JP2011210694A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2011210694A JP2011210694A JP2010175854A JP2010175854A JP2011210694A JP 2011210694 A JP2011210694 A JP 2011210694A JP 2010175854 A JP2010175854 A JP 2010175854A JP 2010175854 A JP2010175854 A JP 2010175854A JP 2011210694 A JP2011210694 A JP 2011210694A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- secondary battery
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、正極活物質を含む正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備えた非水電解質二次電池に関するものである。特に、正極活物質にリチウム含有遷移金属複合酸化物を用いた非水電解質二次電池において、このリチウム含有遷移金属複合酸化物を改良し、低い温度領域での出力特性を向上させた点に特徴を有するものである。 The present invention relates to a nonaqueous electrolyte secondary battery including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a nonaqueous electrolytic solution in which a solute is dissolved in a nonaqueous solvent. In particular, in non-aqueous electrolyte secondary batteries using a lithium-containing transition metal composite oxide as the positive electrode active material, this lithium-containing transition metal composite oxide has been improved to improve output characteristics in a low temperature range. It is what has.
近年、携帯電話、ノートパソコン、PDA等のモバイル機器の小型化・軽量化が著しく進行しており、また多機能化に伴って消費電力も増加しており、これらの電源として使用される非水電解質二次電池においても、軽量化及び高容量化の要望が高まっている。 In recent years, mobile devices such as mobile phones, notebook computers, and PDAs have been remarkably reduced in size and weight, and power consumption has increased with the increase in functionality. Also in the electrolyte secondary battery, there is an increasing demand for light weight and high capacity.
また、近年においては、モバイル機器が様々な分野で使用されるようになり、その使用環境も様々であり、幅広い温度範囲で安定した電池特性が求められている。 In recent years, mobile devices have been used in various fields, and their usage environments are also various, and stable battery characteristics are required over a wide temperature range.
ここで、上記の非水電解質二次電池においては、その正極における正極活物質として、一般にリチウム含有遷移金属複合酸化物が使用されている。 Here, in the non-aqueous electrolyte secondary battery, a lithium-containing transition metal composite oxide is generally used as a positive electrode active material in the positive electrode.
しかし、正極活物質にリチウム含有遷移金属複合酸化物を使用した非水電解質二次電池においては、リチウム含有遷移金属複合酸化物からなる正極活物質におけるリチウムイオンのインターカレーション性能が必ずしも十分であるとはいえず、特に、低温での出力特性が低下するという問題があった。 However, in a non-aqueous electrolyte secondary battery using a lithium-containing transition metal composite oxide as the positive electrode active material, the lithium ion intercalation performance in the positive electrode active material comprising the lithium-containing transition metal composite oxide is not always sufficient. However, there is a problem that the output characteristics at a low temperature are deteriorated.
そして、従来においては、特許文献1に示されるように、正極や負極における電極合剤層中に、比誘電率が12以上で強誘電性を有する無機化合物を含有させ、この無機化合物により電極合剤層中や電極近傍の非水電解液中における溶質のリチウム塩の解離度を高め、電極合剤層中におけるイオン伝導性を向上させるようにしたものが提案されている。 Conventionally, as shown in Patent Document 1, an electrode mixture layer in a positive electrode or a negative electrode contains an inorganic compound having a relative dielectric constant of 12 or more and having ferroelectricity. Proposals have been made to improve the ionic conductivity in the electrode mixture layer by increasing the dissociation degree of the solute lithium salt in the non-aqueous electrolyte solution in the agent layer or in the vicinity of the electrode.
しかし、このように電極合剤層中に、比誘電率が12以上で強誘電性を有する無機化合物を含有させた場合においても、依然として、非水電解質二次電池における低温での出力特性を十分に向上させることはできなかった。 However, even when the electrode mixture layer contains an inorganic compound having a relative dielectric constant of 12 or more and ferroelectricity, the output characteristics at low temperatures in the nonaqueous electrolyte secondary battery are still sufficient. It was not possible to improve it.
また、特許文献2においては、広い充電深度の範囲での充放電特性、特に、充電深度が高い状態での充電特性を改善させるものとして、リチウム含有コバルトニッケルマンガン複合酸化物からなる正極活物質の表面に、チタン含有酸化物であるTiO2を焼結させた正極活物質が提案されている。 Moreover, in patent document 2, as what improves the charge / discharge characteristic in the range of a wide charge depth, especially the charge characteristic in a state with a high charge depth, the positive electrode active material which consists of lithium containing cobalt nickel manganese complex oxide is mentioned. A positive electrode active material in which TiO 2 , which is a titanium-containing oxide, is sintered on the surface has been proposed.
しかし、このようにリチウム含有コバルトニッケルマンガン複合酸化物からなる正極活物質の表面に、チタン含有酸化物であるTiO2を焼結させた場合においても、非水電解質二次電池における低温での出力特性を十分に向上させることはできなかった。 However, even when TiO 2 , which is a titanium-containing oxide, is sintered on the surface of the positive electrode active material composed of the lithium-containing cobalt nickel manganese composite oxide, the output at a low temperature in the nonaqueous electrolyte secondary battery is achieved. The characteristics could not be improved sufficiently.
本発明は、正極活物質を含む正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備えた非水電解質二次電池において、正極活物質に用いるリチウム含有遷移金属複合酸化物を改良し、低い温度領域での出力特性を向上させることを課題とするものである。 The present invention is used as a positive electrode active material in a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte obtained by dissolving a solute in a non-aqueous solvent. An object of the present invention is to improve the lithium-containing transition metal composite oxide and improve the output characteristics in a low temperature range.
本発明においては、上記のような課題を解決するため、正極活物質を含む正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備えた非水電解質二次電池において、一般式LiaMebO2(式中Meは、Co,Ni,Mnから選択される1種類以上の元素を含む遷移金属であり、a,bは、0.9≦a/b≦1.2の条件を満たす。)で表されるリチウム含有遷移金属複合酸化物からなる正極活物質の表面に、比誘電率が500以上の強誘電体が焼結されたものを用いるようにした。 In the present invention, in order to solve the above-mentioned problems, a non-aqueous apparatus comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte solution in which a solute is dissolved in a non-aqueous solvent. In an electrolyte secondary battery, a general formula Li a Me b O 2 (wherein Me is a transition metal containing one or more elements selected from Co, Ni, and Mn, and a and b are 0.9 ≦ a / b ≦ 1.2 is satisfied.) On the surface of the positive electrode active material made of a lithium-containing transition metal composite oxide represented by (2), a ferroelectric material having a relative dielectric constant of 500 or more is sintered. I used it.
