JP2011209537A - Optical element and liquid crystal panel using the same - Google Patents

Optical element and liquid crystal panel using the same Download PDF

Info

Publication number
JP2011209537A
JP2011209537A JP2010077587A JP2010077587A JP2011209537A JP 2011209537 A JP2011209537 A JP 2011209537A JP 2010077587 A JP2010077587 A JP 2010077587A JP 2010077587 A JP2010077587 A JP 2010077587A JP 2011209537 A JP2011209537 A JP 2011209537A
Authority
JP
Japan
Prior art keywords
liquid crystal
layer
film
group
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010077587A
Other languages
Japanese (ja)
Other versions
JP5958731B2 (en
Inventor
Hideya Akiyama
英也 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2010077587A priority Critical patent/JP5958731B2/en
Publication of JP2011209537A publication Critical patent/JP2011209537A/en
Application granted granted Critical
Publication of JP5958731B2 publication Critical patent/JP5958731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical element that prevents a phase difference from being reduced even in heat resistance test, as a retardation film with an adhesive layer.SOLUTION: The optical element has one or multi-layers of the retardation film and an adhesive layer in this order on a substrate, the retardation film being obtained by polymerization, of a laminate having at least a photo-alignment layer and a polymerizable liquid crystal composition layer, while orienting a liquid crystal compound having a polymerizable group in the polymerizable liquid crystal composition layer. The optical element has an isotropic resin layer of equal to or more than 80 degrees centigrade of a glass transition temperature between the retardation film layer and the adhesive layer. A liquid crystal panel is formed by attaching the optical element on the entire surface of the panel.

Description

本発明は、位相差性をコントロールする目的で液晶パネルの前面に貼り付けて使用する光学素子に関する。   The present invention relates to an optical element that is used by being attached to the front surface of a liquid crystal panel for the purpose of controlling retardation.

一般に液晶パネル(液晶ディスプレイ、液晶表示装置、LCD)は、位相差性をコントロールする目的で、位相差膜がパネル前面(視認面)に設置されている。最近では位相差膜として、塗布法で作成できる、光配向膜層と重合性液晶組成物の重合層からなる位相差膜(これは、基板上に、光配向膜層と重合性液晶組成物の層とを有する積層体の、前記重合性液晶組成物層中の重合性基を有する液晶化合物を配向させた状態で重合させて得る方法が一般的である)が検討されている(例えば特許文献1参照)。また前記位相差膜に粘着層を設けておき、別途作成した液晶パネル前面に貼り付ける方法も行われており、位相差膜の他に偏光板等を組み入れた粘着層付きの光学素子が検討されている(例えば特許文献2参照)。   In general, a liquid crystal panel (liquid crystal display, liquid crystal display device, LCD) is provided with a retardation film on the front surface (viewing surface) for the purpose of controlling phase difference. Recently, a retardation film composed of a photo-alignment film layer and a polymerizable liquid crystal composition layer, which can be prepared by a coating method, as a retardation film (this is a structure of a photo-alignment film layer and a polymerizable liquid crystal composition on a substrate). In general, a method of polymerizing a liquid crystal compound having a polymerizable group in the polymerizable liquid crystal composition layer in a state where the polymerizable liquid crystal compound in the polymerizable liquid crystal composition layer is aligned is being studied (for example, Patent Documents) 1). There is also a method in which an adhesive layer is provided on the retardation film and affixed to the front surface of a separately prepared liquid crystal panel. Optical elements with an adhesive layer incorporating a polarizing plate in addition to the retardation film have been studied. (For example, refer to Patent Document 2).

前記位相差膜を粘着層で貼り付けた液晶パネルの品質管理試験として、耐熱性試験がある。これは通常、使用されているプラスチック部品等の耐熱温度を加味して80℃〜90℃程度の高温で行われる試験である。しかしながらこの試験において、貼り付けた位相差膜の位相差が低下するといった問題があった。   There is a heat resistance test as a quality control test of a liquid crystal panel in which the retardation film is bonded with an adhesive layer. This is a test usually performed at a high temperature of about 80 ° C. to 90 ° C. in consideration of the heat resistance temperature of the plastic parts used. However, in this test, there is a problem that the phase difference of the attached retardation film is lowered.

特開2006−209097号公報JP 2006-209097 A 特開2007−140480号公報JP 2007-140480 A

本発明が解決しようとする課題は、耐熱性試験においても位相差が低下しない、粘着層付きの位相差膜である光学素子を提供することにある。   The problem to be solved by the present invention is to provide an optical element which is a retardation film with an adhesive layer, in which the retardation does not decrease even in a heat resistance test.

本発明者らは、位相差膜と粘着層との間に、ガラス転移温度80℃以上の等方性樹脂層を有することで、前記課題を解決した。
位相差膜は前述の通り、光配向膜上に重合性液晶を塗布し重合性液晶を配向させた状態で硬化させている。粘着層は該硬化した重合性液晶層に直接接触するように設けられており、該粘着層が耐熱試験において流動し、硬化した重合性液晶層の配向に影響を与えることを見出し、該該位相差膜と粘着層との間に、耐熱試験によって流動しないガラス転移温度80℃以上の等方性樹脂層を設けることで、前記課題を解決できることを見出した。
The present inventors have solved the above-mentioned problems by having an isotropic resin layer having a glass transition temperature of 80 ° C. or higher between the retardation film and the adhesive layer.
As described above, the retardation film is cured in a state where the polymerizable liquid crystal is applied on the photo-alignment film and the polymerizable liquid crystal is aligned. The pressure-sensitive adhesive layer is provided so as to be in direct contact with the cured polymerizable liquid crystal layer, and the pressure-sensitive adhesive layer flows in a heat resistance test and finds that the alignment of the cured polymerizable liquid crystal layer is affected. It has been found that the above-mentioned problem can be solved by providing an isotropic resin layer having a glass transition temperature of 80 ° C. or higher that does not flow by a heat resistance test between the phase difference film and the adhesive layer.

即ち本発明は、基板上に、少なくとも光配向膜層と重合性液晶組成物の層とを有する積層体の、前記重合性液晶組成物層中の重合性基を有する液晶化合物を配向させた状態で重合させた位相差膜を1層もしくは複数層と、粘着剤層とをこの順に有してなる光学素子であって、前記位相差膜層と前記粘着剤層との間にガラス転移温度80℃以上の等方性樹脂層を有する光学素子を提供する。   That is, the present invention is a state in which a liquid crystal compound having a polymerizable group in the polymerizable liquid crystal composition layer of a laminate having at least a photo-alignment film layer and a polymerizable liquid crystal composition layer is aligned on a substrate. An optical element having one or more retardation films polymerized in step 1 and a pressure-sensitive adhesive layer in this order, and having a glass transition temperature of 80 between the retardation film layer and the pressure-sensitive adhesive layer. Provided is an optical element having an isotropic resin layer at a temperature of 0 ° C. or higher.

また本発明は、前記記載の光学素子をパネル前面に貼り付けてなる液晶パネルを提供する。   The present invention also provides a liquid crystal panel in which the above-described optical element is attached to the front surface of the panel.

本発明により、耐熱性試験においても位相差が低下しない、粘着層付きの位相差膜である光学素子を得ることが可能となる。本発明の光学素子をパネル全面に貼り付けてなる液晶パネルは、耐熱性試験においても位相差が低下しないので、耐熱性試験後も良好な表示を保持し続けることが可能となる。   According to the present invention, it is possible to obtain an optical element that is a retardation film with an adhesive layer, in which the retardation does not decrease even in a heat resistance test. Since the liquid crystal panel in which the optical element of the present invention is bonded to the entire panel does not decrease the phase difference even in the heat resistance test, it is possible to keep good display even after the heat resistance test.

(位相差膜)
本発明で使用する位相差膜は、基板上に、少なくとも光配向膜と重合性液晶組成物の層とを有する積層体の、前記重合性液晶組成物層中の重合性基を有する液晶化合物を配向させた状態で重合させた膜である。
(Retardation film)
The retardation film used in the present invention is a liquid crystal compound having a polymerizable group in the polymerizable liquid crystal composition layer of a laminate having at least a photo-alignment film and a polymerizable liquid crystal composition layer on a substrate. It is a film polymerized in an oriented state.

(位相差膜 基板)
本発明で使用する基板としては実質的に透明であれば材質に特に限定はなく、ガラス、セラミックス、プラスチック等を使用することができる。プラスチック基板としてはセルロ−ス、トリアセチルセルロ−ス、ジアセチルセルロ−ス等のセルロ−ス誘導体、ポリシクロオレフィン誘導体、ポリエチレンテレフタレ−ト、ポリエチレンナフタレ−ト等のポリエステル、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリカーボネート、ポリビニルアルコ−ル、ポリ塩化ビニル、ポリ塩化ビニリデン、ナイロン、ポリスチレン、ポリアクリレート、ポリメチルメタクリレ−ト、ポリエーテルサルホン、ポリアリレートなどを用いることができる。
(Retardation film substrate)
The substrate used in the present invention is not particularly limited as long as it is substantially transparent, and glass, ceramics, plastics and the like can be used. Examples of plastic substrates include cellulose derivatives such as cellulose, triacetyl cellulose, diacetyl cellulose, polycycloolefin derivatives, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polypropylene, and polyethylene. Polyolefin, polycarbonate, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, nylon, polystyrene, polyacrylate, polymethyl methacrylate, polyether sulfone, polyarylate and the like can be used.

