WO2014192385A1 - Liquid crystal composition, homeotropically oriented liquid crystal film, polarizing plate, image display device, and method for producing homeotropically oriented liquid crystal film - Google Patents

Liquid crystal composition, homeotropically oriented liquid crystal film, polarizing plate, image display device, and method for producing homeotropically oriented liquid crystal film Download PDF

Info

Publication number
WO2014192385A1
WO2014192385A1 PCT/JP2014/057749 JP2014057749W WO2014192385A1 WO 2014192385 A1 WO2014192385 A1 WO 2014192385A1 JP 2014057749 W JP2014057749 W JP 2014057749W WO 2014192385 A1 WO2014192385 A1 WO 2014192385A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
crystal film
compound
homeotropic alignment
Prior art date
Application number
PCT/JP2014/057749
Other languages
French (fr)
Japanese (ja)
Inventor
さなみ 矢崎
松本 卓也
鈴木 宏明
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2014192385A1 publication Critical patent/WO2014192385A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2035Ph-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2078Ph-COO-Ph-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • C09K2019/3083Cy-Ph-COO-Ph
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133715Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films by first depositing a monomer

Definitions

  • the present invention relates to a liquid crystal composition, a homeotropic alignment liquid crystal film, a polarizing plate, an image display device, and a method for producing a homeotropic alignment liquid crystal film.
  • liquid crystal films having optical properties such as birefringence optical anisotropy
  • a so-called homeotropic alignment liquid crystal film in which the liquid crystal is aligned perpendicularly to the plane of the film has attracted attention because of its unique optical characteristics. It has been proposed to be applied to applications such as a film for anti-reflection and an anti-reflection film. In recent years, various liquid crystal compositions have been studied in order to efficiently produce such a liquid crystal film.
  • Patent Document 1 discloses a liquid crystal composition containing one or more mesogenic or liquid crystal compounds and a polar additive such as a cellulose derivative or a cellulose ester.
  • a polar additive such as a cellulose derivative or a cellulose ester.
  • chemical stability is not always sufficient depending on the kind of polar additive, and workability (mass production efficiency) at the time of manufacturing a liquid crystal film Etc.) is not necessarily sufficient.
  • Patent Document 2 discloses a liquid crystal composition comprising a liquid crystal mixture solution containing a surfactant as a material for producing a homeotropic alignment liquid crystal film.
  • Patent Document 2 when a liquid crystal film is formed on a substrate using this, the adhesion between the substrate and the liquid crystal film is not necessarily sufficient. I could't.
  • the present invention has been made in view of the above-described problems of the prior art, can sufficiently improve the workability during the production of a liquid crystal film, can efficiently produce a homeotropic alignment liquid crystal film, and A liquid crystal composition capable of making the adhesion between the substrate and the homeotropic alignment liquid crystal film sufficiently high when a homeotropic alignment liquid crystal film is produced on the substrate, and a homeo It aims at providing the manufacturing method of a homeotropic alignment liquid crystal film using the tropic alignment liquid crystal film, a polarizing plate, an image display apparatus, and the liquid crystal composition.
  • the inventors of the present invention include a liquid crystal composition containing a polymerizable liquid crystal compound, a phosphine compound, a polymerization initiator, and a solvent capable of dissolving them,
  • a liquid crystal composition containing a polymerizable liquid crystal compound, a phosphine compound, a polymerization initiator, and a solvent capable of dissolving them.
  • the workability during the production of the liquid crystal film can be sufficiently improved, the homeotropic alignment liquid crystal film can be efficiently produced, and the homeotropic alignment liquid crystal film is used as the base. It has been found that the adhesion between the substrate and the homeotropic alignment liquid crystal film can be made sufficiently high when manufactured on a material, and the present invention has been completed.
  • the liquid crystal composition of the present invention comprises (A) a polymerizable liquid crystal compound, (B) a phosphine compound, (C) a polymerization initiator, and (D) a solvent capable of dissolving the components (A) to (C). Is included.
  • the phosphine compound has the following general formula (1):
  • R 1 to R 3 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, and an optionally substituted aryl group having 6 to 18 carbon atoms. Any one selected from the group consisting of groups is shown. ] It is preferable that it is at least 1 sort (s) selected from the compound group represented by these.
  • a phosphine compound according to the present invention is represented by the general formula (1), and R 1 to R 3 in the formula may each independently have a substituent.
  • tertiary phosphine which is any one selected from the group consisting of an alkyl group of ⁇ 30 and an aryl group of 6 to 12 carbon atoms which may have a substituent. More preferably, trimethylphosphine, triethylphosphine, tri-n-butylphosphine, tri-tert-butylphosphine, tri-n-octylphosphine, tricyclohexylphosphine, trishydroxymethylphosphine, trishydroxyethylphosphine, triphenylphosphine , Trismethoxyphenylphosphine and trisethoxyphenylphosphine More preferably, it is at least one selected from the group consisting of tin, trimethylphosphine, triethylphosphine, trishydroxymethylphosphine, trishydroxyethylphosphine, triphenylphosphine, tri-n
  • the polymerizable liquid crystal compound is preferably a (meth) acrylate liquid crystal compound.
  • the content of the phosphine compound is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound.
  • the content of the polymerization initiator is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound.
  • the homeotropic alignment liquid crystal film of the present invention is a homeotropic alignment liquid crystal film that is fixed in a homeotropic alignment state, and is obtained using the liquid crystal composition of the present invention.
  • the polarizing plate of the present invention is provided with the homeotropic alignment liquid crystal film of the present invention.
  • an image display device of the present invention includes the polarizing plate of the present invention.
  • the method for producing a homeotropic alignment liquid crystal film of the present invention includes a step of applying the liquid crystal composition of the present invention on a substrate to form a coating film, and removing the solvent from the coating film to form the polymerizable film. And homeotropic alignment of the liquid crystal compound, followed by polymerizing the polymerizable liquid crystal compound to fix the alignment state, and obtaining a homeotropic alignment liquid crystal film in which the alignment state is fixed in the homeotropic alignment state. Is the method.
  • the substrate is preferably a film made of a cyclic olefin polymer.
  • the temperature condition for removing the solvent from the coating film is preferably 15 to 110 ° C.
  • the workability during the production of the liquid crystal film can be sufficiently improved, the homeotropic alignment liquid crystal film can be efficiently produced, and the homeotropic alignment liquid crystal film is produced on the substrate.
  • the liquid crystal composition of the present invention comprises (A) a polymerizable liquid crystal compound, (B) a phosphine compound, (C) a polymerization initiator, and (D) a solvent capable of dissolving the components (A) to (C). It is a waste.
  • the components (A) to (D) will be described separately.
  • Such a polymerizable liquid crystal compound is not particularly limited as long as it is a liquid crystal compound capable of fixing the alignment state by polymerization, and a known polymerizable liquid crystal compound can be appropriately used.
  • a polymerizable liquid crystal compound it is preferable to use a polymerizable liquid crystal compound that can be homeotropically aligned on a substrate to fix the alignment state.
  • a polymerizable liquid crystal compound for example, a low molecular weight polymerizable liquid crystal compound (a liquid crystalline monomer having a polymerizable group), a high molecular weight polymerizable liquid crystal compound (a liquid crystalline polymer having a polymerizable group), A mixture of these can be used as appropriate.
  • a liquid crystal compound having a polymerizable group that reacts with light and / or heat is preferable from the viewpoint that the alignment state can be more efficiently fixed.
  • a liquid crystal compound having a polymerizable group that reacts with light or heat can be polymerized with components (liquid crystal compound, etc.) present around it by light and / or heat to fix the alignment.
  • the kind is not specifically limited, A liquid crystal compound provided with a well-known polymeric group can be utilized suitably.
  • Such a polymerizable group is preferably a vinyl group, a (meth) acryloyl group, a vinyloxy group, an oxiranyl group, an oxetanyl group, an aziridinyl group, or the like.
  • other polymerizable groups such as an isocyanate group, a hydroxyl group, an amino group, an acid anhydride group, and a carboxyl group may be used depending on the reaction conditions.
  • a liquid crystal compound having a (meth) acryloyl group as a polymerizable group is preferable from the viewpoint of availability, heat resistance, and handleability, and a (meth) acrylate liquid crystal compound ( It is more preferable to use (a liquid crystal compound having a (meth) acrylate group).
  • “methacryloyl” and “acryloyl” are sometimes collectively referred to as “(meth) acrylate”, and “methacrylate” and “acrylate” are sometimes collectively referred to as “( “Meth) acrylate”, and in some cases, “methacryl” and “acryl” are collectively referred to as “(meth) acryl”.
  • the “(meth) acrylate group” refers to a residue ((meth) acryloyloxy group) from which hydrogen is eliminated from the carboxylic acid group of (meth) acrylic acid.
  • Such (meth) acrylate liquid crystal compounds include the following general formulas (10) to (12):
  • W independently represents any one of H and CH 3 , n represents an integer of 1 to 20 (more preferably 3 to 6), and Ra represents a carbon number of 1 to 20] Any one selected from an alkyl group and an alkoxy group having 1 to 20 carbon atoms, wherein Z 1 and Z 2 are each independently any one of —COO— and —OCO—; X 1 and X 2 each independently represent any of H and an alkyl group having 1 to 7 carbon atoms. ] The compound represented by these is preferable.
  • W independently represents any one of H and CH 3 .
  • n is an integer of 1 to 20 (more preferably 2 to 12, more preferably 3 to 6). If the value of n is less than the lower limit, the temperature range in which the compound exhibits liquid crystallinity tends to be small. On the other hand, if the value exceeds the upper limit, the liquid crystal derived from the compound is necessary to achieve good vertical alignment. As a result of the decrease in fluidity, it is difficult to achieve good vertical alignment.
  • R a is any group selected from an alkyl group having 1 to 20 carbon atoms and an alkoxy group having 1 to 20 carbon atoms.
  • Such an alkyl group having 1 to 20 carbon atoms that can be selected as Ra is preferably one having 1 to 12 carbon atoms, and more preferably 3 to 6 carbon atoms.
  • the number of carbons exceeds the upper limit, the fluidity derived from the liquid crystal of the compound necessary for realizing good vertical alignment becomes small, and as a result, it becomes difficult to realize good vertical alignment.
  • the carbon number is less than the lower limit, the temperature range in which the compound exhibits liquid crystallinity tends to be small.
  • Such an alkyl group may be linear, branched, or cyclic, and is not particularly limited. Is more preferably linear.
  • the alkoxy group having 1 to 20 carbon atoms that can be selected as Ra is preferably one having 1 to 12 carbon atoms, and more preferably 3 to 6 carbon atoms.
  • the number of carbons exceeds the upper limit, the fluidity derived from the liquid crystal of the compound necessary for realizing good vertical alignment becomes small, and as a result, it becomes difficult to realize good vertical alignment.
  • the carbon number is less than the lower limit, the temperature range in which the compound exhibits liquid crystallinity tends to be small.
  • the alkoxy group has a structure in which an alkyl group is bonded to an oxygen atom.
  • the structure of the alkyl group portion may be linear, branched, or cyclic. Although it may be sufficient and it does not restrict
  • Z 1 and Z 2 are each independently any group of —COO— and —OCO—.
  • Such Z 1 and Z 2 are groups in which one of Z 1 and Z 2 is represented by —COO—, and the other group is — A group represented by OCO- is preferred.
  • X 1 and X 2 each independently represent any of H and an alkyl group having 1 to 7 carbon atoms.
  • the alkyl group having 1 to 7 carbon atoms which can be selected as X 1 and X 2 is more preferably 1 to 3 carbon atoms (the alkyl group is CH 3 ). Is more preferable. If the number of carbon atoms exceeds the above upper limit, it tends to be difficult to achieve good vertical alignment. Thus, it is particularly preferable that X 1 and X 2 are each independently one of H and CH 3 .
  • Such (meth) acrylate liquid crystal compounds may be used singly or in combination of two or more.
  • the polymerizable liquid crystal compound it is preferable to use a combination of the compounds represented by the general formulas (10) to (12), and a combination of the compounds represented by the general formulas (110) to (113). It is more preferable to use it.
  • the content of the compound represented by the general formula (10) The amount is preferably 20 to 60% by mass, more preferably 30 to 45% by mass, based on the total amount of the compounds represented by formulas (10) to (12).
  • the content of the compound represented by the general formula (10) is less than the lower limit, an alignment defect tends to occur with respect to the vertical alignment, and when the content exceeds the upper limit, an alignment defect tends to occur with respect to the vertical alignment. It is in.
  • the content of the compound represented by the general formula (11) is represented by the general formulas (10) to (12).
  • the amount is preferably 10 to 50% by mass, more preferably 20 to 30% by mass, based on the total amount of the compounds represented.
  • the content of the compound represented by the general formula (12) is represented by the general formulas (10) to (12).
  • the amount is preferably 10 to 70% by mass, more preferably 25 to 45% by mass, based on the total amount of the compounds represented.
  • the mass ratio of each compound is ([ Compound Represented by General Formula (110)]: [Compound Represented by General Formula (111)]: [Compound Represented by General Formula (112)]: [Compound Represented by General Formula (113)]) Is preferably 45: 40: 15: 0 to 35: 5: 30: 30, and more preferably 35: 23: 23: 19 to 38: 25: 25: 12.
  • the method for producing such a polymerizable liquid crystal compound is not particularly limited, and a known method can be appropriately used.
  • a compound represented by the general formula (110) For example, the method described in British Patent Application Publication No. 2,280,445 (GB2,280,445) may be adopted, and when the compound represented by the above general formula (111) is produced, For example, D.D. J. et al.
  • the method described on pages 3201 to 3215 of “Makromol. Chem. (Vol. 190, published in 1989)” by Broer et al. May be employed and is represented by the above general formulas (112) to (113).
  • a method described in International Publication No. 93/22397 may be employed.