そして、本発明のように、上記のリチウム含有遷移金属複合酸化物からなる正極活物質の表面に、比誘電率が500以上の強誘電体を焼結させると、正極と負極との電位差により、正極活物質の表面に焼結された強誘電体において、非水電解液と接触する面は正に、正極活物質との界面は負に誘電される。このため、リチウムイオンは、強誘電体と接触する非水電解液中では斥力を、正極活物質中では引力を受けるようになり、低温環境下においても、界面反応が円滑に進むようになる。なお、上記のように正極活物質の表面に焼結された強誘電体において、非水電解液と接触する面が正に、正極活物質との界面が負に適切に誘電されて、上記の界面反応がより円滑に進むようにするためには、上記の正極活物質と強誘電体との比誘電率の差が大きいことが望ましく、このため、上記の強誘電体としては、その比誘電率が1000以上のものを用いることがより好ましい。 Then, as in the present invention, when a ferroelectric having a relative dielectric constant of 500 or more is sintered on the surface of the positive electrode active material composed of the above lithium-containing transition metal composite oxide, due to the potential difference between the positive electrode and the negative electrode, In the ferroelectric sintered on the surface of the positive electrode active material, the surface in contact with the non-aqueous electrolyte is positively dielectrically and the interface with the positive electrode active material is negatively dielectrically formed. For this reason, lithium ions are subjected to repulsive force in the non-aqueous electrolyte in contact with the ferroelectric and attractive force in the positive electrode active material, and the interfacial reaction proceeds smoothly even in a low temperature environment. In the ferroelectric material sintered on the surface of the positive electrode active material as described above, the surface in contact with the non-aqueous electrolyte is appropriately dielectrically negative and the interface with the positive electrode active material is appropriately dielectrically negatively charged. In order for the interfacial reaction to proceed more smoothly, it is desirable that the difference in relative dielectric constant between the positive electrode active material and the ferroelectric material is large. For this reason, the ferroelectric material has its relative dielectric constant. It is more preferable to use one having a rate of 1000 or more.
ここで、上記の比誘電率が500以上の強誘電体としては、例えば、BaTiO3、KNbO3、Cd2Nb2O7、(Na0.5Bi0.5)TiO3、Pb(Zr0.54Ti0.46)O3などが挙げられる。特に、これらの強誘電体の中でも、非電解液中における耐酸化性や高い比誘電率の点から、BaTiO3を用いることが望ましい。 Here, as the ferroelectric having the relative dielectric constant of 500 or more, for example, BaTiO 3 , KNbO 3 , Cd 2 Nb 2 O 7 , (Na 0.5 Bi 0.5 ) TiO 3 , Pb (Zr 0 .54 Ti 0.46 ) O 3 and the like. In particular, among these ferroelectrics, it is desirable to use BaTiO 3 from the viewpoint of oxidation resistance in a non-electrolytic solution and a high relative dielectric constant.
また、強誘電体としてBaTiO3を用いる場合、このBaTiO3に対して、Ca、Sr等のアルカリ土類金属元素や、Y、Nd、Sm、Dy等の希土類金属元素などが1種又は複数種添加されていてもよい。また、この高い比誘電率を得る上では、このBaTiO3におけるBaとTiとのモル比が約1であることが好ましい。 Further, when BaTiO 3 is used as the ferroelectric, one or more kinds of alkaline earth metal elements such as Ca and Sr and rare earth metal elements such as Y, Nd, Sm and Dy are used with respect to BaTiO 3 . It may be added. In order to obtain this high relative dielectric constant, it is preferable that the molar ratio of Ba to Ti in this BaTiO 3 is about 1.
また、上記の強誘電体の粒子径が大きくなって、上記のリチウム含有遷移金属酸化物からなる正極活物質の粒子径の1/5より大きくなると、リチウム含有遷移金属酸化物からなる正極活物質の表面に焼結される強誘電体の存在状態が粗な状態となり、上記のような作用効果が十分に得られなくなる。一方、この強誘電体の粒子径が小さくなると、その比誘電率が低下するため、強誘電体としては、その粒子径が100nm以上、5μm以下であるものを用いることが好ましく、より好ましくは、110nm以上、1μm以下のものを用いるようにする。 Further, when the particle size of the ferroelectric material is increased and becomes larger than 1/5 of the particle size of the positive electrode active material made of the lithium-containing transition metal oxide, the positive electrode active material made of the lithium-containing transition metal oxide The existence state of the ferroelectric material sintered on the surface becomes rough, and the above-described effects cannot be obtained sufficiently. On the other hand, when the particle size of the ferroelectric material is reduced, the relative dielectric constant is decreased. Therefore, it is preferable to use a ferroelectric material having a particle size of 100 nm or more and 5 μm or less. 110 nm or more and 1 μm or less are used.
また、上記の正極活物質において、上記のリチウム含有遷移金属複合酸化物に焼結させる強誘電体の量が少ないと、強誘電体による上記のような作用効果が十分に得られなくなる。一方、強誘電体の量が多くなりすぎると、強誘電体が非導電性物質であるため、正極における電子伝導性が低下する。このため、リチウム含有遷移金属酸化物からなる正極活物質1molに対する強誘電体の量を0.1mol%以上、5mol%以下にすることが好ましい。 Further, in the above positive electrode active material, if the amount of the ferroelectric material sintered into the lithium-containing transition metal composite oxide is small, the above-described operation effect by the ferroelectric material cannot be sufficiently obtained. On the other hand, if the amount of the ferroelectric is too large, since the ferroelectric is a non-conductive substance, the electron conductivity in the positive electrode is lowered. For this reason, it is preferable that the quantity of the ferroelectric with respect to 1 mol of positive electrode active materials which consist of a lithium containing transition metal oxide shall be 0.1 mol% or more and 5 mol% or less.
また、上記の一般式に示されるリチウム含有遷移金属複合酸化物からなる正極活物質においては、アルミ二ウム(Al)、チタン(Ti)、クロム(Cr)、バナジウム(V)、鉄(Fe)、銅(Cr)、亜鉛(Zn)、ニオブ(Nb)、モリブデン(Mo)、ジルコニウム(Zr)、錫(Sn)、タングステン(W)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)からなる群から選択される少なくとも一種が含まれていてもよい。 Moreover, in the positive electrode active material which consists of lithium containing transition metal complex oxide shown by said general formula, aluminum (Al), titanium (Ti), chromium (Cr), vanadium (V), iron (Fe) , Copper (Cr), zinc (Zn), niobium (Nb), molybdenum (Mo), zirconium (Zr), tin (Sn), tungsten (W), sodium (Na), potassium (K), magnesium (Mg) At least one selected from the group consisting of may be included.
また、BaTiO3からなる強誘電体を、上記のリチウム含有遷移金属複合酸化物からなる正極活物質の表面に焼結させるにあたり、焼結させる温度が高くなりすぎると、BaTiO3と正極活物質中のLiや遷移金属とが反応して副生成が生成する。この結果、BaTiO3の誘電性が低下するとともに、この副生成物がLiの挿入脱離反応を阻害して、上記のような作用効果が得られなくなる。一方、焼結させる温度が低いと、BaTiO3が正極活物質の表面に十分に焼結されず、正極活物質の表面から離脱されやすくなって、上記のような作用効果が得られなくなる。 Further, when sintering the ferroelectric material composed of BaTiO 3 on the surface of the positive electrode active material composed of the lithium-containing transition metal composite oxide, if the sintering temperature is too high, the BaTiO 3 and the positive electrode active material By-products are produced by reaction of Li and transition metals. As a result, the dielectric properties of BaTiO 3 are lowered, and this by-product inhibits the Li insertion / elimination reaction, so that the above-described effects cannot be obtained. On the other hand, when the sintering temperature is low, BaTiO 3 is not sufficiently sintered on the surface of the positive electrode active material, and is easily detached from the surface of the positive electrode active material, so that the above-described effects cannot be obtained.