(位相差膜 光配向膜層)
本発明で使用する光配向膜とは、後述の、光の吸収により液晶配向能を生じる基(光配向性基)を有する化合物(以下光配向性化合物と称す)を含有する、液晶配向能を有する膜である。
光配向性基とは、光を照射することで生じる、光二色性に起因するワイゲルト効果による分子の配向誘起もしくは異性化反応(例:アゾベンゼン基)、二量化反応(例:シンナモイル基)、光架橋反応(例:ベンゾフェノン基)、あるいは光分解反応(例:ポリイミド基)のような、液晶配向能の起源となる光反応を生じる基を表す。中でも、光二色性に起因するワイゲルト効果による分子の配向誘起もしくは異性化反応、二量化反応、あるいは光架橋反応を利用したものが、配向性に優れ、重合性液晶を簡単に配向させることができ好ましい。
具体的には、前記光配向性基が吸収しうる波長の偏光を、塗膜表面あるいは塗膜表面とは反対側の基板側から、面に対して垂直に、あるいは斜め方向から照射すればよい。また、光配向性基が、ワイゲルト効果による分子の配向誘起もしくは異性化反応等を利用する基である場合には、該基が効率よく吸収する波長の非偏光を、塗膜表面あるいは基板側から、面に対して斜め方向から照射し液晶配向機能を与えてもよい。また、偏光と非偏光とを組み合わせても良い。
偏光は直線偏光、楕円偏光のいずれでも良いが、効率よく光配向を行うためには、消光比の高い直線偏光を用いることが好ましい。
光配向性基としては特に限定されないが、中でも、C=C、C=N、N=N、及びC=Oからなる群より選ばれる少なくとも一つの二重結合(但し、芳香環を形成する二重結合を除く)を有する基が特に好ましく用いられる。
(Retardation film photo-alignment film layer)
The photo-alignment film used in the present invention has a liquid crystal alignment ability containing a compound (hereinafter referred to as a photo-alignment compound) having a group (photo-alignment group) that generates liquid crystal alignment ability by absorbing light, which will be described later. It is a film having.
A photo-alignment group is a molecular orientation induction or isomerization reaction (eg, azobenzene group), dimerization reaction (eg, cinnamoyl group), light caused by Weigert's effect caused by photo-dichroism caused by light irradiation. It represents a group that causes a photoreaction that is the origin of liquid crystal alignment ability, such as a crosslinking reaction (eg, benzophenone group) or a photodecomposition reaction (eg, polyimide group). Among them, those using molecular orientation induction or isomerization reaction, dimerization reaction, or photocrosslinking reaction due to Weigert effect due to photodichroism are excellent in alignment property and can easily align polymerizable liquid crystals. preferable.
Specifically, polarized light having a wavelength that can be absorbed by the photo-alignment group may be irradiated from the coating film surface or the substrate side opposite to the coating film surface, perpendicular to the surface, or obliquely. . In addition, when the photo-alignable group is a group utilizing molecular orientation induction or isomerization reaction due to the Weigert effect, non-polarized light having a wavelength that the group efficiently absorbs from the coating film surface or the substrate side. The liquid crystal alignment function may be given by irradiating the surface from an oblique direction. Also, polarized light and non-polarized light may be combined.
The polarized light may be either linearly polarized light or elliptically polarized light, but it is preferable to use linearly polarized light having a high extinction ratio in order to perform photoalignment efficiently.
The photo-alignment group is not particularly limited, but among them, at least one double bond selected from the group consisting of C = C, C = N, N = N, and C = O (however, it forms two aromatic rings). A group having (excluding a heavy bond) is particularly preferably used.

これらの光配向性基として、C=C結合を有する基としては、例えば、ポリエン基、スチルベン基、スチルバゾ−ル基、スチルバゾリウム基、シンナモイル基、ヘミチオインジゴ基、カルコン基等の構造を有する基が挙げられる。C=N結合を有する基としては、芳香族シッフ塩基、芳香族ヒドラゾン等の構造を有する基が挙げられる。N=N結合を有する基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基、ホルマザン基等の構造を有する基や、アゾキシベンゼンを基本構造とするものが挙げられる。C=O結合を有する基としては、ベンゾフェノン基、クマリン基、アントラキノン基等の構造を有する基が挙げられる。これらの基は、アルキル基、アルコキシ基、アリ−ル基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基等の置換基を有していても良い。   Examples of groups having a C═C bond as these photo-alignable groups include groups having a structure such as a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a cinnamoyl group, a hemithioindigo group, and a chalcone group. It is done. Examples of the group having a C═N bond include groups having a structure such as an aromatic Schiff base and an aromatic hydrazone. Examples of the group having an N═N bond include groups having a structure such as an azobenzene group, an azonaphthalene group, an aromatic heterocyclic azo group, a bisazo group, a formazan group, and those having a basic structure of azoxybenzene. Examples of the group having a C═O bond include groups having a structure such as a benzophenone group, a coumarin group, and an anthraquinone group. These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group, and a halogenated alkyl group.

中でも、光異性化反応により光配向性を示すアゾベンゼン基又はアントラキノン基、あるいは、光二量化反応により光配向性を示すベンゾフェノン基、シンナモイル基、カルコン基、又はクマリン基が、光配向に必要な偏光の照射量が少なく、かつ得られた光配向膜の熱安定性、経時安定性が優れているため、特に好ましい。   Among them, an azobenzene group or anthraquinone group that exhibits photoalignment by a photoisomerization reaction, or a benzophenone group, a cinnamoyl group, a chalcone group, or a coumarin group that exhibits photoalignment by a photodimerization reaction, are polarized light necessary for photoalignment. This is particularly preferable because the irradiation amount is small, and the obtained photo-alignment film has excellent thermal stability and stability over time.

光配向性化合物は公知であり、具体的には例えば、特開2002−250924号公報や特開2002−317013号公報に記載の化合物をあげることができる。   Photoalignable compounds are known, and specific examples include compounds described in JP-A No. 2002-250924 and JP-A No. 2002-317013.

一般に、光配向性化合物の分子量は、重量平均分子量に換算して1×10〜1×10の範囲が好ましく、低分子化合物でも、光配向性基を有するポリマーであってもよい。あまり分子量が高くなると、光配向性基が系中で動きづらくなり、光に対して感度が下がる傾向にあるので、1×10〜1×10の範囲がより好ましく、1×10〜5×10の範囲が更に好ましい。前記光配向性基を有するポリマーの分子量は、重量平均分子量に換算して1×10〜1×10程度が好ましい。中でも低分子の光配向性化合物が、光の応答性が早く、一様に配向させることができ好ましい。 In general, the molecular weight of the photoalignment compound is preferably in the range of 1 × 10 2 to 1 × 10 6 in terms of weight average molecular weight, and may be a low molecular compound or a polymer having a photoalignment group. If the molecular weight is too high, the photo-alignment group becomes difficult to move in the system, and the sensitivity to light tends to decrease. Therefore, the range of 1 × 10 2 to 1 × 10 5 is more preferable, and 1 × 10 2 to A range of 5 × 10 3 is more preferred. The molecular weight of the polymer having a photoalignable group is preferably about 1 × 10 4 to 1 × 10 7 in terms of weight average molecular weight. Among them, a low molecular weight photo-alignment compound is preferable because it has high light responsiveness and can be uniformly aligned.

(位相差膜 重合性液晶組成物層)
本発明で使用する重合性液晶組成物は、前記光配向膜層を有する基板上に塗布または印刷し、前記重合性液晶組成物層中の重合性基を有する液晶化合物を配向させた状態で重合させる。
ここで使用する重合性液晶組成物としては、汎用の重合性液晶組成物を使用することができる。また、重合性液晶組成物を塗布または印刷する方法、配向させる方法、及び重合方法については特に限定されることなく、公知の方法で得ることができる。
例えば、ハンドブック オブ リキッド クリスタルズ Handbook of Liquid Crystals (ディー デムス D. Demus, ジェー ダブル グッドビー J. W. Goodby, ジー ダブル グレイ G. W. Gray, エイチ ダブル スピース H. W. Spiess, ブイ ビル V. Vill編集、ワイリー ブイ シーエイチ Wiley−VCH 社発行、1998年)、季刊化学総説No.22、液晶の化学(日本化学会編、1994年)、あるいは、特開平7−294735号公報、特開平8−3111号公報、特開平8−29618号公報、特開平11−80090号公報、特開平11−148079号公報、特開2000−178233号公報、特開2002−308831号公報、特開2002−145830号公報に記載されているような、1,4−フェニレン基、1,4−シクロヘキシレン基等の構造が複数繋がったメソゲンと呼ばれる剛直な部位と、(メタ)アクリロイル基、ビニルオキシ基、エポキシ基といった重合性基とを有する棒状液晶化合物が挙げられる。
(Retardation film polymerizable liquid crystal composition layer)
The polymerizable liquid crystal composition used in the present invention is coated or printed on the substrate having the photo-alignment film layer, and polymerized in a state in which the liquid crystal compound having a polymerizable group in the polymerizable liquid crystal composition layer is aligned. Let
As the polymerizable liquid crystal composition used here, a general-purpose polymerizable liquid crystal composition can be used. In addition, a method for applying or printing the polymerizable liquid crystal composition, a method for aligning, and a polymerization method are not particularly limited and can be obtained by a known method.
For example, Handbook of Liquid Crystals Handbook of Liquid Crystals (D Deems D. Demus, J Double Goodby J. W. Goodby, G Double Gray GW Gray, H. V. Sp. Edited by Wiley-VH, published by Wiley-VCH, 1998), Quarterly Chemical Review No. 22, Liquid Crystal Chemistry (Edited by Chemical Society of Japan, 1994), or JP-A-7-294735, JP-A-8-3111, JP-A-8-29618, JP-A-11-80090, 1,4-phenylene group, 1,4-cyclohexene, as described in Kaihei 11-148079, JP-A 2000-178233, JP-A 2002-308831, and JP-A 2002-145830. Examples thereof include a rod-like liquid crystal compound having a rigid site called a mesogen in which a plurality of structures such as a silene group are connected, and a polymerizable group such as a (meth) acryloyl group, a vinyloxy group, and an epoxy group.

