads or leads, the electrode pads are heated in a heated atmosphere. Alternatively, a first process of adhering the particles to the lead metal surface, and then dissolving the metal surface in an oil-based solvent having a liquid temperature of 180 to 300 ° C. and stable in molecular structure and having at least a carboxyl group (—COOH) Oxygen concentration immediately after contact with an organic compound solution containing 1% by mass or more of the organic compound or 100% by mass of the organic compound alone A second process of forming a solder film on the surface of the electrode pad or lead by contacting with a low oxygen concentration molten solder solution of 5 ppm or less and then immediately contacting with the organic compound solution or the organic compound solution of 100% by mass immediately A method of manufacturing an electronic device, comprising mounting a semiconductor device and other electronic components on a predetermined pad or lead of a mounting substrate on which a solder film is formed through soldering and soldering. 前記請求項8に記載の電子装置の製造方法において、第2のプロセスで実装基板を前記有機化合物溶液および低酸素濃度溶融はんだ液に接触させる方法として、液温180〜300℃のパルミチン酸またはステアリン酸のいずれか1種以上を5〜80質量%と残部エステル合成油からなる有機脂肪酸溶液を上層に配し、下層が錫を主成分とし銀、銅、ニッケル、ゲルマニウムのいずれか1種類以上の金属を添加した酸素濃度5ppm以下の溶融はんだ液で構成された上下2層の液中に該半導体装置を上層液、下層液の順に浸漬し再び上層液中を通過させて引き出すことにより、はんだ皮膜を形成させた実装基板の所定のパッドまたはリード上に半導体装置およびそれ以外の電子部品を搭載してはんだ接合することを特徴とする電子装置の製造方法。  9. The method of manufacturing an electronic device according to claim 8, wherein palmitic acid or stearin having a liquid temperature of 180 to 300 ° C. is used as a method of bringing the mounting substrate into contact with the organic compound solution and the low oxygen concentration molten solder solution in the second process. An organic fatty acid solution composed of 5 to 80% by mass of any one or more acids and the remaining ester synthetic oil is arranged in the upper layer, and the lower layer contains tin as a main component and one or more of silver, copper, nickel, and germanium. Solder film is obtained by immersing the semiconductor device in the upper and lower layers in the order of the upper and lower layers in a molten solder solution with a metal added oxygen concentration of 5 ppm or less, and letting it pass through the upper layer again. Manufacturing an electronic device characterized by mounting a semiconductor device and other electronic components on a predetermined pad or lead of a mounting board formed with solder and soldering Law. 前記請求項8に記載の電子装置の製造方法において、第2のプロセスで実装基板を前記有機化合物溶液または低酸素濃度溶融はんだ液に接触させる方法として、液温180〜300℃のパルミチン酸またはステアリン酸のいずれか1種以上を5〜80質量%と残部エステル合成油からなる有機脂肪酸溶液と、錫を主成分とし銀、銅、ニッケル、ゲルマニウムのいずれか1種類以上の金属を添加した酸素濃度5ppm以下の溶融はんだ液とをそれぞれの給液管またはノズルから噴流させて電極パッドに吹きかけるか、溢流する液中を通過させてパッドまたはリードにはんだ皮膜を形成させた実装基板の所定のパッドまたはリード上に半導体装置およびそれ以外の電子部品を搭載してはんだ接合することを特徴とする電子装置の製造方法。  9. The method of manufacturing an electronic device according to claim 8, wherein palmitic acid or stearic acid having a liquid temperature of 180 to 300 ° C. is used as a method of bringing the mounting board into contact with the organic compound solution or the low oxygen concentration molten solder liquid in the second process. Oxygen concentration of organic fatty acid solution consisting of 5 to 80% by mass of any one or more acids and the remaining ester synthetic oil, and one or more metals of silver, copper, nickel, and germanium containing tin as the main component Predetermined pads on the mounting board in which a molten solder solution of 5 ppm or less is sprayed from the respective liquid supply pipes or nozzles and sprayed onto the electrode pads or passed through the overflowing liquid to form a solder film on the pads or leads. Alternatively, a method of manufacturing an electronic device comprising mounting a semiconductor device and other electronic components on a lead and soldering them.
JP2010093487A 2010-03-30 2010-03-30 Semiconductor device and method of manufacturing the same, and electronic device and method of manufacturing the same Pending JP2011211137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093487A JP2011211137A (en) 2010-03-30 2010-03-30 Semiconductor device and method of manufacturing the same, and electronic device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093487A JP2011211137A (en) 2010-03-30 2010-03-30 Semiconductor device and method of manufacturing the same, and electronic device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011211137A true JP2011211137A (en) 2011-10-20