このため、BaTiO3を正極活物質の表面に焼結させる温度を適切に設定することが必要になり、このようにBaTiO3を焼結させた正極活物質について、Cu−Kα線をX線源として用いたX線回折2θ法において測定した結果、2θが28.5°〜29.0°の範囲に現れる最強ピーク強度IAと、2θが31.3°〜32.8°の範囲に現れる最強ピーク強度IBとのピーク強度比IA/IBが、0.7≦IA/IB≦2.8を満たす温度範囲で焼結させることが好ましい。ここで、上記のX線回折2θ法において測定される2θが28.5°〜29.0°の範囲に現れる最強ピークは、BaTiO3と正極活物質とが反応して生成された副生成物によるものと考えられ、一方、2θが31.3°〜32.8°の範囲に現れる最強ピークはBaTiO3によるものと考えられる。なお、上記の副生成物の組成・構造は定かではないが、正極活物質に含まれるLiや遷移金属と、BaTiO3に含まれるBa、Tiとの複合酸化物と考えられる。 Therefore, it is necessary to set the temperature for sintering the BaTiO 3 on a surface of the positive electrode active material properly thus positive electrode active material obtained by sintering a BaTiO 3, X-ray source Cu-K [alpha line appears result of measuring the X-ray diffraction 2θ method, the strongest peak intensity I a of 2θ appears in the range of 28.5 ° ~29.0 °, the range of 2θ is 31.3 ° ~32.8 ° used as peak intensity ratio I a / I B of the strongest peak intensity I B, it is preferable to sinter in a temperature range that satisfies 0.7 ≦ I a / I B ≦ 2.8. Here, the strongest peak in which 2θ measured in the X-ray diffraction 2θ method is in the range of 28.5 ° to 29.0 ° is a by-product generated by the reaction between BaTiO 3 and the positive electrode active material. On the other hand, the strongest peak appearing in the range of 2θ of 31.3 ° to 32.8 ° is considered to be due to BaTiO 3 . The composition and structure of the by-products is not certain, and Li and a transition metal contained in the positive electrode active material, Ba contained in the BaTiO 3, is considered a composite oxide of Ti.
そして、上記のピーク強度比IA/IBが0.7未満になった場合には、BaTiO3が正極活物質の表面に十分に焼結されずに、正極活物質の表面から離脱されやすくなるため、上記のような作用効果が得られなくなる。一方、上記のピーク強度比IA/IBが2.8を超える場合には、正極活物質であるリチウム含有遷移金属複合酸化物の表面に誘電性を有していない上記の副生成物が増え、BaTiO3の誘電性が低下するとともに、BaTiO3が正極活物質の表面に焼成されることで得られる特有の効果が阻害されてしまう。このため、上記のようにピーク強度比IA/IBが0.7≦IA/IB≦2.8を満たすような温度範囲で焼結させることが好ましい。 Then, if the above peak intensity ratio I A / I B is less than 0.7, BaTiO 3 is not sufficiently sintered on the surface of the positive electrode active material, easily detached from the surface of the positive electrode active material As a result, the above-described effects cannot be obtained. On the other hand, if the peak intensity ratio I A / I B is greater than 2.8, said by-products which do not have a dielectric on the surface of the lithium-containing transition metal composite oxide as a positive electrode active material As a result, the dielectric properties of BaTiO 3 are lowered, and the specific effects obtained by firing BaTiO 3 on the surface of the positive electrode active material are hindered. Therefore, it is preferable to sinter at a temperature range such that the peak intensity as described above ratio I A / I B satisfies 0.7 ≦ I A / I B ≦ 2.8.
また、このようにBaTiO3からなる強誘電体を、リチウム含有遷移金属複合酸化物からなる正極活物質の表面に焼結させる場合、上記のリチウム含有遷移金属複合酸化物としては、一般式Lia(NicCodMne)O2(式中、a,c,d,eは、0.9≦a/(c+d+e)≦1.2、0.8≦c/e≦3.0、0.2≦d≦0.4、0.15≦e≦0.5の条件を満たす。)で表されるものを用いることが好ましい。特に0.15≦eの場合は、BaおよびTiが、リチウム含有遷移金属酸化物中に拡散するのが抑制され、BaTiO3がこの正極活物質表面に強固に焼結される結果、上記の効果がよりいっそう大きくなると考えられる。なお、e>0.5の場合は、均一組成の物質を得ることが困難となる。 Further, when the ferroelectric material made of BaTiO 3 is sintered on the surface of the positive electrode active material made of the lithium-containing transition metal composite oxide, the lithium-containing transition metal composite oxide has the general formula Li a (Ni c Co d Mn e ) O 2 (where a, c, d, e are 0.9 ≦ a / (c + d + e) ≦ 1.2, 0.8 ≦ c / e ≦ 3.0, 0 0.2 ≦ d ≦ 0.4 and 0.15 ≦ e ≦ 0.5 are preferably used). In particular, in the case of 0.15 ≦ e, Ba and Ti are suppressed from diffusing into the lithium-containing transition metal oxide, and BaTiO 3 is strongly sintered on the surface of the positive electrode active material. Is expected to become even larger. When e> 0.5, it is difficult to obtain a substance having a uniform composition.
また、本発明の非水電解質二次電池において、その負極に用いる負極活物質は、リチウムを可逆的に吸蔵・放出できるものでれば特に限定されず、例えば、炭素材料や、リチウムと合金化する金属或いは合金材料や、金属酸化物等を用いることができる。なお、材料コストの観点からは、負極活物質に炭素材料を用いることが好ましく、例えば、天然黒鉛、人造黒鉛、メソフェーズピッチ系炭素繊維(MCF)、メソカーボンマイクロビーズ(MCMB)、コークス、ハードカーボン、フラーレン、カーボンナノチューブ等を用いることができる。特に、高率充放電特性を向上させる観点からは、負極活物質に黒鉛材料を低結晶性炭素で被覆した炭素材料を用いることが好ましい。 In the nonaqueous electrolyte secondary battery of the present invention, the negative electrode active material used for the negative electrode is not particularly limited as long as it can reversibly occlude and release lithium. For example, a carbon material or an alloy with lithium is formed. A metal or alloy material, a metal oxide, or the like can be used. From the viewpoint of material cost, it is preferable to use a carbon material for the negative electrode active material. For example, natural graphite, artificial graphite, mesophase pitch-based carbon fiber (MCF), mesocarbon microbeads (MCMB), coke, hard carbon Fullerenes, carbon nanotubes, and the like can be used. In particular, from the viewpoint of improving the high rate charge / discharge characteristics, it is preferable to use a carbon material obtained by coating a graphite material with a low crystalline carbon as a negative electrode active material.
また、本発明の非水電解質二次電池において、非水電解液に用いる非水系溶媒としては、従来から非水電解質二次電池において一般に使用されている公知の非水系溶媒を用いることができ、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネートを用いることができる。特に、低粘度、低融点でリチウムイオン伝導度の高い非水系溶媒として、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましく、この混合溶媒における環状カーボネートと鎖状カーボネートとの体積比を2:8〜5:5の範囲にすることが好ましい。 Further, in the nonaqueous electrolyte secondary battery of the present invention, as the nonaqueous solvent used in the nonaqueous electrolyte, a known nonaqueous solvent that has been conventionally used in nonaqueous electrolyte secondary batteries can be used, For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate can be used. In particular, it is preferable to use a mixed solvent of a cyclic carbonate and a chain carbonate as a non-aqueous solvent having a low viscosity, a low melting point and a high lithium ion conductivity, and the volume ratio of the cyclic carbonate and the chain carbonate in the mixed solvent is A range of 2: 8 to 5: 5 is preferred.
また、非水電解液の非水系溶媒としてイオン性液体を用いることもでき、この場合、カチオン種、アニオン種については特に限定されるものではないが、低粘度、電気化学的安定性、疎水性の観点から、カチオンとしては、ピリジニウムカチオン、イミダゾリウムカチオン、4級アンモニウムカチオンを、アニオンとしては、フッ素含有イミド系アニオンを用いた組合せが特に好ましい。 An ionic liquid can also be used as the non-aqueous solvent for the non-aqueous electrolyte. In this case, the cation species and the anion species are not particularly limited, but low viscosity, electrochemical stability, hydrophobicity In view of the above, a combination using a pyridinium cation, an imidazolium cation, or a quaternary ammonium cation as the cation and a fluorine-containing imide anion as the anion is particularly preferable.