また、例えば、ハンドブック オブ リキッド クリスタルズ Handbook of Liquid Crystals (ディー デムス D. Demus, ジェー ダブル グッドビー J. W. Goodby, ジー ダブル グレイ G. W. Gray, エイチ ダブル スピース H. W. Spiess, ブイ ビル V. Vill編集、ワイリー ブイ シーエイチ Wiley−VCH 社発行、1998年)、季刊化学総説No.22、液晶の化学(日本化学会編、1994年)や、特開平07−146409号公報に記載されている重合性基を有するディスコティック液晶化合物が挙げられる。中でも、重合性基を有する棒状液晶化合物が、液晶相温度範囲が室温前後の低温を含むものを作りやすく好ましい。   Also, for example, Handbook of Liquid Crystals Handbook of Liquid Crystals (D. Demus D. Demus, J. Double Goodby J. W. Goodby, G. Double Gray, G. W. Gray, H.S. Edited by Vill, published by Wiley-VCH, 1998), quarterly chemistry review article No. 22. Discotic liquid crystal compounds having a polymerizable group described in the chemistry of liquid crystals (edited by the Chemical Society of Japan, 1994) and JP-A-07-146409. Among these, a rod-like liquid crystal compound having a polymerizable group is preferable because a liquid crystal phase temperature range that includes a low temperature around room temperature is easy to make.

塗布または印刷方法としては、スピンコーター、キャップコーター、ダイコーター、マイクログラビアコーターなどにより塗布する方法や、フレキソ印刷法やグラビア印刷法などにより印刷する方法などがある。   Examples of the application or printing method include a method using a spin coater, a cap coater, a die coater, a micro gravure coater, and the like, a method using a flexographic printing method, a gravure printing method, and the like.

また、配向させる方法には特に限定はないが、例えば、重合性液晶組成物溶液を塗布または印刷後、必要に応じてホットプレートや恒温槽により有機溶媒を乾燥させ、重合性液晶組成物の等方相−液晶相転移温度まで加熱し、それから液晶相を示す温度まで徐々に冷却を行う方法がある。一端等方相にしてから液晶相に戻すことで、配向均一性をより向上させることができる。有機溶媒を乾燥させる温度は、乾燥後の重合性液晶組成物が液晶相を示す温度であれば良く、溶媒を徐々に乾燥するような温度は、配向の均一性が良好となるため好ましい。   In addition, the method for aligning is not particularly limited, but for example, after applying or printing the polymerizable liquid crystal composition solution, the organic solvent is dried by a hot plate or a thermostatic bath as necessary, and the polymerizable liquid crystal composition is There is a method of heating to a phase-liquid crystal phase transition temperature and then gradually cooling to a temperature showing a liquid crystal phase. The alignment uniformity can be further improved by returning to the liquid crystal phase after making the isotropic phase at one end. The temperature at which the organic solvent is dried may be any temperature at which the polymerizable liquid crystal composition after drying exhibits a liquid crystal phase, and a temperature at which the solvent is gradually dried is preferable because the uniformity of alignment becomes good.

また、重合方法としては、例えば、本発明の製造方法で得た光配向膜が有する光の吸収帯とは異なる光吸収波長帯域を持つ光重合開始剤を予め重合性液晶組成物あるいは光配向膜の一方又は両方に添加しておき、重合性液晶組成物を配向させた後、光重合開始剤の吸収帯を有する光を照射して重合する方法や、熱重合開始剤を予め前記と同様に添加したおき、重合性液晶組成物を配向させた後、加熱し重合する方法等が上げられる。
このようにして、位相差膜が得られる。
In addition, as a polymerization method, for example, a photopolymerization initiator having a light absorption wavelength band different from the light absorption band of the photoalignment film obtained by the production method of the present invention may be prepared in advance by using a polymerizable liquid crystal composition or a photoalignment film. Or a method of polymerizing by irradiating light having an absorption band of a photopolymerization initiator after aligning the polymerizable liquid crystal composition in advance, or a thermal polymerization initiator in the same manner as described above. For example, a method of heating and polymerizing after aligning the polymerizable liquid crystal composition is added.
In this way, a retardation film is obtained.

(位相差膜 粘着剤)
粘着剤は感圧接着剤とも呼称される接着剤の一種で、一般的には常温で短時間、わずかな圧力を加えるだけで、被着体同士を接着させることが可能である。前記位相差膜上に設ける粘着剤層は、公知の粘着剤を使用してよいが、耐熱性試験後もタック性を有するものが好ましく、例えば、アクリル樹脂、イソブチレンゴム樹脂、スチレン−ブタジエンゴム樹脂、イソプレンゴム樹脂、天然ゴム樹脂、シリコーン樹脂などの溶剤型粘着剤や、アクリルエマルジョン樹脂、スチレンブタジエンラテックス樹脂、天然ゴムラテックス樹脂、スチレン−イソプレン共重合体樹脂、スチレン−ブタジエン共重合体樹脂、スチレン−エチレン−ブチレン共重合体樹脂、エチレン−酢酸ビニル樹脂、ポリビニルアルコール、ポリアクリルアミド、ポリビニルメチルエーテルなどの無溶剤型粘着剤などがあげられる。
また、粘着強度を調整するために粘着付与剤(タッキファイヤー)を添加してもよい。粘着付与剤は特に限定されず、例えばロジン樹脂、ロジンエステル樹脂、テルペン樹脂、テルペンフェノール樹脂、フェノール樹脂、キシレン樹脂、クマロン樹脂、クマロンインデン樹脂、スチレン樹脂、脂肪族系石油樹脂、芳香族系石油樹脂、脂肪族芳香族共重合系石油樹脂、脂環族系炭化水素樹脂、及びこれらの変性品、誘導体、水素添加品等があげられる。
粘着付与剤の配合量は特に限定されず、全樹脂固形分100質量部に対して100質量部以下、好ましくは50質量部以下とすることが好ましい。
(Retardation film adhesive)
The pressure-sensitive adhesive is a kind of adhesive also referred to as a pressure-sensitive adhesive. Generally, adherends can be bonded to each other by applying a slight pressure at room temperature for a short time. The pressure-sensitive adhesive layer provided on the retardation film may use a known pressure-sensitive adhesive, but preferably has tackiness even after a heat resistance test, for example, an acrylic resin, an isobutylene rubber resin, a styrene-butadiene rubber resin. Solvent adhesives such as isoprene rubber resin, natural rubber resin, silicone resin, acrylic emulsion resin, styrene butadiene latex resin, natural rubber latex resin, styrene-isoprene copolymer resin, styrene-butadiene copolymer resin, styrene -Solventless adhesives such as ethylene-butylene copolymer resin, ethylene-vinyl acetate resin, polyvinyl alcohol, polyacrylamide, and polyvinyl methyl ether.
Moreover, you may add a tackifier (tackifier) in order to adjust adhesive strength. The tackifier is not particularly limited. For example, rosin resin, rosin ester resin, terpene resin, terpene phenol resin, phenol resin, xylene resin, coumarone resin, coumarone indene resin, styrene resin, aliphatic petroleum resin, aromatic series Examples thereof include petroleum resins, aliphatic aromatic copolymer petroleum resins, alicyclic hydrocarbon resins, and modified products, derivatives and hydrogenated products thereof.
The compounding quantity of a tackifier is not specifically limited, It is 100 mass parts or less with respect to 100 mass parts of total resin solid content, Preferably it is 50 mass parts or less.

実用的には、上記粘着剤層または接着剤層の表面は、本発明の光学素子が実際に使用されるまでの間、任意の適切なセパレータによってカバーされ、汚染が防止され得る。セパレータは、例えば、任意の適切なフィルムに、必要に応じて、シリコーン系、長鎖アルキル系、フッ素系、硫化モリブデン等の剥離剤による剥離コートを設ける方法が挙げられる。 このような粘着剤としては、例えば日東電工(株)製の透明両面接着シートCS9621やHJ−9150W、住友スリーエム(株)製の接着剤転写テープF−9460や8141、(株)サンエー化研製の粘着テープWR−B2等が挙げられる。   Practically, the surface of the pressure-sensitive adhesive layer or the adhesive layer can be covered with any appropriate separator until the optical element of the present invention is actually used to prevent contamination. Examples of the separator include a method of providing a release coat with a release agent such as a silicone-based, long-chain alkyl-based, fluorine-based, molybdenum sulfide, or the like on any appropriate film as necessary. Examples of such an adhesive include transparent double-sided adhesive sheet CS9621 and HJ-9150W manufactured by Nitto Denko Corporation, adhesive transfer tape F-9460 and 8141 manufactured by Sumitomo 3M Co., Ltd., and manufactured by Sanei Kaken Co., Ltd. Adhesive tape WR-B2 etc. are mentioned.

