JP4665071B1 - Method and apparatus for forming tin or solder precoat film - Google Patents

Method and apparatus for forming tin or solder precoat film Download PDF

Info

Publication number
JP4665071B1
JP4665071B1 JP2010111497A JP2010111497A JP4665071B1 JP 4665071 B1 JP4665071 B1 JP 4665071B1 JP 2010111497 A JP2010111497 A JP 2010111497A JP 2010111497 A JP2010111497 A JP 2010111497A JP 4665071 B1 JP4665071 B1 JP 4665071B1
Authority
JP
Japan
Prior art keywords
solder
tin
molten
solution
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010111497A
Other languages
Japanese (ja)
Other versions
JP2011228608A (en
Inventor
久雄 石川
光芳 木村
正▲徳▼ 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HORIZON TECHNOLOGY LABORATRY CO., LTD.
Original Assignee
HORIZON TECHNOLOGY LABORATRY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HORIZON TECHNOLOGY LABORATRY CO., LTD. filed Critical HORIZON TECHNOLOGY LABORATRY CO., LTD.
Priority to JP2010111497A priority Critical patent/JP4665071B1/en
Application granted granted Critical
Publication of JP4665071B1 publication Critical patent/JP4665071B1/en
Publication of JP2011228608A publication Critical patent/JP2011228608A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

【課題】はんだ浴浸漬処理後のホットエアーレベラー方式やソルダーペーストのリフロー処理方式などにおいて、隣接回路へのブリッジを生じ難く、品質の安定した均一な厚さのはんだプリコート被膜を安定生産する。
【解決手段】下層に溶融錫液または溶融はんだ液がそれぞれ入った貯槽を備えた処理装置の上層中で被処理物を有機脂肪酸溶液と接触させ、表面に有機脂肪酸の保護被膜を形成した後、溶融錫液または溶融はんだ粒子を散布し、被処理物表面に溶融錫または溶融はんだを接着し、次いで、被処理物を下層の溶融錫液または溶融はんだ液に浸漬して錫またははんだ被膜を形成する第1のステップと、錫液またははんだ被膜の形成された被処理物を引き上げながら、加熱した有機脂肪酸溶液を吹付けて余剰に付着した錫またははんだ被膜を吹き落す第2のステップとによりなる。
【選択図】図8
[PROBLEMS] To stably produce a solder precoat film having a uniform quality with a stable quality, hardly causing a bridge to an adjacent circuit in a hot air leveler method after solder bath immersion treatment or a solder paste reflow treatment method.
An object to be treated is brought into contact with an organic fatty acid solution in an upper layer of a processing apparatus having a storage tank containing a molten tin solution or a molten solder solution in a lower layer, and a protective film of organic fatty acid is formed on the surface. Disperse molten tin solution or molten solder particles, adhere molten tin or molten solder to the surface of the object to be processed, and then immerse the object to be processed in the lower layer of molten tin or molten solder solution to form a tin or solder film And a second step of blowing off the excessively adhered tin or solder film by spraying the heated organic fatty acid solution while pulling up the object on which the tin solution or solder film is formed. .
[Selection] Figure 8

Description

本発明は、半導体素子、半導体チップ、半導体ウエハー、インターポーザー(配線基盤)、半導体装置、コンデンサー、キャパシタ、インダクタ、抵抗器、コネクタ、プリント回路板、実装基板、電子装置などの電子部品の電子回路上のパッドまたはリードに錫またははんだプリコート皮膜を形成させる方法及びその装置に関する技術である。
特に、微小面積のパッドまたはリードが狭ピッチで多数個配置された微細電子回路からなる前記電子部品または前記電子部品をマトリックス状に多数個配列した条帯または短冊板(以下、これを電子部品連結体という)の全てのパットまたはリードに、平滑で均一な比較的薄いはんだプリコート皮膜を形成させる技術及びその装置に関するものである。
The present invention relates to an electronic circuit of an electronic component such as a semiconductor element, a semiconductor chip, a semiconductor wafer, an interposer (wiring board), a semiconductor device, a capacitor, a capacitor, an inductor, a resistor, a connector, a printed circuit board, a mounting board, and an electronic device. The present invention relates to a method and apparatus for forming a tin or solder precoat film on an upper pad or lead.
In particular, the electronic component comprising a plurality of fine electronic circuits in which a large number of pads or leads having a small area are arranged at a narrow pitch, or a strip or strip plate in which a large number of electronic components are arranged in a matrix (hereinafter referred to as electronic component connection). The present invention relates to a technique and an apparatus for forming a smooth and uniform relatively thin solder precoat film on all the pads or leads of the body.

近年、電子機器はますます高集積高密度小型軽量化され、品質的に高信頼性が要求されている。これに相応して、半導体チップ、ウエハー、半導体装置、抵抗器、コンデンサー、コネクタなどの電子部品はますます高密度小型化され、それらの電子回路上のパッドまたはリードは幅も隣接ピッチも微小狭小化が進んでいる。それに伴い、これらの電子部品を実装搭載する電子回路基板のパッドまたはリードもそれに対応してますます微小狭小化されてきている。
例えば、電子部品の中でも、特に半導体装置のBGA(Ball Grid Array)、CSP(Chip Size Package)の半導体チップやインターポーザー(配線基板)は、小型微小化に伴い、マトリックス状に配列された電極パッドまたはリードの面積は微小化され、隣接ピッチも微小狭ピッチ化が進んでいる。
このため、はんだボールを接合してバンプを形成させるために必要な、パッドまたはリード上のはんだプリコート面積もますます微小狭小化されてきている。このほか、超ミニトランジスタ、超ミニダイオード、ミニコンデンサなどの微小な電子部品は多列多数個取りでマトリックス状に配列されたリードフレーム条帯として組立て成形されているものも多く、その電極パッドやリードも同様にますます微小狭小化している。
一方、これらの微小な電子部品を搭載して表面実装する電子回路基板側のパッドまたはリードも、当然、それに対応して微小化と微小狭ピッチ化が進み、これらの電子部品と良好なはんだ接合を容易にするために必要な錫またははんだプリコート面積、あるいはニッケルを下地めっきした上に薄い金めっきを施す面積もますま微小化されてきている。
In recent years, electronic devices are increasingly highly integrated, high density, small and light, and high quality is required for reliability. Correspondingly, electronic components such as semiconductor chips, wafers, semiconductor devices, resistors, capacitors, connectors, and the like are increasingly miniaturized, and the pads or leads on these electronic circuits are both narrow and narrow in width and adjacent pitch. Is progressing. Along with this, the pads or leads of electronic circuit boards on which these electronic components are mounted and mounted have been correspondingly reduced in size.
For example, among electronic components, in particular, semiconductor devices such as BGA (Ball Grid Array) and CSP (Chip Size Package) semiconductor chips and interposers (wiring substrates) of semiconductor devices are electrode pads arranged in a matrix with miniaturization. Alternatively, the lead area is miniaturized, and the adjacent pitch is also becoming narrower.
For this reason, the solder precoat area on the pad or lead necessary for joining the solder balls to form the bumps is becoming increasingly smaller. In addition, there are many small electronic components such as ultra-mini transistors, ultra-mini diodes, and mini-capacitors that are assembled and formed as a multi-row lead frame strip that is arranged in a matrix. The leads are also becoming increasingly narrow.
On the other hand, the pads or leads on the electronic circuit board on which these micro electronic components are mounted on the surface are naturally miniaturized and fine pitches are reduced accordingly, and these electronic components are well soldered. In addition, the area of tin or solder pre-coating necessary for facilitating the process, or the area where thin gold plating is applied on the base plating of nickel has been miniaturized.

一般に、電子回路基板のパッドまたはリードにはんだプリコート皮膜を形成する方法としては、(A)溶融はんだ浴浸漬処理方式、(B)ソルダーペスト塗布・溶融方式、(C)錫またははんだめっき方式、(D)Ni/Auめっき方式などが広く普及している。
しかしながら、従来方法(A)と(B)によるはんだプリコートは比較的広幅のパッドまたはリードには問題なく適用できるが、パッドまたはリード幅が狭くなると、局部的に隣接パッドまたはリード間にブリッジを生ずるため、最小幅は0.15mm、隣接パッドまたはリード間ピッチは0.2mmが限界と言われており、これ以下の微小狭小幅・ピッチの電子回路の場合には、これらの方法ではブリッジが全くないはんだプリコート皮膜を形成させることは困難である。
In general, as a method of forming a solder precoat film on a pad or lead of an electronic circuit board, (A) a molten solder bath immersion treatment method, (B) a solder paste coating / melting method, (C) a tin or solder plating method, ( D) Ni / Au plating method is widely used.
However, the solder pre-coating by the conventional methods (A) and (B) can be applied to a relatively wide pad or lead without any problem. However, when the pad or lead width becomes narrow, a bridge is locally formed between adjacent pads or leads. For this reason, it is said that the minimum width is 0.15 mm and the pitch between adjacent pads or leads is 0.2 mm. It is difficult to form no solder precoat film.

即ち、(A)溶融はんだ浴浸漬処理方式は、最も古くから実用普及している方法であり、一般に、パッドまたはリード以外の表面がソルダーレジスト膜で保護され、パッドまたはリード部のみが露出している電子回路基板を、フラックス液中に浸漬処理するか、もしくはパッドまたはリード表面にフラックスを塗布した後に、溶融したはんだ浴の中に浸漬して、フラックスの還元力を利用してパッド表面の酸化膜を除去して、はんだぬれ性を改善しながら、パッドまたはリードにはんだプリコート皮膜を形成する方法である。
この方法では、一般に、はんだが比較的厚く付着(数10〜100μm)するため、狭ピッチ回路やスルーホールを有する電子回路基板では局部的に隣接パッドまたはリード間でブリッジを生じ易く、微小なスルーホール内部にははんだ付着しにくい難点がある。
従って、特に、パッドまたはリード幅0.02〜0.08mm、隣接ピッチ0.04〜0.12mmのような微小微細電子回路の場合には、溶融はんだ固有のぬれ角が小さいために、はんだレジスト膜の高い壁で囲まれた内底部の微小パッドまたはリード表面に、溶融はんだが殆ど接触接合できないため、はんだ被膜を形成することすら殆ど不可能な欠点がある。
That is, (A) the molten solder bath dipping method is the most widely used method since the oldest. Generally, the surface other than the pad or lead is protected by the solder resist film, and only the pad or lead part is exposed. The electronic circuit board is immersed in a flux solution, or flux is applied to the pad or lead surface, then immersed in a molten solder bath, and the pad surface is oxidized using the reducing power of the flux. In this method, a solder precoat film is formed on a pad or a lead while removing the film to improve solder wettability.
In this method, since the solder generally adheres relatively thick (several tens to 100 μm), in an electronic circuit board having a narrow pitch circuit or a through hole, a bridge is easily generated locally between adjacent pads or leads, and a minute through There is a difficulty in soldering in the hole.
Therefore, in particular, in the case of a micro-fine electronic circuit having a pad or lead width of 0.02 to 0.08 mm and an adjacent pitch of 0.04 to 0.12 mm, the solder resist has a small wetting angle. There is a drawback that it is almost impossible to form a solder film because molten solder cannot be contact-bonded to the inner bottom micropad or lead surface surrounded by the high wall of the film.

このため、0.2mm以下の電子回路表面に溶融はんだを吹付けてはんだ皮膜を形成させた後、比重の大きい高温の液体を吹き付けて余剰のはんだを吹き落とすホットリキッドレベリング方法(特許文献1)が提案されている。
しかしながら、この方法でも回路幅0.1mmが限界であり、例えば前記パッドまたはリード幅0.02〜0.08mm、隣接ピッチ0.04〜0.12mmのような微小狭小電子回路の場合には、溶融はんだ固有のぬれ角が小さいために、ソルダーレジスト膜の高い壁で囲まれた内底部の微小パッドまたはリード表面に、溶融はんだが殆ど接触接合できないため、はんだ不着(以下、ミッシングという)なく全ての微小パッドまたはリード表面に安定して均一なはんだ皮膜またはプリコート皮膜を形成することは非常に困難である。
For this reason, a hot liquid leveling method in which a molten solder is sprayed on an electronic circuit surface of 0.2 mm or less to form a solder film, and then a high-temperature liquid having a large specific gravity is sprayed to blow off excess solder (Patent Document 1). Has been proposed.
However, even in this method, a circuit width of 0.1 mm is a limit. For example, in the case of a small and narrow electronic circuit having a pad or lead width of 0.02 to 0.08 mm and an adjacent pitch of 0.04 to 0.12 mm, Because the wet angle inherent to molten solder is small, almost no molten solder can contact and bond to the inner bottom micropad or lead surface surrounded by the high wall of the solder resist film, so there is no solder adhesion (hereinafter referred to as missing). It is very difficult to form a stable and uniform solder film or precoat film on the surface of the micropad or lead.

また、はんだプリコート皮膜形成を目的とする場合には、はんだ層形成後、前記はんだ層に高温のエアーを吹き付けて余剰のはんだを吹き落とすホットエアーレベリング方法(特許文献2)が提案されている。
しかしながら、この方法でも回路幅0.1mmが限界であり、例えば前記パッドまたはリード幅0.02〜0.08mm、隣接ピッチ0.04〜0.12mmのような微小狭小電子回路の場合には、ミッシングなく全ての微小パッドまたはリード表面安定して均一にはんだ被膜を形成することは殆ど不可能である。
For the purpose of forming a solder precoat film, there has been proposed a hot air leveling method (Patent Document 2) in which, after forming a solder layer, high temperature air is blown onto the solder layer to blow off excess solder.
However, even in this method, a circuit width of 0.1 mm is a limit. For example, in the case of a small and narrow electronic circuit having a pad or lead width of 0.02 to 0.08 mm and an adjacent pitch of 0.04 to 0.12 mm, It is almost impossible to form a uniform and uniform solder film on all micro pads or lead surfaces without missing.

また、(B)ソルダーペースト塗布・融着方式も、かなり古くから広く普及し、現在でも広範囲に実用されている方法で、パッドまたはリード以外の表面がソルダーレジスト膜で保護され、パッドまたはリード部のみが露出している電子回路基板を、パッドまたはリード位置に相当する部分が開口しているマスクを利用して、スクリーン印刷等でソルダーペースト(クリームはんだ)をパッドまたはリードに塗布した後、リフロー処理をしてソルダーペースト中に存在するフラックスの還元力を利用してパッドまたはリード表面の酸化膜を除去してはんだぬれ性を改善しながら、ソルダーペースト中の20〜80μmφのはんだ粒子を溶融融合して30〜80μmのはんだ被膜を形成させている。(特許文献3,4、5)
しかしながら、このソルダーペースト塗布・融着方法では、スクリーン印刷等によるソルダーペースト塗布精度の限界(はんだ被膜形成可能限界)は、ソルダーペーストの粘度・はんだ粒子径および塗布条件にもよるが、一般にパッドまたはリードにはんだ皮膜形成可能な最小幅は高々0.1mm、隣接ピッチは0.15mmと言われており、特に、パッドまたはリード幅0.02〜0.08mm、隣接ピッチ0.04〜0.12mmのような微小微細電子回路にブリッジやミッシングなく厚さ3〜15μmの均一性の良好なはんだプリコート皮膜を安定して形成させることは至難である。
Also, (B) the solder paste coating / fusion method has been widely used for a long time, and has been widely used even today, and the surface other than the pad or lead is protected with a solder resist film, and the pad or lead portion Reflow after the solder paste (cream solder) is applied to the pad or lead by screen printing etc. using a mask with an opening corresponding to the pad or lead position. The solder paste of 20-80μmφ in the solder paste is melted and fused while improving solder wettability by removing the oxide film on the pad or lead surface using the reducing power of the flux present in the solder paste. Thus, a solder film of 30 to 80 μm is formed. (Patent Documents 3, 4, and 5)
However, in this solder paste application / fusion method, the limit of the solder paste application accuracy by screen printing or the like (the limit for forming a solder coating) depends on the viscosity of the solder paste, the solder particle diameter, and the application conditions. It is said that the minimum width at which a solder film can be formed on a lead is at most 0.1 mm and the adjacent pitch is 0.15 mm. In particular, the pad or lead width is 0.02 to 0.08 mm, and the adjacent pitch is 0.04 to 0.12 mm. It is very difficult to stably form a uniform solder precoat film having a thickness of 3 to 15 μm without bridging or missing in such a fine and fine electronic circuit.

一方、(C)錫またははんだめっき方式、及び(D)Ni/Auめっき方式は、特に微小、微細回路のプリコートに優位な技術であり、近年、半導体ウエハーやインターポーザーの微小微細パッドのプリコートに適用されている。(特許文献2,3,6)
このうち(C)法は、パッドまたはリード以外の表面がはんだレジストで保護され、パッドまたはリード部のみが露出している電子回路基板を、はんだ成分の金属イオンを含有するめっき液中で所望の厚さにめっきしてはんだプリコート皮膜を形成させる方法で、例えば、パッドまたはリード幅0.02〜0.08mm、隣接ピッチ0.04〜0.12mmのような微小微細電子回路に厚さ3〜15μmの均一性のはんだプリコート皮膜を形成させることは可能である。
しかしながら、主として水溶液を用いるため、電子回路基板中に水分子が浸透して、信頼性を低下させる品質上の問題と、前処理、水洗、後処理などを必要として、工程が長く複雑で処理時間も長く工程管理も大変なこと、従ってコストが高い難点がある。
On the other hand, the (C) tin or solder plating method and the (D) Ni / Au plating method are technologies that are particularly advantageous for pre-coating fine and fine circuits. Recently, they have been used for pre-coating micro-fine pads for semiconductor wafers and interposers. Has been applied. (Patent Documents 2, 3, 6)
Among these, the method (C) is a method in which an electronic circuit board in which the surface other than the pad or the lead is protected with a solder resist and only the pad or the lead part is exposed is desired in a plating solution containing a metal ion of a solder component. In a method of forming a solder precoat film by plating to a thickness, for example, a fine fine electronic circuit having a pad or lead width of 0.02 to 0.08 mm and an adjacent pitch of 0.04 to 0.12 mm is formed with a thickness of 3 It is possible to form a uniform solder precoat film of 15 μm.
However, since aqueous solutions are mainly used, water molecules permeate into the electronic circuit board, requiring quality problems that reduce reliability, pre-treatment, water washing, post-treatment, etc. However, the process management is long and the cost is high.

同様に、(D)法のNi/Auめっきの目的は主として、ウエハーなどのシリコン上のアルミ蒸着電極パッドの場合のように、電極内部に錫またははんだ成分中の元素が内部拡散するのを防止するために、拡散防止膜として下地ニッケルめっきなどを施した後、めっきされたニッケル表面の酸化防止とはんだ付け性を改善するためにその上に薄い金めっきを被覆するもので、この場合も(C)法と同様、例えば、パッドまたはリード幅0.02〜0.08mm、隣接ピッチ0.04〜0.12mmのような微小微細電子回路に厚さ3〜15μmの均一性のはんだプリコート皮膜を形成させることは可能である。但し、(D)法の場合は金めっきの上に更に(B)法の手順を付加して、はんだプリコート皮膜を形成させることも広く行われているが、この場合は上記(B)法の説明で述べた通り、一般にパッドまたはリード最小幅0.1mm、隣接ピッチは0.15mmが限界であり、例えば、パッドまたはリード幅0.02〜0.08mm、隣接ピッチ0.04〜0.12mmのような微小微細電子回路に厚さ3〜15μmの均一性のはんだプリコート皮膜をブリッジやミッシングなく安定して形成させることは殆ど不可能である。  Similarly, the purpose of Ni / Au plating in the (D) method is mainly to prevent internal diffusion of elements in the tin or solder components inside the electrode, as in the case of an aluminum evaporated electrode pad on silicon such as a wafer. In order to improve the anti-oxidation and solderability of the plated nickel surface after applying a base nickel plating or the like as a diffusion prevention film, a thin gold plating is coated on the surface. Similar to the method C), for example, a uniform solder precoat film with a thickness of 3 to 15 μm is applied to a minute fine electronic circuit having a pad or lead width of 0.02 to 0.08 mm and an adjacent pitch of 0.04 to 0.12 mm. It is possible to form. However, in the case of the (D) method, the procedure of the (B) method is further added on the gold plating to form a solder precoat film. As described in the description, the minimum pad or lead width is generally 0.1 mm and the adjacent pitch is 0.15 mm. For example, the pad or lead width is 0.02 to 0.08 mm, and the adjacent pitch is 0.04 to 0.12 mm. It is almost impossible to stably form a uniform solder precoat film having a thickness of 3 to 15 μm on such a minute and fine electronic circuit without bridging or missing.

また更に、ホットエアーレベリング方法及びホットリキッドレベリング方法ではんだプリコート被膜を形成したものは、近年鉛フリーはんだ合金として広く普及している錫銅系はんだ合金、錫銀系はんだ合金、錫銀銅系はんだ合金などにおいては、凝固時に1〜10数μm程度の針状または粒状の錫銅または錫銀の金属間結晶(IMC)が偏析してはんだ接合界面近傍のはんだ層内部に散在するため、特にはんだプリコート厚さが10μm以下のレベリング後のはんだプリコート被膜の表面はデコボコになり、はんだ厚さのばらつきも大きく、表面外観もまだら模様を呈する難点がある。  Furthermore, a solder precoat film formed by a hot air leveling method or a hot liquid leveling method is a tin-copper solder alloy, a tin-silver solder alloy, or a tin-silver-copper solder that has been widely used as a lead-free solder alloy in recent years. In alloys and the like, needle-like or granular tin-copper or tin-silver intermetallic crystals (IMC) of about 1 to 10 μm or more are segregated and scattered in the solder layer near the solder joint interface during solidification. The surface of the solder precoat film after leveling with a precoat thickness of 10 μm or less becomes uneven, the solder thickness varies greatly, and the surface appearance has a dull pattern.

一方、前述の(A)と(B)法のようなはんだ接合技術では、被覆または接合の際に一般的にフラックスまたはソルダーペーストの使用は必須であり、そのためフラックスまたはソルダーペーストに含まれている溶剤や樹脂分がはんだ接合時に瞬間的に沸騰・気化・飛散するので、はんだ接合界面また接合はんだ層内に大気を巻き込み、所謂マイクロボイド(微小な気泡や空隙)を生じやすい難点もある。(非特許文献1)
但し、色々な技術改善と工夫により、このマイクロボイドは殆ど皆無に出来る方法もあるが、譬えはんだ接合時にマイクロボイドがなくても、現行のはんだ接合技術により電子部品を電子回路基板にはんだ接合した電子装置は、通電発熱などにより120℃以上の高温に長時間暴露されると、はんだ接合部界面のIMC(金属間化合物)層内に経時的にマイクロボイド(微小な空隙)を生ずる。これを通常、カーケンダルボイドと称しており、これが経時的に多数発生すると、電子装置を落下させたりして衝撃力が加わったときに接合破断を生ずる危険性が高いことが知られており、電子機器の信頼性の観点から、近年大きな問題になっている。(非特許文献1,2,3,4)
また、従来方法ではフラックスを使用するので、フラックスの成分が接合界面やはんだプリコート皮膜内部に残留し、あるいは周囲に飛散したフラックス成分により、経時的腐食の原因にもなり、搭載された電子機器の故障を招くこともあり、長期品質信頼性の点でも必ずしも充分とは言えない。
On the other hand, in the solder joining techniques such as the methods (A) and (B) described above, it is generally essential to use a flux or a solder paste at the time of coating or joining, and therefore, it is included in the flux or the solder paste. Since the solvent and the resin component instantaneously boil, vaporize, and scatter during solder joining, there is a problem that air is engulfed in the solder joint interface or the joined solder layer, and so-called micro voids (micro bubbles or voids) are easily generated. (Non-Patent Document 1)
However, there are methods that can eliminate this micro void by various technical improvements and ideas, but even if there is no micro void at the time of custom soldering, the electronic component is soldered to the electronic circuit board by the current soldering technology. When an electronic device is exposed to a high temperature of 120 ° C. or more for a long time due to energization heat generation or the like, micro voids (minute voids) are formed with time in the IMC (intermetallic compound) layer at the interface of the solder joint. This is usually called Kirkendall void, and when this occurs many over time, it is known that there is a high risk of joint breakage when an impact force is applied by dropping an electronic device, In recent years, it has become a big problem from the viewpoint of the reliability of electronic equipment. (Non-patent documents 1, 2, 3, 4)
In addition, since flux is used in the conventional method, the flux component remains inside the joint interface or inside the solder precoat film, or the flux component scattered around it may cause corrosion over time, and the mounted electronic equipment Failures may be caused, and it is not always sufficient in terms of long-term quality reliability.