また、上記の非水電解液に用いる溶質としても、従来から非水電解質二次電池において一般に使用されている公知のリチウム塩を用いることができる。そして、このようなリチウム塩としては、P、B、F、O、S、N、Clの中の一種類以上の元素を含むリチウム塩を用いることができ、具体的には、LiPF6、LiBF4、LiCF3SO3、LiN(FSO2)2、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiN(CF3SO2)(C4F9SO2)、LiC(C2F5SO2)3、LiAsF6、LiClO4等のリチウム塩及びこれらの混合物を用いることができる。特に、非水電解質二次電池における高率充放電特性や耐久性を高めるためには、LiPF6を用いることが好ましい。 Moreover, as a solute used for the non-aqueous electrolyte, a known lithium salt that is conventionally used in a non-aqueous electrolyte secondary battery can be used. As such a lithium salt, a lithium salt containing one or more elements among P, B, F, O, S, N, and Cl can be used. Specifically, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), Lithium salts such as LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 and mixtures thereof can be used. In particular, LiPF 6 is preferably used in order to enhance the high rate charge / discharge characteristics and durability of the nonaqueous electrolyte secondary battery.
また、本発明の非水電解質二次電池において、上記の正極と負極との間に介在させるセパレータとしては、正極と負極との接触による短絡を防ぎ、かつ非水電解液を含浸して、リチウムイオン伝導性が得られる材料であれば特に限定されるものではなく、例えば、ポリプロピレン製やポリエチレン製のセパレータ、ポリプロピレン−ポリエチレンの多層セパレータ等を用いることができる。 Further, in the non-aqueous electrolyte secondary battery of the present invention, the separator interposed between the positive electrode and the negative electrode prevents a short circuit due to contact between the positive electrode and the negative electrode and impregnates the non-aqueous electrolyte, The material is not particularly limited as long as the material can obtain ion conductivity. For example, a polypropylene or polyethylene separator, a polypropylene-polyethylene multilayer separator, or the like can be used.
本発明の非水電解質二次電池においては、一般式LiaMebO2(式中Meは、Co,Ni,Mnから選択される1種類以上の元素を含む遷移金属であり、a,bは、0.9≦a/b≦1.2の条件を満たす。)で表されるリチウム含有遷移金属複合酸化物からなる正極活物質の表面に、比誘電率が500以上の強誘電体が焼結されたものを用いたため、正極活物質の表面に焼結された強誘電体において、非水電解液と接触する面は正に、正極活物質との界面は負に誘電されて、正極活物質におけるリチウムイオンの出し入れが、低温環境下においてもスムーズに行われるようになる。 In the non-aqueous electrolyte secondary battery of the present invention, the general formula Li a Me b O 2 (wherein Me is a transition metal containing one or more elements selected from Co, Ni, Mn, a, b Satisfies the condition of 0.9 ≦ a / b ≦ 1.2.) A ferroelectric having a relative dielectric constant of 500 or more is formed on the surface of the positive electrode active material comprising the lithium-containing transition metal composite oxide represented by Since the sintered material is used, in the ferroelectric sintered on the surface of the positive electrode active material, the surface in contact with the non-aqueous electrolyte is positively dielectricized, and the interface with the positive electrode active material is negatively dielectrically formed. The lithium ions can be taken in and out of the active material smoothly even in a low temperature environment.
この結果、本発明の非水電解質二次電池においては、低い温度領域においても十分な出力特性が得られるようになる。 As a result, in the nonaqueous electrolyte secondary battery of the present invention, sufficient output characteristics can be obtained even in a low temperature range.
以下、本発明に係る非水電解質二次電池について実施例を挙げて具体的に説明すると共に、この実施例における非水電解質二次電池においては、低い温度条件下における出力特性が改善されることを、比較例を挙げて明らかにする。なお、本発明の非水電解質二次電池は下記の実施例に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。 Hereinafter, the non-aqueous electrolyte secondary battery according to the present invention will be specifically described with reference to examples, and in the non-aqueous electrolyte secondary battery in this example, output characteristics under low temperature conditions are improved. Is clarified with a comparative example. The nonaqueous electrolyte secondary battery of the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof.
(実施例1)
実施例1においては、正極活物質を作製するにあたり、Li2CO3と、共沈法によって得たNi0.5Co0.2Mn0.3(OH)2とを所定の割合で混合し、これらを空気中において約900℃で焼成させ、下記の組成式に示すようにニッケルとコバルト及びマンガンの3元素を主成分とし、層状構造を有するLi1.1Ni0.5Co0.2Mn0.3O2からなる正極活物質粒子を得た。なお、このようにして得たLi1.1Ni0.5Co0.2Mn0.3O2からなる正極活物質粒子の一次粒子の体積平均粒径は約1μmであり、また二次粒子の体積平均粒径は約6μmであった。体積平均粒径(D50)はレーザー回折式粒度分布測定装置((株)島津製作所製SALD-2000)を用いて湿式レーザー法で測定した。
(Example 1)
In Example 1, in preparing the positive electrode active material, Li 2 CO 3 and Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 obtained by the coprecipitation method were mixed at a predetermined ratio. These were fired at about 900 ° C. in the air, and Li 1.1 Ni 0.5 Co 0.2 having a layered structure composed mainly of three elements of nickel, cobalt and manganese as shown in the following composition formula: Positive electrode active material particles made of Mn 0.3 O 2 were obtained. The primary particles of the positive electrode active material particles made of Li 1.1 Ni 0.5 Co 0.2 Mn 0.3 O 2 thus obtained have a volume average particle diameter of about 1 μm, and secondary particles The volume average particle size of was about 6 μm. The volume average particle diameter (D 50 ) was measured by a wet laser method using a laser diffraction particle size distribution measuring device (SALD-2000 manufactured by Shimadzu Corporation).
そして、上記のLi1.1Ni0.5Co0.2Mn0.3O2からなる正極活物質粒子1molに対して、平均粒径が150nm、比誘電率1500である強誘電体のBaTiO3粒子を0.01mol加え、これらをホソカワミクロン社製のメカノフュージョン(商品名)を用いて混合させ、上記のBaTiO3粒子を正極活物質粒子の表面に均一に分散させた後、これを空気中において700℃で焼成し、Li1.1Ni0.5Co0.2Mn0.3O2からなる正極活物質粒子の表面にBaTiO3粒子が焼結された正極活物質を得た。 Then, with respect to 1 mol of the positive electrode active material particles made of Li 1.1 Ni 0.5 Co 0.2 Mn 0.3 O 2 as described above, the ferroelectric BaTiO has an average particle diameter of 150 nm and a relative dielectric constant of 1500. After adding 0.01 mol of 3 particles, these were mixed using Mechanofusion (trade name) manufactured by Hosokawa Micron Co., and the BaTiO 3 particles were uniformly dispersed on the surface of the positive electrode active material particles. Was fired at 700 ° C. to obtain a positive electrode active material in which BaTiO 3 particles were sintered on the surface of positive electrode active material particles made of Li 1.1 Ni 0.5 Co 0.2 Mn 0.3 O 2 .