  • the polymerizable liquid crystal compound can be produced by appropriately using a known method according to the type of the compound to be used. Moreover, you may utilize a commercial item as such a polymeric liquid crystal compound. Further, such polymerizable liquid crystal compounds may be used alone or in combination of two or more.
  • Such a polymerizable liquid crystal compound may use a mixture of a liquid crystal compound having a polymerizable group and another polymerizable monomer that does not exhibit liquid crystallinity.
  • other polymerizable monomers in particular, they have compatibility with a liquid crystal compound having a polymerizable group and are not particularly likely to cause alignment inhibition when orienting the liquid crystal compound.
  • a well-known polymerizable monomer can be utilized suitably, What is necessary is just to select and use a suitable monomer from well-known polymerizable monomers according to the design of the target liquid crystal composition.
  • Examples of such other polymerizable monomers include compounds having a polymerizable functional group such as an ethylenically unsaturated group (for example, vinyl group, vinyloxy group, (meth) acryloyl group).
  • the addition amount of such other polymerizable monomer is 0.5 to 50% by mass based on the total amount of the liquid crystal compound having a polymerizable group and the other polymerizable monomer not exhibiting liquid crystallinity.
  • the content is preferably 1 to 30% by mass.
  • the number of polymerizable functional groups of such a polymerizable monomer is preferably 2 or more from the viewpoint of sufficiently increasing the polymerization rate and imparting sufficient heat resistance to the obtained liquid crystal film.
  • the method for producing such a polymerizable monomer is not particularly limited, and a known method can be appropriately used. Moreover, you may utilize a commercial item as such a polymerizable monomer.
  • phosphine (PH 3 ) and at least one hydrogen atom in the phosphine are an alkyl group which may have a substituent or an aryl group which may have a substituent.
  • the alignment state of the polymerizable liquid crystal compound can be aligned in the homeotropic alignment state.
  • the polymerizable liquid crystal compound is efficiently obtained by performing a simple process of removing the solvent from the liquid crystal composition.
  • Homeotropic alignment is possible.
  • the homeotropic alignment can be formed in a sufficiently short time depending on the type of the polymerizable liquid crystal compound or the solvent in the composition. Become.
  • a phosphine compound is not an unstable compound whose reaction is difficult to control, but a chemically sufficiently stable compound, a liquid crystal film or the like can be obtained using a liquid crystal composition containing the component.
  • the working efficiency can be made sufficiently high. Therefore, in the liquid crystal composition of the present invention using such a phosphine compound, there is no need to provide a special control facility for controlling the reaction, and a simple process such as removing the solvent can be performed in a sufficiently short time. An alignment can be formed, and as a result, a homeotropic alignment liquid crystal film can be produced more efficiently.
  • such a phosphine compound can sufficiently suppress a decrease in adhesion between the base material and the liquid crystal film as compared with a so-called surfactant, and thus the liquid crystal composition of the present invention.
  • the adhesion between the base material and the homeotropic alignment liquid crystal film can be made sufficiently high.
  • Such phosphine compounds include the following general formula (1):
  • R 1 to R 3 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, and an optionally substituted aryl group having 6 to 18 carbon atoms. Any one selected from the group consisting of groups is shown. ] At least one selected from the group of compounds represented by
  • the alkyl group which may have a substituent and can be selected as R 1 to R 3 in the general formula (1) has 1 to 30 carbon atoms as described above.
  • the number of carbon atoms of the alkyl group which may have such a substituent is more preferably 1 to 20, further preferably 1 to 10, and particularly preferably 1 to 5.
  • the carbon number of such an alkyl group exceeds the upper limit, the compatibility with the liquid crystal compound is lowered and the vertical alignment tends to be inhibited.
  • Such an alkyl group may be linear or branched, and includes, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, It may be a t-butyl group or the like.
  • the alkyl group that can be selected as the R 1 to R 3 may have a substituent as described above.
  • a substituent is not particularly limited and includes, for example, a halogen atom, a hydroxyl group, a carboxyl group and a salt thereof, an alkoxy group, a sulfo group and a salt thereof, among others, from the viewpoint of chemical stability, A hydroxyl group and an alkoxy group are preferred, and a hydroxyl group is more preferred.
  • alkyl group having 1 to 30 carbon atoms which may have such a substituent
  • a methyl group, an ethyl group, a propyl group, an n-butyl group, an isobutyl group, t- A butyl group, a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a methoxymethyl group, an ethoxymethyl group, and a methoxyethyl group are preferable, and a methyl group, an ethyl group, a propyl group, a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group are preferable. More preferred are a hydroxymethyl group and a hydroxyethyl group.
  • the aryl group which may have a substituent which can be selected as R 1 to R 3 in the general formula (1) has 6 to 18 carbon atoms.
  • the aryl group which may have such a substituent preferably has 6 to 12 carbon atoms, more preferably 6 to 9 carbon atoms.
  • the aryl group that can be selected as the R 1 to R 3 may have a substituent as described above.
  • a substituent is not particularly limited, and examples thereof include a halogen atom, an alkyl group, an alkoxy group, and a halogenated alkyl group.
  • substituents among these, from the viewpoint of compatibility with the liquid crystal compound, a halogen atom, an alkyl group having 1 to 4 carbon atoms (more preferably 1 to 2), and 1 to 4 carbon atoms (more preferably 1 carbon atom).
  • an alkoxy group, and a halogenated alkyl group having 1 to 4 (more preferably 1 to 2) carbon atoms are more preferred.
  • aryl group having 6 to 18 carbon atoms which may have such a substituent include, for example, phenyl group, tolyl group, xylyl group, cumenyl group, methoxyphenyl group, sulfophenyl group, halogenated phenyl group, A carboxyphenyl group etc. are mentioned, Among these, a phenyl group and a methoxyphenyl group are preferable from a compatible viewpoint with a liquid crystal compound, and a phenyl group is especially preferable.
  • the phosphine compound is preferably a primary to tertiary phosphine from the viewpoint of adhesion between the substrate and the liquid crystal film, promotion of vertical alignment, etc., and secondary to tertiary phosphine. Is more preferable, and tertiary phosphine is particularly preferable.
  • the phosphine compound is a compound represented by the general formula (1), at least one of R 1 to R 3 is a group other than a hydrogen atom (having 1 to 1 carbon atoms which may have a substituent).
  • the phosphine compound is Primary to tertiary phosphine
  • at least two of R 1 to R 3 are groups other than hydrogen atoms (the phosphine compound is a secondary to tertiary phosphine). It is more preferable that R 1 to R 3 are all groups other than hydrogen atoms (the phosphine compound is a tertiary phosphine).
  • the phosphine compound according to the present invention is represented by the general formula (1) from the viewpoint of adhesion between the base material and the liquid crystal film, promotion of vertical alignment, and compatibility with the polymerizable liquid crystal compound, and
  • R 1 to R 3 each independently represents an alkyl group having 1 to 30 carbon atoms which may have the above substituent and an aryl group having 6 to 12 carbon atoms which may have the above substituent. More preferably, it is at least one selected from among tertiary phosphines that are any one selected from the group consisting of:
  • Such phosphine compounds include trimethylphosphine, triethylphosphine, tributylphosphine (more preferably tri-n-butylphosphine, tri-tert-butyl) from the viewpoint of easy availability and compatibility with polymerizable liquid crystal compounds.
  • Phosphine tri-n-octylphosphine, tricyclohexylphosphine, trishydroxymethylphosphine, trishydroxyethylphosphine, triphenylphosphine, trismethoxyphenylphosphine, trisethoxyphenylphosphine, trimethylphosphine, triethylphosphine, tri-n- Butylphosphine, tri-tert-butylphosphine, tri-n-octylphosphine, tricyclohexylphosphine, trishydroxymethylphosphine, Lishydroxyethylphosphine, triphenylphosphine, trismethoxyphenylphosphine, and trisethoxyphenylphosphine are more preferable.
  • Trimethylphosphine, triethylphosphine, trishydroxymethylphosphine, trishydroxyethylphosphine, triphenylphosphine, tri-n-butylphosphine, tris -Tert-butylphosphine, tri-n-octylphosphine, and tricyclohexylphosphine are more preferable, and trishydroxymethylphosphine and triphenylphosphine are particularly preferable.
  • such a phosphine compound may be used individually by 1 type, or may be used in combination of 2 or more type. Moreover, it does not restrict
  • ⁇ Polymerization initiator: (C) component> Such a polymerization initiator is not particularly limited, and a known polymerization initiator can be appropriately used. As described above, the polymerization initiator can start the polymerization of the polymerizable liquid crystal compound more efficiently according to the type of the polymerizable liquid crystal compound in the composition from among known polymerization initiators. What is necessary is just to select suitably and use.
  • a polymerization initiator is a thermal polymerization initiator (an initiator when utilizing a thermal polymerization reaction)
  • a photopolymerization initiator an initiator when utilizing light or electron beam irradiation
  • a polymerization initiator in the case of using a plastic film or the like as a base material when producing a liquid crystal film, from the viewpoint of preventing the base material and the like from being deformed or altered by heat, It is more preferable to use a photopolymerization initiator.
  • photopolymerization initiators include ⁇ -carbonyl compounds, acyloin ethers, ⁇ -hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, and triarylimidazole dimers and p-aminophenyl ketones. And acridine and phenazine compounds and oxadiazole compounds.
  • ⁇ -carbonyl compounds include ⁇ -carbonyl compounds described in US Pat. No. 2,367,661 and US Pat. No. 2,367,670.
  • examples of the acyloin ether include US Pat. The thing etc. which are described in 2448828 specification are mentioned.
  • Examples of the ⁇ -hydrocarbon-substituted aromatic acyloin compound include those described in US Pat. No. 2,722,512.
  • Examples of the polynuclear quinone compound include US Pat. No. 3,046,127 and US Pat. No. 2,951,758. And the like described in the specification.
  • Examples of the combination of triarylimidazole dimer and p-aminophenyl ketone include those described in US Pat. No. 3,549,367.
  • Examples of the acridine and phenazine compound include, for example, Examples described in JP-A-60-105667, US Pat. No. 4,239,850 and the like, and examples of the oxadiazole compound include those described in US Pat. No. 4,212,970. .
  • a commercially available product may be used as such a photopolymerization initiator.
  • a photopolymerization initiator (trade name “Irgacure 907”, trade name “Irgacure 651”, trade name, manufactured by Ciba-Geigy) “Irgacure 184”), a photopolymerization initiator (trade name “UVI6974”) manufactured by Union Carbide, Inc. may be used as appropriate.
  • photopolymerization initiators include those that generate free radicals and those that generate ions upon irradiation with light or an electron beam, and the type and polymerization of the polymerizable liquid crystal compound in the composition.
  • a photopolymerization initiator that generates free radicals for example, “Irgacure 651” manufactured by Ciba-Geigy
  • a photopolymerization initiator that generates ions for example, Union Carbide, Inc.
  • a suitable photopolymerization initiator (trade name “UVI6974”) manufactured by the company may be appropriately selected and used.
  • Such a solvent is capable of dissolving the components (A) to (C) (for dissolving).
  • each component is uniformly dissolved in the solvent, and a more uniform liquid crystal alignment film is obtained when a liquid crystal film is produced using such a composition.
  • such a solvent is not particularly limited, and a known solvent that can be used for the liquid crystal composition can be appropriately used.
  • solvents include heterocyclic rings such as tetrahydrofuran, ⁇ -butyrolactone, and N-methylpyrrolidone; glycol derivatives such as 2-methoxyethyl acetate, propylene glycol 1-monomethyl ether 2-acetate; chloroform, dichloromethane, tetra Halogenated hydrocarbons such as chloroethane, trichloroethylene, tetrachloroethylene, chlorobenzene; aromatic hydrocarbons such as benzene, toluene, zylene, methoxybenzene, 1,2-dimethoxybenzene; acetone, methyl ethyl ketone, cyclohexanone, cyclopentanone Ketones such as isopropyl alcohol and n-butanol; cellosolves such as methyl cellosolve,
  • a solvent from the viewpoint of drying speed suitable for applying the solution so as to obtain a uniform film thickness, ease of handling (harmful to the environment) and solubility in the polymerizable liquid crystal compound, Propylene glycol 1-monomethyl ether 2-acetate, 2-methoxyethyl acetate, toluene, xylen, methoxybenzene, 1,2-methoxybenzene, cyclohexanone, cyclopentanone, methyl cellosolve, ethyl cellosolve, butyl cellosolve, ⁇ -butyrolactone are preferred, Propylene glycol 1-monomethyl ether 2-acetate and ⁇ -butyrolactone are more preferred.
  • the components (A) to (D) contained in the liquid crystal composition of the present invention have been described above separately. Hereinafter, the liquid crystal composition of the present invention containing these components will be described.
  • the liquid crystal composition of the present invention containing the components (A) to (D) is applied to a substrate and then the solvent is removed to remove the alignment state of the polymerizable liquid crystal compound (component (A)). Can be brought into a homeotropic alignment state, and this is polymerized to fix the alignment state, whereby a homeotropic alignment liquid crystal film can be efficiently produced. Therefore, according to the liquid crystal composition of the present invention, it is possible to produce a homeotropic alignment liquid crystal film by a simple process such as application of the composition, removal of a solvent, and immobilization. It is particularly useful as a material used for typical production.
  • the liquid crystal composition of the present invention contains components (A) to (D).
  • the content of the phosphine compound (component (B)) in the liquid crystal composition of the present invention is 0.5 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound (component (A)). It is preferably 1 to 5 parts by mass.
  • the content of such a phosphine compound is less than the above lower limit, the time required for vertical alignment becomes longer during the production of homeotropic alignment liquid crystal film, or at the film stage before immobilization (such as drying the solvent from the composition).
  • the adhesion between the substrate and the liquid crystal film (adhesive strength of the liquid crystal film) tends to occur. Tend to decrease.
  • the content (component (C)) of the polymerization initiator in the liquid crystal composition of the present invention is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. More preferably, it is part by mass. If the content of the polymerization initiator is less than the lower limit, the resulting liquid crystal film tends to have insufficient curability. On the other hand, if the content exceeds the upper limit, defects tend to occur in the vertical alignment of the liquid crystal.