一方、電子装置が高温と低温とを繰り返す熱サイクル時に、半導体素子とプリント基板間に生ずる温度差による熱応力ではんだ接合部が疲労破壊することも知られており、この疲労破壊に起因した耐衝撃性劣化を改善するために、錫銀銅系はんだ合金をアルゴンガスなどの非酸化性雰囲気中で溶解混錬して、はんだ合金中の固溶酸素濃度を10ppm以下にしたはんだ合金を使用することにより、はんだ自体の延性と強度を10%程度向上させ、はんだ接合部の耐熱疲労特性と耐衝撃性(簡易落下試験条件下)を改善する方法が提案されている。(特許文献7)
しかしながら、近年、微小微細小型化された半導体装置及び電子装置には、特許文献7で開示されている耐熱疲労特性と耐衝撃性(簡易落下試験条件下)よりも遥かに厳しい加速度重力による衝撃試験が課せられることが多く、上記特許文献7に記載のはんだ合金だけでは高温暴露(例えば120℃以上の高温雰囲気中に240時間以上放置した加速加熱エージング試験)後に接合界面付近に経時的に発生するカーケンダルボイドを抑制することは出来ない。従って、特許文献7だけでは加速度重力による耐衝撃性は到底満足できないことを発明者らは長年に亘る研究開発を通して知見した
On the other hand, it is also known that solder joints undergo fatigue failure due to thermal stress due to the temperature difference generated between the semiconductor element and the printed circuit board during a thermal cycle in which the electronic device repeats high and low temperatures. In order to improve the impact deterioration, a solder alloy in which a tin-silver-copper solder alloy is melted and kneaded in a non-oxidizing atmosphere such as argon gas so that the solid solution oxygen concentration in the solder alloy is 10 ppm or less is used. Thus, a method has been proposed in which the ductility and strength of the solder itself are improved by about 10%, and the thermal fatigue characteristics and impact resistance (under simple drop test conditions) of the solder joint are improved. (Patent Document 7)
However, in recent years, semiconductor devices and electronic devices that have been miniaturized and miniaturized have an impact test by acceleration gravity far more severe than the thermal fatigue characteristics and impact resistance (under a simple drop test condition) disclosed in Patent Document 7. With the solder alloy described in Patent Document 7 alone, it is generated over time near the bonding interface after high-temperature exposure (for example, an accelerated heating aging test that is left in a high-temperature atmosphere at 120 ° C. or higher for 240 hours or longer). Kirkendall void cannot be suppressed. Therefore, the inventors have found through many years of research and development that the impact resistance due to acceleration gravity cannot be satisfied with Patent Document 7 alone.

また一方、パッドまたはリード部以外がソルダーレジストなどの保護膜で覆われている電子回路基板のパッドまたはリードに、はんだ合金を接合する技術の1つとして、溶融はんだ液の上層に高温の有機脂肪酸溶液を配した上下2層構造の貯槽を用いてはんだ接合する技術が既に公開されている。(特許文献8、9)
この技術は、嘗て発明者らが長年の研究により開発したものであるが、まず前記電子回路基板などのワークを上層の有機脂肪酸溶液に浸漬して、パッドまたはリード表面の金属酸化物を洗浄除去し、清浄化された金属表面に有機脂肪酸による保護皮膜を形成させた後、下層の溶融はんだ液に浸漬して、前記パッドまたはリードにマイクロボイドのない良好なはんだ接合を行い、次いで再びワークを上層の有機脂肪酸溶液中を通過させて引き上げる際に接合されたはんだ表面に有機脂肪酸の保護被膜をコーティングするものである。
このはんだ接合方法ではフラックスを全く使用しないため、現行の前記(A)溶融はんだ浴浸漬処理方式と前記(B)ソルダーペースト塗布・融着方式の難点であるフラックスの沸騰飛散などによるはんだ接合界面やはんだ層内に所謂マイクロボイド(微小な気泡や空隙)の発生は全くない。また、はんだ合金中の酸素濃度が10ppm以下のものを使用すると、経時的長期高温暴露後のカーケンダルボイドの発生が極めて少なく、接続信頼性が高く、耐衝撃破断性に優れたはんだ接合が得られることが判っている。(特許文献9)
尚、はんだ合金中の酸素濃度が10ppm以下に精製させる方法としては、アルゴン雰囲気中ではんだを溶解する方法(特許文献7)もあるが、それよりも更に効率的な方法として、発明者らは溶融はんだを有機脂肪酸溶液中で激しく撹拌処理することにより製造することを提案した。(特許文献10)
On the other hand, as one of the techniques for joining a solder alloy to a pad or lead of an electronic circuit board that is covered with a protective film such as a solder resist other than the pad or lead part, a high-temperature organic fatty acid is formed on the upper layer of the molten solder liquid. A technique for soldering using a storage tank having an upper and lower two-layer structure in which a solution is disposed has already been disclosed. (Patent Documents 8 and 9)
This technology has been developed by the inventors through years of research. First, the work such as the electronic circuit board is immersed in an organic fatty acid solution in the upper layer, and the metal oxide on the pad or lead surface is removed by washing. Then, after forming a protective film of organic fatty acid on the cleaned metal surface, immerse it in the molten solder solution below to perform good solder bonding without microvoids on the pad or lead, A protective film of organic fatty acid is coated on the surface of the solder bonded when passing through the upper organic fatty acid solution and pulling it up.
In this soldering method, no flux is used. Therefore, the solder joint interface caused by the boiling and scattering of flux, which is the difficulty of the current (A) molten solder bath immersion method and the (B) solder paste coating / fusion method, No so-called micro voids (micro bubbles or voids) are generated in the solder layer. In addition, when solder alloys with an oxygen concentration of 10 ppm or less are used, the occurrence of Kirkendall voids after long-term, high-temperature exposure is extremely low, connection reliability is high, and solder joints with excellent impact rupture resistance are obtained. It is known that (Patent Document 9)
In addition, as a method of refining the oxygen concentration in the solder alloy to 10 ppm or less, there is a method of dissolving solder in an argon atmosphere (Patent Document 7). It was proposed to manufacture molten solder by vigorously stirring in organic fatty acid solution. (Patent Document 10)

しかしながら、製造効率が悪く信頼性に劣る前記(C)、(D)を除いて、現行のはんだ接合技術を組合わせても、現状では、はんだプリコート被膜形成可能な電子回路の最小幅は、パッドまたはリード幅で高々0.1mm、隣接回路ピッチとしては0.15mmが限界であり、それ以下の幅と隣接ビッチの微小微細はんだ接合電子回路形成は、(C),(D)の電気めっき方式以外は未だに完全には実用化されていない。
このため、特に高信頼性が求められる航空機用や車載用の電子回路基板、電子部品、半導体装置及び電子装置の更なる小型軽量化のためにも、例えば、パッド幅が0.08μm以下、隣接ピッチ120μm以下の微小微細回路が望まれているが、現行方式のはんだ被膜形成方法では、譬え局部的にはんだが付着してもブリッジを生ずる確率が高く、大半ははんだ不着(ミッシング)を多発するため、更なる微小微細小型軽量化のネックになっている。
However, with the exception of the above (C) and (D), where the manufacturing efficiency is poor and the reliability is low, even if the current solder joint technology is combined, the minimum width of an electronic circuit capable of forming a solder precoat film is currently Alternatively, the lead width is at most 0.1 mm, and the adjacent circuit pitch is limited to 0.15 mm, and the width less than that and the minute pitch solder joint electronic circuit formation of the adjacent bit can be formed by the electroplating method of (C) and (D). Other than that, it has not been fully put into practical use yet.
For this reason, in order to further reduce the size and weight of electronic circuit boards, electronic components, semiconductor devices, and electronic devices for airplanes and vehicles that require particularly high reliability, for example, the pad width is 0.08 μm or less and adjacent Although a micro-fine circuit with a pitch of 120 μm or less is desired, the current method of forming a solder film has a high probability of causing bridging even if the solder is locally attached, and most of them frequently cause solder non-bonding (missing). Therefore, it is a bottleneck for further miniaturization, miniaturization, and weight reduction.

特開平8−37361号  JP-A-8-37361 特開平6−252542号  JP-A-6-252542 特開平11−307565号  JP-A-11-307565 特開平10−322007号  JP 10-322007 A 特開平9−307223号  JP-A-9-307223 特開2002−9425号  JP 2002-9425 特開2002−239780号  JP 2002-239780 A 特許第4203281号  Japanese Patent No. 4203281 特開WO2008−084673号  JP 2008-084673 A 特開2009−197135号  JP 2009-197135 A

R.Aspandiar ”Void in Solder Joints” SMTA Northwest Chapt.Meeting(September 21,2005)  R. Aspantiar “Void in Solder Joints” SMTA Northwest Chapter. Meeting (September 21, 2005) C.Hillman ”Long−term reliability of Pb−free electronics” Electronic Products p.69(September 2005)  C. Hillman "Long-term reliability of Pb-free electronics" Electronic Products p. 69 (September 2005) 伴充行、島内優”電子部品の信頼性評価および不具合解析技術”JFE技報第13巻p.97−102、2006年8月  M. Mitsuyuki, Yu Shimauchi "Electronic component reliability evaluation and failure analysis technology" JFE Technical Report Vol. 13, p. 97-102, August 2006 石川信二他:”高温はんだとCu板の接合部におけるカーケンダルボイドの生成“、エレクトロニクス実装学会誌、第9巻4号p.269−277、2006年  Shinji Ishikawa et al .: “Generation of Kirkendall Void at the Joint of High Temperature Solder and Cu Plate”, Journal of Japan Institute of Electronics Packaging, Vol. 9, No. 4, p. 269-277, 2006

本発明は、電子部品のパッドまたはリードにはんだプリコート被膜を形成する方法における前記従来方法の難点、即ち、フラックス使用に起因する接合界面及びはんだ層内マイクロボイド、経時的接続信頼性劣化と耐食性、はんだプリコート皮膜の厚さのばらつきが大きいこと、更には長期高温暴露後の経時的マイクロボイド・カーケンダルボイドの発生、及びパッドまたはリード幅0.08mm以下・隣接ピッチが0.12mm以下の微小微細狭ピッチ高密度電子回路へのはんだプリコート皮膜形成困難な問題など、を解決して品質信頼性の高い均一な錫またははんだプリコート皮膜を形成させる技術を提供するものである。  The present invention is a disadvantage of the conventional method in the method of forming a solder precoat film on a pad or lead of an electronic component, that is, a bonding interface and a microvoid in the solder layer resulting from the use of flux, deterioration of connection reliability and corrosion resistance over time, Variations in the thickness of the solder precoat film are large. In addition, microvoids and carkendal voids are generated over time after long-term high-temperature exposure, and the pad or lead width is 0.08 mm or less. Adjacent pitch is 0.12 mm or less. It is an object of the present invention to provide a technology for forming a uniform tin or solder precoat film with high quality reliability by solving problems such as difficulty in forming a solder precoat film on a narrow pitch high density electronic circuit.

本発明は、パッドまたはリード以外の表面がはんだレジスト膜で保護され、パッドまたはリードのみが露出している電子回路基板または電子部品連結体(以下、ワークという)を高温の有機脂肪酸溶液中に浸漬するか、あるいは前記ワークに高温の前記有機脂肪酸溶液を吹付けることにより、前記有機脂肪酸の化学作用で前記パッドまたは前記リード表面の酸化層を除去・清浄化し、かつ清浄化された前記パッドまたはリード金属表面に有機脂肪酸の化学吸着作用により保護被膜を形成した後に、上層に高温の有機脂肪酸溶液が、下層に溶融錫液または溶融はんだ液がそれぞれ入った貯槽を備えた処理装置の前記上層中で前記ワークを水平または傾斜させて加熱した有機脂肪酸溶液と接触した状態で、上部から錫またははんだ粒子を前記有機脂肪酸溶液中に散布して、前記電極パッド又は前記リード表面に溶融状態で前記錫またははんだ粒子を少なくとも1個以上付着させて核となした後、前記ワークを前記下層の前記溶融錫液または溶融はんだ液に浸漬して、前記電極パッド又は前記リード表面に錫またははんだ皮膜を形成する第1のステップと、第1のステップにより錫液またははんだ皮膜の形成された前記ワークは、前記上層中を通過させて引き上げながら、表面に高温の有機脂肪酸溶液を吹付けて余剰に付着した前記錫またははんだを吹き落し除去する第2のステップにより、前記パッドまたは前記リードに厚さ2〜20μmで、かつ厚さのばらつきが±5μm以下の均一な錫またははんだプリコート皮膜を形成させるものである。
前記第1ステップにおいては、上層に高温の有機脂肪酸溶液、下層に溶融錫液または溶融はんだ液を配した貯槽に、ワークを上層→下層→上層の順に浸漬処理しても良いし、あるいは前記ワークに専用ポンプで高温の有機脂肪酸溶液と溶融錫液または溶融はんだ液とを、それぞれ吹付け処理を行って、前記パッドまたは前記リード表面に錫またははんだ接合皮膜を形成させてもよい。
The present invention immerses an electronic circuit board or electronic component assembly (hereinafter referred to as a workpiece) in which a surface other than the pad or lead is protected with a solder resist film and only the pad or lead is exposed in a high-temperature organic fatty acid solution. Or by spraying the organic fatty acid solution at a high temperature on the workpiece to remove and clean the pad or the lead surface oxide layer by the chemical action of the organic fatty acid, and to clean the pad or lead In the upper layer of the processing apparatus provided with a storage tank containing a high-temperature organic fatty acid solution in the upper layer and a molten tin solution or a molten solder solution in the lower layer after forming a protective coating on the metal surface by the chemical adsorption of organic fatty acids. In a state where the workpiece is in contact with an organic fatty acid solution heated in a horizontal or inclined manner, tin or solder particles are introduced from above into the organic After spraying in a fatty acid solution and adhering at least one or more of the tin or solder particles in a molten state to the electrode pad or the lead surface to form a nucleus, the work is used to form the molten tin solution or the lower layer. A first step of immersing in a molten solder solution to form tin or a solder film on the electrode pad or the lead surface; and the work on which the tin solution or solder film is formed by the first step is formed in the upper layer. In a second step of blowing off and removing the excessively adhered tin or solder by spraying a high-temperature organic fatty acid solution on the surface while passing it through, the pad or the lead has a thickness of 2 to 20 μm, In addition, a uniform tin or solder precoat film having a thickness variation of ± 5 μm or less is formed.
In the first step, the workpiece may be dipped in the order of the upper layer → the lower layer → the upper layer in a storage tank in which a high-temperature organic fatty acid solution is disposed in the upper layer and a molten tin solution or a molten solder solution is disposed in the lower layer. Alternatively, a hot organic fatty acid solution and a molten tin solution or a molten solder solution may be sprayed with a dedicated pump to form tin or a solder joint film on the pad or the lead surface.

更に詳しく述べると、第1のステップ及び第2のステップで使用する有機脂肪酸は、カプロン酸、カプリル酸、2−エチルヘキ酸、ノナン酸、カプリン酸、ウンデカン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキジン酸、アラキドン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸、などがよい。
これらの内、望ましくは180〜300℃で使用する溶媒に溶解し分解などせず安定している有機脂肪酸がよい。沸点が低い有機脂肪酸の場合は高圧にして使用することも可能であるが、安全性、実用性の点で好ましくはない。
経済性や取扱い上から工業的により実用に適するものは、例えば、炭素数13〜20の有機脂肪酸、即ち、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキジン酸、アラキドン酸などであり、本発明の目的に合致した効果が大きく、特に有用である。
有機脂肪酸は炭素数12以下でも使用可能ではあるが吸水性があり、高温で使用する関係からあまり好ましくないこと、更に接合後のはんだ表面に保護膜としてコーティングされても吸水性があるため長期保存時の品質に障害をもたらすこともあり、必ずしも好ましくない。
また、炭素数21以上の有機脂肪酸でも使用は可能であるが、融点が高いこと及び浸透性が悪くまた取扱いし難く処理後のはんだ表面の防錆効果もやや不充分になる。特に望ましいのは、工業的にも大量に生産され、多分野で使用されていて、入手もしやすい炭素数16のパルミチン酸、炭素数18のステアリン酸が最適であり、そのいずれか1種以上を1〜80重量%と残部が高温領域で安定な油系溶媒からなる、液温180〜300℃の溶液を使用すると本発明の効果も大きい。
本発明にカルボキシル基(−COOH)を有する有機脂肪酸溶液を使用する目的は、パッドの金属表面をケン化反応により酸化膜を除去し清浄活性化することと、同時に清浄活性化された表面に有機脂肪酸が化学吸着し酸化防止保護膜の役割を果たすこと、更には溶融錫または溶融はんだ液の酸化を防止する役割も果たすとともに、形成されたはんだプリコート皮膜表面の酸化防止化学吸着保護膜としてコーティングすることにある。この他に付随的にワークの表面に付着した不要な塵埃や錫またははんだ微粒子を洗い流し落とす効果もある。また特に微小微細回路の場合は、ワークを溶融錫または溶融はんだ液に浸漬すると錫またははんだが厚く余剰付着してブリッジを生ずるが、これをそのまま高温の有機脂肪酸溶液中に浸漬すると、有機脂肪酸の活性力により余剰の錫またははんだがある程度はじき落とされて、ブリッジもある程度解消できる効果もある。
More specifically, the organic fatty acids used in the first step and the second step are caproic acid, caprylic acid, 2-ethylhexic acid, nonanoic acid, capric acid, undecanoic acid, myristic acid, palmitic acid, margaric acid, Stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid, arachidonic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, melissic acid, and the like are preferable.
Among these, organic fatty acids which are desirably dissolved in a solvent used at 180 to 300 ° C. and stable without decomposition are preferred. In the case of an organic fatty acid having a low boiling point, it can be used at a high pressure, but it is not preferable in terms of safety and practicality.
Industrially more suitable for practical use in view of economy and handling, for example, organic fatty acids having 13 to 20 carbon atoms, that is, myristic acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidin Acid, arachidonic acid and the like, which are particularly useful because they have a great effect in accordance with the object of the present invention.
Although organic fatty acids can be used even with carbon atoms of 12 or less, they are water-absorbing and are not very desirable due to their use at high temperatures. Furthermore, even if they are coated as a protective film on the solder surface after bonding, they are water-absorbing and thus are stored for a long time. The quality of time may be hindered, which is not always desirable.
Further, although organic fatty acids having 21 or more carbon atoms can be used, they have a high melting point and poor permeability and are difficult to handle, so that the rust preventive effect on the solder surface after treatment is slightly insufficient. Particularly desirable are industrially produced in large quantities in large quantities, used in many fields, and easily available, such as 16 carbon atoms of palmitic acid and 18 carbon atoms of stearic acid, and any one or more of them are used. The effect of the present invention is also great when a solution having a liquid temperature of 180 to 300 ° C., comprising 1 to 80% by weight and the balance comprising an oil-based solvent that is stable in a high temperature region.
The purpose of using an organic fatty acid solution having a carboxyl group (—COOH) in the present invention is to remove the oxide film from the metal surface of the pad by a saponification reaction, and to activate the cleaning simultaneously. Fatty acid is chemisorbed and plays the role of an anti-oxidation protective film, and also prevents the oxidation of molten tin or molten solder solution, and coats the surface of the formed solder precoat film as an anti-oxidation chemical adsorption protective film. There is. In addition, there is an effect of washing away unnecessary dust, tin or solder fine particles incidentally attached to the surface of the workpiece. In particular, in the case of micro-fine circuits, when the work is immersed in molten tin or molten solder solution, the tin or solder is thickly attached excessively to form a bridge, but when this is immersed in a high-temperature organic fatty acid solution as it is, The surplus tin or solder is repelled to some extent by the activation force, and the bridge can also be eliminated to some extent.

前記溶液中の有機脂肪酸の濃度については1質量%以下でも効果はあるが、連続して大量に処理する場合は補充管理などが煩雑なこと、また80質量%以上あるいは100質量%単体液でも本発明の効果はあり使用可能であるが、発煙性と臭気の問題もきつくなるため、好ましくは5〜80質量%である。
前記有機脂肪酸溶液の液温は使用する溶融錫または溶融はんだ液の温度と同温度以上であることが望ましい。上限温度は発火性、発煙性、安全性を考慮すると、320℃程度であるが、臭気の問題及び省エネの観点から、使用する溶融はんだ液の液温から、+20℃以内の範囲内で使用することが望ましい。例えば、融点が217℃近辺の錫銀銅(Ag3.0質量%、Cu0.5質量%、残部Sn)3元系はんだ合金の場合であれば、使用する溶融はんだ液の液温は240〜260℃、該有機脂肪酸溶液の液温は240〜280℃が最適である。この場合のはんだ接合の効率は、有機脂肪酸溶液の液温を280℃〜320℃まで上げた場合と有意差はない。同様に、錫/ビスマス系はんだのような融点が139〜160℃付近の低融点はんだの場合、使用する溶融はんだ液温は一般に融点+20〜40℃の範囲、有機脂肪酸溶液の液温は溶融はんだ液温と同じかそれより+20℃の範囲内で使用すると良い。
この点でも、本発明方法は、現行の前記(A)〜(D)法のようにはんだプリコート被膜形成効率を上げるために、はんだ浴温度、フロー炉、またはリフロー炉の実質ピーク温度を280〜350℃に上げて製造しているケースに較べて、エネルギー使用量は約5〜20%程度低減可能である。
The concentration of the organic fatty acid in the solution is effective even if it is 1% by mass or less, but replenishment management and the like are complicated when processing a large amount continuously. Although the effect of the invention is present and can be used, it is preferably 5 to 80% by mass because the problem of smoke generation and odor is also severe.
The liquid temperature of the organic fatty acid solution is preferably equal to or higher than the temperature of the molten tin or molten solder liquid used. The upper limit temperature is about 320 ° C in consideration of ignitability, smoke generation, and safety. However, from the viewpoint of odor and energy saving, use within the range of + 20 ° C from the temperature of the molten solder solution used. It is desirable. For example, in the case of a tin-silver-copper (Ag 3.0 mass%, Cu 0.5 mass%, remaining Sn) ternary solder alloy having a melting point near 217 ° C., the temperature of the molten solder liquid used is 240 to 260. The liquid temperature of the organic fatty acid solution is optimally 240 to 280 ° C. The soldering efficiency in this case is not significantly different from the case where the liquid temperature of the organic fatty acid solution is increased to 280 ° C to 320 ° C. Similarly, in the case of a low melting point solder having a melting point of 139 to 160 ° C. such as tin / bismuth solder, the temperature of the molten solder used is generally in the range of melting point +20 to 40 ° C., and the temperature of the organic fatty acid solution is molten solder. It is better to use it at the same temperature as the liquid temperature or within the range of + 20 ° C.
In this respect as well, the method of the present invention increases the solder bath temperature, the flow furnace, or the substantial peak temperature of the reflow furnace to 280 to 280 in order to increase the solder precoat film formation efficiency as in the current methods (A) to (D). Compared to the case where the temperature is raised to 350 ° C., the amount of energy used can be reduced by about 5 to 20%.