(ガラス転移温度80℃以上の等方性樹脂層)
本発明においては、前記位相差膜層と前記粘着剤層との間にガラス転移温度(以下Tgと称す)80℃以上の等方性樹脂層を有することが特徴である。Tgとは、等方性樹脂層を粘弾性測定装置にて、周波数 1Hz、5℃/分の昇温速度で測定した際の、損失弾性率/貯蔵弾性率で表わされるtanδが極大となる温度をTgとした。
Tgが80℃以上の範囲にある等方性樹脂層としては、インキおよび塗料に使用されている(メタ)アクリル系樹脂、アクリルアルキッド系樹脂、ポリエステル系樹脂、ウレタン系樹脂、その他エチレン性不飽和二重結合を有する活性エネルギー線硬化性樹脂組成物等のなかから適宜選択して使用することができる。また適宜混合して使用してもよい。
(Isotropic resin layer with glass transition temperature of 80 ° C or higher)
In the present invention, an isotropic resin layer having a glass transition temperature (hereinafter referred to as Tg) of 80 ° C. or higher is provided between the retardation film layer and the pressure-sensitive adhesive layer. Tg is the temperature at which tan δ expressed by loss elastic modulus / storage elastic modulus becomes maximum when an isotropic resin layer is measured with a viscoelasticity measuring apparatus at a frequency of 1 Hz and a temperature rising rate of 5 ° C./min. Was Tg.
Isotropic resin layers with Tg in the range of 80 ° C. or higher include (meth) acrylic resins, acrylic alkyd resins, polyester resins, urethane resins, and other ethylenically unsaturated materials used in inks and paints. The active energy ray-curable resin composition having a double bond can be appropriately selected and used. Moreover, you may mix and use it suitably.

例えば、(メタ)アクリル系樹脂であれば、(メタ)アクリル系樹脂の原料モノマーのホモポリマーのTgから計算し算出したTgを、具体的には以下のFoxの式により算出されたTgが80℃以上のアクリル系樹脂を適宜選択することができる。   For example, in the case of a (meth) acrylic resin, the Tg calculated and calculated from the Tg of the homopolymer of the raw material monomer of the (meth) acrylic resin, specifically, the Tg calculated by the following Fox equation is 80 An acrylic resin having a temperature of 0 ° C. or higher can be appropriately selected.

Figure 2011209537
Figure 2011209537

例えば、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):25/8/30/37)、メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):23/8/15/54)メタクリル酸/メチルメタクリレート/スチレン/ベンジルメタクリレート共重合体(共重合体組成(質量比):29/16/35/20)、メタクリル酸/メチルメタクリレート/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):25/25/39/11)、メタクリル酸/メチルメタクリレート/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):25/25/45/5)、メタクリル酸/メチルメタクリレート/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):25/10/45/20)、メタクリル酸/シクロヘキシルメタクリレート/2−エチルヘキシルメタクリレート共重合体(共重合体組成(質量比):25/70/5)、メタクリル酸/シクロヘキシルメタクリレート/2−エチルヘキシルメタクリレート共重合体(共重合体組成(質量比):23/70/7)、メタクリル酸/スチレン/メチルアクリレート共重合体(共重合体組成(質量比):25/60/15)、メタクリル酸/スチレン/メチルアクリレート共重合体(共重合体組成(質量比):25/50/25)、メタクリル酸/スチレン/メチルアクリレート共重合体(共重合体組成(質量比):29/61/10)、メタクリル酸/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):23/60/17)、メタクリル酸/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):29/61/10)、メタクリル酸/スチレン/エチルアクリレート共重合体(共重合体組成(質量比):25/70/5)、メタクリル酸/スチレン共重合体(共重合組成比(質量比):20/80)、メタクリル酸/スチレン共重合体(共重合組成比(質量比):28/72)、メタクリル酸/スチレン共重合体(共重合組成比(質量比):32/68)、メタクリル酸/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):25/65/10)、メタクリル酸/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):30/61/9)、メタクリル酸/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):29/60/11)、メタクリル酸/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):29/47/24)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):25/22/40/13)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):29/15/47/9)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):29/18/50/3)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):25/15/40/20)、メタクリル酸/メチルメタクリレート/スチレン/2−エチルヘキシルメタクリレート共重合体(共重合組成比(質量比):25/15/35/25)、メタクリル酸/スチレン/シクロヘキシルメタクリレート共重合体(共重合組成比(質量比):31/64/5)、メタクリル酸/スチレン/シクロヘキシルメタクリレート共重合体(共重合組成比(質量比):25/15/60)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):25/27/46/2)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):29/15/50/6)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):25/27/36/12)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):29/13/38/20)、メタクリル酸/メチルメタクリレート/スチレン/ブチルメタクリレート共重合体(共重合組成比(質量比):29/5/31/35)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):25/29/46)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):20/53/27)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):29/19/52)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):30/13/57)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):28/13/59)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):32/8/60)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):29/31/40)、メタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):25/41/34)、及びメタクリル酸/メチルメタクリレート/スチレン共重合体(共重合組成比(質量比):20/56/24)、スチレン/メチルメタクリレート/t−ブチルメタクリレート/ラウリルメタクリレートの共重合体やメチルメタクリレート/ボルニルメタクリレート/t−ブチルメタクリレートの共重合体などが挙げられる。   For example, methacrylic acid / methyl methacrylate / styrene / benzyl methacrylate copolymer (copolymer composition (mass ratio): 25/8/30/37), methacrylic acid / methyl methacrylate / styrene / benzyl methacrylate copolymer (copolymer) Combined composition (mass ratio): 23/8/15/54) methacrylic acid / methyl methacrylate / styrene / benzyl methacrylate copolymer (copolymer composition (mass ratio): 29/16/35/20), methacrylic acid / Methyl methacrylate / styrene / ethyl acrylate copolymer (copolymer composition (mass ratio): 25/25/39/11), methacrylic acid / methyl methacrylate / styrene / ethyl acrylate copolymer (copolymer composition (mass ratio) ): 25/25/45/5), methacrylic acid / methyl methacrylate Styrene / ethyl acrylate copolymer (copolymer composition (mass ratio): 25/10/45/20), methacrylic acid / cyclohexyl methacrylate / 2-ethylhexyl methacrylate copolymer (copolymer composition (mass ratio): 25 / 70/5), methacrylic acid / cyclohexyl methacrylate / 2-ethylhexyl methacrylate copolymer (copolymer composition (mass ratio): 23/70/7), methacrylic acid / styrene / methyl acrylate copolymer (copolymer) Composition (mass ratio): 25/60/15), methacrylic acid / styrene / methyl acrylate copolymer (copolymer composition (mass ratio): 25/50/25), methacrylic acid / styrene / methyl acrylate copolymer (Copolymer composition (mass ratio): 29/61/10), methacrylic acid / styrene / ethyl acetate Relate copolymer (copolymer composition (mass ratio): 23/60/17), methacrylic acid / styrene / ethyl acrylate copolymer (copolymer composition (mass ratio): 29/61/10), methacrylic acid / Styrene / ethyl acrylate copolymer (copolymer composition (mass ratio): 25/70/5), methacrylic acid / styrene copolymer (copolymerization composition ratio (mass ratio): 20/80), methacrylic acid / Styrene copolymer (copolymerization composition ratio (mass ratio): 28/72), methacrylic acid / styrene copolymer (copolymerization composition ratio (mass ratio): 32/68), methacrylic acid / styrene / 2-ethylhexyl methacrylate Copolymer (copolymerization composition ratio (mass ratio): 25/65/10), methacrylic acid / styrene / 2-ethylhexyl methacrylate copolymer (copolymerization composition ratio (mass ratio): 30 / 61/9), methacrylic acid / styrene / 2-ethylhexyl methacrylate copolymer (copolymerization composition ratio (mass ratio): 29/60/11), methacrylic acid / styrene / 2-ethylhexyl methacrylate copolymer (copolymerization) Composition ratio (mass ratio): 29/47/24), methacrylic acid / methyl methacrylate / styrene / 2-ethylhexyl methacrylate copolymer (copolymerization composition ratio (mass ratio): 25/22/40/13), methacrylic acid / Methyl methacrylate / styrene / 2-ethylhexyl methacrylate copolymer (copolymerization composition ratio (mass ratio): 29/15/47/9), methacrylic acid / methyl methacrylate / styrene / 2-ethylhexyl methacrylate copolymer (copolymerization) Composition ratio (mass ratio): 29/18/50/3), methacrylic acid / methyl methacrylate Chrylate / styrene / 2-ethylhexyl methacrylate copolymer (copolymerization composition ratio (mass ratio): 25/15/40/20), methacrylic acid / methyl methacrylate / styrene / 2-ethylhexyl methacrylate copolymer (copolymerization composition ratio) (Mass ratio): 25/15/35/25), methacrylic acid / styrene / cyclohexyl methacrylate copolymer (copolymerization composition ratio (mass ratio): 31/64/5), methacrylic acid / styrene / cyclohexyl methacrylate copolymer Copolymer (copolymerization composition ratio (mass ratio): 25/15/60), methacrylic acid / methyl methacrylate / styrene / butyl methacrylate copolymer (copolymerization composition ratio (mass ratio): 25/27/46/2), Methacrylic acid / Methyl methacrylate / Styrene / Butyl methacrylate copolymer (Co Combined composition ratio (mass ratio): 29/15/50/6), methacrylic acid / methyl methacrylate / styrene / butyl methacrylate copolymer (copolymerization composition ratio (mass ratio): 25/27/36/12), methacryl Acid / methyl methacrylate / styrene / butyl methacrylate copolymer (copolymerization composition ratio (mass ratio): 29/13/38/20), methacrylic acid / methyl methacrylate / styrene / butyl methacrylate copolymer (copolymerization composition ratio ( (Mass ratio): 29/5/31/35), methacrylic acid / methyl methacrylate / styrene copolymer (copolymerization composition ratio (mass ratio): 25/29/46), methacrylic acid / methyl methacrylate / styrene copolymer (Copolymerization composition ratio (mass ratio): 20/53/27), methacrylic acid / methyl methacrylate / styrene copolymer (Copolymerization composition ratio (mass ratio): 29/19/52), methacrylic acid / methyl methacrylate / styrene copolymer (copolymerization composition ratio (mass ratio): 30/13/57), methacrylic acid / methyl methacrylate / Styrene copolymer (copolymerization composition ratio (mass ratio): 28/13/59), methacrylic acid / methyl methacrylate / styrene copolymer (copolymerization composition ratio (mass ratio): 32/8/60), methacryl Acid / methyl methacrylate / styrene copolymer (copolymerization composition ratio (mass ratio): 29/31/40), methacrylic acid / methyl methacrylate / styrene copolymer (copolymerization composition ratio (mass ratio): 25/41 / 34), and methacrylic acid / methyl methacrylate / styrene copolymer (copolymerization composition ratio (mass ratio): 20/56/24), styrene / methyl methacrylate. / Such as t-butyl methacrylate / lauryl methacrylate copolymer and methyl methacrylate / isobornyl methacrylate / t-butyl methacrylate copolymers.