  • the content of the solvent in the liquid crystal composition of the present invention is the use method of the composition (for example, when used to form a liquid crystal film, including the design of the thickness, the coating method, etc.) Depending on the method and the like, and cannot be generally described, but is preferably 30 to 98% by mass, more preferably 50 to 95% by mass, and 70 to 90% by mass. More preferred is 80 to 90% by mass. If the content of the solvent is less than the lower limit, the amount of the solvent with respect to the total amount of the components (A) to (C) decreases, so that liquid crystal is deposited during storage or the viscosity of the liquid crystal composition increases. Since the wettability of the liquid crystal film is reduced, it tends to be difficult to coat the liquid crystal film.
  • the total amount of the components (A) to (C) (the amount of the mixture of components other than the solvent) is based on the total amount of the components (A) to (D). , Preferably 5 to 70% by mass, more preferably 10 to 50% by mass, still more preferably 10 to 30% by mass, and particularly preferably 10 to 20% by mass. .
  • the reaction activator, sensitizer, antifoaming agent, and the like depending on the type of each component contained in the liquid crystal composition, as long as the effect is not impaired. You may add a leveling agent etc. suitably.
  • the method for producing such a liquid crystal composition of the present invention is not particularly limited, and a method capable of obtaining a liquid crystal composition containing the components (A) to (D) can be appropriately used.
  • a method of adding the components (A) to (C) to the component (D) and mixing them to obtain a liquid crystal composition may be used.
  • the order of adding the components is not particularly limited, and the ( Each component may be appropriately added so that the components A) to (C) can be dissolved in the component (D).
  • the components (A) to (C) are sequentially added to the component (D).
  • a method of adding (in no particular order), a method of adding component (C) after adding a mixture of components (A) to (B) in component (D), component (A) and component (C) in component (D) A method of adding the component (B) after adding the mixture of the component (A), a method of adding the mixture of the components (A) to (C) to the component (D), etc. may be appropriately employed.
  • the liquid crystal composition of the present invention is used as a material for producing a liquid crystal film in which the alignment state is fixed in a homeotropic alignment state (hereinafter simply referred to as “homeotropic alignment liquid crystal film”). It can be suitably used. As such a homeotropic alignment liquid crystal film, it is preferable that it was obtained using the manufacturing method of the homeotropic alignment liquid crystal film of this invention mentioned later.
  • the homeotropic alignment liquid crystal film of the present invention is a homeotropic alignment liquid crystal film that is fixed in a homeotropic alignment state, and is obtained using the liquid crystal composition of the present invention.
  • Such homeotropic alignment liquid crystal film is not particularly limited as long as it is a liquid crystal film obtained by fixing the alignment state in a homeotropic alignment state using the liquid crystal composition of the present invention.
  • the liquid crystal composition of the present invention is applied to form a coating film, the solvent is removed from the coating film and the polymerizable liquid crystal compound is homeotropically aligned, and then the polymerizable liquid crystal compound is polymerized.
  • a homeotropic alignment liquid crystal film obtained by fixing the alignment state is preferable.
  • the liquid crystal composition of the present invention is capable of changing the alignment state of the polymerizable liquid crystal compound into a homeotropic alignment state by removing the solvent after coating, and is simple. In addition, a homeotropic alignment liquid crystal film can be produced.
  • the state that “the alignment state is fixed in a homeotropic alignment state” is a homeotropic alignment (so-called vertical alignment) in a liquid crystal film obtained after polymerizing the polymerizable liquid crystal compound to fix the alignment.
  • Alignment in which the major axis direction of the liquid crystal molecules is aligned in a direction substantially perpendicular to the substrate) is derived from the polymerizable liquid crystal compound and the like contained in the liquid crystal composition Among the components (preferably a component derived from the polymerizable liquid crystal compound: the polymerizable liquid crystal compound itself, a composition formed by decomposing the polymerizable liquid crystal compound, a polymer of the polymerizable liquid crystal compound, and the like). Any of these may be fixed in a homeotropic alignment state.
  • a method for confirming homeotropic alignment in such a liquid crystal film the following method may be employed.
  • a known method can be appropriately employed, and is not particularly limited.
  • a pair of orthogonal polarizing plates a direction in which one deflecting plate is deflected and a direction in which the other deflecting plate is Using a sample in which a liquid crystal film (which may be in the form of a laminate with a base material) is disposed between a pair of polarizing plates whose deflection directions are perpendicular to each other, the transmitted light is confirmed with the naked eye.
  • a method of observing the liquid crystal film with a polarizing microscope may be employed.
  • the liquid crystal film is a homeotropic alignment liquid crystal film
  • the light phase difference is obtained when light is incident from a direction perpendicular to the surface of the liquid crystal film in the sample.
  • the sample appears black because the light cannot pass through the sample.
  • the incident angle of the light incident on the sample is tilted, a phase difference occurs and the light is transmitted, and the sample appears bright. . Therefore, the presence or absence of homeotropic orientation can be confirmed by measuring the brightness of such a sample through the naked eye or a polarizing microscope while shifting the incident angle of light.
  • a method for confirming the homeotropic alignment is, for example, on the surface of the liquid crystal film.
  • a birefringence measuring apparatus for example, an axo-matrix capable of measuring a phase difference in a vertical direction (perpendicular incident angle) and a phase difference when the incident angle of light is tilted from the vertical incident angle to a specific angle.
  • the viewing angle becomes larger from 0 ° viewing angle (perpendicular to the liquid crystal film) using the product name “axoscan” manufactured by Nihon Oji Co., Ltd. and the product name “KOBRA-21ADH” manufactured by Nippon Oji Scientific Instruments.
  • the thickness of such a liquid crystal film is preferably 0.1 to 10 ⁇ m, although it varies depending on the application and required characteristics, and is preferably 0.2 to It is more preferably 5 ⁇ m, and further preferably 0.3 to 2 ⁇ m. If the thickness of such a liquid crystal film is less than the lower limit, a desired retardation may not be exhibited. On the other hand, if the thickness exceeds the upper limit, the orientation of the liquid crystal tends to decrease.
  • the liquid crystal film may be required to have a specific retardation value as well as a film thickness depending on its use.
  • the refractive index in the direction indicating the maximum refractive index direction in the plane of the liquid crystal film is Nx
  • the refractive index in the direction perpendicular thereto is Ny
  • the refractive index in the thickness direction is Nz
  • the thickness of the liquid crystal film is d (nm).
  • the refractive index relationship of the homeotropic alignment liquid crystal film is usually Nz> Nx ⁇ Ny.
  • Such Re and Rth are values for light having a wavelength of 550 nm.
  • an apparatus capable of measuring birefringence for example, a trade name “axoscan” manufactured by axo-matrix, a product name “KOBRA-21ADH” manufactured by Nippon Oji Scientific Instruments), etc.
  • the value measured by using can be adopted.
  • such homeotropic alignment liquid crystal film has a sufficiently high adhesion to the base material when manufactured by applying the liquid crystal composition of the present invention on the base material. And can be suitably used as an optical film or the like.
  • a base material it demonstrates in detail in the manufacturing method of the homeotropic alignment liquid crystal film of this invention mentioned later.
  • the method for producing a homeotropic alignment liquid crystal film of the present invention includes a step of applying the liquid crystal composition of the present invention on a substrate to form a coating film (step (A)), and removing the solvent from the coating film. After the homeotropic alignment of the polymerizable liquid crystal compound, the alignment state is fixed by polymerizing the polymerizable liquid crystal compound to obtain a homeotropic alignment liquid crystal film in which the alignment state is fixed in the homeotropic alignment state. A step (step (B)).
  • step (A) the alignment state is fixed by polymerizing the polymerizable liquid crystal compound to obtain a homeotropic alignment liquid crystal film in which the alignment state is fixed in the homeotropic alignment state.
  • Step (A) is a step of forming a coating film by applying the liquid crystal composition of the present invention on a substrate.
  • a substrate is not particularly limited as long as it can be used for an optical film, and a known substrate for an optical film can be appropriately used.
  • Examples of such a base material include a base material made of an organic polymer material and a base material made of an inorganic material (for example, a glass plate, a metal plate, a film formed from a metal such as aluminum). .
  • Such a substrate is optically isotropic from the viewpoint of maintaining optical properties as an optical film when a laminate of the substrate and the homeotropic alignment liquid crystal film is used as an optical film for a liquid crystal display or the like. Those having high properties and light transmittance of 80% or more can be suitably used.
  • a base material it is preferable to use the base material which consists of organic polymer materials from a viewpoint of cost or continuous productivity.
  • Examples of such an organic polymer material include polyvinyl alcohol, polyimide, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyether ketone, polyether sulfone, polyether ether ketone, polyarylate, polyethylene terephthalate, and polyethylene naphthalate.
  • Polyester polymers such as: Cellulose polymers such as diacetyl cellulose and triacetyl cellulose; Polycarbonate polymers; Transparent polymers such as (meth) acrylic polymers such as polymethyl (meth) acrylate; Polystyrene, acrylonitrile / styrene copolymers, etc.
  • Cyclic olefin polymer is a general generic name for resins obtained from cyclic olefins such as norbornene, dicyclopentadiene, tetracyclododecene and derivatives thereof.
  • organic polymer material as the material of such a base material, it is possible to exhibit characteristics (for example, transparency) suitable for an optical film, and therefore, a cellulose polymer, a polycarbonate polymer, a cyclic polymer, and the like.
  • An olefin polymer (cycloolefin polymer: COP) is more preferable.
  • a lower fatty acid ester of cellulose is more preferable.
  • a lower fatty acid a fatty acid having 6 or less carbon atoms is preferable. Further, the number of carbon atoms of such a lower fatty acid is more preferably 2-4.
  • examples of such a cellulose polymer include cellulose acetate, cellulose propionate, and cellulose butyrate. Among such cellulose polymers, cellulose triacetate is particularly preferable.
  • a mixed fatty acid ester such as cellulose acetate propionate or cellulose acetate butyrate may be used.
  • cyclic olefin polymer examples include cyclic olefin ring-opening polymers, cyclic olefin addition polymers, random copolymers of cyclic olefins and ⁇ -olefins such as ethylene and propylene, and the like. Examples include graft-modified products modified with saturated carboxylic acid and derivatives thereof, and hydrides thereof. Moreover, as such a cyclic olefin, norbornene, its derivative (s), and dicyclopentadiene are preferable.
  • a base material made of such an organic polymer material a film made of triacetyl cellulose, polycarbonate, a cyclic olefin polymer (cycloolefin polymer: COP) is highly transparent and easily available.
  • a base material plastic film
  • the liquid crystal composition contains a (meth) acrylate-based liquid crystal compound, it is possible to impart sufficiently high adhesion.
  • COP film a film made of a cyclic olefin polymer
  • such a substrate is not particularly limited, but in the case of using the formed laminate of the liquid crystal film and the substrate as it is for an optical film or the like, depending on the application, etc. It may have a phase difference function. Further, such a substrate may be uniaxially stretched (so-called uniaxially stretched film) or biaxially stretched (so-called biaxially stretched film).
  • a base material may be used as a film having optical anisotropy by developing biaxial optical anisotropy by stretching the base material in the vertical direction and the horizontal direction.
  • a substrate that has been subjected to a Z-axis orientation treatment may be used as such a base material. Further, such a substrate may be appropriately subjected to surface treatment such as corona treatment, plasma treatment, UV-ozone treatment, saponification treatment on one or both sides for the purpose of controlling the adhesion.
  • the treatment conditions for adopting such a surface treatment may be appropriately set according to the base material to be used, and are not particularly limited, and known conditions may be appropriately adopted.
  • the polymerizable liquid crystal compound in the coating film is formed by coating the liquid crystal composition of the present invention on the substrate to form a coating film, and then removing the solvent from the coating film.
  • the alignment film forming step can be shortened.
  • the base material can be used without calculating the thickness of the alignment film, so the base material design (characteristics, thickness, etc.) can be made more efficient depending on the application. It is possible to change.
  • the method for applying the liquid crystal composition of the present invention on the substrate is not particularly limited, and a known method can be appropriately employed.
  • a coating method for example, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, a spin coating method, or the like can be appropriately employed.
  • a coating film can be obtained by applying the liquid crystal composition of the present invention on the substrate.
  • a coating film is different depending on the content of the solvent in the liquid crystal composition of the present invention and cannot be generally described.
  • the thickness of the coating film (wet film thickness) before drying is 3 It is preferably ⁇ 50 ⁇ m, more preferably 5 to 20 ⁇ m. If such a thickness (wet film thickness) is less than the lower limit, it is necessary to increase the concentration of solid content (liquid crystal compound, etc.) in the liquid crystal composition in order to obtain desired optical characteristics. In addition to the difficulty of obtaining a uniform liquid crystal film due to the occurrence of minute precipitation, uniform coating is difficult and the smoothness of the liquid crystal film tends to decrease. Since the concentration of the solid content in the liquid crystal composition for obtaining the characteristics is thin, the drying time after coating tends to be long.
  • step (B) the solvent is removed from the coating film, and the polymerizable liquid crystal compound (component (A) in the liquid crystal composition) is homeotropically aligned, and then the polymerizable liquid crystal compound is polymerized for alignment.
  • step (B) the solvent is removed from the coating film, and the polymerizable liquid crystal compound (component (A) in the liquid crystal composition) is homeotropically aligned, and then the polymerizable liquid crystal compound is polymerized for alignment.
  • step (B) the solvent is removed from the coating film, and the polymerizable liquid crystal compound (component (A) in the liquid crystal composition) is homeotropically aligned, and then the polymerizable liquid crystal compound is polymerized for alignment.
  • step (B) the solvent is removed from the coating film formed in step (A).
  • the solvent is removed from the coating film in this way, the polymerizable liquid crystal compound in the coating film is aligned in a homeotropic alignment state.