また本発明に使用する有機脂肪酸の溶媒は、前記有機脂肪酸を溶かし、かつ前記高温領域で安定な溶媒であれば、鉱物油、植物油、合成油のいずれでもよいが、特に安定性、安全性、経済性、取扱い性の点でエステル合成油が最適である。高温で安定な溶媒を使用する目的と理由は、前記有機化合物の高温発煙性ならびに臭気の緩和抑制、更にははんだ接合処理後に過剰に付着した有機脂肪酸溶液を洗い落とす際の洗浄性がよいこと、また、若干ではあるが液粘性を下げ浸透性も改善される効果が大きいからである。その濃度は前記有機化合物濃度により決まる。  The organic fatty acid solvent used in the present invention may be any of mineral oil, vegetable oil, and synthetic oil as long as it dissolves the organic fatty acid and is stable in the high temperature range. Ester synthetic oil is most suitable in terms of economy and handling. The purpose and reason for using a solvent that is stable at high temperature is that the organic compound emits high-temperature smoke and suppresses odor, and that the organic fatty acid solution that has adhered excessively after soldering treatment has good cleanability. This is because the effect of lowering the liquid viscosity and improving the permeability is large. The concentration is determined by the concentration of the organic compound.

また本発明の第1ステップにおいて、パッドまたはリード以外の表面がソルダーレジスト膜で保護され、パッドまたはリード部のみが露出しているワーク1を高温の有機脂肪酸溶液と接触させる方法は、例えば、図3のように一定の高温度に維持されている有機脂肪酸溶液4が入っているステンレス製の槽10に単純に浸漬することでも良いし、あるいは図4、5、6、8のように下層に溶融錫液または溶融はんだ液5が配置され、その上層に高温の有機脂肪酸液4が入っている処理槽11または処理槽12に浸漬しても良い。後者の場合は前記ワーク1を上層の有機脂肪酸溶液4に浸漬後、下層の溶融はんだ液5に浸漬してパッドまたはリードに錫またははんだを皮膜し易いので好都合である。前者の場合は別に用意した溶融はんだ液槽に浸漬する。
あるいは、図13のように、移送用ポンプ6によりノズル3から有機脂肪酸溶液をワーク1のパッドまたはリード表面に吹付けるとともに、移送ポンプ18によりノズル38からも溶融錫液または溶融はんだ液を吹付け処理しても、前記浸漬処理と同様の効果が得られる。
処理時間は、いずれの処理の場合でも、有機脂肪酸溶液ならびに溶融錫液または溶融はんだ液とワークとの相対流速により異なるが、0.5〜10秒で充分であり、それ以上長時間処理しても清浄活性化効果、保護被膜形成効果、及びはんだ皮膜効果は変わらない。
Further, in the first step of the present invention, a method of contacting the workpiece 1 whose surface other than the pad or the lead is protected with a solder resist film and only the pad or the lead portion is exposed to a high-temperature organic fatty acid solution is illustrated in FIG. 3 may be simply immersed in a stainless steel tank 10 containing an organic fatty acid solution 4 maintained at a constant high temperature, or it may be in the lower layer as shown in FIGS. A molten tin solution or a molten solder solution 5 may be disposed and immersed in the processing tank 11 or the processing tank 12 in which the high-temperature organic fatty acid liquid 4 is contained in the upper layer. In the latter case, it is advantageous that the workpiece 1 is immersed in the upper layer organic fatty acid solution 4 and then immersed in the lower layer molten solder solution 5 to easily coat the pad or lead with tin or solder. In the former case, it is immersed in a separately prepared molten solder bath.
Alternatively, as shown in FIG. 13, the organic fatty acid solution is sprayed from the nozzle 3 to the pad or the lead surface of the work 1 by the transfer pump 6, and the molten tin solution or solder solution is also sprayed from the nozzle 38 by the transfer pump 18. Even if it processes, the effect similar to the said immersion process is acquired.
The treatment time varies depending on the relative flow velocity between the organic fatty acid solution and the molten tin solution or molten solder solution and the workpiece in any treatment, but 0.5 to 10 seconds is sufficient, and the treatment time is longer than that. However, the cleaning activation effect, the protective film forming effect, and the solder film effect are not changed.

勿論、高温の有機脂肪酸溶液に浸漬処理だけ、または高温の有機脂肪酸溶液を吹付け処理だけを行い、その後、時間を置いて別槽の溶融錫液または溶融はんだ液に浸漬処理することでも良い。
即ち、ワークを有機脂肪酸溶液に浸漬処理または吹付け処理後は、ワークのパッドまたはリードの金属表面には酸化防止と溶融錫または溶融はんだ液のぬれ性を改善する有機脂肪酸の保護被膜が形成されているので、気中に放置してから改めて溶融錫液または溶融はんだ液と接触させて、前記パッドまたはリード部に錫またははんだを付着させても問題はない。
但し、望ましくは例えば図4,5,6,8のように上層に有機脂肪酸溶液4、下層に溶融錫液または溶融はんだ液5を配置した処理槽11または12の上層で浸漬処理を行い、その後に下層の溶融錫液または溶融はんだ液5に浸漬して前記パッドまたはリードに錫またははんだ接合皮膜を形成させるとエネルギーロスも小さく効率的で良い。
Needless to say, the immersion treatment may be performed only on the high-temperature organic fatty acid solution or the spray treatment of the high-temperature organic fatty acid solution, and then the immersion treatment may be performed on the molten tin solution or the molten solder solution in another tank.
That is, after the workpiece is immersed or sprayed in an organic fatty acid solution, a protective coating of organic fatty acid is formed on the metal surface of the workpiece pad or lead to prevent oxidation and improve the wettability of molten tin or molten solder solution. Therefore, there is no problem even if tin or solder is adhered to the pad or the lead portion by leaving it in the air and bringing it into contact with the molten tin solution or the molten solder solution again.
However, the immersion treatment is preferably performed in the upper layer of the treatment tank 11 or 12 in which the organic fatty acid solution 4 is disposed in the upper layer and the molten tin solution or the molten solder solution 5 is disposed in the lower layer as shown in FIGS. Further, it is possible to reduce the energy loss and to improve efficiency by immersing in the lower layer of molten tin solution or molten solder solution 5 to form a tin or solder joint film on the pad or lead.

一方、本発明の第1ステップにおける錫またははんだ粒子の散布方法は、例えば、パッドまたはリード幅が0.08mm以下で、隣接回路ピッチが0.12mm以下の微小微細狭ピッチ高密度電子回路で構成されているワークの場合、上方から細かいメッシュの金網でできた篩、上部が広く下部に行くほど先端が細く狭まったロート状の容器、あるいは市販の粉末用散布装置や先端部に噴射散布ノズルを有する容器(図15)などに入れた固体の錫またははんだ粒子を上層の高温に加熱された有機脂肪酸溶液中に万遍なく分散沈降するように散布して、高温の前記有機脂肪酸溶液中を落下しながら溶融した前記粒子がパッドまたはリード表面に着地接着して錫またははんだ皮膜を形成させる(図10)。
噴射ノズルを使用する場合は、ノズルから溶融はんだ粒を高温の有機酸溶液中に噴射させて万遍なく分散散布することが有効であり、特に1〜30μmφの微細溶融はんだ粒子を噴射するには超音波を利用するとよい。また錫またははんだ粒子の散布は、前記上層中に水平または傾斜させて高温の有機脂肪酸溶液と接触した状態にあるワークの直上部から、全てのパッドまたはリード表面に錫またははんだ粒子が少なくとも1個以上沈着するように、万遍なく散布する必要がある。広く万遍なく散布するためには、噴射ノズルの角度を周期的かつ連続的に変えることも有効であり、あるいは噴射機自体を走査させると良い。
従って、散布する前記錫またははんだ粒子は、固体粒子であっても、溶融はんだ粒子であってもよい。
On the other hand, the method of spraying tin or solder particles in the first step of the present invention is composed of, for example, a minute fine narrow pitch high density electronic circuit having a pad or lead width of 0.08 mm or less and an adjacent circuit pitch of 0.12 mm or less. In the case of workpieces, a sieve made of fine mesh wire mesh from above, a funnel with a narrower tip and narrower as the upper part is wider and lower, or a commercially available powder spreader or spray spray nozzle at the tip A solid tin or solder particle placed in a container (FIG. 15) or the like is dispersed in the organic fatty acid solution heated to a high temperature so as to be uniformly dispersed and settled, and dropped in the high-temperature organic fatty acid solution. The particles melted while landing on the pad or lead surface form a tin or solder film (FIG. 10).
When using a spray nozzle, it is effective to spray the molten solder particles from the nozzle into a high-temperature organic acid solution and disperse and distribute it evenly. Particularly, to spray fine molten solder particles of 1 to 30 μmφ. Use ultrasound. In addition, tin or solder particles are dispersed in the upper layer horizontally or at an angle of at least one tin or solder particle from the top of the workpiece in contact with the high-temperature organic fatty acid solution on the surface of all the pads or leads. It is necessary to spray evenly so as to deposit. In order to spread widely and uniformly, it is effective to change the angle of the injection nozzle periodically and continuously, or it is preferable to scan the injector itself.
Therefore, the tin or solder particles to be dispersed may be solid particles or molten solder particles.

しかしながら、通常、30μmφ以下の錫またははんだ粒子を製造することは可能ではあるが、生産効率は必ずしも高くないため、価格が高い難点がある。
このため、発明者らは試行錯誤でいろいろな方法を検討した結果、図9のように溶融錫または溶融はんだを噴射するノズル26に保持用ブースター22と超音波ホーン23を介して直接超音波振動子20を取付けて、溶融錫また溶融はんだ注入管路24中の溶融錫または溶融はんだ25に直接超音波振動を与え、前記ノズル26から前記上層の高温の有機脂肪酸溶液中4に溶融錫または溶融はんだ25を噴射すると、特定の周波数の超音波発振により1〜20μmφ程度の溶融はんだ粒子17が安定して散布できることを突き止めた。
これを利用して本発明の方法を行えば、隣接パッドまたはリード間ピッチ40μm、パッドまたはリード幅20μmの微小パッドまたはリードですら、良好な錫またははんだプリコート皮膜を形成させることが出来ることを実際に検証した。
この場合の、溶融はんだ粒子の粒径は超音波周波数に依存し、周波数が高ければ高いほど得られる微粒子の粒径は小さくなる傾向があり、例えば、周波数35kHzの場合は90質量%以上は3〜10μmφの微粒子が得られる。また、周波数22kHzの場合は粒度分布が広くなり3〜25μmφの粒子が90質量%以上を占める。
However, although it is usually possible to produce tin or solder particles having a diameter of 30 μmφ or less, the production efficiency is not necessarily high, so that there is a problem that the price is high.
For this reason, the inventors have studied various methods through trial and error, and as a result, as shown in FIG. 9, the ultrasonic vibration is directly applied to the nozzle 26 for injecting molten tin or molten solder through the holding booster 22 and the ultrasonic horn 23. A child 20 is attached, and ultrasonic vibration is directly applied to the molten tin or molten solder 25 in the molten tin or molten solder injection line 24, and the molten tin or molten metal is injected from the nozzle 26 into the hot organic fatty acid solution 4 in the upper layer. It has been found that when solder 25 is sprayed, molten solder particles 17 of about 1 to 20 μmφ can be stably dispersed by ultrasonic oscillation of a specific frequency.
If the method of the present invention is performed by utilizing this, even a minute pad or lead having a pitch between adjacent pads or leads of 40 μm and a pad or lead width of 20 μm can actually form a good tin or solder precoat film. Verified.
In this case, the particle size of the molten solder particles depends on the ultrasonic frequency. The higher the frequency, the smaller the particle size of the fine particles obtained. For example, at a frequency of 35 kHz, 90 mass% or more is 3%. Fine particles of -10 μmφ are obtained. In the case of a frequency of 22 kHz, the particle size distribution becomes wide and particles of 3 to 25 μmφ account for 90% by mass or more.

超音波振動子付き溶融はんだ粒子発生装置16の具体的構造事例としては、図9に示したように、超音波出力ケーブル19が接続された超音波振動子20が冷却用フィンブースター21を介して接続された保持用ブースター22の先端に溶融はんだ注入用管路25とノズル26が導通している超音波ホーン23が取り付けられた構造の装置が挙げられる。  As a specific structural example of the molten solder particle generating device 16 with an ultrasonic vibrator, as shown in FIG. 9, an ultrasonic vibrator 20 to which an ultrasonic output cable 19 is connected is connected via a cooling fin booster 21. An apparatus having a structure in which an ultrasonic horn 23 in which a molten solder injection conduit 25 and a nozzle 26 are connected to each other is attached to the tip of the holding booster 22 connected thereto.

散布は図8、図10のように、上方から錫またははんだ微粒子17を下方に設置したワーク1の表面に向けて万遍なく散布することにより、高温の該有機脂肪酸液4中で溶融状態の錫またははんだ粒子17をはんだレジスト膜のない開口露出したパッドまたはリード表面28に落下到達せしめて沈着させ、それを「核」にして次々に後から前記パッドまたはリード表面に到達する溶融錫または溶融はんだ粒子が凝集融合して前記表面に接着させて、全てのパッドまたはリードにある程度の被膜厚まで錫またははんだ被膜29を形成させる。  As shown in FIG. 8 and FIG. 10, tin or solder fine particles 17 are uniformly distributed from above to the surface of the work 1 installed below, so that the molten organic fatty acid liquid 4 is in a molten state. The tin or solder particles 17 are dropped and deposited on the exposed pad or lead surface 28 without the solder resist film, and are used as “cores” to successively reach the pad or lead surface. Solder particles are agglomerated and adhered to the surface to form tin or solder coating 29 on all pads or leads to a certain film thickness.

一方、散布する錫またははんだ粒子の大きさは、原理的にはワークのパッドまたはリード径または最小幅以下の粒径のはんだ粒子を散布すればよいが、現実的にはパッドまたはリード径または最小幅の少なくとも1/2以下がよい。粒径はあまり小さすぎると沈降速度が遅いため、パッドまたはリード表面への到達時間が長くなり効率が悪く、逆に粒径があまり大き過ぎるとはんだレジスト保護膜で囲まれたパッドまたはリード内底部に沈着できないか、沈着確率が小さくなり、効率が悪いため、望ましくはパッドまたはリード径または最小幅の少なくとも1/3以下がよい。
特に、ワークのパッドまたはリード最小幅が0.08mm以下の狭小幅回路の場合は、数10μmφ以下の微小な錫またははんだ粒子でないと、はんだレジスト保護膜開口部から電極パッドまたはリード表面に到達することが出来ない。しかも、少なくとも1個以上の錫またははんだ粒子を開口部内に沈着させなければならないので、望ましくは、1〜30μmφの大きさの粒子が開口した窪み(底部がパッド表面)内に入込むように、錫またははんだ粒子を沢山万遍なく散布する必要がある。また、粒子の形状は球状でその表面が平滑なものがよい。
On the other hand, as for the size of tin or solder particles to be dispersed, in principle, solder particles having a particle diameter equal to or smaller than the pad or lead diameter or minimum width of the work may be dispersed. It should be at least 1/2 or less of the width. If the particle size is too small, the sedimentation rate will be slow, so the time to reach the pad or lead surface will be long and the efficiency will be poor. Conversely, if the particle size is too large, the inner bottom of the pad or lead surrounded by the solder resist protective film In this case, the pad or lead diameter or the minimum width is preferably at most 1/3 or less.
In particular, in the case of a narrow circuit having a minimum work pad or lead width of 0.08 mm or less, the electrode pad or lead surface can be reached from the opening of the solder resist protective film unless the tin or solder particles are several tens of μmφ or less. I can't. Moreover, since at least one or more tin or solder particles must be deposited in the opening, it is desirable that particles having a size of 1 to 30 μmφ enter the opening (the bottom is the pad surface). A lot of tin or solder particles need to be spread evenly. Further, the particles should have a spherical shape and a smooth surface.

また、散布は前記開口部がほぼはんだで満たされるまで続けても良いし、あるいは全てのパッドまたはリードに少なくとも1個以上の「核」が接着したら、散布を中止して、下層の溶融錫または溶融はんだ液にワークを浸漬して全ての前記パッドまたはリードに充分なはんだ被膜を形成させた後、本発明の第2ステップの高温有機脂肪酸溶液吹付け処理を行い余剰の錫またははんだを除去して、所望の厚さの錫またははんだプリコート被膜を得る。
散布を全ての該開口部が錫またははんだで満たされるまで継続すると、当然、局部的にブリッジを生ずるし、また全てのパッドまたはリードの該被膜厚がある程度の厚さ以上になった後、溶融錫液浴または溶融はんだ液浴にそのまま浸漬処理すると、通常、やはり局部的にブリッジを生ずるが、本発明の第2ステップの高温有機脂肪酸溶液吹付けレベラー処理を行ことにより、余剰の錫またははんだが吹き落とされて除去され、ブリッジは完全に解消され、かつ、5〜20μmの範囲内で±3μm以内の厚さばらつきの少ない均一な錫またははんだプリコート被膜が得られる。
The spraying may be continued until the opening is almost filled with solder, or when at least one “nucleus” adheres to all the pads or leads, the spraying is stopped and the underlying molten tin or After immersing the workpiece in the molten solder solution to form a sufficient solder film on all the pads or leads, the second step of the present invention performs the high temperature organic fatty acid solution spraying process to remove excess tin or solder. Thus, a tin or solder precoat film having a desired thickness is obtained.
If the spraying is continued until all the openings are filled with tin or solder, naturally, a local bridge will be formed, and after all the pads or leads have reached a certain thickness, they will melt. When immersed in a tin solution bath or a molten solder solution bath as it is, a bridge is usually generated locally. However, by performing the high-temperature organic fatty acid solution spraying leveler process of the second step of the present invention, excess tin or solder Are removed by blowing off, the bridge is completely eliminated, and a uniform tin or solder precoat film having a thickness variation within ± 3 μm within a range of 5 to 20 μm is obtained.

図8においては、直上部から超音波振動子付き溶融はんだ粒子発生装置16により、下方のワーク1に溶融錫または溶融はんだ粒子17を噴射している事例を示したが、超音波振動子付き溶融錫または溶融はんだ粒子発生装置16の向きは、連続的に2次元的に角度を自動的に変えながら、斜上方からワーク1のある下方に向けて、溶融錫または溶融はんだ粒子17を噴射することが有効である。いずれの場合でも、ワーク1の表面に出来るだけ広範囲にかつ極力均一に溶融錫または溶融はんだ粒子17を散布しなければならないため、専用の自動制御式3次元移動装置のアームに超音波振動子付き溶融はんだ粒子発生装置16を取付けて、ワーク1に万遍なく溶融はんだ粒子が広がるようにするとよい。  FIG. 8 shows an example in which molten tin or molten solder particles 17 are sprayed onto the lower workpiece 1 by the molten solder particle generator 16 with an ultrasonic vibrator from directly above. The direction of the tin or molten solder particle generator 16 is to inject the molten tin or molten solder particles 17 from obliquely upward to the lower side of the work 1 while automatically changing the angle two-dimensionally continuously. Is effective. In any case, since the molten tin or molten solder particles 17 must be dispersed as uniformly as possible on the surface of the work 1 as much as possible, an ultrasonic vibrator is provided on the arm of a dedicated automatic control type three-dimensional movement device. It is preferable that the molten solder particle generator 16 is attached so that the molten solder particles spread evenly over the workpiece 1.

ワーク1は枠状の専用ホルダー14に固定して自動制御式3次元移動装置のロボットアーム13に取付けて、高温の有機脂肪酸溶液4の中に静置する。静置位置は水平でも良く、開口部のパッドまたはリード表面に該微粒子17が侵入し易くするためには、ワークを振動させると良い。また、ワークを水平に対し角度0〜30度程度の範囲で傾斜させて静置して、開口部以外(はんだレジスト膜表面)に着地した微粒子が傾斜により転がり落ちながら開口部に入込む確率(振込率)を高めることも有効である。
ワーク1と超音波振動子付き溶融錫または溶融はんだ粒子発生装置16の距離は、噴射するノズルの位置と形状あるいは溶融錫または溶融はんだ噴出量(溶融はんだの給液量)にも因るが、真上から真下に向けて溶融はんだを噴射する場合は、噴射される溶融はんだ粒子の拡がり角度が45〜90度の場合は、10〜30mm程度が、該微粒子のパッドまたはリード表面への到達時間が短くてすむので望ましいことが判った。
The work 1 is fixed to a frame-shaped dedicated holder 14 and attached to the robot arm 13 of the automatic control type three-dimensional movement apparatus, and is left in the high-temperature organic fatty acid solution 4. The stationary position may be horizontal, and in order to facilitate entry of the fine particles 17 into the pad or lead surface of the opening, it is preferable to vibrate the workpiece. Also, the probability that the work is allowed to stand at an angle of about 0 to 30 degrees with respect to the horizontal, and the fine particles that have landed on the surface other than the opening (the surface of the solder resist film) fall into the opening while being rolled down due to the inclination ( Increasing the transfer rate is also effective.
The distance between the workpiece 1 and the molten tin or molten solder particle generator 16 with an ultrasonic vibrator depends on the position and shape of the nozzle to be sprayed or the amount of molten tin or molten solder ejected (the amount of molten solder supplied). When spraying molten solder from directly above to below, when the spread angle of the molten solder particles to be sprayed is 45 to 90 degrees, about 10 to 30 mm is the time required for the fine particles to reach the pad or lead surface. Has been found to be desirable because it is short.

電子回路基板または電子部品連結体の形状が平板状または短冊状の場合は、例えば図7、8のように、ワーク1のパイロットホールを自動制御式三次元移動装置のロボットアーム13の先端に取付けられている金属製の枠状専用ホルダー(ワーク固定治具)14のパイロットピン15を利用して固定して取付け、自動制御式三次元移動装置でロボットアーム13を操作して、図8のように貯槽12に蓄えられた高温の有機脂肪酸溶液4の中にワーク1を浸漬して静置する。このとき、露出している該ワークのパッドまたはリード表面は有機脂肪酸の化学作用により反応して表面の酸化層が除去清浄化されるとともに、清浄化された金属表面に有機脂肪酸の保護被膜が形成されるので、その後、上記微粒子散布・接着処理を行うことでパッドまたはリード表面に溶融錫または溶融はんだ被膜が形成される。その後、再び自動制御式三次元移動装置でロボットアーム13を操作して、3次元的に搬送し、本発明方法の第2ステップの処理を行う。  When the shape of the electronic circuit board or the electronic component coupling body is a flat plate or a strip, the pilot hole of the work 1 is attached to the tip of the robot arm 13 of the automatic control type three-dimensional movement device as shown in FIGS. 8 is fixed and attached using a pilot pin 15 of a metal frame-shaped dedicated holder (work fixing jig) 14, and the robot arm 13 is operated by an automatic control type three-dimensional movement device, as shown in FIG. The workpiece 1 is immersed in the high-temperature organic fatty acid solution 4 stored in the storage tank 12 and allowed to stand. At this time, the exposed pad or lead surface of the workpiece reacts by the chemical action of organic fatty acid to remove and clean the oxidized layer on the surface, and a protective coating of organic fatty acid is formed on the cleaned metal surface Therefore, a molten tin or molten solder film is formed on the surface of the pad or lead by performing the above-described fine particle spraying / adhesion treatment. Thereafter, the robot arm 13 is again operated by the automatic control type three-dimensional movement device to carry it three-dimensionally, and the process of the second step of the method of the present invention is performed.

一方、電子回路基板または電子部品連結体が長尺の条帯であれば、連続送りまたは間欠送りして搬送しながら、本発明方法の処理を行うことが出来る。  On the other hand, if the electronic circuit board or the electronic component connector is a long strip, the method of the present invention can be performed while being conveyed by continuous feeding or intermittent feeding.