ここで、上記のようにBaTiO3が焼結されたリチウム含有遷移金属複合酸化物に対して、Cu−Kα線をX線源としたX線回折装置(株式会社リガク社製:RINT2000)を用いて、X線回折2θ法によりX線回折パターンを測定した結果、2θが28.8°の位置にBaTiO3と上記のリチウム含有遷移金属複合酸化物との副生成物に基づくと思われるピークが、また2θが31.5°の位置にBaTiO3に基づくピークが観察された。そして、2θが28.8°の位置における最強ピーク強度IAと、2θが31.5°の位置における最強ピーク強度IBとのピーク強度比IA/IBを求めた結果、ピーク強度比IA/IBは0.73になっていた。 Here, for the lithium-containing transition metal composite oxide obtained by sintering BaTiO 3 as described above, an X-ray diffraction apparatus (RINT2000, manufactured by Rigaku Corporation) using Cu-Kα rays as an X-ray source was used. As a result of measuring the X-ray diffraction pattern by the X-ray diffraction 2θ method, a peak that seems to be based on a by-product of BaTiO 3 and the above lithium-containing transition metal composite oxide was found at 2θ of 28.8 °. In addition, a peak based on BaTiO 3 was observed at a position where 2θ was 31.5 °. Then, the peak intensity ratio I A / I B between the strongest peak intensity I A at the position where 2θ is 28.8 ° and the strongest peak intensity I B at the position where 2θ is 31.5 ° is obtained. I A / I B was 0.73.
また、上記のようにBaTiO3粒子が焼結された正極活物質について、走査型電子顕微鏡(SEM)により観察し、その結果を図1に示した。なお、この図中において、明るく見えている部分がBaTiO3粒子であり、上記の正極活物質粒子の表面に焼結されている様子が観察された。 Further, the positive electrode active material in which BaTiO 3 particles were sintered as described above was observed with a scanning electron microscope (SEM), and the result is shown in FIG. In this figure, the brightly visible portions were BaTiO 3 particles, and it was observed that the positive electrode active material particles were sintered on the surface.
次に、上記の正極活物質と、導電剤の気相成長炭素繊維(VGCF)と、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、正極活物質と導電剤と結着剤の質量比が92:5:3となるように調整し、これらを混練させて正極合剤のスラリーを作製した。そして、このスラリーをアルミニウム箔からなる正極集電体の上に塗布し、これを乾燥させた後、圧延ローラーにより圧延し、これにアルミニウムの集電タブを取りつけて正極を作製した。 Next, the positive electrode active material, a vapor-grown carbon fiber (VGCF) as a conductive agent, and an N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride as a binder is dissolved are mixed with the positive electrode active material and the conductive material. The mass ratio of the agent to the binder was adjusted to 92: 5: 3, and these were kneaded to prepare a positive electrode mixture slurry. And this slurry was apply | coated on the positive electrode electrical power collector which consists of aluminum foil, and after drying this, it rolled with the rolling roller and attached the current collection tab of aluminum to this, and produced the positive electrode.
そして、図2に示すように、上記のようにして作製した正極を作用極11として用いる一方、負極となる対極12及び参照極13にそれぞれ金属リチウムを用い、また非水電解液14として、エチレンカーボネートとメチルエチルカーボネートとジメチルカーボネートとを3:3:4の体積比で混合させた混合溶媒にLiPF6を1mol/lの濃度になるように溶解させ、さらにビニレンカーボネートを1質量%溶解させたものを用いて、三電極式試験セルを作製した。 As shown in FIG. 2, the positive electrode produced as described above is used as the working electrode 11, while metallic lithium is used for the counter electrode 12 and the reference electrode 13 serving as the negative electrode, and ethylene is used as the non-aqueous electrolyte 14. LiPF 6 was dissolved to a concentration of 1 mol / l in a mixed solvent in which carbonate, methyl ethyl carbonate, and dimethyl carbonate were mixed at a volume ratio of 3: 3: 4, and 1% by mass of vinylene carbonate was further dissolved. A three-electrode test cell was prepared using this.
(実施例2)
実施例2においては、正極活物質を得るにあたり、上記の実施例1と同様にして、Li1.1Ni0.5Co0.2Mn0.3O2からなる正極活物質粒子と、強誘電体のBaTiO3粒子とを混合させて、BaTiO3粒子を正極活物質粒子の表面に均一に分散させた後、これを焼成する温度を400℃に変更させて、Li1.1Ni0.5Co0.2Mn0.3O2からなる正極活物質粒子の表面にBaTiO3粒子が焼結された正極活物質を得た。
(Example 2)
In Example 2, in obtaining the positive electrode active material, positive electrode active material particles composed of Li 1.1 Ni 0.5 Co 0.2 Mn 0.3 O 2 and strong by mixing the BaTiO 3 particles in the dielectric, the BaTiO 3 particles after uniformly dispersed on the surface of the positive electrode active material particles, by changing the temperature of firing this to 400 ℃, Li 1.1 Ni 0. A positive electrode active material in which BaTiO 3 particles were sintered on the surface of positive electrode active material particles made of 5 Co 0.2 Mn 0.3 O 2 was obtained.
ここで、このようにして得た正極活物質についても、実施例1の場合と同様にして、X線回折パターンを測定した。この結果、2θが28.8°の位置における最強ピーク強度IAと、2θが31.5°の位置における最強ピーク強度IBとのピーク強度比IA/IBは0.11になっていた。 Here, the X-ray diffraction pattern of the positive electrode active material thus obtained was also measured in the same manner as in Example 1. As a result, the strongest peak intensity I A at the position of 2θ is 28.8 °, the peak intensity ratio I A / I B of the strongest peak intensity I B at the position of 2θ is 31.5 ° is has become 0.11 It was.
そして、上記の正極活物質を用いる以外は、実施例1と同様にして、実施例2の三電極式試験セルを作製した。 And the three-electrode test cell of Example 2 was produced like Example 1 except using said positive electrode active material.
(実施例3)
実施例3においては、正極活物質を得るにあたり、上記の実施例1と同様にして、Li1.1Ni0.5Co0.2Mn0.3O2からなる正極活物質粒子と、強誘電体のBaTiO3粒子とを混合させて、BaTiO3粒子を正極活物質粒子の表面に均一に分散させた後、これを焼成する温度を600℃に変更させて、Li1.1Ni0.5Co0.2Mn0.3O2からなる正極活物質粒子の表面にBaTiO3粒子が焼結された正極活物質を得た。
(Example 3)
In Example 3, in order to obtain the positive electrode active material, positive electrode active material particles composed of Li 1.1 Ni 0.5 Co 0.2 Mn 0.3 O 2 , by mixing the BaTiO 3 particles in the dielectric, the BaTiO 3 particles after uniformly dispersed on the surface of the positive electrode active material particles, by changing the temperature of firing this to 600 ℃, Li 1.1 Ni 0. A positive electrode active material in which BaTiO 3 particles were sintered on the surface of positive electrode active material particles made of 5 Co 0.2 Mn 0.3 O 2 was obtained.
ここで、このようにして得た正極活物質についても、実施例1の場合と同様にして、X線回折パターンを測定した。この結果、2θが28.8°の位置における最強ピーク強度IAと、2θが31.5°の位置における最強ピーク強度IBとのピーク強度比IA/IBは0.60になっていた。 Here, the X-ray diffraction pattern of the positive electrode active material thus obtained was also measured in the same manner as in Example 1. As a result, the strongest peak intensity I A at the position of 2θ is 28.8 °, the peak intensity ratio I A / I B of the strongest peak intensity I B at the position of 2θ is 31.5 ° is has become 0.60 It was.