また、活性エネルギー線硬化性樹脂組成物であれば、硬化後のTgが80℃以上の多官能の(メタ)アクリレートを主成分として好ましく使用でき、例えば、主鎖構造にエステル結合を有し、少なくとも2つ以上の(メタ)アクリロイル基を有するポリエステル(メタ)アクリレート、エピクロロヒドリンで変性して得られるエポキシ(メタ)アクリレート、エチルオキシド、プロピレンオキシド、環状ラクトンなどで変性された(メタ)アクリレート等や、ビス(アクリロイルエチル)ヒドロキシエチルイソシアヌレート、EO変性ビスフェノールAジアクリレート、PO変性ビスフェノールAジアクリレート、ECH変性ビスフェノールA型アクリレート、ECH変性フタル酸ジアクリレート、ECH変性ヘキサヒドロフタル酸ジアクリレート、トリシクロデカンジメタノールジアクリレート、ロジン変性エステルアクリレート、EO変性リン酸ジメタクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、ジメチロールプロパンテトラアクリレート、ジぺンタエリスリトールヘキサアクリレート、カプロラクトン変性ジぺンタエリスリトールヘキサアクリレート等の、2つ以上の(メタ)アクリロイル基を有する(メタ)アクリレート等が挙げられる。
これらの多官能の(メタ)アクリレートは、公知のラジカル光重合開始剤、例えば、ベンゾフェノン、2,2−ジエトキシアセトフェノン、ベンジル、ベンゾイルイソプロピルエーテル、ベンジルジメチルケタール、1−ヒドロキシシクロヘキシルフェニルケトン、チオキサントン等を適宜添加して使用することができる。
In addition, if it is an active energy ray curable resin composition, it can be preferably used as a main component polyfunctional (meth) acrylate having a Tg after curing of 80 ° C. or more, for example, having an ester bond in the main chain structure, (Meth) modified with polyester (meth) acrylate having at least two (meth) acryloyl groups, epoxy (meth) acrylate obtained by modification with epichlorohydrin, ethyl oxide, propylene oxide, cyclic lactone, etc. Acrylates, etc., bis (acryloylethyl) hydroxyethyl isocyanurate, EO-modified bisphenol A diacrylate, PO-modified bisphenol A diacrylate, ECH-modified bisphenol A-type acrylate, ECH-modified phthalic acid diacrylate, ECH-modified hexahydrophthalic acid diacrylate , Tricyclodecane dimethanol diacrylate, rosin modified ester acrylate, EO modified phosphate dimethacrylate, tris (acryloyloxyethyl) isocyanurate, dimethylolpropane tetraacrylate, dipentaerythritol hexaacrylate, caprolactone modified dipenta And (meth) acrylate having two or more (meth) acryloyl groups, such as erythritol hexaacrylate.
These polyfunctional (meth) acrylates are known radical photopolymerization initiators such as benzophenone, 2,2-diethoxyacetophenone, benzyl, benzoyl isopropyl ether, benzyl dimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, thioxanthone and the like. Can be used as appropriate.

(光学素子の製造方法)
本発明の光学素子は、前記位相差膜上に、スピンコーター、キャップコーター、ダイコーター、マイクログラビアコーターなどにより塗布する方法や、フレキソ印刷法やグラビア印刷法などにより印刷する方法などで、前記Tg80℃以上の等方性樹脂層を設け、その上に前記粘着剤層を設ける。
前記等方性樹脂層や前記粘着層を塗布または印刷する際には、適宜有機溶剤で希釈して使用してもよい。また、等方性樹脂層として活性エネルギー線硬化性樹脂組成物を使用する場合には、塗布または印刷後、紫外線又は可視光線等の活性エネルギー線を照射して硬化させる。光の波長は300nm〜400nmが好ましい。光源としては、例えば、高圧水銀灯、メタルハライドランプ等を使用することができる。該光源の照度は、500W/m2以上であると、硬化が速く好ましい。照射する光量は、積算光量に換算して20000J/m2以上であれば良好に硬化させることができる。また、本発明の液晶パネルシール用熱硬化性組成物は、空気雰囲気下においても良好な光硬化性を示すが、窒素などの不活性ガス雰囲気下で光硬化させると、少ない積算光量で硬化させることができるので、より好ましい。
(Optical element manufacturing method)
The optical element of the present invention can be obtained by applying the Tg80 on the retardation film by a method such as a spin coater, a cap coater, a die coater, a micro gravure coater, or a flexographic printing method or a gravure printing method. An isotropic resin layer at a temperature of 0 ° C. or higher is provided, and the pressure-sensitive adhesive layer is provided thereon.
When the isotropic resin layer or the adhesive layer is applied or printed, it may be appropriately diluted with an organic solvent. Moreover, when using an active energy ray-curable resin composition as an isotropic resin layer, after application | coating or printing, it hardens | cures by irradiating active energy rays, such as an ultraviolet-ray or visible light. The wavelength of light is preferably 300 nm to 400 nm. As the light source, for example, a high-pressure mercury lamp, a metal halide lamp, or the like can be used. When the illuminance of the light source is 500 W / m 2 or more, it is preferable that curing is quick. If the light quantity to be irradiated is 20000 J / m 2 or more in terms of the integrated light quantity, it can be cured well. Further, the thermosetting composition for liquid crystal panel seals of the present invention shows good photocurability even in an air atmosphere, but when it is photocured in an inert gas atmosphere such as nitrogen, it is cured with a small amount of accumulated light. This is more preferable.

前記等方性樹脂層の膜厚は0.01μm〜30μmであることが望ましく、好ましくは0.05μmから3μmである。   The film thickness of the isotropic resin layer is desirably 0.01 μm to 30 μm, and preferably 0.05 μm to 3 μm.

また、前記位相差膜を複数層塗り重ねたものを光学素子として使用してもよい。その場合は、各々の位相差膜の光軸がなす角度が所望の範囲となるように積層される。   Moreover, you may use what coated the said retardation film several layers as an optical element. In that case, the layers are laminated so that the angle formed by the optical axes of the respective retardation films falls within a desired range.

(その他の光学層)
本発明の光学素子は、その他目的に応じて、さらに他の光学層を備えていてもよい。このような他の光学層としては、目的や画像表示装置の種類に応じて任意の適切な光学層が採用され得る。具体例としては、偏光子、液晶フィルム、光散乱フィルム、回折フィルム、さらに別の光学補償層(位相差フィルム)保護フィルム等が挙げられる。
(Other optical layers)
The optical element of the present invention may further include other optical layers depending on other purposes. As such another optical layer, any appropriate optical layer may be employed depending on the purpose and the type of the image display device. Specific examples include a polarizer, a liquid crystal film, a light scattering film, a diffraction film, and another optical compensation layer (retardation film) protective film.

(その他の光学層 偏光子)
本発明で使用する偏光子としては特に限定はなく、目的に応じて任意の適切な偏光子が採用され得る。例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらのなかでも、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く特に好ましい。これら偏光子の厚さは特に制限されないが、一般的に、1 〜 8 0 μ m 程度である。
前記偏光子は、本発明の位相差膜の基板の、光配向膜を設けた側とは反対側の面に、前記粘着剤等を介して貼り付けることが好ましい。また、前記偏光子の表面に、更に保護フィルムを設けてもよい。保護フィルムとしては、偏光板の保護フィルムとして使用されているものであれば特に限定はなく、例えばトリアセチルセルロース( T A C ) 等のセルロース系樹脂系フィルム、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、アクリル系、アセテート系等の透明樹脂系フィルム等が挙げられる。
上記保護フィルムは、透明で、色付きが無いことが好ましい。具体的には、厚み方向の
位相差値が、好ましくは− 9 0 n m 〜 + 9 0 n m であり、さらに好ましくは− 8 0 n m 〜+ 8 0 n m であり、最も好ましくは− 7 0 n m 〜 + 7 0 n m である。
(Other optical layers Polarizer)
There is no limitation in particular as a polarizer used by this invention, Arbitrary appropriate polarizers may be employ | adopted according to the objective. For example, dichroic substances such as iodine and dichroic dyes are adsorbed on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films. And polyene-based oriented films such as a uniaxially stretched product, a polyvinyl alcohol dehydrated product and a polyvinyl chloride dehydrochlorinated product. Among these, a polarizer obtained by adsorbing a dichroic substance such as iodine on a polyvinyl alcohol film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio. The thickness of these polarizers is not particularly limited, but is generally about 1 to 80 μm.
The polarizer is preferably attached to the surface of the retardation film substrate of the present invention on the surface opposite to the side on which the photo-alignment film is provided via the adhesive or the like. Moreover, you may provide a protective film further on the surface of the said polarizer. The protective film is not particularly limited as long as it is used as a protective film for a polarizing plate. For example, a cellulose-based resin film such as triacetyl cellulose (TAC), a polyester-based film, a polyvinyl alcohol-based film, and a polycarbonate-based film. , Polyamide-based, polyimide-based, polyethersulfone-based, polysulfone-based, polystyrene-based, polynorbornene-based, polyolefin-based, acrylic-based, and acetate-based transparent resin-based films.
The protective film is preferably transparent and has no color. Specifically, the thickness direction retardation value is preferably −90 nm to +90 nm, more preferably −80 nm to +80 nm, and most preferably − 7 0 nm to +70 nm.