本発明で使用する錫またははんだ種類としては、電子部品に広く使用されている通常のはんだ、即ち、純錫、錫鉛系合金、錫銀銅系合金、錫亜鉛系合金、錫ビスマス系合金、更にはこれらの母合金にニッケル、ゲルマニウム、インジウム、アンチモン、リンなど添加したはんだでも何ら問題はない。
しかしながら、長期高温暴露された場合に生じやすいカーケンダルボイド(マイクロボイド)を抑制するために、発明者らこれまで試行錯誤しながら種々研究した結果、例えば、酸素濃度が10ppm以下のはんだを使用し、有機脂肪酸溶液を上層に配した該溶融はんだ液に浸漬してはんだ接合させると、非常に効果があることを検証した。(特許文献7)
近年、分析機器の進歩により10ppm以下の元素分析も可能になったので、10ppm以下の酸素濃度を定量分析し、酸素濃度と長期高温暴露後のカーケンダルボイド発生の関係を調べた結果、酸素濃度が2ppm以下になるとカーケンダルボイドの発生を皆無にでき、更に一段と効果的であることを突き止めた。従って、本発明においてもこれを適用してはんだ接合すると、120℃以上の高温で長期加熱後の耐衝撃破断性に優れた品質信頼性の高い電子部品、半導体装置、及び電子装置が得られる。
As the kind of tin or solder used in the present invention, ordinary solder widely used in electronic parts, that is, pure tin, tin-lead alloy, tin-silver-copper alloy, tin-zinc alloy, tin-bismuth alloy, Furthermore, there is no problem even with a solder in which nickel, germanium, indium, antimony, phosphorus or the like is added to these mother alloys.
However, in order to suppress Kirkendall voids (microvoids) that are likely to occur when exposed to high temperatures for a long period of time, the inventors have conducted various trials and errors so far. As a result, for example, solder having an oxygen concentration of 10 ppm or less was used. It has been verified that when an organic fatty acid solution is immersed in the molten solder solution disposed in the upper layer and soldered, it is very effective. (Patent Document 7)
In recent years, elemental analysis of 10 ppm or less has become possible due to the advancement of analytical instruments. As a result of quantitative analysis of oxygen concentration of 10 ppm or less and investigation of the relationship between oxygen concentration and generation of Kirkendall void after long-term high temperature exposure, oxygen concentration It was found out that the generation of Kirkendall void could be eliminated when the content was 2 ppm or less, and that it was more effective. Therefore, in the present invention, when this is applied and soldered, an electronic component, a semiconductor device, and an electronic device with high quality and reliability that are excellent in impact fracture resistance after long-term heating at a high temperature of 120 ° C. or higher can be obtained.

第1ステップで錫またははんだ粒子を散布してパッドまたはリードに1個以上沈着させて「核」とする理由を説明すると、
通常、パッドまたはリード幅0.02〜0.08mm、隣接ピッチ0.12mm以下の微小微細電子回路基板または電子部品連結体においては、はんだレジスト膜とパッドまたはリードの高さの差(段差)が10〜50μmもあり、従来法である前記(A)法(溶融はんだ浴浸漬処理法)では該溶融錫液または溶融はんだ液の表面張力によるぬれ角の問題、あるいは窪みになっているパッドまたはリード上部に滞留する気泡の問題などで、パッドまたはリードに溶融錫または溶融はんだが極めて付着し難く、また、従来法の(B)法(ソルダーペースト塗布・融着方式)でもスクリーン印刷でソルダーペーストを前記微小幅のパッドまたはリード全てに完全に(100%)充填することはかなり至難である。
このことは、本発明でも第1ステップにおける高温の有機脂肪酸溶液とワークを接触させて、ワークのパッドまたはリード表面の酸化層除去・清浄化と保護被膜形成させた後、直接、溶融錫液または溶融はんだ液中に単に浸漬するだけでは、前記(A)法、(B)法の場合と同様、該溶融錫液または溶融はんだ液の表面張力によるぬれ角の問題、あるいは窪みになっているパッドまたはリード上部に滞留する気泡の問題などで、全てのパッドまたはリードに錫またははんだを100%付着被覆させること至難である。
このため、前記微小微細電子回路においては、溶融錫液または溶融はんだ液を呼び込む「核」が必要であり、そのための錫またははんだ粒子の沈着「核」形成が重要である。
Explaining the reason why one or more tin or solder particles are dispersed in the first step to deposit one or more pads or leads to form “nuclei”.
In general, in a minute electronic circuit board or electronic component assembly having a pad or lead width of 0.02 to 0.08 mm and an adjacent pitch of 0.12 mm or less, there is a difference in height (step) between the solder resist film and the pad or lead. 10 to 50 μm, and in the conventional method (A) (molten solder bath dipping method), there is a problem of a wetting angle due to the surface tension of the molten tin solution or molten solder solution, or a pad or lead having a depression. Due to the problem of air bubbles staying at the top, molten tin or molten solder is extremely difficult to adhere to the pad or lead. Also, solder paste can be applied by screen printing in the conventional method (B) (solder paste application / fusion method). It is quite difficult to completely (100%) fill all the fine pads or leads.
This also means that in the present invention, the hot organic fatty acid solution in the first step is brought into contact with the workpiece to remove and clean the oxide layer on the pad or lead surface of the workpiece and to form a protective film, and then directly into the molten tin solution or Just by immersing in the molten solder solution, as in the case of the methods (A) and (B), the problem of the wetting angle due to the surface tension of the molten tin solution or the molten solder solution, or the pad that is indented Alternatively, due to the problem of air bubbles remaining on the top of the lead, it is difficult to deposit 100% of tin or solder on all the pads or leads.
For this reason, in the minute and fine electronic circuit, a “nucleus” that draws in a molten tin solution or a molten solder solution is necessary, and the formation of a deposited “nucleus” of tin or solder particles is important.

但し、パッドまたはリード幅が80μm以上の回路であれば、前記第1ステップで錫またははんだ粒子の散布は必ずしも行う必要はなく、省略して直接次の下層の溶融錫または溶融はんだ液層に浸漬することだけでも、ワークのパッドまたはリードに錫またははんだ皮膜形成ができる。  However, if the circuit has a pad or lead width of 80 μm or more, it is not always necessary to disperse tin or solder particles in the first step, and it is omitted and immersed directly in the next molten tin or molten solder liquid layer. By simply doing, tin or solder film can be formed on the pad or lead of the workpiece.

散布する錫またははんだ粒子の材質は、通常実用されている錫またははんだ合金なら何でも良い。
但し、錫またははんだ接合部の耐熱耐衝撃性を重視する場合、例えば、半導体装置または電子装置が長期に亘り120℃以上の高温に暴露されることにより接合界面に経時的に発生するカーケンダルボイド(マイクロボイド)を抑止したい場合は、少なくとも酸素濃度が5ppm以下の錫またははんだ合金を用いることが望ましい。
このことは、その後に浸漬処理を行う前記下層の溶融錫液また溶融はんだ液にも言えることで、酸素濃度が5ppm以下の錫またははんだ合金を用いてプリコート被膜を形成させた電子部品ではんだ接合した半導体装置または電子装置はそれを組み込んだ電子機器が通電により発熱して譬え120℃以上の温度に長期間暴露されても接合部には殆どカーケンダルボイド(マイクロボイド)の経時的発生増加は見られず、耐衝撃破断性に優れ、品質信頼性が高いものが得られる。
The material of the tin or solder particles to be dispersed may be any tin or solder alloy that is normally used.
However, when importance is attached to the thermal shock resistance of the tin or solder joint, for example, the Kirkendall void that occurs over time at the joint interface when a semiconductor device or an electronic device is exposed to a high temperature of 120 ° C. or higher for a long period of time. In order to suppress (microvoids), it is desirable to use tin or a solder alloy having an oxygen concentration of 5 ppm or less.
This can also be said for the molten tin solution or the molten solder solution in the lower layer, which is subsequently subjected to an immersion treatment. Solder bonding is performed with an electronic component in which a precoat film is formed using tin or a solder alloy having an oxygen concentration of 5 ppm or less. However, even if the semiconductor device or electronic device in which the electronic device is embedded generates heat when energized and is exposed to a temperature of 120 ° C. or higher for a long period of time, almost no increase in the occurrence of Kirkendall voids (microvoids) with time It is not seen, and it has excellent impact rupture resistance and high quality reliability.

次に、第2ステップについて、詳細に説明すると、例えば図2のように、ノズル3から高温の有機脂肪酸溶液をワーク1に吹付けて、前記パッドまたは前記リードに余剰に付着している錫またははんだを吹き落として、前記パッドまたは前記リードに所望の均一な膜厚の錫またははんだプリコート皮膜を形成させる。
あるいは、図5のように、タンク12の上層の側壁に設けた配管から移送用(給液)ポンプ6を介して高温の有機脂肪酸溶液4をノズル7に給液して、ノズル7からワーク1のパッドまたはリードに前記有機脂肪酸溶液4を吹付けて、前記パッドまたは前記リードに余剰に付着している錫またははんだを吹き落として、前記パッドまたは前記リードに所望の均一な膜厚の錫またははんだプリコート被膜を形成させる。尚、図5では前記有機脂肪酸溶液4の吹付けは液外上部の気中で行う事例として示したが、上層の有機脂肪酸溶液中にノズル7を設置して吹付け処理を行っても同様の効果が得られる。
Next, the second step will be described in detail. For example, as shown in FIG. 2, a high-temperature organic fatty acid solution is sprayed from the nozzle 3 onto the work 1, and the tin or excessively attached to the pad or the lead Solder is blown off to form tin or a solder precoat film having a desired uniform film thickness on the pad or the lead.
Alternatively, as shown in FIG. 5, a high-temperature organic fatty acid solution 4 is supplied to a nozzle 7 through a transfer (feeding) pump 6 from a pipe provided on the upper side wall of the tank 12, and the workpiece 1 is supplied from the nozzle 7. The organic fatty acid solution 4 is sprayed onto the pad or lead, and the tin or solder excessively attached to the pad or the lead is blown off. A solder precoat film is formed. In FIG. 5, the spraying of the organic fatty acid solution 4 is shown as an example in the air in the upper part of the liquid, but the same thing can be said even if the nozzle 7 is installed in the upper organic fatty acid solution and spraying is performed. An effect is obtained.

ノズル7から吹付ける流速と吹付け処理時間は、所望する錫またははんだプリコート被膜の厚さによりノズルの形状と吹掛け角度などの条件により異なるが、例えば、所望のプリコート被膜厚さが5±2μm、ノズルの先端形状がスリット状開口幅0.5〜3mmX開口長さ50〜500mmで、吹掛け角度がワークである該電子回路基板または電子部品連結体1に対して45〜90度の場合、流速は0.5〜4m/秒、吹付け処理時間は0.5〜10秒で充分である。
吹付ける高温の前記有機脂肪酸溶液4の流速が速い程、得られるプリコート皮膜の膜厚は薄くなる。尚、ノズル形状は一般に市販されている散水用のノズルでも良く、その場合は噴射する有機脂肪酸溶液がワークの横幅に対して万遍なく一様に当たるように複数個のノズルを配置するか、1個以上のノズルを2次元的あるいは3次元的に走査させても良い。
The flow rate and spraying time sprayed from the nozzle 7 vary depending on the nozzle shape and spray angle depending on the desired tin or solder precoat film thickness. For example, the desired precoat film thickness is 5 ± 2 μm. In the case where the tip shape of the nozzle is a slit-shaped opening width of 0.5 to 3 mm, and the opening length is 50 to 500 mm, and the spray angle is 45 to 90 degrees with respect to the electronic circuit board or electronic component assembly 1 that is a workpiece, A flow rate of 0.5 to 4 m / second and a spraying treatment time of 0.5 to 10 seconds are sufficient.
The faster the flow rate of the high temperature organic fatty acid solution 4 to be sprayed, the thinner the precoat film obtained. In addition, the nozzle shape may be a commercially available nozzle for watering. In that case, a plurality of nozzles may be arranged so that the organic fatty acid solution to be sprayed uniformly against the width of the workpiece. Two or more nozzles may be scanned two-dimensionally or three-dimensionally.

あるいは、図6のように、上層に高温の有機脂肪酸溶液4を、下層に溶融錫液または溶融はんだ液5を配置した処理槽12の上層部の液中に設置したリバースロール8(前記ワーク1の引上げ方向と逆向きに回転)により、前記有機脂肪酸溶液4を前記ワーク1のパッドまたはリード部に吹付けることでも、ノズル吹付けの場合と同じ効果が得られる。
この場合の吹付ける流速は、リバースロール8の直径と回転速度を所望の錫またははんだプリコートの膜厚により適宜調整する必要があるが、例えば、所望の該プリコート膜厚が5〜20μmの場合、リバースロール径は60〜200mmφ、回転速度は600〜3000rpmの範囲が良く、前記ロール径が大きい程、また回転速度が速い程、得られる該プリコート被膜の膜厚は薄くなる。
尚、このリバースロール8の回転によりかき落とされる余剰の錫またははんだは微粒子となって該有機脂肪酸溶液中に散乱して該パッド部に再付着する危険性があるので、それを防止するためにリバースロール8にバッフル9を設置すると良い。また、ワーク1とリバースロール8の間隙は0,1〜5mm程度でよい。
Alternatively, as shown in FIG. 6, a reverse roll 8 (work 1 described above) installed in a liquid in an upper layer of a treatment tank 12 in which a high-temperature organic fatty acid solution 4 is disposed in an upper layer and a molten tin solution or a molten solder solution 5 is disposed in a lower layer. When the organic fatty acid solution 4 is sprayed onto the pad or the lead portion of the workpiece 1 by rotating in the direction opposite to the pulling direction of the nozzle, the same effect as in the case of nozzle spraying can be obtained.
In this case, the spraying flow rate needs to be adjusted as appropriate depending on the film thickness of the desired tin or solder precoat, and for example, when the desired precoat film thickness is 5 to 20 μm, The reverse roll diameter is preferably in the range of 60 to 200 mmφ and the rotation speed is in the range of 600 to 3000 rpm. The larger the roll diameter and the higher the rotation speed, the thinner the precoat film obtained.
In order to prevent the excess tin or solder scraped off by the rotation of the reverse roll 8 from being scattered in the organic fatty acid solution and reattaching to the pad portion. A baffle 9 may be installed on the reverse roll 8. Further, the gap between the workpiece 1 and the reverse roll 8 may be about 0, 1 to 5 mm.

但し、上記説明では、上層に加熱された高温の有機脂肪酸溶液を、下層に溶融錫液または溶融はんだ液を配置した処理槽を用いる方式で説明したが、勿論、有機脂肪酸溶液と溶融錫液または溶融はんだ液を別々の処理槽にして、工程を明確に区分して別槽処理しても特に問題はない。ただ、上下2層液にして1つの処理槽で処理した方が、簡潔明快で効率的である。特に、パッドまたはリード幅が0.15mm以上で隣接ピッチが0.02mm以上の電子回路基板または電子部品連結体の場合は上下2層液配置が効率的で良い。何故なら、パッドまたはリードに被覆される錫またははんだ膜厚として50μm以上でも可とする仕様であれば、従来法の(A)溶融はんだ浴浸漬方式ではブリッジしやすい回路パターンでも、有機脂肪酸溶液中を通過する際、有機脂肪酸の作用でブリッジは解消され、本発明の第2ステップの有機脂肪酸溶液吹付けレベラー処理の必要はなく、勿論、従来法のホットエアーレベラー処理またはホットリキッドレベラー処理の必要もない。
しかしながら、パッドまたはリードに被覆される錫またははんだ膜厚として5〜20μmを所望するプリコート皮膜の場合は、従来法のホットエアーレベラー処理またはホットリキッドレベラー処理をするか、本発明の第2ステップの処理をする必要があるが、特に、従来法のホッとレベラー処理またはホットリキッドレベラー処理では得られるプリコート皮膜の厚さのばらつきが非常に大きいのに対して、本発明方法では厚さのばらつきは遥かに小さく、均一なプリコート皮膜が得られ、有機脂肪酸溶液吹付けレベラー処理の効果が極めて大きいことが検証された。
However, in the above description, the high-temperature organic fatty acid solution heated in the upper layer has been described in a method using a treatment tank in which a molten tin solution or a molten solder solution is disposed in the lower layer, but of course, the organic fatty acid solution and the molten tin solution or There is no particular problem even if the molten solder liquid is made into separate processing tanks and the process is clearly divided and the separate tanks are processed. However, it is more concise, clear and efficient if the upper and lower two-layer liquid is processed in one processing tank. In particular, in the case of an electronic circuit board or electronic component assembly having a pad or lead width of 0.15 mm or more and an adjacent pitch of 0.02 mm or more, the upper and lower two-layer liquid arrangement may be efficient. The reason is that if the tin or solder film coated on the pad or the lead has a thickness of 50 μm or more, even in a circuit pattern that is easily bridged by the conventional (A) molten solder bath immersion method, The bridge is eliminated by the action of the organic fatty acid during the passage, and the organic fatty acid solution spraying leveler treatment in the second step of the present invention is not necessary. Of course, the conventional hot air leveler treatment or the hot liquid leveler treatment is necessary. Nor.
However, in the case of a precoat film that requires a tin or solder film thickness of 5 to 20 μm to be coated on the pad or lead, the conventional hot air leveler treatment or hot liquid leveler treatment is performed, or the second step of the present invention is performed. In particular, the thickness variation of the precoat film obtained by the conventional hot and leveler processing or the hot liquid leveler processing is very large, whereas the thickness variation of the method of the present invention is not large. It was verified that a much smaller and uniform precoat film was obtained, and the effect of leveling treatment with an organic fatty acid solution was extremely large.

また、更に、ホットエアーレベリング方法及びホットリキッドレベリング方法ではんだプリコート被膜を形成したものは、近年鉛フリーはんだ合金として広く普及している錫銅系はんだ合金、錫銀系はんだ合金、錫銀銅系はんだ合金などにおいては、凝固時に1〜10数μm程度の針状または粒状の錫銅または錫銀の金属間結晶(IMC)が偏析してはんだ接合界面近傍のはんだ層内部に散在するため、特にはんだプリコート厚さが10μm以下のレベリング後のはんだプリコート被膜の表面はデコボコになり、はんだ厚さのばらつきが大きい難点もある。  In addition, a solder precoat film formed by a hot air leveling method and a hot liquid leveling method is a tin-copper solder alloy, a tin-silver solder alloy, a tin-silver-copper system that has been widely used as a lead-free solder alloy in recent years. In solder alloys and the like, needle-like or granular tin-copper or tin-silver intermetallic crystals (IMC) of about 1 to several tens of μm are segregated and scattered in the solder layer near the solder joint interface during solidification. The surface of the solder precoat film after leveling with a solder precoat thickness of 10 μm or less becomes uneven, and there is a drawback that the variation in the solder thickness is large.

それを回避して、はんだプリコート厚さが10μm以下でもほぼ完全に平滑な光沢表面に仕上がるようにするために、発明者らは試行錯誤的にいろいろ研究した結果、錫または共晶はんだであれば良いことを突き止めた。例えば、純錫に微量のニッケル0.005〜0.1質量%を含有し、微量のゲルマニウム0.001〜0.05質量%またはリン0.003〜0.01質量%のいずれか1種以上を含有し、残部錫からなるはんだ合金を用いて、本発明方法ではんだプリコート皮膜形成すれば、平滑良好なプリコート皮膜が得られることが判った。
このほか、共晶はんだ、例えば、錫鉛合金(錫63質量%、鉛37質量%)、あるいは錫ビスマス合金(錫42質量%、ビスマス58質量%)、錫アンチモン合金などに、微量のニッケル0.005〜0.1質量%と、微量のゲルマニウム0.001〜0.05質量%またはリン0.003〜0.01質量%のいずれか1種以上とを添加したはんだを使用すれば、はんだプリコート皮膜厚さが20μm以下でもほぼ完全に平滑な光沢表面に仕上がる。
尚、低温はんだである錫ビスマス共晶合金に前記適正量の範囲内でニッケルと、ゲルマニウムまたはリンのいずれか1種以上を添加してプリコート皮膜を形成させた電子部品同志(例えば、半導体装置をプリント基板に実装する場合など)を通常の鉛フリーはんだ(例えば、錫銀銅系はんだ、錫銅系はんだ、錫銀系はんだなど)を介して、前記各電子部品のプリコート皮膜をはんだ接合した場合、錫ビスマスはんだプリコート皮膜は140〜180℃程度の低温で溶融するので、前記通常の鉛フリーはんだとの接合温度も若干低く目にして、かつ接合時間が従来法より短くて済むため、電子部品の熱的ダメージが小さいメリットがある。
In order to avoid that, and to achieve a nearly completely smooth glossy surface even when the solder precoat thickness is 10 μm or less, the inventors have conducted various trial and error studies. I found a good thing. For example, pure tin contains a trace amount of nickel of 0.005 to 0.1 mass%, and a trace amount of germanium of 0.001 to 0.05 mass% or phosphorus of 0.003 to 0.01 mass% When a solder precoat film is formed by the method of the present invention using a solder alloy containing tin and the balance tin, it has been found that a precoat film with good smoothness can be obtained.
Besides, eutectic solder such as tin-lead alloy (tin 63 mass%, lead 37 mass%), tin bismuth alloy (tin 42 mass%, bismuth 58 mass%), tin antimony alloy, etc. 0.005 to 0.1% by mass and a solder added with any one or more of 0.001 to 0.05% by mass of germanium or 0.003 to 0.01% by mass of phosphorus, Even when the thickness of the precoat film is 20 μm or less, the glossy surface is almost completely smooth.
In addition, electronic components composing a pre-coating film by adding nickel and one or more of germanium and phosphorus within a proper amount range to a tin bismuth eutectic alloy which is a low temperature solder (for example, a semiconductor device) When the precoat film of each electronic component is soldered via ordinary lead-free solder (for example, tin-silver-copper solder, tin-copper solder, tin-silver solder, etc.) Since the tin bismuth solder precoat film melts at a low temperature of about 140 to 180 ° C., the bonding temperature with the normal lead-free solder is slightly lower and the bonding time is shorter than that of the conventional method. There is a merit of less thermal damage.

錫に微量のニッケルを添加する理由は、電子回路のパッドまたはリード表面に錫またははんだ被覆する際に、所謂「銅食われ」(パッドまたはリード表面の銅がはんだに溶け込む現象)を抑制することと、長期に亘り120℃以上に累積的に高温暴露された場合にはんだ接合界面近傍に生ずるカーケンダルボイド(マイクロボイド)を抑止し、組み込まれた半導体装置または電子装置の耐衝撃性、耐熱疲労性などの品質信頼性向上化効果を挙げるためである。添加量としては0.001質量%以下では前記効果が小さく、1質量%以上では溶融時の粘性が高くなり、ブリッジを生じ易いために好ましくない、
望ましいニッケルの添加量は0.005〜0.1質量%である。
前記効果をもたらすものは、ニッケルの他、コバルト、鉄などが挙げられる。
The reason for adding a small amount of nickel to tin is to suppress so-called "copper erosion" (a phenomenon in which copper on the pad or lead surface melts into the solder) when tin or solder is coated on the pad or lead surface of the electronic circuit. In addition, it suppresses the Kirkendall void (micro void) generated near the solder joint interface when it is exposed to a high temperature cumulatively over 120 ° C over a long period of time, and the impact resistance and thermal fatigue of the embedded semiconductor device or electronic device. This is to improve the quality reliability of the product. As the addition amount is 0.001% by mass or less, the above effect is small, and when it is 1% by mass or more, the viscosity at the time of melting is high, and it is easy to generate a bridge.
A desirable addition amount of nickel is 0.005 to 0.1% by mass.
What brings about the said effect is cobalt, iron, etc. other than nickel.

また同様に、ゲルマニウムまたはリンを添加する理由は、はんだプリコート被膜表面の経時的酸化防止とはんだぬれ性の劣化防止が主目的である。これを添加しない場合には、はんだプリコート品を大気中に放置すると、経時的に酸化変色してはんだぬれ性が悪くなる。
その添加量は少ないと効果が小さく、多過ぎると物理的機械的特性が脆弱になり、割れやすいので好ましくない。従って、望ましい添加量はゲルマニウム0.001〜0.05質量%またはリン0.003〜0.01質量%である。
Similarly, the reason for adding germanium or phosphorus is mainly to prevent the oxidation of the solder precoat film surface over time and the deterioration of solder wettability. In the case where this is not added, if the solder pre-coated product is left in the air, it will undergo oxidative discoloration over time and solder wettability will deteriorate.
If the added amount is small, the effect is small, and if it is too large, the physical mechanical properties become brittle and it is easy to break. Therefore, desirable addition amount is 0.001-0.05 mass% of germanium or 0.003-0.01 mass% of phosphorus.