そして、上記の正極活物質を用いる以外は、実施例1と同様にして、実施例3の三電極式試験セルを作製した。 And the three-electrode type test cell of Example 3 was produced like Example 1 except using said positive electrode active material.
(実施例4)
実施例4においては、上記の実施例1と同様にして、Li1.1Ni0.5Co0.2Mn0.3O2からなる正極活物質粒子と、強誘電体のBaTiO3粒子とを混合させて、BaTiO3粒子を正極活物質粒子の表面に均一に分散させた後、これを焼成する温度を750℃に変更させて、Li1.1Ni0.5Co0.2Mn0.3O2からなる正極活物質粒子の表面にBaTiO3粒子が焼結された正極活物質を得た。
Example 4
In Example 4, in the same manner as in Example 1 above, positive electrode active material particles made of Li 1.1 Ni 0.5 Co 0.2 Mn 0.3 O 2 , ferroelectric BaTiO 3 particles, Were mixed to uniformly disperse the BaTiO 3 particles on the surface of the positive electrode active material particles, and then the firing temperature was changed to 750 ° C., and Li 1.1 Ni 0.5 Co 0.2 Mn 0 A positive electrode active material in which BaTiO 3 particles were sintered on the surface of positive electrode active material particles made of .3 O 2 was obtained.
ここで、このようにして得た正極活物質についても、実施例1の場合と同様にして、X線回折パターンを測定した。この結果、2θが28.8°の位置における最強ピーク強度IAと、2θが31.5°の位置における最強ピーク強度IBとのピーク強度比IA/IBは1.60になっていた。 Here, the X-ray diffraction pattern of the positive electrode active material thus obtained was also measured in the same manner as in Example 1. As a result, the strongest peak intensity I A at the position of 2θ is 28.8 °, the peak intensity ratio I A / I B of the strongest peak intensity I B at the position of 2θ is 31.5 ° is has become 1.60 It was.
そして、上記の正極活物質を用いる以外は、実施例1と同様にして、実施例4の三電極式試験セルを作製した。 And the three-electrode type test cell of Example 4 was produced like Example 1 except using said positive electrode active material.
(比較例1)
比較例1においては、実施例1における正極活物質の作製において、上記のLi1.1Ni0.5Co0.2Mn0.3O2からなる正極活物質粒子に対して上記のBaTiO3粒子を加えないようにし、この正極活物質粒子をそのまま正極活物質として使用した。そして、この正極活物質を用いる以外は、上記の実施例1の場合と同様にして、比較例1の三電極式試験セルを作製した。
(Comparative Example 1)
In Comparative Example 1, in the production of the positive electrode active material in Example 1, the above BaTiO 3 was used for the positive electrode active material particles composed of Li 1.1 Ni 0.5 Co 0.2 Mn 0.3 O 2. The particles were not added, and the positive electrode active material particles were used as they were as the positive electrode active material. Then, a three-electrode test cell of Comparative Example 1 was produced in the same manner as in Example 1 except that this positive electrode active material was used.
(比較例2)
比較例2においては、実施例1における正極活物質の作製において、上記のLi1.1Ni0.5Co0.2Mn0.3O2からなる正極活物質粒子1molに対して、上記のBaTiO3粒子を0.01mol加え、これらを上記のメカノフュージョン(商品名)を用いて混合させ、上記のBaTiO3粒子を正極活物質粒子の表面に均一に分散させるだけで、これを焼結させないようにした。そして、このようにして作製した正極活物質を用いる以外は、上記の実施例1の場合と同様にして、比較例2の三電極式試験セルを作製した。
(Comparative Example 2)
In Comparative Example 2, in the production of the positive electrode active material in Example 1, the above-mentioned Li 1.1 Ni 0.5 Co 0.2 Mn 0.3 O 2 was used for 1 mol of the positive electrode active material particles described above. Add 0.01 mol of BaTiO 3 particles, mix them using the above-mentioned mechano-fusion (trade name), and disperse the BaTiO 3 particles uniformly on the surface of the positive electrode active material particles, without sintering them. I did it. And the three-electrode type test cell of the comparative example 2 was produced like the case of said Example 1 except using the positive electrode active material produced in this way.
次に、上記のように作製した実施例〜4及び比較例1,2の各三電極式試験セルを、それぞれ25℃の温度条件下において、0.2mA/cm2の電流密度で4.3V(vs.Li/Li+)まで定電流充電を行い、4.3V(vs.Li/Li+)の定電圧で電流密度が0.04mA/cm2になるまで定電圧充電を行った後、0.2mA/cm2の電流密度で2.5V(vs.Li/Li+)まで定電流放電を行った。そして、この時における放電容量を上記の各三電極式試験セルの定格容量とした。 Next, each of the three-electrode test cells of Examples 4 to 4 and Comparative Examples 1 and 2 produced as described above was 4.3 V at a current density of 0.2 mA / cm 2 under a temperature condition of 25 ° C., respectively. (vs.Li/Li +) to perform constant current charging, 4.3 V after the current density at a constant voltage of (vs.Li/Li +) was subjected to constant voltage charging until 0.04 mA / cm 2, Constant current discharge was performed up to 2.5 V (vs. Li / Li + ) at a current density of 0.2 mA / cm 2 . And the discharge capacity at this time was made into the rated capacity of each said 3 electrode type test cell.
次に、上記の各三電極式試験セルを、上記のようにして定格容量の50%まで充電させ、すなわち充電深度(SOC)50%まで充電させ、それぞれ−30℃との条件の下で、開回路電圧から0.08mA/cm2、0.4mA/cm2、0.8mA/cm2、1.6mA/cm2の各電流値でそれぞれ10秒間放電を行い、10秒後の電圧を各電流値に対してプロットして、各三電極式試験セルにおける電流−電圧直線を求めた。そして、上記のように求めた各電流−電圧直線により、放電終止電圧が2.5Vでの電流値Ipを求め、下記の式により−30℃での出力値を算出した。
出力値=Ip×2.5
Next, each of the above three-electrode test cells is charged to 50% of the rated capacity as described above, that is, charged to a charge depth (SOC) of 50%, and under the condition of −30 ° C., respectively. open circuit 0.08 mA / cm 2 the voltage, 0.4mA / cm 2, 0.8mA / cm 2, subjected to 10 seconds discharge by the respective current value of 1.6 mA / cm 2, the voltage after 10 seconds Plotting against the current value, the current-voltage straight line in each three-electrode test cell was determined. Then, the current value Ip at the discharge end voltage of 2.5 V was obtained from each current-voltage straight line obtained as described above, and the output value at −30 ° C. was calculated by the following formula.
Output value = Ip × 2.5
そして、上記の比較例1の三電極式試験セルにおける出力値を100%として、実施例1〜4及び比較例1,2の各三電極式試験セルにおける低温(−30℃)出力特性を求め、その結果を表1に示した。 Then, assuming that the output value in the three-electrode test cell of Comparative Example 1 is 100%, the low temperature (−30 ° C.) output characteristics in each of the three-electrode test cells of Examples 1 to 4 and Comparative Examples 1 and 2 are obtained. The results are shown in Table 1.