(液晶パネル)
本発明の光学素子は、各種画像表示装置(例えば、液晶表示装置、自発光型表示装置)に好適に使用され得る。液晶表示装置は従来から、卓上計算機や電子時計などに使用されているが、さらに最近では、携帯電話などのモバイル機器から大型テレビに至るまで、画面サイズを問わずに使用されるようになってきており、急激にその用途が広がりつつある。液晶表示装置に広く一般に使用されている伝統的な偏光板は、ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向している偏光子の両面に、液状の接着剤を介して透明保護フィルム、特にトリアセチルセルロースフィルムを接着した構成で製造されている。これに本発明の光学素子を塗布で積層した形態で、感圧接着剤(粘着剤)を用いて液晶パネルに貼合され、画像表示装置とされる。
(LCD panel)
The optical element of the present invention can be suitably used for various image display devices (for example, liquid crystal display devices, self-luminous display devices). Conventionally, liquid crystal display devices have been used in desktop calculators and electronic watches, but more recently, they have come to be used regardless of screen size, from mobile devices such as mobile phones to large-sized TVs. The use is expanding rapidly. A traditional polarizing plate widely used in liquid crystal display devices is a transparent protective film via a liquid adhesive on both sides of a polarizer having a dichroic dye adsorbed and oriented on a polyvinyl alcohol resin film, In particular, it is manufactured in a configuration in which a triacetyl cellulose film is adhered. In this form, the optical element of the present invention is laminated by coating, and is bonded to a liquid crystal panel using a pressure-sensitive adhesive (adhesive) to form an image display device.

以下、実施例及び比較例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、本明細書では特に断りのない限り、部および%は質量基準である。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these. In the present specification, unless otherwise specified, parts and% are based on mass.

(光配向膜層用溶液Aの調製)
式(1)で表される化合物を、水、ジプロピレングリコールモノメチルエーテル、2−ブトキシエタノール、からなる等体積混合溶媒に溶解し、固形分1質量%溶液とした。この溶液を孔径0.45μmのフィルタ−で濾過し、光配向膜層用溶液Aとした。
(Preparation of photoalignment film layer solution A)
The compound represented by the formula (1) was dissolved in an equal volume mixed solvent composed of water, dipropylene glycol monomethyl ether and 2-butoxyethanol to obtain a 1% by mass solid content solution. This solution was filtered through a filter having a pore diameter of 0.45 μm to obtain a photoalignment film layer solution A.

Figure 2011209537
Figure 2011209537

(重合性液晶組成物溶液Bの調製)
式(2)、及び式(3)で表される化合物を質量比で等量混合した重合性液晶組成物を調製し、重合性液晶組成物100質量部に対し、式(4)で表される質量平均分子量47000の添加剤を0.5質量部、チバスペシャリティケミカルズ(株)製の光重合開始剤「イルガキュア907」を4質量部、キシレン233質量部を混合し、重合性液晶組成物溶液Bとした。該重合性液晶組成物溶液Bからキシレンを蒸発させた後の液晶組成物は25℃において液晶相を示し、以下の実施例は25℃において調製した。次いで孔径0.45μmのフィルタ−で濾過した。
(Preparation of polymerizable liquid crystal composition solution B)
A polymerizable liquid crystal composition prepared by mixing equal amounts of the compounds represented by formula (2) and formula (3) in a mass ratio is represented by formula (4) with respect to 100 parts by mass of the polymerizable liquid crystal composition. 0.5 parts by mass of an additive having a mass average molecular weight of 47000, 4 parts by mass of a photopolymerization initiator “Irgacure 907” manufactured by Ciba Specialty Chemicals Co., Ltd., and 233 parts by mass of xylene are mixed to obtain a polymerizable liquid crystal composition solution. B. The liquid crystal composition after xylene was evaporated from the polymerizable liquid crystal composition solution B showed a liquid crystal phase at 25 ° C., and the following examples were prepared at 25 ° C. Subsequently, it filtered with the filter of the hole diameter of 0.45 micrometer.

Figure 2011209537
Figure 2011209537

Figure 2011209537
Figure 2011209537

Figure 2011209537
Figure 2011209537

(位相差膜C)
TACフィルムをコロナ処理した後、光配向膜層用溶液Aをマイクログラビアコータを用いて成膜し、膜厚20nmの層を形成した。これを80℃で乾燥した後、偏光照射装置から365nmを中心波長とする偏光紫外線を該層面の法線方向から0.5J/cm照射し、配向処理された光配向膜Aを形成した。この照射偏光の振動方向はフィルムの長手方向に対し−15°とする。次いで光配向膜A上に、前記重合性液晶組成物溶液Bをマイクログラビアコータを用いて塗布し、80℃で乾燥後、窒素雰囲気下で紫外線を0.5J/cm照射した。自動複屈折計KOBRA−ADH21を使い、室温で測定した結果、波長589nmにおける位相差が264nm、遅相軸の方位角がフィルムの長手方向に対し75°の位相差膜Cを得た。
(Phase difference film C)
After corona treatment of the TAC film, the solution A for photo-alignment film layer was formed using a micro gravure coater to form a 20 nm thick layer. After drying this at 80 ° C., polarized ultraviolet light having a central wavelength of 365 nm was irradiated from the normal direction of the layer surface by 0.5 J / cm 2 from a polarized light irradiation device, thereby forming a photo-alignment film A subjected to alignment treatment. The direction of vibration of this irradiated polarized light is −15 ° with respect to the longitudinal direction of the film. Next, the polymerizable liquid crystal composition solution B was applied onto the photo-alignment film A using a micro gravure coater, dried at 80 ° C., and then irradiated with ultraviolet rays at 0.5 J / cm 2 in a nitrogen atmosphere. As a result of measuring at room temperature using an automatic birefringence meter KOBRA-ADH21, a retardation film C having a phase difference of 264 nm at a wavelength of 589 nm and an azimuth angle of the slow axis of 75 ° with respect to the longitudinal direction of the film was obtained.

(耐熱性試験用サンプルの評価)
位相差値の測定は室温で行い、耐熱性試験は85℃のオーブン中に置く。耐熱性試験用サンプルの耐熱性試験前の位相差値を100%と規格化した場合、500時間経過した時点における位相差値の低下が2.0%以下ならば、信頼性試験を合格とする。
(Evaluation of heat resistance test sample)
The retardation value is measured at room temperature, and the heat resistance test is placed in an oven at 85 ° C. When the retardation value before the heat resistance test of the sample for the heat resistance test is normalized to 100%, if the decrease in the retardation value after 2.0 hours is 2.0% or less, the reliability test is passed. .

(実施例1)
位相差膜Cの重合性液晶組成物層の硬化表面側をコロナ処理した後、その上に(メタ)アクリル系樹脂であるWDL−787(Tg=90℃、DIC株式会社製)をマイクログラビアコータを用いて成膜し、80℃で乾燥後、膜厚2μmの層を形成した。続いて、WDL−787層の表面をコロナ処理した後、軽剥離面のカバーフィルムを剥がした粘着剤CS9621(日東電工(株)製)を貼り合わせ、位相差膜Cをトリミングした。粘着剤CS9621のもう一方のカバーフィルムを剥がし粘着面を無アルカリガラスOA−10(日本電気硝子(株)製)上に貼り合わせ、ガラスに貼合した耐熱性試験用サンプルを得た。耐熱性試験500時間後、位相差値の低下率は1.1%であった。
Example 1
After the corona treatment on the cured surface side of the polymerizable liquid crystal composition layer of the retardation film C, WDL-787 (Tg = 90 ° C., manufactured by DIC Corporation), which is a (meth) acrylic resin, is applied to the microgravure coater. A film having a thickness of 2 μm was formed after drying at 80 ° C. Then, after corona-treating the surface of the WDL-787 layer, an adhesive CS9621 (manufactured by Nitto Denko Corporation) from which the cover film of the light release surface was peeled off was bonded, and the retardation film C was trimmed. The other cover film of pressure-sensitive adhesive CS9621 was peeled off, and the pressure-sensitive adhesive surface was bonded onto alkali-free glass OA-10 (manufactured by Nippon Electric Glass Co., Ltd.) to obtain a sample for heat resistance test bonded to glass. After 500 hours of the heat resistance test, the reduction rate of the retardation value was 1.1%.