  • Such a method for removing the solvent varies depending on the kind of the solvent in the liquid crystal composition of the present invention, and is not generally limited, and is not particularly limited.
  • the solvent can be removed from the coating film even at room temperature (25 ° C.).
  • a homeotropic liquid crystal film can be produced without particular heat treatment depending on the kind of the solvent.
  • the temperature condition in such a solvent removal step is preferably 15 to 110 ° C, more preferably 20 to 70 ° C.
  • the pressure condition in such a solvent removal step is not particularly limited, but is preferably 600 to 1400 hPa, and more preferably 900 to 1100 hPa.
  • the time for the solvent removal step (drying time) is not particularly limited, but is preferably 10 seconds to 60 minutes, and more preferably 1 minute to 30 minutes. If the drying time is less than the lower limit, the solvent is rapidly dried, and the smoothness of the liquid crystal film tends to be reduced (drying unevenness occurs). Tend to decrease.
  • the relative moving speed between the coating film and the drying apparatus is controlled so that the relative wind speed is 60 m / min to 1200 m / min. Is preferred.
  • the polymerizable liquid crystal compound can be homeotropically aligned by removing the solvent from the coating film. Then, after the polymerizable liquid crystal compound is aligned, the formed liquid crystal state (homeotropic alignment state) can be fixed by polymerizing the polymerizable liquid crystal compound.
  • a known method capable of polymerization may be appropriately employed depending on the type of the polymerization initiator used or the type of the polymerizable liquid crystal compound. it can.
  • a method for fixing such an alignment state for example, the polymerizable group (reactive property) can be obtained by performing light irradiation and / or heat treatment depending on the kind of the polymerization initiator.
  • a method may be adopted in which the orientation is fixed in the homeotropic orientation state by reacting the functional group).
  • the alignment state of homeotropic alignment is fixed by light irradiation.
  • the light irradiation method is not particularly limited.
  • a light source having a spectrum in the absorption wavelength region of the polymerization initiator used for example, a metal halide lamp, an intermediate pressure or a high pressure mercury lamp having an illuminance of 10 mW / cm 2 or more.
  • the integrated irradiation dose of light in such a method of light irradiation of accumulative exposure at a wavelength 365 nm it is preferably 10 ⁇ 2000mJ / cm 2, and more to be 100 ⁇ 1500mJ / cm 2 preferable.
  • this is not the case when the absorption region of the polymerization initiator and the spectrum of the light source are significantly different, or when the polymerizable liquid crystal compound itself has the ability to absorb light of the light source wavelength.
  • an appropriate photosensitizer and two or more polymerization initiators having different absorption wavelengths are mixed from the viewpoint of fixing (curing) the coating film while maintaining the orientation state more efficiently.
  • a method such as use may be employed.
  • the temperature condition during such light irradiation is not particularly limited as long as the polymerizable liquid crystal compound can maintain a homeotropic alignment state.
  • a cold mirror or other cooling device may be provided between the substrate and the light source (such as an ultraviolet lamp) so that the surface temperature of the coating film can maintain the range of the liquid crystal temperature during light irradiation.
  • the conditions of the atmosphere at the time of such light irradiation are not particularly limited, and may be an air atmosphere or a nitrogen atmosphere in which oxygen is blocked in order to increase reaction efficiency.
  • the oxygen concentration in the atmosphere is related to the degree of polymerization, when the desired degree of polymerization is not reached in the air, it is preferable to perform light irradiation in an atmosphere in which the oxygen concentration is reduced by a method such as nitrogen substitution.
  • the oxygen concentration in the atmospheric gas is preferably 10% by volume or less, more preferably 7% by volume or less, and most preferably 3% by volume or less.
  • the orientation is fixed in a homeotropic alignment state by heat treatment. It is preferable to do.
  • the conditions for such heat treatment are not particularly limited, and the temperature conditions may be selected so that the orientation state is sufficiently maintained according to the type of the polymerization initiator, and known conditions are appropriately employed. be able to.
  • the base material has low heat resistance
  • a material that exhibits the function of an initiator by light irradiation is used as the polymerization initiator, and the homeotropic alignment state is fixed by light irradiation. It is preferable to do.
  • the solvent is removed from the coating film, the polymerizable liquid crystal compound is aligned, and the liquid crystal state is fixed.
  • a homeotropic alignment liquid crystal film fixed in a homeotropic alignment state can be formed on the substrate.
  • the homeotropic alignment liquid crystal film thus obtained has sufficiently high adhesion to the base material, so that it can be directly used as an optical film in the state of a laminate with the base material. In that case, damage due to peeling from the base material during use is sufficiently suppressed.
  • the thickness of the homeotropic alignment liquid crystal film thus obtained (thickness after drying and curing) varies depending on the application and required properties, but is preferably 0.1 to 10 ⁇ m. It is more preferably 2 to 5 ⁇ m, and further preferably 0.3 to 2 ⁇ m. If the thickness is less than the lower limit, a desired retardation may not be exhibited. On the other hand, if the thickness exceeds the upper limit, the orientation of the liquid crystal tends to decrease.
  • the method for producing such a homeotropic alignment liquid crystal film of the present invention can form an alignment state of homeotropic alignment by removing the solvent from the coating film of the liquid crystal composition of the present invention, Since it is not necessary to separately perform the step of forming the alignment film on the substrate, the process can be shortened and the cost can be reduced, and after removing the solvent from the coating film of the liquid crystal composition of the present invention, Since it is possible to form an alignment state in a short time (for example, several minutes) after the solvent is removed, when a plastic film is used as a base material, for example, a so-called roll-to-roll method (roll-to-roll method) -Roll method), homeotropic alignment liquid crystal films can be produced. It is also possible to quantity production.
  • the method for producing the homeotropic alignment liquid crystal film of the present invention does not need to form an alignment film on the substrate, and does not need to be subjected to heat treatment during formation of the alignment film. Even a film with relatively low heat resistance can be used as a base material, and the thickness of the laminate of the liquid crystal film and the base material can be reduced by the thickness of the alignment film. Therefore, it is possible to efficiently produce a homeotropic alignment liquid crystal film by appropriately selecting a substrate according to the target design.
  • the polarizing plate of the present invention includes the homeotropic alignment liquid crystal film of the present invention.
  • Such a polarizing plate is not particularly limited, but the homeotropic alignment liquid crystal film of the present invention is used as a known optical material so that the characteristics of the homeotropic alignment liquid crystal film of the present invention can be used. It may be used as a polarizing plate by appropriately combining with a member.
  • the homeotropic alignment liquid crystal film of the present invention may be combined with a linear polarizing plate to form an elliptical polarizing plate, or the homeotropic alignment of the present invention. It is good also as a polarizing plate for LCD backlight sides combining a liquid crystal film and a brightness enhancement film.
  • the configuration of the polarizing plate is not particularly limited, and the combination with other optical members is appropriately considered depending on the characteristics of the homeotropic alignment liquid crystal film of the present invention and the purpose of use thereof.
  • the design can be changed as appropriate, so that it can be used as various polarizing plates.
  • the homeotropic alignment liquid crystal film of the present invention can be used in the state of a laminate with a substrate.
  • an elliptical polarizing plate that can be obtained by laminating a linear polarizing plate on the homeotropic alignment liquid crystal film of the present invention is taken as an example.
  • an elliptically polarizing plate include those obtained by laminating and integrating the homeotropic alignment liquid crystal film of the present invention and the linear polarizing plate.
  • Such a linear polarizing plate is not particularly limited, and a known linear polarizing plate can be appropriately used.
  • one having a protective film on one side or both sides of a polarizer can be used.
  • Such a polarizer is not particularly limited, and various known materials can be used as appropriate.
  • hydrophilicity such as polyvinyl alcohol film, partially formalized polyvinyl alcohol film, ethylene / vinyl acetate copolymer partially saponified film, etc.
  • examples include polymer films that are uniaxially stretched by adsorbing dichroic substances such as iodine and dichroic dyes, polyene-based oriented films such as dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride. It is done.
  • a film obtained by stretching a polyvinyl alcohol film and adsorbing and orienting a dichroic material (iodine, dye) is preferably used.
  • the thickness of such a polarizer is not particularly limited, but is generally about 5 to 80 ⁇ m.
  • the protective film is not particularly limited, and a protective film made of a known material can be used as appropriate.
  • a protective film is preferably made of a cellulose-based polymer such as triacetyl cellulose from the viewpoints of polarization characteristics and durability.
  • a method for laminating and integrating the homeotropic alignment liquid crystal film and the linear polarizing plate is not particularly limited. For example, one of the surfaces of the homeotropic alignment liquid crystal film and the linear polarizing plate to be laminated with each other or What is necessary is just to crimp
  • the crimping can be performed either in a leaf-like form or in a long form, and the apparatus to be used may be an apparatus suitable for each form, and examples thereof include a press and a laminator.
  • the material for forming such a pressure-sensitive adhesive layer and / or adhesive layer is not particularly limited, and a known material can be appropriately used.
  • the image display device of the present invention includes the polarizing plate of the present invention.
  • Such an image display device of the present invention only needs to include the polarizing plate of the present invention, and the type of the image display device is not particularly limited, such as a liquid crystal display device, an organic EL display device, and a plasma display.
  • the method for arranging the polarizing plate of the present invention in an image display device is not particularly limited, and a known method can be appropriately used.
  • the image display device of the present invention including the polarizing plate of the present invention includes a liquid crystal film of homeotropic alignment (vertical alignment) having a larger refractive index in the film thickness direction.
  • the viewing angle of the image display device can be sufficiently widened, the luminance can be sufficiently improved, and the like, and thereby the viewing angle and the image quality can be sufficiently improved.
  • a polymerizable liquid crystal compound represented by the formula (acrylate-based polymerizable liquid crystal compound) was prepared.
  • the polymerizable liquid crystal compounds represented by the general formulas (110) to (113) were produced by known methods. Specifically, the compound represented by the above general formula (110) (hereinafter sometimes simply referred to as “liquid crystal compound (I)”) is described in British Patent Application Publication No. 2,280,445 (GB2,280,445).
  • the compound represented by the above general formula (111) (hereinafter sometimes simply referred to as “liquid crystal compound (II)”) is a document published in 1989 (DJ Broer). et al., “Makromol. Chem.”, vol.
  • Liquid Crystal Compound (III) Liquid Crystal Compound (III)
  • 113 Liquid Crystal Compound (IV)
  • International Publication 93 It was prepared by the method described in JP 22397. Further, all of the polymerizable liquid crystal compounds represented by the above general formulas (110) to (113) were solid at room temperature (25 ° C.).
  • liquid crystal compounds (I) to (IV) are mixed with liquid crystal compound (I): 35 mass%, liquid crystal compound (II): 23 mass%, liquid crystal compound (III): 23 mass%, and liquid crystal compound ( IV):
  • the first mixture liquid crystal monomer mixture
  • a polymerization initiator trade name “Irgacure 907” manufactured by Ciba-Geigy, Switzerland, solid at room temperature (25 ° C.)
  • the second mixture was dissolved in propylene glycol 1-monomethyl ether 2-acetate (solvent) to obtain a third mixture (mixed solution).
  • the content of the solvent in the third mixture is 80% by mass, and the total amount of the liquid crystal compounds (I) to (IV) and the polymerization initiator is The solvent was used so that it might become 20 mass%.
  • triphenylphosphine (trade name “Triphenylphosphine” manufactured by Kishida Chemical Co., Ltd.) is added to the liquid crystal compound contained in the third mixture (mixed solution)
  • a polymerizable liquid crystal compound represented by the above general formulas (110) to (113) (the liquid crystal compound (I)) is added at a ratio of 5.0 parts by mass with respect to 100 parts by mass of the total amount of I) to (IV).
  • triphenylphosphine, a polymerization initiator, and a solvent were obtained.
  • a COP film (trade name “Zeonor” manufactured by Nippon Zeon Co., Ltd., film thickness: 20 ⁇ m) is prepared as a base material, and corona discharge treatment (corona discharge irradiation amount: 100 W / m 2 ⁇ min) is applied to the base material. gave.
  • the liquid crystal composition obtained as described above was applied (coated) to the base material (COP film) after the corona discharge treatment by a spin coating method to form a coating film (wet film thickness: 5 ⁇ m). ) To obtain a laminate of the coating film and the substrate.
  • the laminate of the coating film and the substrate was left to stand for 2 minutes under the conditions of pressure: 1013 hPa and temperature: room temperature (25 ° C.), thereby removing the solvent from the coating film by drying (solvent removal step). ).
  • solvent removal step the solvent was removed from the whole surface of the said coating film after 2 minutes passed from the completion of the coating to a base material.
  • the coating state of the liquid crystal composition is completed when the state of the coating film (dried state and orientation state) is confirmed with the naked eye from a direction perpendicular to the coating film surface after 2 minutes have passed.
  • the liquid crystal compound is homeotropically aligned (vertically aligned) in the coating as the solvent is dried, and the solvent is removed from the entire surface of the coating after 2 minutes from the completion of coating. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the dried coating film.
  • the integrated irradiation amount is 200 mJ / cm 2, and ultraviolet light (however, A liquid crystal film in which the alignment state is fixed by polymerizing (curing) the liquid crystal compound by irradiating light having a wavelength of 365 nm, and the alignment state is fixed on the substrate (COP film).
  • a laminated liquid crystal film laminate (a laminate of a liquid crystal film and a COP film) was obtained. When the film thickness of the liquid crystal film in the liquid crystal film laminate thus obtained was measured using a trade name “Digimicro” manufactured by Nikon Corporation, the film thickness of the liquid crystal film was 1 ⁇ m.
  • the optical properties of the liquid crystal film thus obtained were evaluated as follows. That is, the liquid crystal film laminate was used as a measurement sample, the product name “axoscan” manufactured by axo-matrix was used as a measurement device, the measurement light was changed to 590 nm, and the viewing angle was changed from 0 ° to larger ( When the direction perpendicular to the liquid crystal film is set to a viewing angle of 0 °, the phase difference is measured at various viewing angles, and the direction perpendicular to the liquid crystal film is measured from another angle (the viewing angle is The optical properties of the liquid crystal film were evaluated by confirming the difference in the phase difference of the sample from the case where the angle was changed to a larger angle.