Family

ID=44941855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093487A Pending JP2011211137A (en) 2010-03-30 2010-03-30 Semiconductor device and method of manufacturing the same, and electronic device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011211137A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079169B1 (en) * 2012-04-14 2012-11-21 株式会社谷黒組 Soldering apparatus and method, and manufactured board and electronic component
JP5079170B1 (en) * 2012-04-16 2012-11-21 株式会社谷黒組 Soldering apparatus and method, and manufactured board and electronic component
US9686871B2 (en) 2013-03-21 2017-06-20 Tanigurogumi Corporation Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
CN110113894A (en) * 2019-06-04 2019-08-09 深圳市鸿信顺电子材料有限公司 Slice component, its superficial treatment system and process of surface treatment
CN111115555A (en) * 2019-12-20 2020-05-08 北京航天控制仪器研究所 Silicon groove structure for MEMS wafer-level eutectic bonding packaging and preparation method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9149883B2 (en) 2012-04-14 2015-10-06 Tanigurogumi Corporation Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
CN103459075B (en) * 2012-04-14 2016-11-23 株式会社谷黑组 Welder, welding method and manufactured substrate and electronic unit
WO2013153674A1 (en) * 2012-04-14 2013-10-17 株式会社谷黒組 Soldering device and method, and manufactured substrate and electronic component
TWI554648B (en) * 2012-04-14 2016-10-21 谷黑組股份有限公司 Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
CN103459075A (en) * 2012-04-14 2013-12-18 株式会社谷黑组 Soldering device and method, and manufactured substrate and electronic component
JP5079169B1 (en) * 2012-04-14 2012-11-21 株式会社谷黒組 Soldering apparatus and method, and manufactured board and electronic component
CN103492112B (en) * 2012-04-16 2016-08-17 株式会社谷黑组 Welder, welding method and manufactured substrate and electronic unit
US9289841B2 (en) 2012-04-16 2016-03-22 Tanigurogumi Corporation Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
CN103492112A (en) * 2012-04-16 2014-01-01 株式会社谷黑组 Soldering device and method, and manufactured substrate and electronic component
WO2013157064A1 (en) * 2012-04-16 2013-10-24 株式会社谷黒組 Soldering device and method, and manufactured substrate and electronic component
JP5079170B1 (en) * 2012-04-16 2012-11-21 株式会社谷黒組 Soldering apparatus and method, and manufactured board and electronic component
TWI581882B (en) * 2012-04-16 2017-05-11 谷黑組股份有限公司 Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
US9686871B2 (en) 2013-03-21 2017-06-20 Tanigurogumi Corporation Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
CN110113894A (en) * 2019-06-04 2019-08-09 深圳市鸿信顺电子材料有限公司 Slice component, its superficial treatment system and process of surface treatment
CN110113894B (en) * 2019-06-04 2024-03-22 深圳市鸿信顺电子材料有限公司 Chip component, surface treatment system and surface treatment process thereof
CN111115555A (en) * 2019-12-20 2020-05-08 北京航天控制仪器研究所 Silicon groove structure for MEMS wafer-level eutectic bonding packaging and preparation method
CN111115555B (en) * 2019-12-20 2023-08-29 北京航天控制仪器研究所 Silicon groove structure for MEMS wafer-level eutectic bonding packaging and preparation method

Similar Documents

Publication Publication Date Title
WO2010089905A1 (en) Process and apparatus for producing tin or solder alloy for electronic part and solder alloy
JP6280875B2 (en) Method for forming solder bump and solder bump
JP5129898B1 (en) Parts having electrode corrosion prevention layer and manufacturing method thereof
TWI569340B (en) Method for forming solder bump and method of manufacturing substrate
JP4665071B1 (en) Method and apparatus for forming tin or solder precoat film
JP2011211137A (en) Semiconductor device and method of manufacturing the same, and electronic device and method of manufacturing the same
JPWO2006126527A1 (en) Silver-coated ball and method for manufacturing the same
US9149883B2 (en) Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
US9289841B2 (en) Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
WO2011018861A1 (en) Solder precoat film forming method and device therefor
WO2009104338A1 (en) Tin, solder alloy, and semiconductor device
JP2013110403A (en) Reflow film, method for forming solder bump, method for forming solder join, and semiconductor device
JPWO2008084673A1 (en) Semiconductor device and manufacturing method thereof
WO2012060022A1 (en) Method for forming tin or solder coat film and device therefor
JP2013110402A (en) Reflow film, method for forming solder bump, method for forming solder join, and semiconductor device
JP2011040696A (en) Forming method of solder bump and device of the same
JP4485604B1 (en) Manufacturing method, manufacturing apparatus, and solder alloy for tin or solder alloy for electronic parts
JP6076698B2 (en) Parts with electrode corrosion prevention layer
JP2013110405A (en) Reflow film, method for forming solder bump, method for forming solder join, and semiconductor device
JP2011029567A (en) Method of forming solder bump, and device therefor
JP2005057117A (en) Soldering method, joining structure, and electric/electronic component
KR20070031399A (en) Solder composition and solder layer forming method using the same