上述の通り、本発明の方法によれば、従来方法では「ブリッジ」が出来て良好な回路形成が不可能なパッドまたはリード幅が0.08mm以下で、隣接ピッチが0.12mm以下の微細狭ピッチ高密度電子回路用の5〜20μmの任意の厚さ範囲で比較的自由に制御することが可能であり、しかも厚さのばらつきを±2μm以内に制御することすら可能な錫またははんだプリコート被膜を工業的に安定量産できる効果がある。
しかも、本発明方法により製造したはんだプリコート皮膜を有する電子部品と電子回路基板を使用してはんだ接合して搭載実装した高密度電子装置は、従来法の欠点であるフラックスの沸騰飛散による接合界面及びはんだ層内微小気泡・空隙発生がなく、かつ、有機脂肪酸溶液中ではんだ接合するので、その際、接合界面およびはんだ層内部への酸化物の巻き込みが全くないので、長期高温暴露後のカーケンダルボイド(マイクロボイド)の発生を殆ど皆無に出来る効果がある。特に、酸素濃度2ppm以下のはんだを使用すれば、長期高温暴露後のカーケンダルボイドの発生を皆無に出来る。従って、本発明方法によるはんだ接合部品は長期高温暴露後の耐衝撃破断性が格段に優れている。
更に、従来法では不可能なパッドまたはリード幅0.02〜0.08mm、隣接ピッチ0.04〜0.12mmの微小・狭ピッチ電子回路のはんだプリコート皮膜形成が可能である。
この場合の処理方法は、ワークと溶融錫または溶融はんだ微粒子を有機脂肪酸溶液中で接合処理するため、その際大気を巻込むこともなく、常に錫またははんだ皮膜表面がぬれ性の良い状態に保持されているので、はんだ酸化物の巻き込みもなく、出来上がった錫またははんだ皮膜表面には有機脂肪酸保護膜が自動的にコーティングされていること、その後の第2ステップ処理でも有機脂肪酸溶液を吹付けてレベラー処理を行うため、出来上がった錫またははんだプリコート皮膜の表面も有機脂肪酸保護膜が自動的にコーティングされているので、後工程の電子装置組立時のはんだぬれ性が従来法で製造された物より安定して優れている。
As described above, according to the method of the present invention, a pad or lead width that is “bridged” and cannot be satisfactorily formed by the conventional method is 0.08 mm or less and the adjacent pitch is 0.12 mm or less. Tin or solder precoat film that can be controlled relatively freely in an arbitrary thickness range of 5 to 20 μm for pitch high-density electronic circuits and can even control thickness variations within ± 2 μm Can be produced industrially in stable mass production.
In addition, a high-density electronic device mounted and mounted by soldering using an electronic component and an electronic circuit board having a solder precoat film manufactured by the method of the present invention has a bonding interface caused by boiling and scattering of flux, which is a drawback of the conventional method. There is no generation of microbubbles or voids in the solder layer, and solder bonding is performed in an organic fatty acid solution, so there is no oxide entanglement at the bonding interface and inside the solder layer. There is an effect that the generation of voids (microvoids) can be almost eliminated. In particular, if a solder having an oxygen concentration of 2 ppm or less is used, generation of Kirkendall voids after long-term high temperature exposure can be eliminated. Therefore, the solder-bonded component according to the method of the present invention is remarkably excellent in impact fracture resistance after long-term high-temperature exposure.
Furthermore, it is possible to form a solder precoat film for a minute / narrow pitch electronic circuit having a pad or lead width of 0.02 to 0.08 mm and an adjacent pitch of 0.04 to 0.12 mm, which is impossible with the conventional method.
In this case, since the workpiece and molten tin or molten solder fine particles are bonded in an organic fatty acid solution, the tin or solder film surface is always kept in a good wettability state without involving air. Therefore, there is no entrainment of solder oxide, and the surface of the finished tin or solder film is automatically coated with an organic fatty acid protective film, and the organic fatty acid solution is sprayed in the subsequent second step treatment. Since the surface of the finished tin or solder precoat film is automatically coated with an organic fatty acid protective film for leveler processing, the solder wettability when assembling the electronic device in the subsequent process is better than that manufactured by the conventional method. Stable and excellent.

また、本発明方法では有機脂肪酸溶液中で錫またははんだ皮膜を形成させるメリットの1つに、隣接回路間のブリッジを生じにくいことが挙げられる。これは有機脂肪酸溶液が隣接パッドまたはリード間の溶融はんだ移動を抑制防止する効果を有することに起因している。このため、従来法では一般に0.1〜数%の頻度で発生する「隣接パッド間のはんだブリッジ不良」や「ミッシング不良」(パッドの一部にはんだが欠落している不良)は全く皆無にできるので、それによる従来必要とされて来た膨大な手直し再生加工も全く不要になる。
また、前述の通り、本発明方法は、現行方法より低温で、かつ効率よく錫またははんだプリコート皮膜形成が出来るため、エネルギー効率がよく、現行方法より少なくとも5〜20%程度の省エネ効果が期待できる。
以上の通り、本発明の効果は工業的に極めて価値が高いものである。
これを更に詳しく具体的事例で以下に説明する。
Moreover, in the method of the present invention, one of the merits of forming a tin or solder film in an organic fatty acid solution is that a bridge between adjacent circuits is less likely to occur. This is due to the fact that the organic fatty acid solution has the effect of suppressing and preventing molten solder movement between adjacent pads or leads. For this reason, in the conventional method, there is generally no “bad solder bridge between adjacent pads” or “missing failure” (defect in which solder is missing in a part of the pad) that occurs at a frequency of 0.1 to several percent. As a result, the huge amount of rework processing that has been required in the past is completely unnecessary.
In addition, as described above, the method of the present invention can efficiently form tin or solder precoat film at a lower temperature than the current method, so that the energy efficiency is good and an energy saving effect of about 5 to 20% can be expected from the current method. .
As described above, the effects of the present invention are extremely valuable industrially.
This will be described in more detail below with specific examples.

従来方法によるはんだプリコート皮膜形成工法であるホットエアーレベラー方式の実施形態事例、即ち、電子回路基板にノズルからホットエアーを吹付ける配置構成事例を模式的に示した断面図である。It is sectional drawing which showed typically the embodiment example of the hot air leveler system which is a solder precoat film formation method by the conventional method, ie, the arrangement configuration example which sprays hot air from an nozzle on an electronic circuit board. 本発明方法の有機脂肪酸溶液をノズルで吹付ける工程における実施形態事例として、電子回路基板または電子部品連結体とノズルの位置関係を模式的に示した断面図である。It is sectional drawing which showed typically the positional relationship of an electronic circuit board or an electronic component coupling body, and a nozzle as an embodiment example in the process of spraying the organic fatty acid solution of the method of this invention with a nozzle. 本発明の第1ステップにおける実施形態事例として、高温の有機脂肪酸溶液中に電子回路基板または電子部品連結体を浸漬し、引上げる様子を模式的に示した断面図である。It is sectional drawing which showed typically a mode that the electronic circuit board or the electronic component coupling body was immersed in the high-temperature organic fatty acid solution, and pulled up as an embodiment example in the first step of the present invention. 本発明の第1ステップにおける実施形態事例として、上層に高温の有機脂肪酸溶液、下層に溶融錫液または溶融はんだ液を配した貯液槽中に、先ず電子回路基板または電子部品連結体を上層部分に浸漬し、その後、下層の溶融錫液または溶融はんだ液に浸漬した後、該電子回路基板または電子部品連結体を再び上層を通過させて引上げている様子を模式的に示した断面図である。As an example of the embodiment in the first step of the present invention, an electronic circuit board or an electronic component connector is first placed in an upper layer portion in a liquid storage tank in which a high-temperature organic fatty acid solution is arranged in the upper layer and a molten tin solution or a molten solder solution is arranged in the lower layer. FIG. 2 is a cross-sectional view schematically showing a state in which the electronic circuit board or the electronic component connected body is pulled up again through the upper layer after being immersed in a lower layer molten tin solution or a molten solder solution. . 本発明の第1ステップにおける実施形態事例として、上層に高温の有機脂肪酸溶液、下層に溶融錫液または溶融はんだ液を配した貯液槽中に、先ず電子回路基板または電子部品連結体を上層部分に浸漬し、その後、下層の溶融錫液または溶融はんだ液に浸漬した後、該電子回路基板または電子部品連結条帯を再び上層を通過させて引上げ、上空で高温の有機脂肪酸溶液をノズルから該電子回路基板または電子部品連結体のパッドまたはリード部に該有機脂肪酸溶液を吹付ける様子を模式的に示した断面図である。As an example of the embodiment in the first step of the present invention, an electronic circuit board or an electronic component connector is first placed in an upper layer portion in a liquid storage tank in which a high-temperature organic fatty acid solution is arranged in the upper layer and a molten tin solution or a molten solder solution is arranged in the lower layer. Then, after immersing in the lower layer molten tin solution or molten solder solution, the electronic circuit board or the electronic component connecting strip is again pulled up through the upper layer, and the high-temperature organic fatty acid solution in the sky is discharged from the nozzle. It is sectional drawing which showed typically a mode that this organic fatty acid solution was sprayed on the pad or lead part of an electronic circuit board or an electronic component coupling body. 本発明の第1ステップにおける実施形態事例として、上層に高温の有機脂肪酸溶液、下層に溶融錫液または溶融はんだ液を配した貯液槽中に、先ず電子回路基板または電子部品連結体を上層部分に浸漬し、その後、下層の溶融錫液または溶融はんだ液に浸漬した後、該電子回路基板または電子部品連結体を再び上層2設置されている2本のリバースロールに間を通過させながら、リバースロールの高速回転により有機脂肪酸溶液を該電子回路基板または電子部品連結体のパッドまたはリード部に該有機脂肪酸溶液を吹付ける様子を模式的に示した断面図である。As an example of the embodiment in the first step of the present invention, an electronic circuit board or an electronic component connector is first placed in an upper layer portion in a liquid storage tank in which a high-temperature organic fatty acid solution is arranged in the upper layer and a molten tin solution or a molten solder solution is arranged in the lower layer. Then, after immersing in the lower layer molten tin solution or molten solder solution, the electronic circuit board or the electronic component connected body is again passed through the two reverse rolls provided in the upper layer 2 while reverse. It is sectional drawing which showed typically a mode that this organic fatty acid solution was sprayed to the pad or lead | read | reed part of this electronic circuit board or an electronic component coupling body by the high speed rotation of a roll. 本発明の方法及び装置において、電子回路基板または電子部品連結体の搬送に使用するプログラム式自動3次元移動装置のロボットアーム部分と、ワークを取付けた治具(枠状専用ホルダー)部分の事例を模式的に示した断面図である。In the method and apparatus of the present invention, examples of a robot arm part of a programmable automatic three-dimensional movement device used for transporting an electronic circuit board or an electronic component assembly and a jig (frame-shaped dedicated holder) part to which a workpiece is attached are shown. It is sectional drawing shown typically. 本発明の第1ステップにおいて、高温の有機脂肪酸溶液中に設置された電子回路基板または電子部品連結体に、上部から超音波発振機付き溶融錫または溶融はんだ微粒子発生装置により溶融錫または溶融はんだ微粒子を散布している事例を模式的に示した断面図である。In the first step of the present invention, molten tin or molten solder fine particles are applied to an electronic circuit board or electronic component assembly installed in a high-temperature organic fatty acid solution from above by using molten tin or molten solder fine particle generator with an ultrasonic oscillator. It is sectional drawing which showed typically the example which is spraying. 本発明の第1ステップにおける一実施形態として使用する超音波発振機付き溶融錫または溶融はんだ微粒子発生装置の内部構造事例を模式的に示した断面図である。It is sectional drawing which showed typically the example of an internal structure of the molten tin with an ultrasonic oscillator or molten solder fine particle generator used as one Embodiment in the 1st step of this invention. 本発明の第1ステップにおける一実施形態として、超音波発振機付き溶融錫または溶融はんだ微粒子発生装置により散布された溶融錫または溶融はんだ微粒子が電子回路基板または電子部品連結体のパッドまたはリード表面に接着する過程の事例を模式的に示した拡大断面図で、10aは、該溶融錫または溶融はんだ微粒子が電子回路基板または電子部品連結体の電極パッドまたはリード表面に到達する様子を模式的に示した拡大断面図である。また、10b、10cは、パッドまたはリード表面に到達した溶融錫または溶融はんだ微粒子がパッドまたはリード表面に接着し、微粒子同志が凝集して錫またははんだ皮膜を形成した状態事例を模式的に示した拡大断面図である。As one embodiment of the first step of the present invention, molten tin or molten solder fine particles dispersed by an ultrasonic oscillator-equipped molten tin or molten solder fine particle generator are applied to the pad or lead surface of an electronic circuit board or electronic component assembly. FIG. 10a is an enlarged cross-sectional view schematically showing an example of the bonding process, and 10a schematically shows how the molten tin or molten solder fine particles reach the electrode pad or lead surface of the electronic circuit board or electronic component coupling body. FIG. 10b and 10c schematically show a state example in which molten tin or molten solder fine particles reaching the pad or lead surface adhere to the pad or lead surface, and the fine particles aggregate to form a tin or solder film. It is an expanded sectional view. 長期加熱暴露時に経時的に発生するカーケンダルボイド(マイクロボイド)の発生機構(仮説)の第1ケースの説明図として、錫と酸化銅が酸化第一錫と銅に変化する前後の体積比率を模式的に示した図である。As an illustration of the first case of the generation mechanism (hypothesis) of Kirkendall voids (microvoids) that occur over time during long-term heat exposure, the volume ratio before and after the change of tin and copper oxide to stannous oxide and copper is shown It is the figure shown typically. 長期加熱暴露時に経時的に発生するカーケンダルボイド(マイクロボイド)の発生機構(仮説)の第2ケースの説明図として、酸化第一錫と酸化銅が酸化第二錫と銅に変化する前後の体積比率を模式的に示した図である。As an explanatory diagram of the second case of the generation mechanism (hypothesis) of Kirkendall void (micro void) that occurs with time during long-term heating exposure, before and after the change of stannous oxide and copper oxide to stannic oxide and copper It is the figure which showed the volume ratio typically. 本発明の第1ステップにおける一実施形態として、上層に高温の有機脂肪酸溶液、下層に溶融錫液または溶融はんだ液を配した貯液槽からそれぞれの液を専用ポンプでノズルに給液して、ノズルからそれぞれの液を電子回路基板または電子部品連結体に吹付けて、パッドまたはリード表面にはんだ被膜を形成させる様子を模式的に示した断面図である。As one embodiment in the first step of the present invention, each liquid is supplied to a nozzle with a dedicated pump from a storage tank in which a high-temperature organic fatty acid solution is disposed in the upper layer and a molten tin liquid or a molten solder liquid is disposed in the lower layer, It is sectional drawing which showed typically a mode that each liquid was sprayed on an electronic circuit board or an electronic component coupling body from a nozzle, and a solder film was formed in a pad or a lead surface. 本発明の実施例に使用した酸素濃度1ppm以下のはんだ合金の製造方法の実施事例として、上層に高温の有機脂肪酸溶液、下層に溶融はんだ液を配した貯液槽からそれぞれの液を専用ポンプで撹拌器に循環給液して、撹拌器内で両液を激しく撹拌して、溶融はんだ液内部に存在する酸化物、不純物を除去しながら、混合液を元の貯槽に戻す処理を繰り返し循環継続しながら酸素濃度が1ppm以下になるまで精製する様子を模式的に示した断面図である。As an implementation example of the method for producing a solder alloy having an oxygen concentration of 1 ppm or less used in the examples of the present invention, each liquid is supplied from a storage tank in which a high-temperature organic fatty acid solution is disposed in the upper layer and a molten solder liquid is disposed in the lower layer with a dedicated pump. Circulating and supplying liquid to the stirrer, vigorously stirring both liquids in the stirrer, removing the oxides and impurities present inside the molten solder liquid, and repeating the process of returning the mixed liquid to the original storage tank It is sectional drawing which showed typically a mode that it refine | purifies until oxygen concentration will be 1 ppm or less. 本発明実施例に使用する細かいメッシュの金網を有する篩または市販の粉末散布装置から下部の高温に加熱された有機脂肪酸溶液中にワークに向かって錫またははんだの粒子を万遍なく散布している状態を模式的に示した断面図である。In the embodiment of the present invention, fine particles of tin or solder are uniformly sprayed toward the workpiece from a sieve having a fine mesh wire mesh or a commercially available powder spraying device to an organic fatty acid solution heated to a high temperature below. It is sectional drawing which showed the state typically. 本発明実施例および比較例で製造したはんだプリコート皮膜の加熱エージング(150℃、240時間)後の断面形態でで、a)は比較例2のプリコート皮膜の状態を模式的に示した図で、b)比較例2のプリコート皮膜の1部分の断面写真、同様にc)は実施例7のプリコート皮膜の状態を模式的に示した図で、d)は実施例7のプリコート皮膜の一部分の断面写真を示したものであるIn the cross-sectional form after heat aging (150 ° C., 240 hours) of the solder precoat film produced in the inventive examples and comparative examples, a) schematically shows the state of the precoat film of Comparative Example 2, b) A cross-sectional photograph of a portion of the precoat film of Comparative Example 2, similarly c) is a diagram schematically showing the state of the precoat film of Example 7, and d) is a cross section of a portion of the precoat film of Example 7. It shows a photo

本発明の実施例と従来方法との比較例について以下に述べる。
先ず、共通の試供試料として、電子回路基板は以下の2種類を用いた。
試料P1: 外形寸法15mm×15mm×1.2mm、電極パッド数192、パッド径0.4mmφ、はんだレジスト保護皮膜で覆われていないパッド径0.35mmφ、パッド間ピッチ0.8mmのBGAが20mmピッチで2列各4個配列された電子回路基板
試料P2: 外形寸法10mm×10mm×1.0mm、電極パッド数304、パッド径0.1mmφ、はんだレジスト保護皮膜で覆われていないパッド径0.08mmφ、パッド間ピッチ0.15mmのBGAが20mmピッチで2列各4個配列された電子回路基板
また、はんだ中の酸素濃度を下げた低酸素はんだ合金の作製方法は、図14のように、銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、残部錫からなる鉛フリーはんだ合金を予め溶融させた溶融はんだ液5と、パルミチン酸30重量%と残部エステル合成からなる液温260℃の有機脂肪酸溶液4とを撹拌器41内に循環給液して、激しく撹拌して溶融はんだ内部に存在する金属酸化物、及び不純物をパルミチン酸のケン化作用を利用して、該パルミチン酸溶液中に取り込ませて、撹拌混合液を貯槽12に戻し、溶融はんだ液とパルミチン酸溶液の比重差を利用して両液を分離しながら、これを酸素濃度が1ppm以下になるまで繰り返し循環処理して精製作成した。これを母合金として、酸素濃度が2、5、10ppmになるように、この母合金に上記精製処理前の酸素濃度既知(120ppm)の同金属組成のはんだ合金を加えて溶融し、それぞれの酸素濃度のはんだ合金を作製し、以下の比較例と実施例の評価試験に供した。
A comparative example of the embodiment of the present invention and the conventional method will be described below.
First, the following two types of electronic circuit boards were used as common sample samples.
Sample P1: External dimensions 15 mm × 15 mm × 1.2 mm, number of electrode pads 192, pad diameter 0.4 mmφ, pad diameter 0.35 mmφ not covered with solder resist protective film, BGA with pad pitch 0.8 mm is 20 mm pitch Sample circuit P2: External dimensions 10 mm × 10 mm × 1.0 mm, number of electrode pads 304, pad diameter 0.1 mmφ, pad diameter not covered with solder resist protective film 0.08 mmφ , An electronic circuit board in which four rows of BGAs with a pitch of 0.15 mm between pads are arranged in two rows and four rows each at a pitch of 20 mm. Also, a method for producing a low oxygen solder alloy with a reduced oxygen concentration in the solder is as shown in FIG. Lead-free solder alloy consisting of 2.5 mass%, copper 0.5 mass%, nickel 0.01 mass%, germanium 0.005 mass% and the balance tin A molten solder solution 5 obtained by preliminarily melting and an organic fatty acid solution 4 having a liquid temperature of 260 ° C. composed of palmitic acid 30% by weight and the remaining ester synthesis are circulated and fed into a stirrer 41 and stirred vigorously to obtain a molten solder. The metal oxide and impurities present inside are incorporated into the palmitic acid solution using the saponification action of palmitic acid, the stirred mixed solution is returned to the storage tank 12, and the specific gravity of the molten solder solution and the palmitic acid solution is increased. While separating the two liquids using the difference, this was purified by repeated circulation until the oxygen concentration reached 1 ppm or less. Using this as a master alloy, a solder alloy of the same metal composition with a known oxygen concentration (120 ppm) prior to the refining treatment is added to the master alloy and melted so that the oxygen concentration becomes 2, 5, 10 ppm. Concentration solder alloys were prepared and subjected to evaluation tests of the following comparative examples and examples.

比較例1Comparative Example 1

従来方法、即ち、銀2.5質量%、銅0.5質量%、残部錫からなる組成の鉛フリーはんだ合金をそのまま溶融した浴温260℃のはんだ浴に、予めパッド部にロジン系フラックスが塗布されている試料1及び2を2秒間浸漬してパッド部にはんだ付け処理した後、通常のホットエアーレベラーで温度350℃、圧力(圧力計ゲージ)0.2MPaで処理した。  In a conventional method, that is, a solder bath having a bath temperature of 260 ° C. in which a lead-free solder alloy having a composition of 2.5% by mass of silver, 0.5% by mass of copper, and the balance of tin is melted as it is, The applied samples 1 and 2 were dipped for 2 seconds and soldered to the pad, and then treated with a normal hot air leveler at a temperature of 350 ° C. and a pressure (pressure gauge gauge) of 0.2 MPa.

比較例2Comparative Example 2

従来方法、即ち、市販の銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、残部錫からなる鉛フリーはんだ合金をそのまま溶融した浴温265℃のはんだ浴に、予めパッド部にロジン系フラックスが塗布されている試料1及び2を3秒間浸漬してパッド部にはんだ付け処理した後、通常のホットエアーレベラーで温度350℃、圧力(圧力計ゲージ)0.2MPaで処理した。  Conventional method, that is, bath temperature 265 obtained by melting a lead-free solder alloy consisting of 2.5% by mass of commercially available silver, 0.5% by mass of copper, 0.01% by mass of nickel, 0.005% by mass of germanium, and the balance tin. After immersing samples 1 and 2 in which the rosin flux is applied to the pad portion in advance for 3 seconds in a solder bath at ℃ for 3 seconds and soldering the pad portion, the temperature is set to 350 ° C. and pressure (pressure) with a normal hot air leveler (Total gauge) Processed at 0.2 MPa.

比較例3Comparative Example 3

従来から広く実用されている方法、即ち、銀2.5質量%、銅0.5質量%、残部錫からなる鉛フリーはんだ合金の粉末をフラックス成分などと混練した市販のクリームはんだ(ソルダーペースト)を用いて、試料1及び2に通常のシルクスクリーン印刷法でパッド部にソルダーペーストを塗布した後、該試料1,2をピーク温度350℃の通常のリフロー炉中を通過させて、パッドにはんだ被膜を形成させた。  A widely used method, that is, a commercially available cream solder (solder paste) obtained by kneading a lead-free solder alloy powder consisting of 2.5% by mass of silver, 0.5% by mass of copper and the balance of tin with a flux component. After applying the solder paste to the pad portion by the normal silk screen printing method on samples 1 and 2, the samples 1 and 2 are passed through a normal reflow furnace having a peak temperature of 350 ° C. and soldered to the pad. A film was formed.