  • the liquid crystal film In the measurement sample provided with the liquid crystal film obtained as described above by the measurement of such a phase difference, no phase difference is confirmed in a direction perpendicular to the liquid crystal film (viewing angle is 0 °) ( It was confirmed that the phase difference increases as the viewing angle increases. In addition, in the measurement of the phase difference, it was confirmed that the liquid crystal film had symmetry in the phase difference value in the ⁇ direction and the + direction of the viewing angle. Therefore, the liquid crystal film thus obtained has liquid crystal molecules aligned in a direction perpendicular to the film surface (the surface of the liquid crystal film) (homeotropic alignment is formed). confirmed.
  • Example 2 A liquid crystal film laminate (base) was prepared in the same manner as in Example 1 except that the amount of triphenylphosphine added was changed to 3.0 parts by mass with respect to 100 parts by mass of the total amount of the liquid crystal compounds (I) to (IV). A laminate of a material (COP film) and a liquid crystal film (thickness: 1 ⁇ m) was obtained.
  • Example 2 as in Example 1, when the state of the coating film (dried state and orientation state) was confirmed in the solvent removal step, about 1 minute after the completion of the coating of the liquid crystal composition, When the solvent is dried, a portion where the liquid crystal compound is homeotropically aligned (vertical alignment) appears in the coating film, and after 2 minutes from the completion of the coating, the solvent is removed from the entire surface of the coating film. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the coating film.
  • Example 3 A liquid crystal film laminate (base) was prepared in the same manner as in Example 1, except that the addition amount of the triphenylphosphine was changed to 1.0 part by mass with respect to 100 parts by mass of the total amount of the liquid crystal compounds (I) to (IV). A laminate of a material (COP film) and a liquid crystal film (thickness: 1 ⁇ m) was obtained.
  • Example 3 As in Example 1, when the state of the coating film (dried state and orientation state) was confirmed in the solvent removal step, about 1 minute after the completion of the coating of the liquid crystal composition. When the solvent is dried, a portion where the liquid crystal compound is homeotropically aligned (vertical alignment) appears in the coating film, and after 2 minutes from the completion of the coating, the solvent is removed from the entire surface of the coating film. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the coating film.
  • Example 3 when the orientation state of a liquid crystal film (cured liquid crystal film) was measured in the same manner as in the method employed in Example 1 using the liquid crystal film laminate obtained in Example 3, the Example In the same manner as in No. 1, it was confirmed that the liquid crystal molecules were aligned in a direction perpendicular to the liquid crystal film surface (homeotropic alignment was formed). Moreover, when the liquid crystal film laminate obtained in Example 3 was used to measure the adhesion of the liquid crystal film to the substrate in the same manner as in the method employed in Example 1, the substrate (COP) was measured. No peeling was confirmed between the film) and the liquid crystal film, and it was confirmed that the interlayer adhesion between the substrate (COP film) and the liquid crystal film was sufficiently high. The characteristics of such a liquid crystal film laminate are shown in Table 1.
  • Example 4 The mass ratio of the liquid crystal compounds (I) to (IV) in obtaining the first mixture (liquid crystal monomer mixture) is as follows: liquid crystal compound (I): 38 mass%, liquid crystal compound (II): 25 mass%, liquid crystal compound (III): A liquid crystal film laminate (base material (COP film) and liquid crystal film (thickness: thickness) in the same manner as in Example 1 except that it was changed to 25% by mass and liquid crystal compound (IV): 12% by mass. 1 ⁇ m) was obtained.
  • Example 4 As in Example 1, when the state of the coating film (dried state and orientation state) was confirmed in the solvent removal step, about 1 minute after the completion of the coating of the liquid crystal composition, When the solvent is dried, a portion where the liquid crystal compound is homeotropically aligned (vertical alignment) appears in the coating film, and after 2 minutes from the completion of the coating, the solvent is removed from the entire surface of the coating film. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the coating film.
  • Example 5 A liquid crystal film laminate (base) was prepared in the same manner as in Example 4 except that the amount of triphenylphosphine added was changed to 3.0 parts by mass relative to 100 parts by mass of the total amount of the liquid crystal compounds (I) to (IV). A laminate of a material (COP film) and a liquid crystal film (thickness: 1 ⁇ m) was obtained.
  • Example 5 as in Example 4, when the state of the coating film (dried state and orientation state) was confirmed in the solvent removal step, about 1 minute after the completion of the coating of the liquid crystal composition, When the solvent is dried, a portion where the liquid crystal compound is homeotropically aligned (vertical alignment) appears in the coating film, and after 2 minutes from the completion of the coating, the solvent is removed from the entire surface of the coating film. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the coating film.
  • Example 6 A liquid crystal film laminate (base) was prepared in the same manner as in Example 4 except that the amount of triphenylphosphine added was changed to 1.0 part by mass with respect to 100 parts by mass of the total amount of the liquid crystal compounds (I) to (IV). A laminate of a material (COP film) and a liquid crystal film (thickness: 1 ⁇ m) was obtained.
  • Example 6 as in Example 4, when the state of the coating film (dried state and orientation state) was confirmed in the solvent removal step, about 1 minute after the completion of the coating of the liquid crystal composition.
  • the solvent is dried, a portion where the liquid crystal compound is homeotropically aligned (vertical alignment) appears in the coating film, and after 2 minutes from the completion of the coating, the solvent is removed from the entire surface of the coating film. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the coating film.
  • Example 6 when the orientation state of the liquid crystal film (cured liquid crystal film) was measured in the same manner as the method employed in Example 1 using the liquid crystal film laminate obtained in Example 6, the Example In the same manner as in No. 1, it was confirmed that the liquid crystal molecules were aligned in a direction perpendicular to the liquid crystal film surface (homeotropic alignment was formed).
  • the liquid crystal film laminate obtained in Example 6 was used to measure the adhesion of the liquid crystal film to the substrate in the same manner as in the method employed in Example 1, the substrate (COP) was measured. No peeling was confirmed between the film) and the liquid crystal film, and it was confirmed that the interlayer adhesion between the substrate (COP film) and the liquid crystal film was sufficiently high.
  • Table 1 The characteristics of such a liquid crystal film laminate are shown in Table 1.
  • Example 7 Instead of the triphenylphosphine, trishydroxymethylphosphine (trade name “Tris (hydroxymethyl) phosphine” manufactured by Aldrich) was used, and the amount of the trishydroxymethylphosphine added was the total amount of the liquid crystal compounds (I) to (IV).
  • a liquid crystal film laminate (a laminate of a base material (COP film) and a liquid crystal film (thickness: 1 ⁇ m) was obtained in the same manner as in Example 4 except that 1.0 part by mass with respect to 100 parts by mass was obtained. .
  • Example 7 as in Example 4, when the state of the coating film (dried state and orientation state) was confirmed in the solvent removal step, about 1 minute after the completion of the coating of the liquid crystal composition.
  • the solvent is dried, a portion where the liquid crystal compound is homeotropically aligned (vertical alignment) appears in the coating film, and after 2 minutes from the completion of the coating, the solvent is removed from the entire surface of the coating film. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the coating film.
  • Example 1 A polymerizable liquid crystal compound represented by the above general formulas (110) to (113) (a mixture of the liquid crystal compounds (I) to (IV)) and a polymerization initiator are added without adding triphenylphosphine during the preparation of the liquid crystal composition.
  • a liquid crystal film laminate (a substrate (COP film) and a cured film of the liquid crystal composition [liquid crystal film (thickness: thickness)) was used in the same manner as in Example 1 except that a mixture with a solvent was used as a comparative liquid crystal composition. 1 ⁇ m)] was obtained.
  • the liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) was measured, and in the liquid crystal film laminate obtained in Comparative Example 1, severe light leakage was confirmed, and the liquid crystal molecules in the formed liquid crystal film (cured film of the liquid crystal composition) were vertically aligned. I found out that it was not. The characteristics of such a liquid crystal film laminate are shown in Table 1.
  • Comparative Example 2 In the solvent removal step, the liquid crystal film laminate (base material (COP film) and the above-described material was used in the same manner as in Comparative Example 1 except that the time for drying and removing the solvent (time for standing) was changed from 2 minutes to 1 hour. A cured film of the liquid crystal composition [a laminate with a liquid crystal film (thickness: 1 ⁇ m)] was obtained.
  • the liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) Is measured, in the liquid crystal film laminate obtained in Comparative Example 2, severe light leakage is confirmed, and the liquid crystal molecules are vertically aligned in the formed liquid crystal film (cured film of the liquid crystal composition). I found out. The characteristics of such a liquid crystal film laminate are shown in Table 1.
  • Example 3 A polymerizable liquid crystal compound represented by the above general formulas (110) to (113) (a mixture of the liquid crystal compounds (I) to (IV)) and a polymerization initiator are added without adding triphenylphosphine during the preparation of the liquid crystal composition.
  • a liquid crystal film laminate (a substrate (COP film) and a cured film of the liquid crystal composition [liquid crystal film (thickness: thickness)) was used in the same manner as in Example 4 except that a mixture with a solvent was used as a liquid crystal composition for comparison. 1 ⁇ m)] was obtained.
  • the liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) was measured, and in the liquid crystal film laminate obtained in Comparative Example 3, severe light leakage was confirmed, and the liquid crystal molecules were vertically aligned in the formed liquid crystal film (cured film of the liquid crystal composition). I found out that it was not.
  • the characteristics of such a liquid crystal film laminate are shown in Table 1.
  • Comparative Example 4 A liquid crystal film laminate (base material (COP film) and the above-mentioned) was used in the same manner as in Comparative Example 3, except that the time for drying and removing the solvent (time for standing) was changed from 2 minutes to 1 hour in the solvent removal step. A cured film of the liquid crystal composition [a laminate with a liquid crystal film (thickness: 1 ⁇ m)] was obtained.
  • the liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) Is measured, in the liquid crystal film laminate obtained in Comparative Example 4, severe light leakage is confirmed, and the liquid crystal molecules are vertically aligned in the formed liquid crystal film (cured film of the liquid crystal composition). I found out. The characteristics of such a liquid crystal film laminate are shown in Table 1.
  • Example 5 Example 3 was repeated except that triethylamine was used in place of the triphenylphosphine, and the addition amount of the triethylamine was 5.0 parts by mass with respect to 100 parts by mass of the total amount of the liquid crystal compounds (I) to (IV).
  • a liquid crystal film laminate (a laminate of a substrate (COP film) and a cured film of the liquid crystal composition [liquid crystal film (thickness: 1 ⁇ m)]) was obtained.
  • the liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) was measured, and in the liquid crystal film laminate obtained in Comparative Example 5, severe light leakage was confirmed, and the liquid crystal molecules were vertically aligned in the formed liquid crystal film (cured film of the liquid crystal composition). I found out that it was not.
  • the characteristics of such a liquid crystal film laminate are shown in Table 1.
  • Comparative Example 6 A liquid crystal film laminate (base material (COP film) and the above-mentioned) was used in the same manner as in Comparative Example 5 except that the time for drying and removing the solvent (time for standing) was changed from 2 minutes to 1 hour in the solvent removal step. A cured film of the liquid crystal composition [a laminate with a liquid crystal film (thickness: 1 ⁇ m)] was obtained.
  • the liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) Is measured, in the liquid crystal film laminate obtained in Comparative Example 6, severe light leakage is confirmed, and the liquid crystal molecules are vertically aligned in the formed liquid crystal film (cured film of the liquid crystal composition). I found out. The characteristics of such a liquid crystal film laminate are shown in Table 1.
  • the liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) was measured, and in the liquid crystal film laminate obtained in Comparative Example 7, severe light leakage was confirmed, and the liquid crystal molecules in the formed liquid crystal film (cured film of the liquid crystal composition) were vertically aligned. I found out that it was not. The characteristics of such a liquid crystal film laminate are shown in Table 1.
  • Comparative Example 8 The liquid crystal film laminate (base material (COP film) and the above-described material was used in the same manner as in Comparative Example 7 except that the time for drying and removing the solvent (time for standing) was changed from 2 minutes to 1 hour in the solvent removal step. A cured film of the liquid crystal composition [a laminate with a liquid crystal film (thickness: 1 ⁇ m)] was obtained.
  • the liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) Is measured, in the liquid crystal film laminate obtained in Comparative Example 8, severe light leakage is confirmed, and liquid crystal molecules are vertically aligned in the formed liquid crystal film (cured film of the liquid crystal composition). I found out. The characteristics of such a liquid crystal film laminate are shown in Table 1.
  • Triphenylphosphine oxide was used instead of triphenylphosphine, and the addition amount of the triphenylphosphine oxide was 5.0 parts by mass with respect to 100 parts by mass of the total amount of the liquid crystal compounds (I) to (IV).
  • a liquid crystal film laminate (a laminate of a base material (COP film) and a liquid crystal film (thickness: 1 ⁇ m)) was obtained.
  • Example 4 when the state of the coating film (dried state and orientation state) was confirmed in the solvent removal step, about 1 minute after completion of the coating of the liquid crystal composition.
  • the solvent is dried, a portion where the liquid crystal compound is homeotropically aligned (vertical alignment) appears in the coating film, and after 2 minutes from the completion of the coating, the solvent is removed from the entire surface of the coating film. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the coating film.
  • Examples 1 to 7 liquid crystal compositions using a phosphine compound
  • a homeotropic alignment liquid crystal film and a substrate (COP film) were used in the adhesion measurement test. It was also confirmed that there was no delamination between the layers and the adhesion between the homeotropic alignment liquid crystal film and the substrate (COP film) was sufficiently high. From these results, when the liquid crystal composition of the present invention is used (Examples 1 to 7: liquid crystal compositions using a phosphine compound), the obtained liquid crystal film laminate is a homeotropic alignment liquid crystal film and a substrate. Since the delamination between the (COP film) and the COP film is sufficiently suppressed, it can be seen that the laminate can be applied to various uses in the state of the laminate.