(実施例2)
位相差膜Cの重合性液晶組成物層の硬化表面側をコロナ処理した後、その上に(メタ)アクリル系樹脂であるWGL−929(Tg=118℃、DIC株式会社製)をマイクログラビアコータを用いて成膜し、80℃で乾燥後、膜厚2μmの層を形成した。続いて、WDL−787層の表面をコロナ処理した後、軽剥離面のカバーフィルムを剥がした粘着剤CS9621(日東電工(株)製)を貼り合わせ、位相差膜Cをトリミングする。粘着剤CS9621のもう一方のカバーフィルムを剥がし粘着面を無アルカリガラスOA−10(日本電気硝子(株)製)上に貼り合わせ、ガラスに貼合した耐熱性試験用サンプルを得る。耐熱性試験500時間後、位相差値の低下率は1.4%であった。
(Example 2)
After the corona treatment of the cured surface side of the polymerizable liquid crystal composition layer of the retardation film C, WGL-929 (Tg = 118 ° C., manufactured by DIC Corporation), which is a (meth) acrylic resin, is applied to the microgravure coater. A film having a thickness of 2 μm was formed after drying at 80 ° C. Subsequently, after corona-treating the surface of the WDL-787 layer, an adhesive CS9621 (manufactured by Nitto Denko Corporation) from which the cover film of the light release surface has been peeled off is bonded, and the retardation film C is trimmed. The other cover film of the pressure-sensitive adhesive CS9621 is peeled off, and the pressure-sensitive adhesive surface is bonded onto non-alkali glass OA-10 (manufactured by Nippon Electric Glass Co., Ltd.) to obtain a heat resistance test sample bonded to glass. After 500 hours of the heat resistance test, the decrease rate of the retardation value was 1.4%.

(実施例3)
位相差膜Cの重合性液晶組成物の硬化表面側をコロナ処理した後、その上に活性エネルギー線硬化性化合物であるM−309(東亞合成株式会社製)の100部とチバスペシャリティケミカルズ(株)製の光重合開始剤「イルガキュア907」の4部を2−ブトキシエタノール233部に溶解した溶液を、マイクログラビアコータを用いて成膜し、80℃で乾燥後、窒素雰囲気下で紫外線を0.5J/cm照射し、膜厚2μmの層を形成した。続いて、M−309の硬化層(Tg=250℃)表面をコロナ処理した後、軽剥離面のカバーフィルムを剥がした粘着剤CS9621(日東電工(株)製)を貼り合わせ、位相差膜Cをトリミングした。粘着剤CS9621のもう一方のカバーフィルムを剥がし粘着面を無アルカリガラスOA−10(日本電気硝子(株)製)上に貼り合わせ、ガラスに貼合した耐熱性試験用サンプルを得た。耐熱性試験500時間後、位相差値の低下率は1.1%であった。
(Example 3)
After the corona treatment on the cured surface side of the polymerizable liquid crystal composition of the retardation film C, 100 parts of M-309 (manufactured by Toagosei Co., Ltd.), which is an active energy ray curable compound, and Ciba Specialty Chemicals Co., Ltd. A solution obtained by dissolving 4 parts of the photopolymerization initiator “Irgacure 907” in 233 parts of 2-butoxyethanol in a film using a microgravure coater, drying at 80 ° C., and then applying ultraviolet rays in a nitrogen atmosphere. .5 J / cm 2 was irradiated to form a 2 μm thick layer. Subsequently, the surface of the cured layer of M-309 (Tg = 250 ° C.) was subjected to corona treatment, and then adhesive CS9621 (manufactured by Nitto Denko Corporation) from which the cover film on the light release surface was peeled off was bonded together, and the retardation film C Trimmed. The other cover film of pressure-sensitive adhesive CS9621 was peeled off, and the pressure-sensitive adhesive surface was bonded onto alkali-free glass OA-10 (manufactured by Nippon Electric Glass Co., Ltd.) to obtain a sample for heat resistance test bonded to glass. After 500 hours of the heat resistance test, the reduction rate of the retardation value was 1.1%.

(比較例1)
位相差膜Cの重合性液晶組成物の硬化表面側をコロナ処理した後、その上に活性エネルギー線硬化性化合物であるM−208(東亞合成株式会社製)の100質量部とチバスペシャリティケミカルズ(株)製の光重合開始剤「イルガキュア907」の4質量部を2−ブトキシエタノール233部に溶解した溶液を、マイクログラビアコータを用いて成膜し、80℃で乾燥後、窒素雰囲気下で紫外線を0.5J/cm照射し、膜厚2μmの層を形成した。続いて、M−208の硬化層(Tg=75℃)表面をコロナ処理した後、軽剥離面のカバーフィルムを剥がした粘着剤CS9621(日東電工(株)製)を貼り合わせ、位相差膜Cをトリミングした。粘着剤CS9621のもう一方のカバーフィルムを剥がし粘着面を無アルカリガラスOA−10(日本電気硝子(株)製)上に貼り合わせ、ガラスに貼合した耐熱性試験用サンプルを得た。耐熱性試験500時間後、位相差値の低下率は2.1%であった。
(Comparative Example 1)
After the corona treatment of the cured surface side of the polymerizable liquid crystal composition of the retardation film C, 100 parts by mass of M-208 (manufactured by Toagosei Co., Ltd.), which is an active energy ray-curable compound, and Ciba Specialty Chemicals ( A solution prepared by dissolving 4 parts by mass of “Irgacure 907”, a photopolymerization initiator, in 233 parts of 2-butoxyethanol was formed into a film using a microgravure coater, dried at 80 ° C., and then irradiated with ultraviolet light in a nitrogen atmosphere. Was irradiated with 0.5 J / cm 2 to form a 2 μm thick layer. Subsequently, the surface of the cured layer of M-208 (Tg = 75 ° C.) was subjected to corona treatment, and then adhesive CS9621 (manufactured by Nitto Denko Corporation) from which the cover film on the light release surface was peeled off was bonded to the retardation film C. Trimmed. The other cover film of pressure-sensitive adhesive CS9621 was peeled off, and the pressure-sensitive adhesive surface was bonded onto alkali-free glass OA-10 (manufactured by Nippon Electric Glass Co., Ltd.) to obtain a sample for heat resistance test bonded to glass. After 500 hours of the heat resistance test, the reduction rate of the retardation value was 2.1%.

(参考例1)
位相差膜Cの重合性液晶組成物の硬化表面側をコロナ処理した後、軽剥離面のカバーフィルムを剥がした粘着剤CS9621(日東電工(株)製)を貼り合わせ、位相差膜Cをトリミングした。粘着剤CS9621のもう一方のカバーフィルムを剥がし粘着面を無アルカリガラスOA−10(日本電気硝子(株)製)上に貼り合わせ、ガラスに貼合した耐熱性試験用サンプルを得た。耐熱性試験500時間後、位相差値の低下率は3.1%であった。
(Reference Example 1)
After corona treatment on the cured surface side of the polymerizable liquid crystal composition of the retardation film C, an adhesive CS9621 (manufactured by Nitto Denko Corporation) from which the cover film of the light release surface has been peeled off is attached, and the retardation film C is trimmed. did. The other cover film of pressure-sensitive adhesive CS9621 was peeled off, and the pressure-sensitive adhesive surface was bonded onto alkali-free glass OA-10 (manufactured by Nippon Electric Glass Co., Ltd.) to obtain a sample for heat resistance test bonded to glass. After 500 hours of the heat resistance test, the reduction rate of the retardation value was 3.1%.

Figure 2011209537
Figure 2011209537

この結果、実施例1〜3の、Tgが80℃以上の等方性樹脂を用いた例は、いずれも信頼性試験の結果は合格であった。Tgが75℃の等方性樹脂を用いた比較例1は、300時間以降の位相差低下率は2%を超えてしまい、不合格となった。   As a result, the examples of Examples 1 to 3 using isotropic resins having a Tg of 80 ° C. or more passed the reliability test results. In Comparative Example 1 using an isotropic resin having a Tg of 75 ° C., the retardation reduction rate after 300 hours exceeded 2%, which was rejected.

Claims (2)

基板上に、少なくとも光配向膜と重合性液晶組成物の層とを有する積層体の、前記重合性液晶組成物層中の重合性基を有する液晶化合物を配向させた状態で重合させた位相差膜を1層もしくは複数層と、粘着剤層とをこの順に有してなる光学素子であって、前記位相差膜層と前記粘着剤層との間にガラス転移温度80℃以上の等方性樹脂層を有することを特徴とする光学素子。 A phase difference obtained by polymerizing a laminate having at least a photo-alignment film and a layer of a polymerizable liquid crystal composition on a substrate in a state where the liquid crystal compound having a polymerizable group in the polymerizable liquid crystal composition layer is aligned. An optical element having one or more films and an adhesive layer in this order, and isotropic with a glass transition temperature of 80 ° C. or higher between the retardation film layer and the adhesive layer An optical element having a resin layer. 請求項1に記載の光学素子をパネル全面に貼り付けてなることを特徴とする液晶パネル。 A liquid crystal panel comprising the optical element according to claim 1 attached to the entire surface of the panel.
JP2010077587A 2010-03-30 2010-03-30 Optical element and liquid crystal panel using the same Active JP5958731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077587A JP5958731B2 (en) 2010-03-30 2010-03-30 Optical element and liquid crystal panel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077587A JP5958731B2 (en) 2010-03-30 2010-03-30 Optical element and liquid crystal panel using the same

Publications (2)

Publication Number Publication Date
JP2011209537A true JP2011209537A (en) 2011-10-20
JP5958731B2 JP5958731B2 (en) 2016-08-02