比較例4Comparative Example 4

銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、酸素濃度10ppm、残部錫からなる組成に調整した鉛フリーはんだ合金を溶融した浴温260℃の溶融はんだ浴に、従来方法、即ち、予めパッド部にロジン系フラックスが塗布されている試料1及び2を2秒間浸漬してパッド部にはんだ付け処理した後、通常のホットエアーレベラーで温度350℃、圧力(圧力計ゲージ)0.2MPaで処理した。  Bath temperature 260 obtained by melting a lead-free solder alloy adjusted to a composition comprising 2.5% by mass of silver, 0.5% by mass of copper, 0.01% by mass of nickel, 0.005% by mass of germanium, 10 ppm of oxygen, and the balance tin. After immersing Samples 1 and 2 in which the rosin flux was previously applied to the pad part for 2 seconds in the molten solder bath at 0 ° C. for 2 seconds and soldering to the pad part, the temperature was measured with a normal hot air leveler. It processed at 350 degreeC and the pressure (pressure gauge gauge) 0.2MPa.

比較例5Comparative Example 5

銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、酸素濃度2ppm、残部錫からなる組成に調整した鉛フリーはんだ合金を溶融した浴温260℃の溶融はんだ浴に、従来方法、即ち、予めパッド部にロジン系フラックスが塗布されている試料1及び2を2秒間浸漬してパッド部にはんだ付け処理した後、通常のホットエアーレベラーで温度350℃、圧力(圧力計ゲージ)0.2MPaで処理した。  Bath temperature 260 obtained by melting a lead-free solder alloy adjusted to a composition comprising 2.5% by mass of silver, 0.5% by mass of copper, 0.01% by mass of nickel, 0.005% by mass of germanium, 2 ppm of oxygen, and the balance tin. After immersing Samples 1 and 2 in which the rosin flux was previously applied to the pad part for 2 seconds in the molten solder bath at 0 ° C. for 2 seconds and soldering to the pad part, the temperature was measured with a normal hot air leveler. It processed at 350 degreeC and the pressure (pressure gauge gauge) 0.2MPa.

比較例6Comparative Example 6

銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、酸素濃度2ppm、残部錫からなる組成に調整した鉛フリーはんだ合金を溶融した浴温260℃の溶融はんだ浴に、従来方法、即ち、予めパッド部にロジン系フラックスが塗布されている試料1及び2を2秒間浸漬してパッド部にはんだ付け処理した後、液温230℃のグリセリンを吹き付けて余剰のはんだを吹き落とすホットリキッドレベラー処理を行った。  Bath temperature 260 obtained by melting a lead-free solder alloy adjusted to a composition comprising 2.5% by mass of silver, 0.5% by mass of copper, 0.01% by mass of nickel, 0.005% by mass of germanium, 2 ppm of oxygen, and the balance tin. After immersing samples 1 and 2 in which the rosin flux was previously applied to the pad portion for 2 seconds in the molten solder bath at 0 ° C. and soldering the pad portion, glycerin at a liquid temperature of 230 ° C. was added. The hot liquid leveler process which sprays and blows off the excess solder was performed.

試料1については,そのまま図5のような上層がパルミチン酸10質量%、残部エステル合成油からなる液温260℃の溶液中に10秒間浸漬した後、下層に銀2.5質量%、銅0.5質量%、残部錫からなる液温260℃の溶融鉛フリーはんだ液の中に2秒間浸漬し、次に該上層を通過させて引き上げながら、上部で液温260℃の前記組成のパルミチン酸溶液を流速2m/秒で吹付けて、パッド部のはんだプリコート被膜の仕上がり厚さが5μmになるように、余剰のはんだを吹き落として除去した。
一方、試料2については、図8のような上層がパルミチン酸10質量%、残部エステル合成油からなる液温260℃の溶液中に水平に試料を設置し、該試料の30mm直上に設置された超音波発振機付き溶融錫または溶融はんだ微粒子発生装置から出力0.5KW、周波数35KHzの超音波振動を利用して、該溶融はんだ微粒子発生装置先端のノズル(口径2.0mmφ)から高温の有機脂肪酸溶液中に溶融はんだ微粒子噴射される粒径1〜10μmφの溶融はんだ微粒子(組成は下層の銀2.5質量%、銅0.5質量%、残部錫からなる液温260℃の溶融鉛フリーはんだ)がワークに万遍なく溶融はんだ微粒子が降りかかるように移動させながら散布した。散布量は全ての開口部が溶融はんだで完全に充填される理論容量値の約20倍量を散布した。
その後、前記下層部のワークの上部に光ファイバースコープを挿入して、各開口部パッド表面に溶融はんだ粒子が1個以上沈着していることを画像処理したモニター画面で確認した上で、試料を垂直に立てて、下層の前記溶融鉛フリーはんだ液の中に2秒間浸漬して、次に前記上層を通過させて引き上げながら、図5のように上部で液温260℃の前記組成のパルミチン酸溶液を流速2m/秒で吹付けて、パッド部のはんだプリコート被膜の仕上がり厚さが5μmになるように、余剰のはんだを吹き落として除去した。
For sample 1, the upper layer as shown in FIG. 5 was immersed for 10 seconds in a solution having a liquid temperature of 260 ° C. consisting of 10% by mass of palmitic acid and the remaining ester synthetic oil, followed by 2.5% by mass of silver and 0% copper in the lower layer. .2% by weight in a molten lead-free solder solution composed of tin at a temperature of 260 ° C. for 2 seconds and then pulled up by passing through the upper layer, while the palmitic acid having the above composition at a liquid temperature of 260 ° C. The solution was sprayed at a flow rate of 2 m / sec, and excess solder was blown off and removed so that the finished thickness of the solder precoat film on the pad portion was 5 μm.
On the other hand, for sample 2, the upper layer as shown in FIG. 8 was placed horizontally in a solution having a liquid temperature of 260 ° C. composed of 10% by mass of palmitic acid and the remaining ester synthetic oil, and was placed directly 30 mm above the sample. High-temperature organic fatty acid from the nozzle (2.0 mmφ diameter) at the tip of the molten solder fine particle generator using ultrasonic vibration with an output of 0.5 KW and a frequency of 35 KHz from molten tin or molten solder fine particle generator equipped with an ultrasonic oscillator Molten solder fine particles having a particle diameter of 1 to 10 μm φ injected into the solution (composed of molten lead-free solder having a liquid temperature of 260 ° C. composed of 2.5% by mass of lower layer silver, 0.5% by mass of copper, and the remainder tin) ) Was sprayed while moving so that the molten solder fine particles would fall uniformly on the workpiece. The spraying amount was sprayed about 20 times the theoretical capacity value at which all openings were completely filled with molten solder.
After that, an optical fiber scope is inserted into the upper part of the lower layer workpiece, and it is confirmed on the monitor screen that has been image-processed that one or more molten solder particles are deposited on the surface of each opening pad. Then, the palmitic acid solution having the above composition having a liquid temperature of 260 ° C. at the top as shown in FIG. 5 is immersed in the molten lead-free solder solution in the lower layer for 2 seconds and then passed through the upper layer and pulled up. Was sprayed at a flow rate of 2 m / sec, and excess solder was blown off and removed so that the finished thickness of the solder precoat film on the pad portion was 5 μm.

試料1については,そのまま図5のような上層がパルミチン酸10質量%、残部エステル合成油からなる液温260℃の溶液中に10秒間浸漬した後、下層に銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、残部錫からなる液温260℃の溶融鉛フリーはんだ液中に2秒間浸漬して、次に該上層を通過させて引き上げながら、上部で液温260℃の前記組成のパルミチン酸溶液を流速1.4m/秒で吹付けて、パッド部のはんだプリコート被膜の仕上がり厚さが10μmになるように、余剰のはんだを吹き落として除去した。
一方、試料2については、図8のような上層がパルミチン酸10質量%、残部エステル合成油からなる液温260℃の溶液中に水平に試料を設置し、該試料の30mm直上に設置された超音波発振機付き溶融錫または溶融はんだ微粒子発生装置から出力0.5KW、周波数35KHzの超音波振動を利用して、該溶融はんだ微粒子発生装置先端のノズル(口径2.0mmφ)から高温の有機脂肪酸溶液中に溶融はんだ微粒子噴射される粒径1〜10μmφの溶融はんだ微粒子(組成は下層の銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、残部錫からなる液温260℃の溶融鉛フリーはんだ)がワークに万遍なく溶融はんだ微粒子が降りかかるように移動させながら散布した。散布量は全ての開口部が溶融はんだで完全に充填される理論容量値の約20倍量を散布した。
その後、前記下層部のワークの上部に光ファイバースコープを挿入して、各開口部パッド表面に溶融はんだ粒子が1個以上沈着していることを画像処理したモニター画面で確認した上で、試料を垂直に立てて、下層の前記溶融鉛フリーはんだ液の中に2秒間浸漬して、次に前記上層を通過させて引き上げながら、図5のように上部で液温260℃の前記組成のパルミチン酸溶液を流速1.4m/秒で吹付けて、パッド部のはんだプリコート被膜の仕上がり厚さが10μmになるように、余剰のはんだを吹き落として除去した。
For sample 1, the upper layer as shown in FIG. 5 was immersed for 10 seconds in a solution having a liquid temperature of 260 ° C. consisting of 10% by mass of palmitic acid and the remaining ester synthetic oil, followed by 2.5% by mass of silver and 0% copper in the lower layer. Immerse it in a molten lead-free solder solution consisting of 0.5 mass%, nickel 0.01 mass%, germanium 0.005 mass% and the balance tin at a liquid temperature of 260 ° C for 2 seconds, and then pass it through the upper layer and pull it up. However, a palmitic acid solution having the above composition at a liquid temperature of 260 ° C. is sprayed at a flow rate of 1.4 m / sec to blow off excess solder so that the finished thickness of the solder precoat film on the pad portion becomes 10 μm. Removed.
On the other hand, for sample 2, the upper layer as shown in FIG. 8 was placed horizontally in a solution having a liquid temperature of 260 ° C. composed of 10% by mass of palmitic acid and the remaining ester synthetic oil, and was placed directly 30 mm above the sample. High-temperature organic fatty acid from the nozzle (2.0 mmφ diameter) at the tip of the molten solder fine particle generator using ultrasonic vibration with an output of 0.5 KW and a frequency of 35 KHz from molten tin or molten solder fine particle generator equipped with an ultrasonic oscillator Molten solder fine particles having a particle diameter of 1 to 10 μm injected into the solution (the composition is 2.5% by mass of lower layer silver, 0.5% by mass of copper, 0.01% by mass of nickel, 0.005% by mass of germanium) The molten lead-free solder composed of the remaining tin and having a liquid temperature of 260 ° C. was sprayed while being moved so that the molten solder fine particles would fall on the work evenly. The spraying amount was sprayed about 20 times the theoretical capacity value at which all openings were completely filled with molten solder.
After that, an optical fiber scope is inserted into the upper part of the lower layer workpiece, and it is confirmed on the monitor screen that has been image-processed that one or more molten solder particles are deposited on the surface of each opening pad. Then, the palmitic acid solution having the above composition having a liquid temperature of 260 ° C. at the top as shown in FIG. 5 is immersed in the molten lead-free solder solution in the lower layer for 2 seconds and then passed through the upper layer and pulled up. Was sprayed at a flow rate of 1.4 m / sec, and excess solder was blown off and removed so that the finished thickness of the solder precoat film on the pad portion was 10 μm.

試料1については,そのまま図5のような上層がパルミチン酸10質量%、残部エステル合成油からなる液温260℃の溶液中に10秒間浸漬した後、下層に銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、酸素濃度10ppm、残部錫からなる液温260℃の溶融鉛フリーはんだ液の中に2秒間浸漬して、次に該上層を通過させて引き上げながら、上部で液温260℃の前記組成のパルミチン酸溶液を流速2m/秒で吹付けて、パッド部のはんだプリコート被膜の仕上がり厚さが5μmになるように、余剰のはんだを吹き落として除去した。
一方、試料2については、図8のような上層がパルミチン酸10質量%、残部エステル合成油からなる液温260℃の溶液中に水平に試料を設置し、該試料の30mm直上に設置された超音波発振機付き溶融錫または溶融はんだ微粒子発生装置から出力0.5KW、周波数35KHzの超音波振動を利用して、該溶融はんだ微粒子発生装置先端のノズル(口径2.0mmφ)から高温の有機脂肪酸溶液中に溶融はんだ微粒子噴射される粒径1〜10μmφの溶融はんだ微粒子(組成は下層の銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、酸素濃度10ppm、残部錫からなる液温260℃の溶融鉛フリーはんだ)がワークに万遍なく溶融はんだ微粒子が降りかかるように移動させながら散布した。散布量は全ての開口部が溶融はんだで完全に充填される理論容量値の約30倍量を散布した。
その後、前記下層部のワークの上部に光ファイバースコープを挿入して、各開口部パッド表面に溶融はんだ粒子が1個以上沈着していることを画像処理したモニター画面で確認した上で、試料を垂直に立てて、下層の前記溶融鉛フリーはんだ液の中に2秒間浸漬して、次に前記上層を通過させて引き上げながら、図5のように上部で液温260℃の前記組成のパルミチン酸溶液を流速2.1m/秒で吹付けて、パッド部のはんだプリコート被膜の仕上がり厚さが5μmになるように、余剰のはんだを吹き落として除去した。
For sample 1, the upper layer as shown in FIG. 5 was immersed for 10 seconds in a solution having a liquid temperature of 260 ° C. consisting of 10% by mass of palmitic acid and the remaining ester synthetic oil, followed by 2.5% by mass of silver and 0% copper in the lower layer. 5% by mass, 0.01% by mass of nickel, 0.005% by mass of germanium, 10 ppm of oxygen, 10% of oxygen concentration, and immersed in a molten lead-free solder solution having a liquid temperature of 260 ° C. for 2 seconds, and then the upper layer The excess solder was applied so that the palmitic acid solution having the above composition at a liquid temperature of 260 ° C. was sprayed at a flow rate of 2 m / second at the top while the finished thickness of the solder precoat film on the pad was 5 μm. Was blown off and removed.
On the other hand, for sample 2, the upper layer as shown in FIG. 8 was placed horizontally in a solution having a liquid temperature of 260 ° C. composed of 10% by mass of palmitic acid and the remaining ester synthetic oil, and was placed directly 30 mm above the sample. High-temperature organic fatty acid from the nozzle (2.0 mmφ diameter) at the tip of the molten solder fine particle generator using ultrasonic vibration with an output of 0.5 KW and a frequency of 35 KHz from molten tin or molten solder fine particle generator equipped with an ultrasonic oscillator Molten solder fine particles having a particle diameter of 1 to 10 μm injected into the solution (the composition is 2.5% by mass of lower layer silver, 0.5% by mass of copper, 0.01% by mass of nickel, 0.005% by mass of germanium) , Molten lead-free solder with an oxygen concentration of 10 ppm and the balance of tin at a liquid temperature of 260 ° C.) was sprayed while moving so that the molten solder fine particles would uniformly fall on the workpiece. The amount of application was about 30 times the theoretical capacity value at which all openings were completely filled with molten solder.
After that, an optical fiber scope is inserted into the upper part of the lower layer workpiece, and it is confirmed on the monitor screen that has been image-processed that one or more molten solder particles are deposited on the surface of each opening pad. Then, the palmitic acid solution having the above composition having a liquid temperature of 260 ° C. at the top as shown in FIG. 5 is immersed in the molten lead-free solder solution in the lower layer for 2 seconds and then passed through the upper layer and pulled up. Was sprayed at a flow rate of 2.1 m / sec, and excess solder was blown off and removed so that the finished thickness of the solder precoat film on the pad portion was 5 μm.

試料1については,そのまま図5のような上層がパルミチン酸10質量%、残部エステル合成油からなる液温260℃の溶液中に10秒間浸漬した後、下層に銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、酸素濃度5ppm、残部錫からなる液温260℃の溶融鉛フリーはんだ液の中に2秒間浸漬して、次に該上層を通過させて引き上げながら、上部で液温260℃の前記組成のパルミチン酸溶液を流速2m/秒で吹付けて、パッド部のはんだプリコート被膜の仕上がり厚さが5μmになるように、余剰のはんだを吹き落として除去した。
一方、試料2については、図8のような上層がパルミチン酸10質量%、残部エステル合成油からなる液温260℃の溶液中に水平に試料を設置し、該試料の30mm直上に設置された超音波発振機付き溶融錫または溶融はんだ微粒子発生装置から出力0.5KW、周波数35KHzの超音波振動を利用して、該溶融はんだ微粒子発生装置先端のノズル(口径2.0mmφ)から高温の有機脂肪酸溶液中に溶融はんだ微粒子噴射される粒径1〜10μmφの溶融はんだ微粒子(組成は下層の銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、酸素濃度5ppm、残部錫からなる液温260℃の溶融鉛フリーはんだ)がワークに万遍なく溶融はんだ微粒子が降りかかるように移動させながら散布した。散布量は全ての開口部が溶融はんだで完全に充填される理論容量値の約25倍量を散布した。
その後、前記下層部のワークの上部に光ファイバースコープを挿入して、各開口部パッド表面に溶融はんだ粒子が1個以上沈着していることを画像処理したモニター画面で確認した上で、試料を垂直に立てて、下層の前記溶融鉛フリーはんだ液の中に2秒間浸漬して、次に前記上層を通過させて引き上げながら、図5のように上部で液温260℃の前記組成のパルミチン酸溶液を流速2.1m/秒で吹付けて、パッド部のはんだプリコート被膜の仕上がり厚さが5μmになるように、余剰のはんだを吹き落として除去した。
For sample 1, the upper layer as shown in FIG. 5 was immersed for 10 seconds in a solution having a liquid temperature of 260 ° C. consisting of 10% by mass of palmitic acid and the remaining ester synthetic oil, followed by 2.5% by mass of silver and 0% copper in the lower layer. 5% by mass, 0.01% by mass of nickel, 0.005% by mass of germanium, 5 ppm of oxygen, 5 ppm of oxygen, the remainder being immersed in a molten lead-free solder solution at a liquid temperature of 260 ° C. for 2 seconds, and then the upper layer The excess solder was applied so that the palmitic acid solution having the above composition at a liquid temperature of 260 ° C. was sprayed at a flow rate of 2 m / second at the top while the finished thickness of the solder precoat film on the pad was 5 μm. Was blown off and removed.
On the other hand, for sample 2, the upper layer as shown in FIG. 8 was placed horizontally in a solution having a liquid temperature of 260 ° C. composed of 10% by mass of palmitic acid and the remaining ester synthetic oil, and was placed directly 30 mm above the sample. High-temperature organic fatty acid from the nozzle (2.0 mmφ diameter) at the tip of the molten solder fine particle generator using ultrasonic vibration with an output of 0.5 KW and a frequency of 35 KHz from molten tin or molten solder fine particle generator equipped with an ultrasonic oscillator Molten solder fine particles having a particle diameter of 1 to 10 μm injected into the solution (the composition is 2.5% by mass of lower layer silver, 0.5% by mass of copper, 0.01% by mass of nickel, 0.005% by mass of germanium) Then, molten lead-free solder having an oxygen concentration of 5 ppm and a liquid temperature of 260 ° C. composed of the remaining tin was sprayed while being moved so that the molten solder fine particles would uniformly fall on the workpiece. The application amount was about 25 times the theoretical capacity value at which all openings were completely filled with molten solder.
After that, an optical fiber scope is inserted into the upper part of the lower layer workpiece, and it is confirmed on the monitor screen that has been image-processed that one or more molten solder particles are deposited on the surface of each opening pad. Then, the palmitic acid solution having the above composition having a liquid temperature of 260 ° C. at the top as shown in FIG. 5 is immersed in the molten lead-free solder solution in the lower layer for 2 seconds and then passed through the upper layer and pulled up. Was sprayed at a flow rate of 2.1 m / sec, and excess solder was blown off and removed so that the finished thickness of the solder precoat film on the pad portion was 5 μm.

試料1については,そのまま図4のような上層がステアリン酸45質量%、残部エステル合成油からなる液温265℃の溶液中に10秒間浸漬した後、下層に銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、酸素濃度2ppm、残部錫からなる液温260℃の溶融鉛フリーはんだ液の中に2秒間浸漬して、次に該上層を通過させて引き上げながら、図5のように上部で液温260℃の前記組成のステアリン酸溶液を流速1.4m/秒で吹付けて、パッド部のはんだプリコート被膜の仕上がり厚さが10μmになるように、余剰のはんだを吹き落として除去した。
一方、試料2については、図8のような上層がステアリン酸45質量%、残部エステル合成油からなる液温260℃の溶液中に水平に試料を設置し、該試料の20mm直上に設置された超音波発振機付き溶融錫または溶融はんだ微粒子発生装置から出力0.5KW、周波数35KHzの超音波振動を利用して、該溶融はんだ微粒子発生装置先端のノズル(口径2.0mmφ)から高温の有機脂肪酸溶液中に溶融はんだ微粒子噴射される粒径1〜10μmφの溶融はんだ微粒子(組成は下層の銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、酸素濃度2ppm、残部錫からなる液温260℃の溶融鉛フリーはんだ)がワークに万遍なく溶融はんだ微粒子が降りかかるように移動させながら散布した。散布量は全ての開口部が溶融はんだで完全に充填される理論容量値の約30倍量を散布した。
その後、前記下層部のワークの上部に光ファイバースコープを挿入して、各開口部パッド表面に溶融はんだ粒子が1個以上沈着していることを画像処理したモニター画面で確認した上で、試料を垂直に立てて、下層の前記溶融鉛フリーはんだ液の中に2秒間浸漬して、次に前記上層を通過させて引き上げながら、図5のように上部で液温260℃の前記組成のパルミチン酸溶液を流速1.4m/秒で吹付けて、パッド部のはんだプリコート被膜の仕上がり厚さが10μmになるように、余剰のはんだを吹き落として除去した。
For sample 1, the upper layer as shown in FIG. 4 was immersed in a solution of 45 mass% stearic acid and 265 ° C. of the remaining ester synthetic oil for 10 seconds, and then 2.5 mass% of silver and copper 0 5% by mass, 0.01% by mass of nickel, 0.005% by mass of germanium, 2 ppm of oxygen, 2 ppm, and immersed in a molten lead-free solder solution having a liquid temperature of 260 ° C. for 2 seconds, and then the upper layer As shown in FIG. 5, a stearic acid solution having the above composition at a liquid temperature of 260 ° C. is sprayed at a flow rate of 1.4 m / second as shown in FIG. 5 so that the finished thickness of the solder precoat film on the pad is 10 μm. The excess solder was blown off and removed.
On the other hand, for sample 2, the upper layer as shown in FIG. 8 was placed horizontally in a solution having a liquid temperature of 260 ° C. composed of 45% by mass of stearic acid and the remaining ester synthetic oil, and was placed 20 mm above the sample. High-temperature organic fatty acid from the nozzle (2.0 mmφ diameter) at the tip of the molten solder fine particle generator using ultrasonic vibration with an output of 0.5 KW and a frequency of 35 KHz from molten tin or molten solder fine particle generator equipped with an ultrasonic oscillator Molten solder fine particles having a particle diameter of 1 to 10 μm injected into the solution (the composition is 2.5% by mass of lower layer silver, 0.5% by mass of copper, 0.01% by mass of nickel, 0.005% by mass of germanium) The molten lead-free solder having an oxygen concentration of 2 ppm and a liquid temperature of 260 ° C. composed of the remaining tin was sprayed while being moved so that the molten solder fine particles would uniformly fall on the workpiece. The amount of application was about 30 times the theoretical capacity value at which all openings were completely filled with molten solder.
After that, an optical fiber scope is inserted into the upper part of the lower layer workpiece, and it is confirmed on the monitor screen that has been image-processed that one or more molten solder particles are deposited on the surface of each opening pad. Then, the palmitic acid solution having the above composition having a liquid temperature of 260 ° C. at the top as shown in FIG. 5 is immersed in the molten lead-free solder solution in the lower layer for 2 seconds and then passed through the upper layer and pulled up. Was sprayed at a flow rate of 1.4 m / sec, and excess solder was blown off and removed so that the finished thickness of the solder precoat film on the pad portion was 10 μm.