  • the liquid crystal molecules could not be homeotropically aligned even if the removal time (time of standing) was 1 hour.
  • an additive made of a surfactant was used instead of the phosphine compound (Comparative Examples 9 to 10)
  • the obtained liquid crystal films were all liquid crystals having homeotropic alignment
  • delamination occurs between the homeotropic alignment liquid crystal film and the substrate (COP film)
  • the adhesion between the homeotropic alignment liquid crystal film and the substrate (COP film) can be made sufficient. There wasn't.
  • the obtained liquid crystal film was a homeotropic alignment liquid crystal film, but the homeotropic alignment liquid crystal film and the substrate (COP film) It has been found that the adhesiveness to) cannot always be sufficient.
  • the workability during the production of a liquid crystal film can be sufficiently improved, and a homeotropic alignment liquid crystal film can be efficiently produced.
  • Liquid crystal composition capable of making sufficiently high adhesion between substrate and homeotropic alignment liquid crystal film when manufactured on material, homeotropic alignment liquid crystal film and polarizing plate obtained using the same
  • liquid crystal composition of the present invention is particularly useful as a material for producing a homeotropic alignment liquid crystal film.

Abstract

A liquid crystal composition comprising (A) a polymerizable liquid crystal compound, (B) a phosphine compound, (C) a polymerization initiator and (D) a solvent in which the components (A) to (C) can be dissolved.

Description

液晶組成物、ホメオトロピック配向液晶フィルム、偏光板、画像表示装置、及びホメオトロピック配向液晶フィルムの製造方法Liquid crystal composition, homeotropic alignment liquid crystal film, polarizing plate, image display device, and method for producing homeotropic alignment liquid crystal film
 本発明は、液晶組成物、ホメオトロピック配向液晶フィルム、偏光板、画像表示装置、並びに、ホメオトロピック配向液晶フィルムの製造方法に関する。 The present invention relates to a liquid crystal composition, a homeotropic alignment liquid crystal film, a polarizing plate, an image display device, and a method for producing a homeotropic alignment liquid crystal film.
 液晶ディスプレイや有機ELディスプレイ等の画像表示装置においては、複屈折性(光学的異方性)等の光学特性を有する液晶フィルムの応用が検討されている。このような液晶フィルムとしては、例えば、液晶がそのフィルム平面に対して垂直に配向した、いわゆるホメオトロピック配向の液晶フィルムが、その特異な光学特性から着目されており、かかる液晶フィルムを視野角補償用のフィルムや反射防止用のフィルム等の用途に応用すること等が提案されている。そして、近年では、このような液晶フィルムを効率よく製造するために、種々の液晶組成物の研究が進められている。 In image display devices such as liquid crystal displays and organic EL displays, application of liquid crystal films having optical properties such as birefringence (optical anisotropy) is being studied. As such a liquid crystal film, for example, a so-called homeotropic alignment liquid crystal film in which the liquid crystal is aligned perpendicularly to the plane of the film has attracted attention because of its unique optical characteristics. It has been proposed to be applied to applications such as a film for anti-reflection and an anti-reflection film. In recent years, various liquid crystal compositions have been studied in order to efficiently produce such a liquid crystal film.
 例えば、特開2008-545856号公報(特許文献1)には、1種類以上のメソゲン性または液晶化合物と、セルロース誘導体またはセルロースエステル等の極性添加剤とを含む液晶組成物が開示されている。しかしながら、このような特許文献1に記載のような液晶組成物においては、極性添加剤の種類によっては化学的な安定性が必ずしも十分なものではなく、液晶フィルムの製造時の作業性(量産効率等)の点で必ずしも十分なものではなかった。また、特開2008-543443号公報(特許文献2)には、ホメオトロピック配向の液晶フィルムを製造するための材料として、界面活性剤を含む液晶混合物溶液からなる液晶組成物が開示されている。しかしながら、このような特許文献2に記載のような液晶組成物においては、これを用いて基材上に液晶フィルムを形成した場合に、基材と液晶フィルムとの密着性を必ずしも十分なものとすることはできなかった。 For example, Japanese Patent Application Laid-Open No. 2008-545856 (Patent Document 1) discloses a liquid crystal composition containing one or more mesogenic or liquid crystal compounds and a polar additive such as a cellulose derivative or a cellulose ester. However, in such a liquid crystal composition as described in Patent Document 1, chemical stability is not always sufficient depending on the kind of polar additive, and workability (mass production efficiency) at the time of manufacturing a liquid crystal film Etc.) is not necessarily sufficient. Japanese Patent Laid-Open No. 2008-543443 (Patent Document 2) discloses a liquid crystal composition comprising a liquid crystal mixture solution containing a surfactant as a material for producing a homeotropic alignment liquid crystal film. However, in such a liquid crystal composition as described in Patent Document 2, when a liquid crystal film is formed on a substrate using this, the adhesion between the substrate and the liquid crystal film is not necessarily sufficient. I couldn't.
特開2008-545856号公報JP 2008-545856 A 特開2008-543443号公報JP 2008-543443 A
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、液晶フィルムの製造時の作業性を十分に向上でき、ホメオトロピック配向液晶フィルムを効率よく製造することが可能であり、しかもホメオトロピック配向液晶フィルムを基材上に製造した際に基材とホメオトロピック配向液晶フィルムとの密着性を十分に高度なものとすることが可能な液晶組成物、これを用いて得られたホメオトロピック配向液晶フィルム、偏光板及び画像表示装置、並びに、その液晶組成物を用いたホメオトロピック配向液晶フィルムの製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, can sufficiently improve the workability during the production of a liquid crystal film, can efficiently produce a homeotropic alignment liquid crystal film, and A liquid crystal composition capable of making the adhesion between the substrate and the homeotropic alignment liquid crystal film sufficiently high when a homeotropic alignment liquid crystal film is produced on the substrate, and a homeo It aims at providing the manufacturing method of a homeotropic alignment liquid crystal film using the tropic alignment liquid crystal film, a polarizing plate, an image display apparatus, and the liquid crystal composition.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、液晶組成物を、重合性液晶化合物、ホスフィン化合物、重合開始剤、及び、これらを溶解可能な溶媒を含むものとすることにより、これを液晶フィルムの製造に用いた場合に、液晶フィルムの製造時の作業性を十分に向上でき、ホメオトロピック配向液晶フィルムを効率よく製造することが可能となるとともに、ホメオトロピック配向液晶フィルムを基材上に製造した際に基材とホメオトロピック配向液晶フィルムとの密着性を十分に高度なものとすることが可能となることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the inventors of the present invention include a liquid crystal composition containing a polymerizable liquid crystal compound, a phosphine compound, a polymerization initiator, and a solvent capable of dissolving them, When this is used for the production of a liquid crystal film, the workability during the production of the liquid crystal film can be sufficiently improved, the homeotropic alignment liquid crystal film can be efficiently produced, and the homeotropic alignment liquid crystal film is used as the base. It has been found that the adhesion between the substrate and the homeotropic alignment liquid crystal film can be made sufficiently high when manufactured on a material, and the present invention has been completed.
 すなわち、本発明の液晶組成物は、(A)重合性液晶化合物、(B)ホスフィン化合物、(C)重合開始剤、及び、(D)前記(A)~(C)成分を溶解可能な溶媒を含むものである。 That is, the liquid crystal composition of the present invention comprises (A) a polymerizable liquid crystal compound, (B) a phosphine compound, (C) a polymerization initiator, and (D) a solvent capable of dissolving the components (A) to (C). Is included.
 上記本発明の液晶組成物においては、前記ホスフィン化合物が、下記一般式(1): In the liquid crystal composition of the present invention, the phosphine compound has the following general formula (1):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式中、R~Rはそれぞれ独立に水素原子、置換基を有していてもよい炭素数1~30のアルキル基及び置換基を有していてもよい炭素数6~18のアリール基からなる群から選択されるいずれか1種を示す。]
で表わされる化合物群の中から選択される少なくとも1種であることが好ましい。また、このような本発明にかかるホスフィン化合物としては、前記一般式(1)で表わされ且つ該式中のR~Rがそれぞれ独立に置換基を有していてもよい炭素数1~30のアルキル基及び置換基を有していてもよい炭素数6~12のアリール基からなる群から選択されるいずれか1種である第三級ホスフィンの中から選択される少なくとも1種であることがより好ましく、トリメチルホスフィン、トリエチルホスフィン、トリ-n-ブチルホスフィン、トリ-tert-ブチルホスフィン、トリ-n-オクチルホスフィン、トリシクロヘキシルホスフィン、トリスヒドロキシメチルホスフィン、トリスヒドロキシエチルホスフィン、トリフェニルホスフィン、トリスメトキシフェニルホスフィン、及び、トリスエトキシフェニルホスフィンからなる群から選択される少なくとも1種であることが更に好ましく、トリメチルホスフィン、トリエチルホスフィン、トリスヒドロキシメチルホスフィン、トリスヒドロキシエチルホスフィン、トリフェニルホスフィン、トリ-n-ブチルホスフィン、トリ-tert-ブチルホスフィン、トリ-n-オクチルホスフィン、及びトリシクロヘキシルホスフィンからなる群から選択される少なくとも1種であることが特に好ましく、トリスヒドロキシメチルホスフィン及びトリフェニルホスフィンのうちの少なくとも1種であることが最も好ましい。
[Wherein R 1 to R 3 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, and an optionally substituted aryl group having 6 to 18 carbon atoms. Any one selected from the group consisting of groups is shown. ]
It is preferable that it is at least 1 sort (s) selected from the compound group represented by these. In addition, such a phosphine compound according to the present invention is represented by the general formula (1), and R 1 to R 3 in the formula may each independently have a substituent. At least one selected from tertiary phosphine, which is any one selected from the group consisting of an alkyl group of ˜30 and an aryl group of 6 to 12 carbon atoms which may have a substituent. More preferably, trimethylphosphine, triethylphosphine, tri-n-butylphosphine, tri-tert-butylphosphine, tri-n-octylphosphine, tricyclohexylphosphine, trishydroxymethylphosphine, trishydroxyethylphosphine, triphenylphosphine , Trismethoxyphenylphosphine and trisethoxyphenylphosphine More preferably, it is at least one selected from the group consisting of tin, trimethylphosphine, triethylphosphine, trishydroxymethylphosphine, trishydroxyethylphosphine, triphenylphosphine, tri-n-butylphosphine, tri-tert- Particularly preferred is at least one selected from the group consisting of butylphosphine, tri-n-octylphosphine, and tricyclohexylphosphine, and most preferred is at least one of trishydroxymethylphosphine and triphenylphosphine. preferable.
 また、上記本発明の液晶組成物においては、前記重合性液晶化合物が(メタ)アクリレート系液晶化合物であることが好ましい。 In the liquid crystal composition of the present invention, the polymerizable liquid crystal compound is preferably a (meth) acrylate liquid crystal compound.
 さらに、上記本発明の液晶組成物においては、前記ホスフィン化合物の含有量が前記重合性液晶化合物100質量部に対して0.5~10質量部であることが好ましい。 Furthermore, in the liquid crystal composition of the present invention, the content of the phosphine compound is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound.
 また、上記本発明の液晶組成物においては、前記重合開始剤の含有量が前記重合性液晶化合物100質量部に対して1~10質量部であることが好ましい。 In the liquid crystal composition of the present invention, the content of the polymerization initiator is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound.
 また、本発明のホメオトロピック配向液晶フィルムは、配向状態がホメオトロピック配向の状態で固定化されたホメオトロピック配向液晶フィルムであって、上記本発明の液晶組成物を用いて得られるものである。 The homeotropic alignment liquid crystal film of the present invention is a homeotropic alignment liquid crystal film that is fixed in a homeotropic alignment state, and is obtained using the liquid crystal composition of the present invention.
 また、本発明の偏光板は、上記本発明のホメオトロピック配向液晶フィルムを備えるものである。 The polarizing plate of the present invention is provided with the homeotropic alignment liquid crystal film of the present invention.
 さらに、本発明の画像表示装置は、上記本発明の偏光板を備えるものである。 Furthermore, an image display device of the present invention includes the polarizing plate of the present invention.
 また、本発明のホメオトロピック配向液晶フィルムの製造方法は、基材上に上記本発明の液晶組成物を塗布して塗膜を形成する工程と、該塗膜から溶媒を除去して前記重合性液晶化合物をホメオトロピック配向させた後に、該重合性液晶化合物を重合することにより配向状態を固定化し、配向状態がホメオトロピック配向の状態で固定化されたホメオトロピック配向液晶フィルムを得る工程とを含む方法である。 The method for producing a homeotropic alignment liquid crystal film of the present invention includes a step of applying the liquid crystal composition of the present invention on a substrate to form a coating film, and removing the solvent from the coating film to form the polymerizable film. And homeotropic alignment of the liquid crystal compound, followed by polymerizing the polymerizable liquid crystal compound to fix the alignment state, and obtaining a homeotropic alignment liquid crystal film in which the alignment state is fixed in the homeotropic alignment state. Is the method.
 上記本発明のホメオトロピック配向液晶フィルムの製造方法においては、前記基材が環状オレフィンポリマーからなるフィルムであることが好ましい。 In the method for producing a homeotropic alignment liquid crystal film of the present invention, the substrate is preferably a film made of a cyclic olefin polymer.
 また、上記本発明のホメオトロピック配向液晶フィルムの製造方法においては、前記塗膜から溶媒を除去する際の温度条件が15~110℃であることが好ましい。 In the method for producing a homeotropic alignment liquid crystal film of the present invention, the temperature condition for removing the solvent from the coating film is preferably 15 to 110 ° C.