この結果、上記のリチウム含有遷移金属複合酸化物からなる正極活物質粒子の表面に強誘電体のBaTiO3粒子を焼結された正極活物質を用いた実施例1〜4の各三電極式試験セルにおいては、前記のリチウム含有遷移金属複合酸化物の正極活物質粒子に強誘電体のBaTiO3粒子を加えていない正極活物質を用いた比較例1の三電極式試験セルや、前記のリチウム含有遷移金属複合酸化物の正極活物質粒子に強誘電体のBaTiO3粒子を混合させただけで焼結させていない正極活物質を用いた比較例2の三電極式試験セル比べて、−30℃の低温で優れた出力特性を示した。 As a result, each of the three-electrode tests of Examples 1 to 4 using the positive electrode active material obtained by sintering ferroelectric BaTiO 3 particles on the surface of the positive electrode active material particles made of the lithium-containing transition metal composite oxide. In the cell, the three-electrode test cell of Comparative Example 1 using a positive electrode active material in which no ferroelectric BaTiO 3 particles were added to the positive electrode active material particles of the lithium-containing transition metal composite oxide, or the lithium Compared to the three-electrode test cell of Comparative Example 2 in which the positive electrode active material of the transition metal composite oxide was mixed with the ferroelectric BaTiO 3 particles and the unsintered positive electrode active material was used. Excellent output characteristics at low temperature of ℃.
また、実施例1〜4の三電極式試験セルに用いた各正極活物質における2θが28.5°〜29.0°の範囲に現れる最強ピーク強度IAと31.3°〜32.8°の範囲に現れる最強ピーク強度IBとのピーク強度比IA/IBと、各三電極式試験セルにおける低温(−30℃)出力特性との関係を求め、その結果を図3に示した。 Moreover, 2θ in each positive electrode active material used in the three-electrode test cells of Examples 1 to 4 and the strongest peak intensity I A appearing in the range of 28.5 ° to 29.0 ° and 31.3 ° to 32.8. ° and the peak intensity ratio I a / I B of the strongest peak intensity I B that appears in the range of, determine the relation between the low temperature (-30 ° C.) output characteristics in the three-electrode test cell, and the results are shown in Figure 3 It was.
この結果、上記のピーク強度比IA/IBの値が0.7〜2.8の範囲になった正極活物質を用いた実施例1,4のものにおいては、上記のリチウム含有遷移金属複合酸化物の表面に焼結されたBaTiO3粒子によってLiの挿入脱離反応が促進され、さらに優れた低温出力特性を示した。 Consequently, in what value of the peak intensity ratio I A / I B is Examples 1 and 4 using the positive electrode active material was in the range of 0.7 to 2.8, said lithium-containing transition metal The insertion and desorption reaction of Li was promoted by BaTiO 3 particles sintered on the surface of the composite oxide, and further excellent low-temperature output characteristics were exhibited.
10 三電極式試験セル
11 作用極(正極)
12 対極(負極)
13 参照極
14 非水電解液
10 Three-electrode test cell 11 Working electrode (positive electrode)
12 Counter electrode (negative electrode)
13 Reference electrode 14 Non-aqueous electrolyte
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010175854A JP2011210694A (en) | 2010-03-12 | 2010-08-05 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010055975 | 2010-03-12 | ||
JP2010055975 | 2010-03-12 | ||
JP2010175854A JP2011210694A (en) | 2010-03-12 | 2010-08-05 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011210694A true JP2011210694A (en) | 2011-10-20 |
Family
ID=44941513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010175854A Pending JP2011210694A (en) | 2010-03-12 | 2010-08-05 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011210694A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013042591A1 (en) * | 2011-09-22 | 2013-03-28 | 藤倉化成株式会社 | Positive electrode material for lithium-ion secondary battery and lithium-ion secondary battery |
JP2016119180A (en) * | 2014-12-19 | 2016-06-30 | 株式会社豊田中央研究所 | Non-aqueous lithium secondary battery |
DE102016103776A1 (en) | 2015-03-06 | 2016-09-08 | Toyota Jidosha Kabushiki Kaisha | Lithium ion secondary battery |
WO2017169126A1 (en) * | 2016-03-28 | 2017-10-05 | 株式会社日立製作所 | Lithium secondary battery |
JP2018181614A (en) * | 2017-04-13 | 2018-11-15 | トヨタ自動車株式会社 | Positive electrode material for lithium ion secondary battery |
US20190181448A1 (en) * | 2017-12-12 | 2019-06-13 | Toyota Jidosha Kabushiki Kaisha | Positive electrode material and lithium secondary battery using the same |
US20190181454A1 (en) * | 2017-12-12 | 2019-06-13 | Toyota Jidosha Kabushiki Kaisha | Positive electrode material and lithium secondary battery using the same |
JP2019114454A (en) * | 2017-12-25 | 2019-07-11 | 日亜化学工業株式会社 | Method of manufacturing positive electrode material for non-aqueous secondary battery |
US10396346B2 (en) | 2015-02-12 | 2019-08-27 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing negative electrode for nonaqueous electrolyte secondary battery |
US20200044243A1 (en) * | 2017-03-22 | 2020-02-06 | Murata Manufacturing Co., Ltd. | Positive electrode, battery and method for manufacturing battery, battery pack, electronic device, electric vehicle, electric storage device, and electric power system |
EP3637507A1 (en) | 2018-10-12 | 2020-04-15 | Toyota Jidosha Kabushiki Kaisha | Positive electrode active material and secondary cell comprising the positive electrode active material |
JP2020068135A (en) * | 2018-10-25 | 2020-04-30 | トヨタ自動車株式会社 | Positive electrode material and secondary battery using the same |
CN111509190A (en) * | 2019-01-30 | 2020-08-07 | 丰田自动车株式会社 | Positive electrode active material and nonaqueous electrolyte secondary battery provided with same |
US11043660B2 (en) | 2016-07-05 | 2021-06-22 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide |
US11094927B2 (en) | 2016-10-12 | 2021-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle and manufacturing method of positive electrode active material particle |
CN113381020A (en) * | 2020-03-10 | 2021-09-10 | 本田技研工业株式会社 | Porous dielectric particles, electrode for lithium ion secondary battery, and lithium ion secondary battery |
DE102021106360A1 (en) | 2020-03-18 | 2021-09-23 | Honda Motor Co., Ltd. | NEGATIVE ELECTRODE FOR LITHIUM-ION SECONDARY BATTERY AND THIS CONTAINED LITHIUM-ION SECONDARY BATTERY |
US11444274B2 (en) | 2017-05-12 | 2022-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle |
US11670770B2 (en) | 2017-06-26 | 2023-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing positive electrode active material, and secondary battery |
WO2023120411A1 (en) * | 2021-12-20 | 2023-06-29 | パナソニックエナジー株式会社 | Non-aqueous electrolyte secondary battery |
US11799080B2 (en) | 2017-05-19 | 2023-10-24 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery |
-
2010
- 2010-08-05 JP JP2010175854A patent/JP2011210694A/en active Pending
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9577262B2 (en) | 2011-09-22 | 2017-02-21 | Fujikura Kasei Co., Ltd. | Positive electrode material for lithium ion secondary cell and lithium ion secondary cell |
JP2013069555A (en) * | 2011-09-22 | 2013-04-18 | Fujikura Kasei Co Ltd | Positive electrode material for lithium ion secondary battery, and lithium ion secondary battery |
WO2013042591A1 (en) * | 2011-09-22 | 2013-03-28 | 藤倉化成株式会社 | Positive electrode material for lithium-ion secondary battery and lithium-ion secondary battery |
JP2016119180A (en) * | 2014-12-19 | 2016-06-30 | 株式会社豊田中央研究所 | Non-aqueous lithium secondary battery |
US10396346B2 (en) | 2015-02-12 | 2019-08-27 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing negative electrode for nonaqueous electrolyte secondary battery |