Family

ID=44940665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077587A Active JP5958731B2 (en) 2010-03-30 2010-03-30 Optical element and liquid crystal panel using the same

Country Status (1)

Country Link
JP (1) JP5958731B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150613A1 (en) * 2016-03-04 2017-09-08 富士フイルム株式会社 Optical film, polarizing plate and image display device
JP2018146980A (en) * 2018-06-01 2018-09-20 住友化学株式会社 Optical anisotropic sheet for transfer
JP2021001972A (en) * 2019-06-21 2021-01-07 Dic株式会社 Optically anisotropic body, and manufacturing method of the same

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990333A (en) * 1995-09-26 1997-04-04 Fuji Photo Film Co Ltd Liquid crystal display device
JP2001318223A (en) * 2000-05-09 2001-11-16 Sumitomo Chem Co Ltd Phase difference plate
JP2004198480A (en) * 2002-12-16 2004-07-15 Nitto Denko Corp Manufacturing method of optically anisotropic substance, optically anisotropic substance, optical film, and image display device
JP2004226753A (en) * 2003-01-23 2004-08-12 Nippon Oil Corp Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate comprising the layered body and liquid crystal display
JP2004309772A (en) * 2003-04-07 2004-11-04 Nippon Oil Corp Method of manufacturing optical laminated body, elliptic polarization plate and circular polarization plate made of the laminated bodies, and liquid crystal display device
JP2005134521A (en) * 2003-10-29 2005-05-26 Nippon Kayaku Co Ltd Optical element
JP2005272614A (en) * 2004-03-24 2005-10-06 Fuji Photo Film Co Ltd Polyurethane and optical film comprising the polyurethane
JP2006209097A (en) * 2004-12-27 2006-08-10 Dainippon Ink & Chem Inc Optical film, elliptically polarizing plate, circularly polarizing plate, liquid crystal display element, and method for manufacturing the optical film
JP2006268033A (en) * 2005-02-25 2006-10-05 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate, and liquid crystal display
JP2006284735A (en) * 2005-03-31 2006-10-19 Nippon Oil Corp Liquid crystal film and laminated film for optical element
JP2006284736A (en) * 2005-03-31 2006-10-19 Nippon Oil Corp Liquid crystal film and laminated film for optical element
JP2007071932A (en) * 2005-09-05 2007-03-22 Nitto Denko Corp Manufacturing method of optical element and optical element
JP2007114449A (en) * 2005-10-20 2007-05-10 Nitto Denko Corp Liquid crystal panel and liquid crystal display device
JP2007178624A (en) * 2005-12-27 2007-07-12 Dainippon Printing Co Ltd Pattern material, projection screen, and screen system
JP2007193017A (en) * 2006-01-18 2007-08-02 Fujifilm Corp Polarizer and liquid crystal display
JP2007226016A (en) * 2006-02-24 2007-09-06 Nitto Denko Corp Polarizing plate with retardation layer
JP2007301986A (en) * 2006-04-13 2007-11-22 Fujifilm Corp Transparent thermoplastic film and its manufacturing method
JP2008006810A (en) * 2006-05-30 2008-01-17 Fujifilm Corp Thermoplastic film and its manufacturing method, polarizing plate, optical compensation film, antireflection film, and liquid crystal display
JP2009041007A (en) * 2007-07-18 2009-02-26 Toray Ind Inc Optically isotropic acrylic resin film and its manufacturing method
JP2009139712A (en) * 2007-12-07 2009-06-25 Nitto Denko Corp Polarizing plate, optical film and image display device
JP2012003114A (en) * 2010-06-18 2012-01-05 Konica Minolta Opto Inc Optical anisotropic film, polarizing plate and liquid crystal display device

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990333A (en) * 1995-09-26 1997-04-04 Fuji Photo Film Co Ltd Liquid crystal display device
JP2001318223A (en) * 2000-05-09 2001-11-16 Sumitomo Chem Co Ltd Phase difference plate
JP2004198480A (en) * 2002-12-16 2004-07-15 Nitto Denko Corp Manufacturing method of optically anisotropic substance, optically anisotropic substance, optical film, and image display device
JP2004226753A (en) * 2003-01-23 2004-08-12 Nippon Oil Corp Method for manufacturing optical layered body, and elliptically polarizing plate, circularly polarizing plate comprising the layered body and liquid crystal display
JP2004309772A (en) * 2003-04-07 2004-11-04 Nippon Oil Corp Method of manufacturing optical laminated body, elliptic polarization plate and circular polarization plate made of the laminated bodies, and liquid crystal display device
JP2005134521A (en) * 2003-10-29 2005-05-26 Nippon Kayaku Co Ltd Optical element
JP2005272614A (en) * 2004-03-24 2005-10-06 Fuji Photo Film Co Ltd Polyurethane and optical film comprising the polyurethane
JP2006209097A (en) * 2004-12-27 2006-08-10 Dainippon Ink & Chem Inc Optical film, elliptically polarizing plate, circularly polarizing plate, liquid crystal display element, and method for manufacturing the optical film
JP2006268033A (en) * 2005-02-25 2006-10-05 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate, and liquid crystal display
JP2006284735A (en) * 2005-03-31 2006-10-19 Nippon Oil Corp Liquid crystal film and laminated film for optical element
JP2006284736A (en) * 2005-03-31 2006-10-19 Nippon Oil Corp Liquid crystal film and laminated film for optical element
JP2007071932A (en) * 2005-09-05 2007-03-22 Nitto Denko Corp Manufacturing method of optical element and optical element
JP2007114449A (en) * 2005-10-20 2007-05-10 Nitto Denko Corp Liquid crystal panel and liquid crystal display device
JP2007178624A (en) * 2005-12-27 2007-07-12 Dainippon Printing Co Ltd Pattern material, projection screen, and screen system
JP2007193017A (en) * 2006-01-18 2007-08-02 Fujifilm Corp Polarizer and liquid crystal display
JP2007226016A (en) * 2006-02-24 2007-09-06 Nitto Denko Corp Polarizing plate with retardation layer
JP2007301986A (en) * 2006-04-13 2007-11-22 Fujifilm Corp Transparent thermoplastic film and its manufacturing method
JP2008006810A (en) * 2006-05-30 2008-01-17 Fujifilm Corp Thermoplastic film and its manufacturing method, polarizing plate, optical compensation film, antireflection film, and liquid crystal display
JP2009041007A (en) * 2007-07-18 2009-02-26 Toray Ind Inc Optically isotropic acrylic resin film and its manufacturing method
JP2009139712A (en) * 2007-12-07 2009-06-25 Nitto Denko Corp Polarizing plate, optical film and image display device
JP2012003114A (en) * 2010-06-18 2012-01-05 Konica Minolta Opto Inc Optical anisotropic film, polarizing plate and liquid crystal display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150613A1 (en) * 2016-03-04 2017-09-08 富士フイルム株式会社 Optical film, polarizing plate and image display device
US20180348417A1 (en) * 2016-03-04 2018-12-06 Fujifilm Corporation Optical film, polarizing plate, and image display device
JPWO2017150613A1 (en) * 2016-03-04 2019-02-07 富士フイルム株式会社 Optical film, polarizing plate and image display device
JP2018146980A (en) * 2018-06-01 2018-09-20 住友化学株式会社 Optical anisotropic sheet for transfer
JP2021001972A (en) * 2019-06-21 2021-01-07 Dic株式会社 Optically anisotropic body, and manufacturing method of the same

Also Published As

Publication number Publication date
JP5958731B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
TWI434079B (en) Polarizer and liquid crystal display comprising the same
KR101057627B1 (en) Optical film containing a liquid crystal aligning film composition, the manufacturing method of a liquid crystal aligning film using the same, and a liquid crystal aligning film
KR101056683B1 (en) Optical film, manufacturing method thereof, and liquid crystal display device comprising the same
TWI732772B (en) Laminated body, circularly polarizing plate including laminated body, display device including laminated body
KR20090079843A (en) Optical film, preparation method of the same, and liquid crystal display comprising the same
KR20240005236A (en) Elliptically polarizing plate
JP6792736B1 (en) Optical laminate and display device
JP7514270B2 (en) Laminate and image display device
JP5958731B2 (en) Optical element and liquid crystal panel using the same
KR20210038423A (en) Laminate
JP4413117B2 (en) Retardation film, polarizing plate, liquid crystal panel, liquid crystal display device and method for producing retardation film
JP2004145139A (en) Optical compensation plate, polarizing plate with optical compensation layer using the same, method for manufacturing the same optical compensation plate, and liquid crystal display device using them
TW201026826A (en) Retardation element
KR20210004988A (en) Optically anisotropic membrane
WO2021100380A1 (en) Optical laminate and display device
WO2014192385A1 (en) Liquid crystal composition, homeotropically oriented liquid crystal film, polarizing plate, image display device, and method for producing homeotropically oriented liquid crystal film
JP6646698B2 (en) Polymerizable liquid crystal composition
JP2021015275A (en) Optical laminate and display device
JP2008191250A (en) Retardation film and manufacturing method of retardation film
JP2015191143A (en) Optical film and production method of optical film
WO2024024119A1 (en) Optical laminate
WO2022044925A1 (en) Alignment liquid crystal film, method for manufacturing same, and image display device
JP2024018945A (en) optical laminate
JP2024018946A (en) Circularly polarizing plate
WO2022234789A1 (en) Polarizing plate and organic el display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160608

R151 Written notification of patent or utility model registration

Ref document number: 5958731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350