 本発明によれば、液晶フィルムの製造時の作業性を十分に向上でき、ホメオトロピック配向液晶フィルムを効率よく製造することが可能であり、しかもホメオトロピック配向液晶フィルムを基材上に製造した際に基材とホメオトロピック配向液晶フィルムとの密着性を十分に高度なものとすることが可能な液晶組成物、これを用いて得られたホメオトロピック配向液晶フィルム、偏光板及び画像表示装置、並びに、その液晶組成物を用いたホメオトロピック配向液晶フィルムの製造方法を提供することが可能となる。 According to the present invention, the workability during the production of the liquid crystal film can be sufficiently improved, the homeotropic alignment liquid crystal film can be efficiently produced, and the homeotropic alignment liquid crystal film is produced on the substrate. A liquid crystal composition capable of making the adhesion between the substrate and the homeotropic alignment liquid crystal film sufficiently high, a homeotropic alignment liquid crystal film obtained using the same, a polarizing plate and an image display device, and It is possible to provide a method for producing a homeotropic alignment liquid crystal film using the liquid crystal composition.
 以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail on the basis of preferred embodiments thereof.
 [液晶組成物]
 本発明の液晶組成物について説明する。本発明の液晶組成物は、(A)重合性液晶化合物、(B)ホスフィン化合物、(C)重合開始剤、及び、(D)前記(A)~(C)成分を溶解可能な溶媒を含むものである。以下、先ず、前記(A)~(D)成分を分けて説明する。
[Liquid crystal composition]
The liquid crystal composition of the present invention will be described. The liquid crystal composition of the present invention comprises (A) a polymerizable liquid crystal compound, (B) a phosphine compound, (C) a polymerization initiator, and (D) a solvent capable of dissolving the components (A) to (C). It is a waste. Hereinafter, the components (A) to (D) will be described separately.
 〈重合性液晶化合物:(A)成分〉
 このような重合性液晶化合物としては、重合により配向状態を固定化し得る液晶性の化合物であればよく、特に制限されず、公知の重合性の液晶化合物を適宜利用できる。また、このような重合性液晶化合物としては、基材上においてホメオトロピック配向させて、その配向状態を固定化し得る重合性液晶化合物を用いることが好ましい。更に、このような重合性液晶化合物としては、例えば、低分子の重合性液晶化合物(重合性基を有する液晶性モノマー)、高分子の重合性液晶化合物(重合性基を有する液晶性ポリマー)、及び、これらの混合物等を適宜利用することができる。
<Polymerizable liquid crystal compound: component (A)>
Such a polymerizable liquid crystal compound is not particularly limited as long as it is a liquid crystal compound capable of fixing the alignment state by polymerization, and a known polymerizable liquid crystal compound can be appropriately used. In addition, as such a polymerizable liquid crystal compound, it is preferable to use a polymerizable liquid crystal compound that can be homeotropically aligned on a substrate to fix the alignment state. Furthermore, as such a polymerizable liquid crystal compound, for example, a low molecular weight polymerizable liquid crystal compound (a liquid crystalline monomer having a polymerizable group), a high molecular weight polymerizable liquid crystal compound (a liquid crystalline polymer having a polymerizable group), A mixture of these can be used as appropriate.
 また、このような重合性液晶化合物としては、配向状態をより効率よく固定化できるといった観点から、光及び/又は熱により反応する重合性基を備える液晶化合物が好ましい。このような光や熱により反応する重合性基を備える液晶化合物としては、光及び/又は熱によって、その周りに存在する成分(液晶化合物等)と重合して、配向を固定化できるものであればよく、その種類は特に限定されず、公知の重合性基を備える液晶化合物を適宜利用できる。また、このような重合性基としては、ビニル基、(メタ)アクリロイル基、ビニルオキシ基、オキシラニル基、オキセタニル基、アジリジニル基等が好ましい。なお、このような重合性基としては、反応条件等によっては、例えば、イソシアナート基、水酸基、アミノ基、酸無水物基、カルボキシル基等の他の重合性基を使用してもよい。 Moreover, as such a polymerizable liquid crystal compound, a liquid crystal compound having a polymerizable group that reacts with light and / or heat is preferable from the viewpoint that the alignment state can be more efficiently fixed. Such a liquid crystal compound having a polymerizable group that reacts with light or heat can be polymerized with components (liquid crystal compound, etc.) present around it by light and / or heat to fix the alignment. The kind is not specifically limited, A liquid crystal compound provided with a well-known polymeric group can be utilized suitably. Such a polymerizable group is preferably a vinyl group, a (meth) acryloyl group, a vinyloxy group, an oxiranyl group, an oxetanyl group, an aziridinyl group, or the like. As such a polymerizable group, other polymerizable groups such as an isocyanate group, a hydroxyl group, an amino group, an acid anhydride group, and a carboxyl group may be used depending on the reaction conditions.
 さらに、このような重合性液晶化合物としては、入手容易性、耐熱性、取扱い容易性の観点から、重合性基として(メタ)アクリロイル基を有する液晶化合物が好ましく、(メタ)アクリレート系液晶化合物((メタ)アクリレート基を有する液晶化合物)を用いることがより好ましい。なお、本発明においては、場合により「メタアクリロイル」と「アクリロイル」とを総称して「(メタ)アクリレート」と表記し、また、場合により「メタクリレート」と「アクリレート」とを総称して「(メタ)アクリレート」と表記し、更に、場合により「メタクリル」と「アクリル」とを総称して「(メタ)アクリル」と表記する。また、「(メタ)アクリレート基」とは、(メタ)アクリル酸のカルボン酸基から水素が脱離した残基((メタ)アクリロイルオキシ基)をいう。 Furthermore, as such a polymerizable liquid crystal compound, a liquid crystal compound having a (meth) acryloyl group as a polymerizable group is preferable from the viewpoint of availability, heat resistance, and handleability, and a (meth) acrylate liquid crystal compound ( It is more preferable to use (a liquid crystal compound having a (meth) acrylate group). In the present invention, “methacryloyl” and “acryloyl” are sometimes collectively referred to as “(meth) acrylate”, and “methacrylate” and “acrylate” are sometimes collectively referred to as “( “Meth) acrylate”, and in some cases, “methacryl” and “acryl” are collectively referred to as “(meth) acryl”. The “(meth) acrylate group” refers to a residue ((meth) acryloyloxy group) from which hydrogen is eliminated from the carboxylic acid group of (meth) acrylic acid.
 このような(メタ)アクリレート系液晶化合物としては、下記一般式(10)~(12): Such (meth) acrylate liquid crystal compounds include the following general formulas (10) to (12):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式中、Wは、それぞれ独立にH及びCHのうちのいずれかを示し、nは1~20(より好ましくは3~6)の整数を示し、Rは炭素数が1~20のアルキル基及び炭素数が1~20のアルコキシ基の中から選択されるいずれかの基を示し、Z及びZは、それぞれ独立に-COO-及び-OCO-のうちのいずれかの基であり、X及びXは、それぞれ独立にH及び炭素原子数が1~7のアルキル基のうちのいずれかを示す。]
で表わされる化合物が好ましい。
[Wherein, W independently represents any one of H and CH 3 , n represents an integer of 1 to 20 (more preferably 3 to 6), and Ra represents a carbon number of 1 to 20] Any one selected from an alkyl group and an alkoxy group having 1 to 20 carbon atoms, wherein Z 1 and Z 2 are each independently any one of —COO— and —OCO—; X 1 and X 2 each independently represent any of H and an alkyl group having 1 to 7 carbon atoms. ]
The compound represented by these is preferable.
 上記一般式(10)~(12)中、Wは、それぞれ独立に、H及びCHのうちのいずれかを示す。このようなWの種類に応じて、式中において、CH=CWCOOで表わされる基がアクリレート基又はメタクリレート基のいずれかの基となる。 In the general formulas (10) to (12), W independently represents any one of H and CH 3 . Depending on the type of W, a group represented by CH 2 = CWCOO in the formula is either an acrylate group or a methacrylate group.
 また、このような一般式(10)~(12)中、nは1~20(より好ましくは2~12、更に好ましくは3~6)の整数である。このようなnの値が前記下限未満では化合物が液晶性を発現する温度領域が小さくなる傾向にあり、他方、前記上限を超えると良好な垂直配向を実現するのに必要な、化合物の液晶由来の流動性が小さくなる結果、良好な垂直配向の実現が困難となる傾向にある。 In the general formulas (10) to (12), n is an integer of 1 to 20 (more preferably 2 to 12, more preferably 3 to 6). If the value of n is less than the lower limit, the temperature range in which the compound exhibits liquid crystallinity tends to be small. On the other hand, if the value exceeds the upper limit, the liquid crystal derived from the compound is necessary to achieve good vertical alignment. As a result of the decrease in fluidity, it is difficult to achieve good vertical alignment.
 前記一般式(10)中、Rは炭素原子数が1~20のアルキル基及び炭素数が1~20のアルコキシ基の中から選択されるいずれかの基である。このようなRとして選択され得る炭素数が1~20のアルキル基は、炭素数が1~12のものがより好ましく、3~6のものが更に好ましい。このような炭素数が前記上限を超えると良好な垂直配向を実現するのに必要な、化合物の液晶由来の流動性が小さくなる結果、良好な垂直配向の実現が困難となる傾向にある。また、前記炭素数が前記下限未満では化合物が液晶性を発現する温度領域が小さくなる傾向にある。なお、このようなアルキル基は、直鎖状のものであっても、分岐鎖状のものであっても、環状のものであってもよく特に制限されないが、良好な垂直配向の実現の観点からは、直鎖状のものであることがより好ましい。 In the general formula (10), R a is any group selected from an alkyl group having 1 to 20 carbon atoms and an alkoxy group having 1 to 20 carbon atoms. Such an alkyl group having 1 to 20 carbon atoms that can be selected as Ra is preferably one having 1 to 12 carbon atoms, and more preferably 3 to 6 carbon atoms. When the number of carbons exceeds the upper limit, the fluidity derived from the liquid crystal of the compound necessary for realizing good vertical alignment becomes small, and as a result, it becomes difficult to realize good vertical alignment. Moreover, when the carbon number is less than the lower limit, the temperature range in which the compound exhibits liquid crystallinity tends to be small. Such an alkyl group may be linear, branched, or cyclic, and is not particularly limited. Is more preferably linear.
 また、前記Rとして選択され得る炭素数が1~20のアルコキシ基は、炭素数が1~12のものがより好ましく、3~6のものが更に好ましい。このような炭素数が前記上限を超えると良好な垂直配向を実現するのに必要な、化合物の液晶由来の流動性が小さくなる結果、良好な垂直配向の実現が困難となる傾向にある。また、前記炭素数が前記下限未満では化合物が液晶性を発現する温度領域が小さくなる傾向にある。なお、アルコキシ基は、アルキル基が酸素原子に結合した構造を有するが、かかるアルキル基の部分の構造は直鎖状のものであっても、分岐鎖状のものであっても、環状のものであってもよく特に制限されないが、良好な垂直配向の実現の観点からは、直鎖状のものであることがより好ましい。 In addition, the alkoxy group having 1 to 20 carbon atoms that can be selected as Ra is preferably one having 1 to 12 carbon atoms, and more preferably 3 to 6 carbon atoms. When the number of carbons exceeds the upper limit, the fluidity derived from the liquid crystal of the compound necessary for realizing good vertical alignment becomes small, and as a result, it becomes difficult to realize good vertical alignment. Moreover, when the carbon number is less than the lower limit, the temperature range in which the compound exhibits liquid crystallinity tends to be small. The alkoxy group has a structure in which an alkyl group is bonded to an oxygen atom. The structure of the alkyl group portion may be linear, branched, or cyclic. Although it may be sufficient and it does not restrict | limit, From a viewpoint of implement | achieving favorable vertical alignment, it is more preferable that it is a linear thing.
 また、前記一般式(12)中、Z及びZは、それぞれ独立に、-COO-及び-OCO-のうちのいずれかの基である。このようなZ及びZとしては、化合物の調製の容易さ等の観点から、Z及びZのうちの一方の基が-COO-で表わされる基であり、もう一方の基が-OCO-で表わされる基であることが好ましい。 In the general formula (12), Z 1 and Z 2 are each independently any group of —COO— and —OCO—. Such Z 1 and Z 2 are groups in which one of Z 1 and Z 2 is represented by —COO—, and the other group is — A group represented by OCO- is preferred.
 また、前記一般式(12)中、X及びXは、それぞれ独立に、H及び炭素数が1~7のアルキル基のうちのいずれかを示す。このようなX及びXとして選択され得る炭素数が1~7のアルキル基としては、炭素数が1~3であることがより好ましく、1であること(前記アルキル基がCHであること)がより好ましい。このような炭素原子数が前記上限を超えると良好な垂直配向を実現するのが困難となる傾向にある。このように、前記X及びXは、それぞれ独立に、H及びCHのうちのいずれかであることが特に好ましい。 In the general formula (12), X 1 and X 2 each independently represent any of H and an alkyl group having 1 to 7 carbon atoms. The alkyl group having 1 to 7 carbon atoms which can be selected as X 1 and X 2 is more preferably 1 to 3 carbon atoms (the alkyl group is CH 3 ). Is more preferable. If the number of carbon atoms exceeds the above upper limit, it tends to be difficult to achieve good vertical alignment. Thus, it is particularly preferable that X 1 and X 2 are each independently one of H and CH 3 .
 また、このような一般式(10)~(12)で表わされる(メタ)アクリレート系液晶化合物としては、例えば、下記一般式(110)~(113): Further, as the (meth) acrylate liquid crystal compounds represented by the general formulas (10) to (12), for example, the following general formulas (110) to (113):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
に記載のような化合物が挙げられる。なお、このような(メタ)アクリレート系液晶化合物は1種を単独で用いてもよく或いは2種以上を組み合わせて用いてもよい。 And the compounds as described above. Such (meth) acrylate liquid crystal compounds may be used singly or in combination of two or more.