試料1については,そのまま図4のような上層がステアリン酸20質量%、残部エステル合成油からなる液温265℃の溶液中に10秒間浸漬した後、下層に銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、酸素濃度1ppm以下、残部錫からなる液温260℃の溶融鉛フリーはんだ液の中に2秒間浸漬して、次に該上層を通過させて引き上げながら、図5のように上部で液温260℃の前記組成のステアリン酸溶液を流速1.8m/秒で吹付けて、パッド部のはんだプリコート被膜の仕上がり厚さが5μmになるように、余剰のはんだを吹き落として除去した。
一方、試料2については、図8のような上層がステアリン酸45質量%、残部エステル合成油からなる液温260℃の溶液中に水平に試料を設置し、該試料の20mm直上に設置された超音波発振機付き溶融錫または溶融はんだ微粒子発生装置から出力0.5KW、周波数35KHzの超音波振動を利用して、該溶融はんだ微粒子発生装置先端のノズル(口径2.0mmφ)から高温の有機脂肪酸溶液中に溶融はんだ微粒子噴射される粒径1〜10μmφの溶融はんだ微粒子(組成は下層の銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、酸素濃度1ppm以下、残部錫からなる液温260℃の溶融鉛フリーはんだ)がワークに万遍なく溶融はんだ微粒子が降りかかるように移動させながら散布した。散布量は全ての開口部が溶融はんだで完全に充填される理論容量値の約40倍量を散布した。
その後、前記下層部のワークの上部に光ファイバースコープを挿入して、各開口部パッド表面に溶融はんだ粒子が1個以上沈着していることを画像処理したモニター画面で確認した上で、試料を垂直に立てて、下層の前記溶融鉛フリーはんだ液の中に2秒間浸漬して、次に前記上層を通過させて引き上げながら、図5のように上部で液温260℃の前記組成のパルミチン酸溶液を流速2m/秒で吹付けて、パッド部のはんだプリコート被膜の仕上がり厚さが5μmになるように、余剰のはんだを吹き落として除去した。
For sample 1, the upper layer as shown in FIG. 4 was immersed in a solution having a liquid temperature of 265 ° C. composed of 20% by mass of stearic acid and the remaining ester synthetic oil for 10 seconds, and then 2.5% by mass of silver and 0% copper in the lower layer. 5% by weight, 0.01% by weight of nickel, 0.005% by weight of germanium, oxygen concentration of 1 ppm or less, and immersed in a molten lead-free solder solution of 260 ° C. of the remaining tin for 2 seconds, As shown in FIG. 5, the stearic acid solution having the above composition at a liquid temperature of 260 ° C. is sprayed at a flow rate of 1.8 m / second, and the finished thickness of the solder precoat film on the pad portion is 5 μm. Excess solder was blown off and removed.
On the other hand, for sample 2, the upper layer as shown in FIG. 8 was placed horizontally in a solution having a liquid temperature of 260 ° C. composed of 45% by mass of stearic acid and the remaining ester synthetic oil, and was placed 20 mm above the sample. High-temperature organic fatty acid from the nozzle (2.0 mmφ diameter) at the tip of the molten solder fine particle generator using ultrasonic vibration with an output of 0.5 KW and a frequency of 35 KHz from molten tin or molten solder fine particle generator equipped with an ultrasonic oscillator Molten solder fine particles having a particle diameter of 1 to 10 μm injected into the solution (the composition is 2.5% by mass of lower layer silver, 0.5% by mass of copper, 0.01% by mass of nickel, 0.005% by mass of germanium) , A molten lead-free solder with an oxygen concentration of 1 ppm or less and a liquid temperature of 260 ° C consisting of the remaining tin) is sprayed while moving so that the molten solder fine particles fall on the workpiece evenly. . The application amount was about 40 times the theoretical capacity value at which all openings were completely filled with molten solder.
After that, an optical fiber scope is inserted into the upper part of the lower layer workpiece, and it is confirmed on the monitor screen that has been image-processed that one or more molten solder particles are deposited on the surface of each opening pad. Then, the palmitic acid solution having the above composition having a liquid temperature of 260 ° C. at the top as shown in FIG. 5 is immersed in the molten lead-free solder solution in the lower layer for 2 seconds and then passed through the upper layer and pulled up. Was sprayed at a flow rate of 2 m / sec, and excess solder was blown off and removed so that the finished thickness of the solder precoat film on the pad portion was 5 μm.

試料1については,そのまま図4のような上層がステアリン酸20質量%、残部エステル合成油からなる液温265℃の溶液中に10秒間浸漬した後、下層にニッケル0.01質量%、ゲルマニウム0.005質量%、酸素濃度2ppm、残部錫からなる液温260℃の溶融錫液の中に2秒間浸漬して、次に前記上層を通過させて引き上げながら、図5のように上部で液温260℃の前記組成のステアリン酸溶液を流速1.8m/秒で吹付けて、パッド部の錫プリコート皮膜の仕上がり厚さが5μmになるように、余剰の錫を吹き落として除去した。
一方、試料2については、図8のような上層がステアリン酸45質量%、残部エステル合成油からなる液温260℃の溶液中に水平に試料を設置し、該試料の20mm直上に設置された超音波発振機付き溶融錫または溶融はんだ微粒子発生装置から出力0.5KW、周波数35KHzの超音波振動を利用して、該溶融はんだ微粒子発生装置先端のノズル(口径2.0mmφ)から高温の有機脂肪酸溶液中に溶融はんだ微粒子噴射される粒径1〜10μmφの溶融はんだ微粒子(組成は下層のニッケル0.01質量%、ゲルマニウム0.005質量%、酸素濃度2ppm、残部錫からなる液温260℃の溶融鉛フリーはんだ)がワークに万遍なく溶融はんだ微粒子が降りかかるように移動させながら散布した。散布量は全ての開口部が溶融はんだで完全に充填される理論容量値の約40倍量を散布した。
その後、前記下層部のワークの上部に光ファイバースコープを挿入して、各開口部パッド表面に溶融はんだ粒子が1個以上沈着していることを画像処理したモニター画面で確認した上で、試料を垂直に立てて、下層の前記溶融鉛フリーはんだ液の中に2秒間浸漬して、次に前記上層を通過させて引き上げながら、図5のように上部で液温260℃の前記組成のパルミチン酸溶液を流速2m/秒で吹付けて、パッド部のはんだプリコート皮膜の仕上がり厚さが5μmになるように、余剰のはんだを吹き落として除去した。
For sample 1, the upper layer as shown in FIG. 4 was immersed for 10 seconds in a solution having a liquid temperature of 265 ° C. composed of 20% by mass of stearic acid and the remaining ester synthetic oil, and then 0.01% by mass of nickel and 0% germanium in the lower layer. .5 mass%, oxygen concentration 2 ppm, the temperature of the upper part as shown in FIG. 5 while being dipped in a molten tin solution of 260 ° C. composed of the remaining tin for 2 seconds and then pulled up by passing through the upper layer. The stearic acid solution having the above composition at 260 ° C. was sprayed at a flow rate of 1.8 m / sec, and excess tin was blown off and removed so that the finished thickness of the tin precoat film on the pad portion was 5 μm.
On the other hand, for sample 2, the upper layer as shown in FIG. 8 was placed horizontally in a solution having a liquid temperature of 260 ° C. composed of 45% by mass of stearic acid and the remaining ester synthetic oil, and was placed 20 mm above the sample. High-temperature organic fatty acid from the nozzle (2.0 mmφ diameter) at the tip of the molten solder fine particle generator using ultrasonic vibration with an output of 0.5 KW and a frequency of 35 KHz from molten tin or molten solder fine particle generator equipped with an ultrasonic oscillator Molten solder fine particles having a particle diameter of 1 to 10 μm φ to be injected into the solution (composition is 0.01 mass% of nickel in the lower layer, 0.005 mass% of germanium, oxygen concentration of 2 ppm, and a liquid temperature of 260 ° C. consisting of the remaining tin) The molten lead-free solder) was sprayed while moving so that the molten solder fine particles would fall on the workpiece evenly. The application amount was about 40 times the theoretical capacity value at which all openings were completely filled with molten solder.
After that, an optical fiber scope is inserted into the upper part of the lower layer workpiece, and it is confirmed on the monitor screen that has been image-processed that one or more molten solder particles are deposited on the surface of each opening pad. Then, the palmitic acid solution having the above composition having a liquid temperature of 260 ° C. at the top as shown in FIG. 5 is immersed in the molten lead-free solder solution in the lower layer for 2 seconds and then passed through the upper layer and pulled up. Was sprayed at a flow rate of 2 m / sec, and excess solder was blown off and removed so that the finished thickness of the solder precoat film on the pad portion was 5 μm.

試料1については,そのまま図4のような上層がステアリン酸20質量%、残部エステル合成油からなる液温180℃の溶液中に10秒間浸漬した後、下層に錫42質量%、ビスマス58質量%、酸素濃度3ppm、からなる錫ビスマス共晶合金に、ニッケル0.07質量%、ゲルマニウム0.005質量%、残部錫とビスマスを添加した液温180℃の溶融はんだ液の中に2秒間浸漬して、次に前記上層を通過させて引き上げながら、図5のように上部で液温170℃の前記組成のステアリン溶液を流速1.8m/秒で吹付けて、パッド部のはんだプリコート皮膜の仕上がり厚さが5μmになるように、余剰のはんだを吹き落として除去した。
一方、試料2については、図8のような上層がステアリン酸45質量%、残部エステル合成油からなる液温260℃の溶液中に水平に試料を設置し、該試料の20mm直上に設置された超音波発振機付き溶融錫または溶融はんだ微粒子発生装置から出力0.5KW、周波数35KHzの超音波振動を利用して、前記溶融はんだ微粒子発生装置先端のノズル(口径2.0mmφ)から高温の有機脂肪酸溶液中に溶融はんだ微粒子噴射される粒径1〜10μmφの溶融はんだ微粒子(組成は下層の前記溶融はんだ液と同じ)がワークに万遍なく溶融はんだ微粒子が降りかかるように移動させながら散布した。散布量は全ての開口部が溶融はんだで完全に充填される理論容量値の約20倍量を散布した。
その後、前記下層部のワークの上部に光ファイバースコープを挿入して、各開口部パッド表面に溶融はんだ粒子が1個以上沈着していることを画像処理したモニター画面で確認した上で、試料を垂直に立てて、下層の前記溶融鉛フリーはんだ液の中に2秒間浸漬して、次に前記上層を通過させて引き上げながら、図5のように上部で液温260℃の前記組成のパルミチン酸溶液を流速2m/秒で吹付けて、パッド部のはんだプリコート皮膜の仕上がり厚さが5μmになるように、余剰のはんだを吹き落として除去した。
For sample 1, the upper layer as shown in FIG. 4 was immersed in a solution of stearic acid 20% by mass and the remaining ester synthetic oil at a liquid temperature of 180 ° C. for 10 seconds, and then the lower layer was 42% by mass of tin and 58% by mass of bismuth. In a tin bismuth eutectic alloy having an oxygen concentration of 3 ppm, immerse it for 2 seconds in a molten solder solution having a liquid temperature of 180 ° C. with 0.07% by mass of nickel, 0.005% by mass of germanium and the remainder tin and bismuth added. Then, while passing through the upper layer and pulling up, a stearin solution having the above composition at a liquid temperature of 170 ° C. is sprayed at a flow rate of 1.8 m / sec on the top as shown in FIG. 5 to finish the solder precoat film on the pad portion. Excess solder was blown off and removed so that the thickness became 5 μm.
On the other hand, for sample 2, the upper layer as shown in FIG. 8 was placed horizontally in a solution having a liquid temperature of 260 ° C. composed of 45% by mass of stearic acid and the remaining ester synthetic oil, and was placed 20 mm above the sample. High-temperature organic fatty acid from the nozzle (2.0 mmφ diameter) at the tip of the molten solder fine particle generator using ultrasonic vibration with an output of 0.5 KW and a frequency of 35 KHz from molten tin or molten solder fine particle generator equipped with an ultrasonic oscillator Molten solder fine particles (composition is the same as the molten solder liquid in the lower layer) having a particle diameter of 1 to 10 μmφ sprayed into the solution are sprayed while being moved so that the molten solder fine particles uniformly fall on the workpiece. The spraying amount was sprayed about 20 times the theoretical capacity value at which all openings were completely filled with molten solder.
After that, an optical fiber scope is inserted into the upper part of the lower layer workpiece, and it is confirmed on the monitor screen that has been image-processed that one or more molten solder particles are deposited on the surface of each opening pad. Then, the palmitic acid solution having the above composition having a liquid temperature of 260 ° C. at the top as shown in FIG. 5 is immersed in the molten lead-free solder solution in the lower layer for 2 seconds and then passed through the upper layer and pulled up. Was sprayed at a flow rate of 2 m / sec, and excess solder was blown off and removed so that the finished thickness of the solder precoat film on the pad portion was 5 μm.

評価試験は、外観については、顕微鏡(X20〜100倍)でブリッジやミッシング(はんだ不着)の有無を観察した。
上記各比較例および実施例の鉛フリーはんだ中の銅濃度、不純物濃度については、比較例1〜5、実施例1〜5の各試作実験に先立ち使用直前のはんだをサンプリングし、最新のTOF−SIMS分析装置により表面から深さ10μmの内部までの酸素濃度を測定した。
また、実施例1〜5、及び比較例1〜5の加熱エージング後の半導体装置の半田接合部のボイド観察試料および耐衝撃性試験試料の作成には、各試料に対応するバーンイン試験用プリント回路基板を使用して、実施例1〜5及び比較例1〜5の各試料1を搭載してリフロー炉ではんだ接合して評価用試料として評価試験に供した。
はんだ接合部界面付近のボイド有無の評価方法は、評価試験用試料を常態と、恒温加熱炉に150℃、240時間放置して加熱エージング加速試験後について、それぞれ半田接合部断面を研磨して、走査電子顕微鏡(SEM)及びX線マイクロアナライザー(EPMA)により、該半田接合部付近のマイクロボイドの数と大きさを観察ならびに分析し比較した。
また、同一条件下で同時に加熱エージング加速試験した上記実施例1,2及び比較例1,2、3の各試料1のBGA側のはんだ接合部界面付近のボイド有無の評価方法として、評価試験用試料を常態と、恒温加熱炉に150℃、240時間放置して加熱エージング加速試験後について、それぞれ半田接合部断面を研磨して、走査電子顕微鏡(SEM)及びX線マイクロアナライザー(EPMA)により、該半田接合部付近のマイクロボイドの数と大きさを観察ならびに分析し比較した。
一方、同一条件下で同時に加熱エージング加速試験をした上記実施例1,2、3および比較例1,2、3の試料を、市販のBGA等電子デバイス部品用全自動落下試験装置を用い、JEDEC(Joint Electron Device Engineering Council)規格のNo.22−B111に準じて高さ1000mmから約1300Gで繰り返し落下させて、その都度各試験試料の導通試験を行い、導通不良が発生するまでの落下試験回数を調べた。(表1)
In the evaluation test, the appearance was observed with a microscope (X20 to 100 times) for the presence of bridges and missing (solder-free).
For the copper concentration and impurity concentration in the lead-free solders of the above comparative examples and examples, the solders immediately before use were sampled prior to each prototype experiment of comparative examples 1 to 5 and examples 1 to 5, and the latest TOF- The oxygen concentration from the surface to the inside of a depth of 10 μm was measured by a SIMS analyzer.
In addition, in the production of the void observation sample and the impact resistance test sample of the solder joint portion of the semiconductor device after the heat aging of Examples 1 to 5 and Comparative Examples 1 to 5, a printed circuit for burn-in test corresponding to each sample Each sample 1 of Examples 1-5 and Comparative Examples 1-5 was mounted using the board | substrate, and it solder-joined with the reflow furnace, and used for the evaluation test as a sample for evaluation.
The evaluation method for the presence or absence of voids in the vicinity of the solder joint interface is that the sample for the evaluation test is in a normal state and left in a constant temperature heating furnace at 150 ° C. for 240 hours, and after the heating aging acceleration test, the solder joint cross section is polished, Using a scanning electron microscope (SEM) and an X-ray microanalyzer (EPMA), the number and size of microvoids near the solder joint were observed, analyzed, and compared.
In addition, as an evaluation method for evaluating the presence or absence of voids near the solder joint interface on the BGA side of each of the samples 1 of Examples 1 and 2 and Comparative Examples 1, 2 and 3 that were simultaneously subjected to the heat aging acceleration test under the same conditions, The sample was left in a constant temperature oven at 150 ° C. for 240 hours and after the heat aging acceleration test, the solder joint cross section was polished, respectively, by a scanning electron microscope (SEM) and an X-ray microanalyzer (EPMA), The number and size of microvoids near the solder joint were observed and analyzed for comparison.
On the other hand, the samples of Examples 1, 2, 3 and Comparative Examples 1, 2, 3 which were subjected to the heat aging acceleration test under the same conditions at the same time were subjected to JEDEC using a commercially available fully automatic drop test apparatus for electronic device parts such as BGA. (Joint Electron Device Engineering Council) No. According to 22-B111, the test piece was repeatedly dropped from a height of 1000 mm to about 1300 G, and a continuity test of each test sample was performed each time, and the number of drop tests until a continuity failure occurred was examined. (Table 1)

その結果は下記[表1]の通り、特に、微細回路である試料2におけるはんだ形成部の外観検査において、実施例1と、比較例1及び比較例3との間、実施例2と比較例2との間のいずれにも明確な有意差があり、比較例1,2,3ではオーバーボリューム(ツノ、ツララ)、ブリッジ、ミッシング(はんだ未着)が多発した。
一方、比較的広幅の回路である試料1におけるはんだ膜厚は、本発明方法である実施例1〜5が5±2μm、または15±3μmの範囲に入っているのに対して比較例1〜5はいずれも1〜32μmで圧倒的に厚さのばらつきが大きく不均一であることが判った。
The results are as shown in [Table 1] below. In particular, in the appearance inspection of the solder forming portion in the sample 2 which is a fine circuit, between Example 1 and Comparative Examples 1 and 3, Example 2 and Comparative Example There was a clear significant difference in any of 2 and 2 in Comparative Examples 1, 2 and 3, over volume (horn, tsura), bridge, missing (solder not applied) occurred frequently.
On the other hand, the film thickness of the solder in sample 1 which is a relatively wide circuit is in the range of 5 ± 2 μm or 15 ± 3 μm in Examples 1 to 5 which are the method of the present invention, but in Comparative Examples 1 to 5. 5 was 1 to 32 μm, and it was found that the variation in thickness was overwhelming and non-uniform.

更に、使用したはんだ中の酸素濃度とカーケンダルボイド(マイクロボイド)の関係について、比較例、実施例とも常態においては、比較例及び実施例とも全くマイクロボイドもないことを確認した上で、加熱エージング(150℃、240時間)を行ったが、表2の通り、比較例1〜3と、酸素濃度を10ppm以下に調整したはんだを使用した比較例4,5、6とも加熱エージング後にはカーケンダルボイドが多発し、耐衝撃性が低いことが判った。
これに対して、本発明である実施例では、酸素濃度が高いはんだを使用した実施例1、2ではカーケンダルボイドの発生が若干見られたが、比較例1〜5に較べると、発生数は圧倒的に少なく、かつボイドの大きさも小さいために、耐衝撃性は実用上で殆ど問題ないレベルであることが判った。
一方、酸素濃度を5ppm以下に調整したはんだを使用した実施例4〜8では、明らかに溶融はんだの粘性が一段と低くなり、所謂「はんだ切れ」が良くなり、カーケンダルボイドの発生は激減する。酸素濃度を2ppm以下にした実施例5〜8では加熱エージング後のカーケンダルボイド発生を皆無に出来ることが検証された。物理化学的な物性上の変曲点(臨界点)が酸素濃度5ppm付近にあると推定される。
Furthermore, with respect to the relationship between the oxygen concentration in the solder used and the Kirkendall void (microvoid), it was confirmed that there were no microvoids in both the comparative example and the example in the normal state of the comparative example and the example. Aging (150 ° C., 240 hours) was performed, but as shown in Table 2, Comparative Examples 1 to 3 and Comparative Examples 4, 5, and 6 using a solder whose oxygen concentration was adjusted to 10 ppm or less were used after heating aging. It was found that Kendall voids occurred frequently and the impact resistance was low.
In contrast, in the examples of the present invention, the occurrence of Kirkendall voids was slightly observed in Examples 1 and 2 using a solder having a high oxygen concentration, but the number of occurrences compared to Comparative Examples 1 to 5 Is overwhelmingly small and the size of the void is small, it was found that the impact resistance is at a level that is practically no problem.
On the other hand, in Examples 4 to 8 using the solder whose oxygen concentration is adjusted to 5 ppm or less, the viscosity of the molten solder is clearly lowered further, so-called “solder breakage” is improved, and the generation of Kirkendall void is drastically reduced. In Examples 5 to 8 in which the oxygen concentration was 2 ppm or less, it was verified that the generation of Kirkendall voids after heat aging could be eliminated. It is presumed that the inflection point (critical point) in physical and chemical properties is in the vicinity of an oxygen concentration of 5 ppm.

これは、はんだ接合界面に付近に多量の酸素または銅酸化物が存在すると、加熱エージング中において、はんだ被覆層内で原子拡散による次の反応に従い、体積集収縮が発生してボイドになると考えられる。(仮説)
即ち、カーケンダルボイドは一般に格子欠陥に起因する空隙と云われているが、加熱エージング後のカーケンダルボイド(マイクロボイド)は図11〜12に模式的に示したように酸化銅31の酸素が錫33と結合して酸化第一錫32と銅34になるケース1、即ち、
CuO+Sn→Cu+SnO
により約1.5%の体積収縮が生ずることによりマイクロボイド(空隙)36が発生するケース、または図12に模式的に示したように酸化銅31と酸化第一錫32が銅34と酸化第二錫35になるケース2、即ち
CuO+SnO→Cu+SnO
により約15%の堆積収縮を生ずることによりマイクロボイド(空隙)36が発生するものと発明者らは考えている(仮説)。また、ニッケル含有鉛フリーはんだにゲルマニウムを添加した場合は錫の酸化抑制効果が大きいので加熱エージング後のマイクロボイドと耐衝撃破断性改善の効果もより大きいと考えられる。
このことは、はんだ接合の際に如何に酸素を巻き込まないようにすることが大事かを示唆している。即ち、従来法のように大気中で沸騰状態のフラックスの飛散により、酸素を巻き込みはんだ中の金属及びパッドの金属表面に酸化物が取り込まれることが、比較例1〜5のカーケンダルボイド大量発生を引き起こした原因と考える。
また、耐衝撃性試験結果は表2の通り、比較例1〜6がいずれも1〜4回で導通不良を発生するのに対して、実施例1〜8とも40回でも全く不良を発生しないことが確認された。尚、衝撃試験は40回で一応打ち切ったので、それ以上どこまで正常性を保持できるかは未確認である。その理由は40回も持てば実用上、信頼性として充分なことに因る。
This is thought to be due to the presence of a large amount of oxygen or copper oxide in the vicinity of the solder joint interface. . (hypothesis)
In other words, Kirkendall voids are generally said to be voids due to lattice defects, but Kirkendall voids (microvoids) after heat aging are caused by oxygen in the copper oxide 31 as schematically shown in FIGS. Case 1 which is combined with tin 33 to form stannous oxide 32 and copper 34, that is,
CuO + Sn → Cu + SnO
The case in which microvoids (voids) 36 are generated due to volume shrinkage of about 1.5% due to the above, or, as schematically shown in FIG. Case 2 which becomes tantalum 35, that is, CuO + SnO → Cu + SnO 2
The inventors consider that microvoids (voids) 36 are generated by causing a deposition shrinkage of about 15% due to (a hypothesis). In addition, when germanium is added to nickel-containing lead-free solder, the effect of suppressing tin oxidation is great, so the effect of improving microvoids and impact rupture resistance after heat aging is considered to be greater.
This suggests how important it is to prevent oxygen from being involved during soldering. That is, a large amount of Kirkendall voids of Comparative Examples 1 to 5 that oxygen is entrained by the scattering of flux in a boiling state in the atmosphere as in the conventional method, and oxides are taken into the metal in the solder and the metal surface of the pad. I think it was the cause.
In addition, as shown in Table 2, the impact resistance test results are as shown in Table 2. In each of Comparative Examples 1 to 6, a failure in conduction occurs in 1 to 4 times, whereas in Examples 1 to 8, no failure occurs even in 40 times. It was confirmed. In addition, since the impact test was temporarily stopped after 40 times, it is unconfirmed to what extent the normality can be maintained. The reason is that if it has 40 times, it is practically sufficient for reliability.