US9905846B2 (en) | 2015-03-06 | 2018-02-27 | Toyota Jidosha Kabushiki Kaisha | Lithium ion secondary battery |
DE102016103776A1 (en) | 2015-03-06 | 2016-09-08 | Toyota Jidosha Kabushiki Kaisha | Lithium ion secondary battery |
DE102016103776B4 (en) | 2015-03-06 | 2021-11-25 | Toyota Jidosha Kabushiki Kaisha | Lithium ion secondary battery |
WO2017169126A1 (en) * | 2016-03-28 | 2017-10-05 | 株式会社日立製作所 | Lithium secondary battery |
US11043660B2 (en) | 2016-07-05 | 2021-06-22 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide |
US11094927B2 (en) | 2016-10-12 | 2021-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle and manufacturing method of positive electrode active material particle |
US11961999B2 (en) * | 2017-03-22 | 2024-04-16 | Murata Manufacturing Co., Ltd. | Positive electrode, battery and method for manufacturing battery, battery pack, electronic device, electric vehicle, electric storage device, and electric power system |
US20200044243A1 (en) * | 2017-03-22 | 2020-02-06 | Murata Manufacturing Co., Ltd. | Positive electrode, battery and method for manufacturing battery, battery pack, electronic device, electric vehicle, electric storage device, and electric power system |
JP7103756B2 (en) | 2017-04-13 | 2022-07-20 | トヨタ自動車株式会社 | Positive electrode material for lithium-ion secondary batteries |
JP2018181614A (en) * | 2017-04-13 | 2018-11-15 | トヨタ自動車株式会社 | Positive electrode material for lithium ion secondary battery |
US11489151B2 (en) | 2017-05-12 | 2022-11-01 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle |
US11444274B2 (en) | 2017-05-12 | 2022-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle |
US11799080B2 (en) | 2017-05-19 | 2023-10-24 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery |
US11670770B2 (en) | 2017-06-26 | 2023-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing positive electrode active material, and secondary battery |
US10873089B2 (en) | 2017-12-12 | 2020-12-22 | Toyota Jidosha Kabushiki Kaisha | Positive electrode material and lithium secondary battery using the same |
US20190181448A1 (en) * | 2017-12-12 | 2019-06-13 | Toyota Jidosha Kabushiki Kaisha | Positive electrode material and lithium secondary battery using the same |
US20190181454A1 (en) * | 2017-12-12 | 2019-06-13 | Toyota Jidosha Kabushiki Kaisha | Positive electrode material and lithium secondary battery using the same |
US11133505B2 (en) | 2017-12-12 | 2021-09-28 | Toyota Jidosha Kabushiki Kaisha | Positive electrode material and lithium secondary battery using the same |
JP2019106276A (en) * | 2017-12-12 | 2019-06-27 | トヨタ自動車株式会社 | Positive electrode material and lithium secondary battery using the same |
JP2019114454A (en) * | 2017-12-25 | 2019-07-11 | 日亜化学工業株式会社 | Method of manufacturing positive electrode material for non-aqueous secondary battery |
JP2020061337A (en) * | 2018-10-12 | 2020-04-16 | トヨタ自動車株式会社 | Positive electrode active material and secondary battery including the same |
EP3637507A1 (en) | 2018-10-12 | 2020-04-15 | Toyota Jidosha Kabushiki Kaisha | Positive electrode active material and secondary cell comprising the positive electrode active material |
JP7085135B2 (en) | 2018-10-12 | 2022-06-16 | トヨタ自動車株式会社 | A positive electrode active material and a secondary battery including the positive electrode active material. |
US11411217B2 (en) | 2018-10-12 | 2022-08-09 | Toyota Jidosha Kabushiki Kaisha | Positive electrode active material and secondary cell comprising the positive electrode active material |
US11380906B2 (en) | 2018-10-25 | 2022-07-05 | Toyota Jidosha Kabushiki Kaisha | Positive electrode material and secondary battery using the same |
JP7002433B2 (en) | 2018-10-25 | 2022-02-04 | トヨタ自動車株式会社 | Positive electrode material and secondary battery using this |
JP2020068135A (en) * | 2018-10-25 | 2020-04-30 | トヨタ自動車株式会社 | Positive electrode material and secondary battery using the same |
CN111509190A (en) * | 2019-01-30 | 2020-08-07 | 丰田自动车株式会社 | Positive electrode active material and nonaqueous electrolyte secondary battery provided with same |
US11417876B2 (en) | 2019-01-30 | 2022-08-16 | Toyota Jidosha Kabushiki Kaisha | Positive electrode active material and nonaqueous electrolyte secondary battery including positive electrode active material |
CN113381020A (en) * | 2020-03-10 | 2021-09-10 | 本田技研工业株式会社 | Porous dielectric particles, electrode for lithium ion secondary battery, and lithium ion secondary battery |
CN113497231A (en) * | 2020-03-18 | 2021-10-12 | 本田技研工业株式会社 | Negative electrode for lithium ion secondary battery and lithium ion secondary battery provided with same |
DE102021106360A1 (en) | 2020-03-18 | 2021-09-23 | Honda Motor Co., Ltd. | NEGATIVE ELECTRODE FOR LITHIUM-ION SECONDARY BATTERY AND THIS CONTAINED LITHIUM-ION SECONDARY BATTERY |
US11804602B2 (en) | 2020-03-18 | 2023-10-31 | Honda Motor Co., Ltd. | Negative electrode for lithium ion secondary battery, and lithium ion secondary battery including same |
WO2023120411A1 (en) * | 2021-12-20 | 2023-06-29 | パナソニックエナジー株式会社 | Non-aqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011210694A (en) | Nonaqueous electrolyte secondary battery | |
KR101045704B1 (en) | Nonaqueous electrolyte secondary battery | |
JP5132941B2 (en) | Electrode additive coated with conductive material and lithium secondary battery comprising the same | |
KR101670327B1 (en) | Composite cathode materials with controlled irreversible capacity loss for lithium ion batteries | |
KR101015741B1 (en) | Non-aqueous electrolyte secondary battery | |
JP6378314B2 (en) | Cathode composition for sodium ion battery and method for producing the same | |
EP3117474B1 (en) | Cathode for lithium batteries | |
JP5099168B2 (en) | Lithium ion secondary battery | |
JP2005317512A (en) | Nonaqueous electrolyte battery | |
JP2020105063A (en) | Doped titanium niobate and battery | |
JP2009224307A (en) | Nonaqueous electrolyte secondary battery and method for manufacturing the same | |
JP2012178327A (en) | Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing electrode for nonaqueous electrolyte secondary battery | |
JP2011070789A (en) | Nonaqueous electrolyte secondary battery | |
JPWO2012014998A1 (en) | Lithium secondary battery | |
JP2021108305A (en) | Positive electrode and lithium battery containing positive electrode | |
JP2013546138A (en) | High capacity alloy anode and lithium ion electrochemical cell including the same | |
CN112313817A (en) | Positive electrode material and secondary battery | |
JP2014146473A (en) | Nonaqueous electrolyte secondary battery and positive electrode active material for nonaqueous electrolyte secondary battery | |
Rezqita et al. | Analysis of degradation of Si/Carbon|| LiNi0. 5Mn0. 3Co0. 2O2 full cells: Effect of prelithiation | |
JP2013196910A (en) | Nonaqueous electrolyte secondary battery | |
JP2016031852A (en) | Nonaqueous electrolyte secondary battery | |
JP2009218112A (en) | Nonaqueous electrolyte secondary battery and manufacturing method therefor | |
CN107078274B (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same | |
JPWO2018123603A1 (en) | Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP5159268B2 (en) | Non-aqueous electrolyte battery |