尚、前記実施例では、対象として電子回路基板としてBGAとそれに対応するバーンインテスト用プリント回路基板を使用したが、それ以外の電子回路基板でも同様の効果が得られることは容易に類推できるし、超ミニトランジスタ、超ミニダイオード、ミニコンデンサなどの微小な電子部品は多列多数個取りでマトリックス状に連結して配列したリードフレーム条帯、短冊などの電子部品連結体、あるいは線棒または板状保持体に整列配列した電子部品配列体に本発明の方法ではんだ被膜またははんだプリコート被膜を形成させても、同じ効果が得られることは容易に類推される。従って、これらは本発明の範囲内である。
また、コイル状に巻いた微小な電子部品は多列多数個取りでマトリックス状に連結して配列したリードフレーム条帯は、本発明方法ではその移動処理と連続送りまたは間欠送りなどして処理することが出来る。
In addition, in the said Example, although BGA and the printed circuit board for a burn-in test corresponding to it as an electronic circuit board were used as object, it can be easily analogized that the same effect is acquired also in other electronic circuit boards, Small electronic components such as ultra-mini transistors, ultra-mini diodes, mini capacitors, etc. are connected to each other in a matrix with multiple rows and rows of electronic components, such as lead frame strips and strips, or wire rods or plates. It can be easily inferred that the same effect can be obtained even if a solder coating or a solder precoat coating is formed by the method of the present invention on the electronic component array aligned on the holder. Therefore, these are within the scope of the present invention.
In addition, the lead frame strips arranged in a matrix with multiple rows of multi-row electronic components wound in a coil shape are processed by the moving method and continuous feeding or intermittent feeding in the method of the present invention. I can do it.

Figure 0004665071
Figure 0004665071

Figure 0004665071
Figure 0004665071

産業上の利用の可能性Industrial applicability

以上の通り、本発明は、従来法ならびにそれに類する先行技術の難点である、微細回路のはんだプリコート皮膜形成時のブリッジの問題、フラックス成分を含有するが故の接合界面やはんだ層内に所謂マイクロボイド(微小な気泡や空隙)発生現象を回避し、経時的接続信頼性の問題、腐食性の問題、更には長期高温暴露後に経時的に発生するカーケンダルボイドの問題を解決するもので、パッドまたはリード幅0.02〜0.08mm、隣接ピッチ0.04〜0.12mmの微細狭ピッチ電子回路に3〜20μmの厚さ範囲で厚さのばらつきが±3μ以内の錫またははんだプリコート皮膜形成をも、安定的に量産可能にする技術を提供するものであり、工業的価値が極めて高い画期的な技術である。  As described above, the present invention is a problem of the conventional method and similar prior art, such as a bridge problem when forming a solder precoat film of a fine circuit, a so-called micro-layer in a joint interface or a solder layer because it contains a flux component. It avoids the phenomenon of voids (small bubbles and voids), solves the problem of connection reliability over time, the problem of corrosiveness, and the problem of Kirkendall voids that occur over time after long-term high temperature exposure. Alternatively, a tin or solder precoat film having a thickness variation of ± 3 μm within a thickness range of 3 to 20 μm is formed on a fine narrow pitch electronic circuit having a lead width of 0.02 to 0.08 mm and an adjacent pitch of 0.04 to 0.12 mm. Is a groundbreaking technology that has a very high industrial value.

1 電子回路基板または電子部品連結体(ワーク)
2 ホットエアーレベラー(HAL)装置のノズル
3 高温の有機脂肪酸溶液吹付け用ノズル
4 高温の有機脂肪酸溶液
5 溶融錫液または溶融はんだ液
6 高温の有機脂肪酸溶液移送用ポンプ
7 高温の有機脂肪酸溶液吹付け用ノズル
8 リバースロール
9 バッフル
10 有機脂肪酸溶液貯槽
11 有機脂肪酸溶液(上層)と溶融錫液または溶融はんだ液(下層)用貯槽
12 有機脂肪酸溶液(上層)と溶融錫液または溶融はんだ液(下層)用貯槽
13 自動制御式3次元移動装置(ロボット)に取り付けられたロボットアーム
14 電子回路基板または電子部品連結体をロボットアーム先端部に取付けて固定する枠状専用ホルダー
15 パイロットピン
16 超音波発振機付き溶融錫または溶融はんだ微粒子発生装置
17 散布される溶融錫微粒子または溶融はんだ微粒子
18 溶融錫液または溶融はんだ液移送用ポンプ
19 超音波出力ケーブル
20 超音波振動子
21 冷却用フィンブースター
22 保持用ブースター
23 超音波ホーン
24 溶融錫または溶融はんだ液供給用管路
25 溶融錫または溶融はんだ噴射ノズル
26 電極パッドまたはリード
27 はんだレジスト
28 開口部
29 溶融錫微粒子または溶融はんだ微粒子が電極パッドまたはリード表面に付着接合し、かつ複数の微粒子同志が凝集結合して形成された錫またははんだ皮膜層
30 電極パッドまたはリード表面に接合した溶融錫微粒子またははんだ微粒子が融合して形成された溶融はんだ層
31 酸化銅 CuO
32 酸化第一錫 SnO
33 錫 Sn
34 銅 Cu
35 酸化第二錫 SnO
36 カーケンダルボイド(マイクロボイド・空隙)
37 有機脂肪酸溶液と溶融錫液または溶融はんだ液の貯槽
38 溶融錫液または溶融はんだ液次付けノズル
39 有機脂肪酸溶液と溶融錫液または溶融はんだ液吹付け後の溢流(オーバーフロー)液(混合液)
40 溢流混合液39を受ける金属製の受皿樋
41 撹拌器
42 有機脂肪酸溶液と溶融錫液または溶融はんだ液の混合液
43 バルブ
44 細かいメッシュの金網を持つ篩または市販の粉末散布装置
45 銅パットまたは銅リード
46 錫銀、錫銅などの金属間化合物(IMC)の偏析物
47 錫銅ニッケルの金属間化合物(IMC)層
48 鉛フリーはんだ層
49 錫銅ニッケル金属間合金層
50 錫ニッケル層金属間合金層
51 ガラスエポキシ基板
1 Electronic circuit board or electronic component assembly (work)
2 Hot air leveler (HAL) nozzle 3 High temperature organic fatty acid solution spray nozzle 4 High temperature organic fatty acid solution 5 Molten tin solution or molten solder solution 6 High temperature organic fatty acid solution transfer pump 7 High temperature organic fatty acid solution spray Nozzle for attaching 8 Reverse roll 9 Baffle 10 Organic fatty acid solution storage tank 11 Organic fatty acid solution (upper layer) and storage tank for molten tin or molten solder liquid (lower layer) 12 Organic fatty acid solution (upper layer) and molten tin or molten solder liquid (lower layer) ) Storage tank 13 Robot arm 14 attached to an automatically controlled three-dimensional movement device (robot) A frame-shaped dedicated holder 15 for attaching and fixing an electronic circuit board or a connected electronic component to the tip of the robot arm 15 Pilot pin 16 Ultrasonic oscillation Molten tin or molten solder fine particle generator 17 equipped with a machine 17 Molten solder fine particles 18 Molten tin liquid or molten solder liquid transfer pump 19 Ultrasonic output cable 20 Ultrasonic vibrator 21 Cooling fin booster 22 Holding booster 23 Ultrasonic horn 24 Molten tin or molten solder liquid supply line 25 Melting Tin or molten solder injection nozzle 26 Electrode pad or lead 27 Solder resist 28 Opening 29 Tin formed by adhering and bonding molten tin fine particles or molten solder fine particles to the electrode pad or lead surface, and a plurality of fine particles cohesively bonded together Alternatively, the solder coating layer 30 is a molten solder layer 31 formed by fusing molten tin fine particles or solder fine particles bonded to the electrode pad or lead surface. Copper oxide CuO
32 stannous oxide SnO 2
33 Tin Sn
34 Copper Cu
35 stannic oxide SnO
36 Kirkendal void (micro void, void)
37 Organic Fatty Acid Solution and Molten Tin Solution or Molten Solder Solution Reservoir 38 Molten Tin Solution or Molten Solder Solution Subsequent Nozzle 39 Organic Fatty Acid Solution and Molten Tin Solution or Overflow Liquid After Mixing (Mixed Solution) )
40 Metal receiving bowl 41 receiving overflow mixed liquid 39 Stirrer 42 Mixed liquid of organic fatty acid solution and molten tin liquid or molten solder liquid 43 Valve 44 Sieve with fine mesh wire net or commercially available powder spreader 45 Copper pad Or copper lead 46 segregated material of intermetallic compound (IMC) such as tin silver and tin copper 47 intermetallic compound (IMC) layer of tin copper nickel 48 lead-free solder layer 49 tin copper nickel intermetallic alloy layer 50 tin nickel layer metal Intermetallic layer 51 Glass epoxy board

Claims (11)

電子回路基板又は電子部品の微小面積の電極パッド又は狭ピッチのリード表面に錫またははんだプリコート被膜を形成する方法において、
上層に加熱された高温の有機脂肪酸溶液が、下層に溶融錫液または溶融はんだ液がそれぞれ入った貯槽を備えた処理装置の前記上層中で前記電子回路基板又は前記電子部品を水平または傾斜させて前記有機脂肪酸溶液と接触させ、前記電極パッド又は前記リード表面に前記有機脂肪酸の保護被膜を形成した後、前記上層中で前記有機脂肪酸溶液と接触させた状態で、直上に設置された溶融錫液または溶融はんだ粒子を散布し、前記電極パッド又は前記リード表面に前記溶融錫または溶融はんだを接着し、次いで、前記電子回路基板又は前記電子部品を前記下層の前記溶融錫液または溶融はんだ液に浸漬して前記電極パッド又は前記リード表面に錫またははんだ被膜を形成する第1のステップと、
第1のステップによりまたははんだ被膜の形成された前記電子回路基板又は前記電子部品を前記上層を通過させて引き上げながら、表面に加熱した有機脂肪酸溶液を吹付けて余剰に付着した前記錫またははんだ被膜を吹き落し除去する第2のステップと、を具備し、
前記電極パッド又は前記リード表面に均一な錫またははんだプリコート被膜を形成することを特徴とする方法。
In a method for forming a tin or solder precoat film on an electrode pad or a narrow pitch lead surface of an electronic circuit board or electronic component,
A high-temperature organic fatty acid solution heated in an upper layer is formed by horizontally or tilting the electronic circuit board or the electronic component in the upper layer of a processing apparatus having a storage tank containing a molten tin solution or a molten solder solution in a lower layer. After the contact with the organic fatty acid solution and forming the protective film of the organic fatty acid on the electrode pad or the lead surface, the molten tin solution placed immediately above the organic fatty acid solution in the state of contact with the organic fatty acid solution in the upper layer Alternatively, molten solder particles are dispersed, and the molten tin or molten solder is adhered to the electrode pad or the lead surface, and then the electronic circuit board or the electronic component is immersed in the molten tin liquid or molten solder liquid in the lower layer. Forming a tin or solder film on the electrode pad or the lead surface;
The tin or solder adhered excessively by spraying a heated organic fatty acid solution on the surface while pulling up the electronic circuit board or the electronic component on which tin or a solder coating is formed in the first step through the upper layer A second step of blowing off and removing the coating;
A method of forming a uniform tin or solder precoat film on the electrode pad or the lead surface.
前記請求項1に記載の方法において、前記均一な錫またははんだプリコート被膜は、厚さが3〜30μmで、厚さのばらつきが5μm以下であることを特徴とする錫またははんだプリコート被膜の形成方法。  2. The method for forming a tin or solder precoat film according to claim 1, wherein the uniform tin or solder precoat film has a thickness of 3 to 30 [mu] m and a thickness variation of 5 [mu] m or less. . 前記請求項2に記載の方法において、前記有機脂肪酸溶液は、パルミチン酸またはステアリン酸5〜80質量%と残部エステル合成油とからなることを特徴とする錫またははんだプリコート被膜の形成方法。  3. The method according to claim 2, wherein the organic fatty acid solution comprises 5-80% by mass of palmitic acid or stearic acid and the remaining ester synthetic oil. 前記請求項2に記載の方法において、前記溶融錫または前記溶融はんだ粒子の散布は、噴射ノズル部を通過する溶融錫液または溶融はんだ液に直接超音波振動を与えることにより微粒子化して散布することを特徴とする錫またははんだプリコート被膜の形成方法。  3. The method according to claim 2, wherein the molten tin or the molten solder particles are dispersed by applying ultrasonic vibration directly to the molten tin liquid or the molten solder liquid that passes through the spray nozzle portion. A method for forming a tin or solder precoat film. 前記請求項2に記載の方法において、前記溶融錫液または前記溶融はんだ液は、ニッケル0.005〜0.1質量%と、ゲルマニウム0.001〜0.05質量%またはリン0.003〜0.01質量%のいずれか1種以上と、残部錫からなることを特徴とするはんだプリコート被膜の形成方法。  3. The method according to claim 2, wherein the molten tin solution or the molten solder solution contains 0.005 to 0.1 mass% nickel, 0.001 to 0.05 mass% germanium, or 0.003 to 0 phosphorus. A method for forming a solder precoat film, comprising: one or more of 0.01% by mass and the balance tin. 前記請求項2に記載の方法において、前記溶融錫液または前記溶融はんだ液は、錫42質量%、ビスマス58質量%の錫ビスマス母合金に、ニッケル0.005〜0.1質量%と、ゲルマニウム0.001〜0.05質量%またはリン0.003〜0.01質量%のいずれか1種以上とを添加してなることを特徴とするはんだプリコート被膜の形成方法。  3. The method according to claim 2, wherein the molten tin solution or the molten solder solution is composed of a tin bismuth master alloy of 42% by mass of tin and 58% by mass of bismuth, 0.005 to 0.1% by mass of nickel, and germanium. A method for forming a solder precoat film, comprising adding at least one of 0.001 to 0.05 mass% or 0.003 to 0.01 mass% of phosphorus. 電子回路基板又は電子部品の微小面積の電極パッド又は狭ピッチのリード表面に錫またははんだプリコート被膜を形成するための装置であって、
上層に加熱された有機脂肪酸溶液が、下層に溶融錫液または溶融はんだ液がそれぞれ入った貯槽を備えた処理装置と、
前記電子回路基板又は前記電子部品を把持して前記貯槽に出入りさせる移送装置と、
前記貯槽の前記上層において、前記電子回路基板又は前記電子部品の直上に設置され、前記電子回路基板又は前記電子部品を前記有機脂肪酸溶液と接触させた状態で、前記電極パッド又は前記リード表面に前記溶融錫または溶融はんだを付着させる散布装置と、
前記散布装置により電子回路基板又は電子部品の電極パッド又はリード表面に錫またははんだを付着させた後に、下層の溶融錫液または溶融はんだ液に浸漬して前記電極パッド又は前記リード表面に錫またははんだ被膜の形成された前記電子回路基板又は前記電子部品の表面に加熱した有機脂肪酸溶液を吹付けて余剰に付着した前記錫またははんだ被膜を吹き落し除去する除去装置と、を具備したことを特徴とする装置。
An apparatus for forming a tin or solder precoat film on a small area electrode pad or a narrow pitch lead surface of an electronic circuit board or electronic component,
An organic fatty acid solution heated in the upper layer, a processing apparatus including a storage tank containing a molten tin solution or a molten solder solution in the lower layer, and
A transfer device for gripping the electronic circuit board or the electronic component to enter and exit the storage tank;
In the upper layer of the storage tank, the electronic circuit board or the electronic component is placed immediately above the electronic circuit board or the electronic component in the state where the electronic circuit board or the electronic component is in contact with the organic fatty acid solution. A spraying device for depositing molten tin or molten solder;
After tin or solder is attached to the electrode pad or lead surface of an electronic circuit board or electronic component by the spraying device, the tin or solder is immersed in the lower layer of molten tin solution or molten solder solution and then immersed in the electrode pad or lead surface. A removal device for spraying and removing the excessively adhered tin or solder film by spraying a heated organic fatty acid solution on the surface of the electronic circuit board or the electronic component on which the film is formed. Equipment.
前記請求項7に記載の装置において、前記上層の有機脂肪酸溶液は、パルミチン酸またはステアリン酸5〜80質量%と、残部エステル合成油とからなることを特徴とする錫またははんだプリコート被膜形成装置。  8. The tin or solder precoat film forming apparatus according to claim 7, wherein the upper organic fatty acid solution comprises 5 to 80% by mass of palmitic acid or stearic acid and the remaining ester synthetic oil. 前記請求項7に記載の装置において、前記下層の溶融錫または溶融はんだ液は、ニッケル 0.005〜0.1質量%と、ゲルマニウム 0.001〜0.05質量%またはリン 0.003〜0.01質量%と、残部錫とからなることを特徴とする錫またははんだプリコート被膜形成装置。  8. The apparatus according to claim 7, wherein the molten tin or molten solder liquid of the lower layer contains 0.005 to 0.1 mass% nickel, 0.001 to 0.05 mass% germanium, or 0.003 to 0 phosphorus. A tin or solder precoat film forming apparatus comprising 0.01 mass% and the balance of tin. 前記請求項7に記載の装置において前記溶融錫または溶融はんだを付着させる散布装置は、ノズルから溶融錫液または溶融はんだ液を超音波振動により微粒子化して散布することを特徴とする錫またははんだプリコート被膜形成装置。  8. The tin or solder precoat according to claim 7, wherein the spraying device for adhering the molten tin or the molten solder is sprayed by atomizing the molten tin solution or the molten solder solution from a nozzle by ultrasonic vibration. Film forming device. 前記請求項7に記載の装置において、前記移送装置は、
前記電子回路基板又は前記電子部品をパイロットピンを介して固定する枠状治具と、前記枠状治具をロボットアームに取付け三次元移動搬送させる自動制御装置と、を備えることを特徴とする錫またははんだプリコート被膜形成装置。
8. The apparatus of claim 7, wherein the transfer device is
A tin comprising: a frame-shaped jig for fixing the electronic circuit board or the electronic component via a pilot pin; and an automatic control device for attaching the frame-shaped jig to a robot arm and moving it three-dimensionally. Or a solder precoat film forming apparatus.
JP2010111497A 2010-04-22 2010-04-22 Method and apparatus for forming tin or solder precoat film Active JP4665071B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111497A JP4665071B1 (en) 2010-04-22 2010-04-22 Method and apparatus for forming tin or solder precoat film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111497A JP4665071B1 (en) 2010-04-22 2010-04-22 Method and apparatus for forming tin or solder precoat film

Publications (2)

Publication Number Publication Date
JP4665071B1 true JP4665071B1 (en) 2011-04-06
JP2011228608A JP2011228608A (en) 2011-11-10

Family

ID=44021683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111497A Active JP4665071B1 (en) 2010-04-22 2010-04-22 Method and apparatus for forming tin or solder precoat film

Country Status (1)

Country Link
JP (1) JP4665071B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148634A1 (en) * 2013-03-21 2014-09-25 株式会社谷黒組 Soldering device and method, and manufactured substrate and electronic component
KR101702171B1 (en) * 2012-04-14 2017-02-02 가부시키가이샤 다니구로구미 Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
KR101704868B1 (en) * 2012-04-16 2017-02-08 가부시키가이샤 다니구로구미 Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
CN113783075A (en) * 2021-09-07 2021-12-10 浙江理工大学上虞工业技术研究院有限公司 Multi-station in-line stator pin aluminum wire soldering method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5573341B2 (en) * 2010-05-07 2014-08-20 Tdk株式会社 Manufacturing method of electronic parts
JP5692170B2 (en) 2012-06-11 2015-04-01 千住金属工業株式会社 Molten solder thin film coating apparatus, thin film solder coated member, and manufacturing method thereof
TW201524288A (en) * 2013-12-11 2015-06-16 Microcosm Technology Co Ltd Coating device and coating method
KR102024640B1 (en) * 2019-08-08 2019-09-24 주식회사 도성하이텍 Device for soldering while cooling tin

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252542A (en) * 1993-02-25 1994-09-09 Sharp Corp Method for forming solder layer
JPH0864943A (en) * 1994-08-17 1996-03-08 Tdk Corp Dispersion soldering method
JP2001196728A (en) * 2000-01-11 2001-07-19 Toshiba Chem Corp Method for producing printed wiring board, and plating apparatus for interlayer contact hole of printed wiring board
JP4203281B2 (en) * 2002-08-09 2008-12-24 日本ジョイント株式会社 Surface treatment method
JP4844842B2 (en) * 2007-10-25 2011-12-28 ホライゾン技術研究所株式会社 Printed circuit board and printed circuit board surface treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101702171B1 (en) * 2012-04-14 2017-02-02 가부시키가이샤 다니구로구미 Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
KR101704868B1 (en) * 2012-04-16 2017-02-08 가부시키가이샤 다니구로구미 Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
WO2014148634A1 (en) * 2013-03-21 2014-09-25 株式会社谷黒組 Soldering device and method, and manufactured substrate and electronic component
US9686871B2 (en) 2013-03-21 2017-06-20 Tanigurogumi Corporation Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
CN113783075A (en) * 2021-09-07 2021-12-10 浙江理工大学上虞工业技术研究院有限公司 Multi-station in-line stator pin aluminum wire soldering method
CN113783075B (en) * 2021-09-07 2024-02-06 浙江理工大学上虞工业技术研究院有限公司 Multi-station in-line stator pin aluminum wire soldering method

Also Published As

Publication number Publication date
JP2011228608A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP4665071B1 (en) Method and apparatus for forming tin or solder precoat film
US6280858B1 (en) Substrate with solder alloy for mounting electronic parts
KR0124924B1 (en) Method of forming a solder layer on pads of a circuit and method of mounting an electric part on a circuit board
JP5129898B1 (en) Parts having electrode corrosion prevention layer and manufacturing method thereof
WO2011018861A1 (en) Solder precoat film forming method and device therefor
EP2840596B1 (en) Forming method of solder bumps and manufacturing method for substrate having solder bumps
Pecht Soldering processes and equipment
WO2010089905A1 (en) Process and apparatus for producing tin or solder alloy for electronic part and solder alloy
JP2002248596A (en) Leadless solder ball excellent in oxidation resistance
EP2671661B1 (en) Soldering device and method, and manufactured substrate and electronic component
KR101704868B1 (en) Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
KR20050062646A (en) Method for supplying solder
JP2011211137A (en) Semiconductor device and method of manufacturing the same, and electronic device and method of manufacturing the same
Gupte et al. Innovative socketable and surface-mountable BGA interconnections
WO2012060022A1 (en) Method for forming tin or solder coat film and device therefor
Gupte et al. Effect of solder paste volume and reflow parameters on solder paste wicking and joint shear strength of Ni–Au-coated Cu spheres
JP2011040696A (en) Forming method of solder bump and device of the same
JP2011114334A (en) Solder coat film forming method and device therefor
JP6076698B2 (en) Parts with electrode corrosion prevention layer
JP4112946B2 (en) Lead-free bonding material, solder paste and bonding method
JP4485604B1 (en) Manufacturing method, manufacturing apparatus, and solder alloy for tin or solder alloy for electronic parts
Ejiri et al. Solder ball joint reliability with electroless Ni/Pd/Au plating-influence of electroless Pd deposition reaction process and electroless Pd film thickness
JP2011029567A (en) Method of forming solder bump, and device therefor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4665071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250