 また、前記重合性液晶化合物としては、上記一般式(10)~(12)で表わされる化合物を組み合わせて利用することが好ましく、上記一般式(110)~(113)で表わされる化合物を組み合わせて利用することがより好ましい。 Further, as the polymerizable liquid crystal compound, it is preferable to use a combination of the compounds represented by the general formulas (10) to (12), and a combination of the compounds represented by the general formulas (110) to (113). It is more preferable to use it.
 このように、上記一般式(10)~(12)で表わされる化合物を組み合わせて前記重合性液晶化合物として利用する場合においては、上記一般式(10)で表わされる化合物の含有量は、上記一般式(10)~(12)で表わされる化合物の総量に対して20~60質量%であることが好ましく、30~45質量%であることがより好ましい。このような一般式(10)で表わされる化合物の含有量が前記下限未満では垂直配向性に関して、配向欠陥が生じる傾向にあり、他方、前記上限を超えると垂直配向性に関して、配向欠陥が生じる傾向にある。 As described above, when the compounds represented by the general formulas (10) to (12) are used in combination as the polymerizable liquid crystal compound, the content of the compound represented by the general formula (10) The amount is preferably 20 to 60% by mass, more preferably 30 to 45% by mass, based on the total amount of the compounds represented by formulas (10) to (12). When the content of the compound represented by the general formula (10) is less than the lower limit, an alignment defect tends to occur with respect to the vertical alignment, and when the content exceeds the upper limit, an alignment defect tends to occur with respect to the vertical alignment. It is in.
 また、上記一般式(10)~(12)で表わされる化合物を組み合わせて利用する場合において、上記一般式(11)で表わされる化合物の含有量は、上記一般式(10)~(12)で表わされる化合物の総量に対して10~50質量%であることが好ましく、20~30質量%であることがより好ましい。このような一般式(11)で表わされる化合物の含有量が前記下限未満では垂直配向性に関して、配向欠陥が生じる傾向にあり、他方、前記上限を超えると垂直配向性に関して、配向欠陥が生じる傾向にある。 In the case where the compounds represented by the general formulas (10) to (12) are used in combination, the content of the compound represented by the general formula (11) is represented by the general formulas (10) to (12). The amount is preferably 10 to 50% by mass, more preferably 20 to 30% by mass, based on the total amount of the compounds represented. When the content of the compound represented by the general formula (11) is less than the lower limit, an orientation defect tends to occur with respect to the vertical alignment. On the other hand, when the content exceeds the upper limit, an orientation defect tends to occur with respect to the vertical orientation. It is in.
 さらに、上記一般式(10)~(12)で表わされる化合物を組み合わせて利用する場合において、上記一般式(12)で表わされる化合物の含有量は、上記一般式(10)~(12)で表わされる化合物の総量に対して10~70質量%であることが好ましく、25~45質量%であることがより好ましい。このような一般式(12)で表わされる化合物の含有量が前記下限未満では垂直配向性に関して、配向欠陥が生じる傾向にあり、他方、前記上限を超えると垂直配向性に関して、配向欠陥が生じる傾向にある。 Further, when the compounds represented by the general formulas (10) to (12) are used in combination, the content of the compound represented by the general formula (12) is represented by the general formulas (10) to (12). The amount is preferably 10 to 70% by mass, more preferably 25 to 45% by mass, based on the total amount of the compounds represented. When the content of the compound represented by the general formula (12) is less than the lower limit, an alignment defect tends to occur with respect to the vertical alignment, and when it exceeds the upper limit, an alignment defect tends to occur with respect to the vertical alignment. It is in.
 さらに、上記一般式(110)~(113)で表わされる化合物を組み合わせて前記重合性液晶化合物として利用する場合においては、良好な垂直配向の実現の観点から、各化合物の質量比が([上記一般式(110)で表わされる化合物]:[上記一般式(111)で表わされる化合物]:[上記一般式(112)で表わされる化合物]:[上記一般式(113)で表わされる化合物])が45:40:15:0~35:5:30:30であることが好ましく、35:23:23:19~38:25:25:12であることがより好ましい。 Furthermore, when the compounds represented by the general formulas (110) to (113) are used in combination as the polymerizable liquid crystal compound, the mass ratio of each compound is ([ Compound Represented by General Formula (110)]: [Compound Represented by General Formula (111)]: [Compound Represented by General Formula (112)]: [Compound Represented by General Formula (113)]) Is preferably 45: 40: 15: 0 to 35: 5: 30: 30, and more preferably 35: 23: 23: 19 to 38: 25: 25: 12.
 また、このような重合性液晶化合物を製造するための方法は特に制限されず、公知の方法を適宜利用することができ、例えば、上記一般式(110)で表わされる化合物を製造する場合には、例えば、英国特許出願公開第2,280,445号明細書(GB2,280,445)に記載された方法を採用してもよく、上記一般式(111)で表わされる化合物を製造する場合には、例えば、D.J.Broerらの「Makromol. Chem.(vol.190,1989年発行)」の第3201頁~第3215頁に記載された方法を採用してもよく、上記一般式(112)~(113)で表わされる化合物を製造する場合には、例えば、国際公開93/22397号に記載された方法を採用してもよい。このように、重合性液晶化合物は、その利用する化合物の種類に応じて公知の方法を適宜利用して製造することができる。また、このような重合性液晶化合物としては市販品を利用してもよい。さらに、このような重合性液晶化合物は1種を単独で用いてもよく或いは2種以上を組み合わせて用いてもよい。 Further, the method for producing such a polymerizable liquid crystal compound is not particularly limited, and a known method can be appropriately used. For example, in the case of producing a compound represented by the general formula (110), For example, the method described in British Patent Application Publication No. 2,280,445 (GB2,280,445) may be adopted, and when the compound represented by the above general formula (111) is produced, For example, D.D. J. et al. The method described on pages 3201 to 3215 of “Makromol. Chem. (Vol. 190, published in 1989)” by Broer et al. May be employed and is represented by the above general formulas (112) to (113). For example, a method described in International Publication No. 93/22397 may be employed. Thus, the polymerizable liquid crystal compound can be produced by appropriately using a known method according to the type of the compound to be used. Moreover, you may utilize a commercial item as such a polymeric liquid crystal compound. Further, such polymerizable liquid crystal compounds may be used alone or in combination of two or more.
 また、このような重合性液晶化合物は、重合性基を備える液晶化合物と、液晶性を示さない他の重合性モノマーとの混合物を利用してもよい。このような他の重合性モノマーとしては、重合性基を有する液晶化合物との相溶性を有しており且つ該液晶性化合物を配向させる際に配向阻害を著しく引き起こすようなものではない限り、特に限定されず、公知の重合性モノマーを適宜利用でき、目的とする液晶組成物の設計に応じて公知の重合性モノマーの中から好適なモノマーを選択して利用すればよい。このような他の重合性モノマーとしては、例えば、エチレン性不飽和基(例えばビニル基、ビニルオキシ基、(メタ)アクリロイル基)等の重合性官能基を有する化合物等が挙げられる。なお、このような他の重合性モノマーの添加量は、前記重合性基を有する液晶化合物と前記液晶性を示さない他の重合性モノマーの総量に対して0.5~50質量%とすることが好ましく、1~30質量%とすることが好ましい。また、このような重合性モノマーの重合性官能基の数は、重合速度を十分に早いものとする観点及び得られる液晶フィルムに十分な耐熱性を付与する観点から、2以上であることが好ましい。さらに、このような重合性モノマーを製造するための方法も特に制限されず、公知の方法を適宜利用できる。また、このような重合性モノマーとしては市販品を利用してもよい。 Such a polymerizable liquid crystal compound may use a mixture of a liquid crystal compound having a polymerizable group and another polymerizable monomer that does not exhibit liquid crystallinity. As such other polymerizable monomers, in particular, they have compatibility with a liquid crystal compound having a polymerizable group and are not particularly likely to cause alignment inhibition when orienting the liquid crystal compound. It is not limited, A well-known polymerizable monomer can be utilized suitably, What is necessary is just to select and use a suitable monomer from well-known polymerizable monomers according to the design of the target liquid crystal composition. Examples of such other polymerizable monomers include compounds having a polymerizable functional group such as an ethylenically unsaturated group (for example, vinyl group, vinyloxy group, (meth) acryloyl group). The addition amount of such other polymerizable monomer is 0.5 to 50% by mass based on the total amount of the liquid crystal compound having a polymerizable group and the other polymerizable monomer not exhibiting liquid crystallinity. The content is preferably 1 to 30% by mass. Further, the number of polymerizable functional groups of such a polymerizable monomer is preferably 2 or more from the viewpoint of sufficiently increasing the polymerization rate and imparting sufficient heat resistance to the obtained liquid crystal film. . Furthermore, the method for producing such a polymerizable monomer is not particularly limited, and a known method can be appropriately used. Moreover, you may utilize a commercial item as such a polymerizable monomer.
 〈ホスフィン化合物:(B)成分〉
 本発明にかかるホスフィン化合物は、ホスフィン(PH)、及び、ホスフィン中の少なくとも1つの水素原子を、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基で置換した化合物(第一級~第三級のホスフィン)からなる群から選択される少なくとも1種の化合物である。このようなホスフィン化合物を液晶組成物に含有させることにより、その理由は必ずしも定かではないが、基材等の種類によらず(配向膜が形成されていないような基材であってもよい。)、前記液晶組成物を基材に塗布後、溶媒を除去した場合に、重合性液晶化合物の配向状態をホメオトロピック配向状態に配向させることが可能となる。このように、前記ホスフィン化合物を前記液晶組成物において前記重合性液晶化合物と共に用いることで、その液晶組成物から溶媒を除去するといった簡易な工程を実施することにより、前記重合性液晶化合物を効率よくホメオトロピック配向させることが可能である。なお、ホスフィン化合物を液晶組成物に含有させた場合には、その組成物中の重合性液晶化合物や溶媒等の種類に応じて、前記ホメオトロピック配向を十分に短時間で形成させることも可能となる。また、このようなホスフィン化合物は、反応の制御が困難な不安定な化合物ではなく、化学的に十分に安定な化合物であるため、その成分を含有する液晶組成物を利用して液晶フィルム等を製造する場合、その作業効率を十分に高いものとすることができる。そのため、このようなホスフィン化合物を用いる本発明の液晶組成物においては、反応を制御するために特別な制御設備を設ける必要等はなく、溶媒を除去するといった簡易な工程により、十分に短時間で配向を形成することができ、結果として、ホメオトロピック配向液晶フィルムをより効率よく製造することが可能である。また、このようなホスフィン化合物は、いわゆる界面活性剤に比べて、基材と液晶フィルムとの間の密着性の低下を十分に抑制することが可能なものであるため、本発明の液晶組成物を用いてホメオトロピック配向液晶フィルムを基材上に製造した場合には、基材とホメオトロピック配向液晶フィルムとの密着性を十分に高度なものとすることも可能である。
<Phosphine compound: component (B)>
In the phosphine compound according to the present invention, phosphine (PH 3 ) and at least one hydrogen atom in the phosphine are an alkyl group which may have a substituent or an aryl group which may have a substituent. At least one compound selected from the group consisting of substituted compounds (primary to tertiary phosphines). By including such a phosphine compound in the liquid crystal composition, the reason for this is not necessarily clear, but it may be a base material such as a base material on which an alignment film is not formed, regardless of the type of base material. ), When the solvent is removed after the liquid crystal composition is applied to the substrate, the alignment state of the polymerizable liquid crystal compound can be aligned in the homeotropic alignment state. Thus, by using the phosphine compound together with the polymerizable liquid crystal compound in the liquid crystal composition, the polymerizable liquid crystal compound is efficiently obtained by performing a simple process of removing the solvent from the liquid crystal composition. Homeotropic alignment is possible. When the phosphine compound is contained in the liquid crystal composition, the homeotropic alignment can be formed in a sufficiently short time depending on the type of the polymerizable liquid crystal compound or the solvent in the composition. Become. In addition, since such a phosphine compound is not an unstable compound whose reaction is difficult to control, but a chemically sufficiently stable compound, a liquid crystal film or the like can be obtained using a liquid crystal composition containing the component. When manufacturing, the working efficiency can be made sufficiently high. Therefore, in the liquid crystal composition of the present invention using such a phosphine compound, there is no need to provide a special control facility for controlling the reaction, and a simple process such as removing the solvent can be performed in a sufficiently short time. An alignment can be formed, and as a result, a homeotropic alignment liquid crystal film can be produced more efficiently. Further, such a phosphine compound can sufficiently suppress a decrease in adhesion between the base material and the liquid crystal film as compared with a so-called surfactant, and thus the liquid crystal composition of the present invention. When the homeotropic alignment liquid crystal film is produced on the base material using the adhesive, the adhesion between the base material and the homeotropic alignment liquid crystal film can be made sufficiently high.
 このようなホスフィン化合物としては、下記一般式(1): Such phosphine compounds include the following general formula (1):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[式中、R~Rはそれぞれ独立に水素原子、置換基を有していてもよい炭素数1~30のアルキル基及び置換基を有していてもよい炭素数6~18のアリール基からなる群から選択されるいずれか1種を示す。]
で表わされる化合物群の中から選択される少なくとも1種が好ましい。
[Wherein R 1 to R 3 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, and an optionally substituted aryl group having 6 to 18 carbon atoms. Any one selected from the group consisting of groups is shown. ]
At least one selected from the group of compounds represented by
 このような一般式(1)中のR~Rとして選択され得る、置換基を有していてもよいアルキル基は、上述のように、炭素数が1~30のものである。このような置換基を有していてもよいアルキル基の炭素数としては1~20であることがより好ましく、1~10であることが更に好ましく、1~5であることが特に好ましい。このようなアルキル基の炭素数が前記上限を超えると、液晶性化合物との相溶性が低下して、垂直配向性を阻害する傾向にある。また、このようなアルキル基としては、直鎖状であっても分岐枝状のものであってもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等であってもよい。 The alkyl group which may have a substituent and can be selected as R 1 to R 3 in the general formula (1) has 1 to 30 carbon atoms as described above. The number of carbon atoms of the alkyl group which may have such a substituent is more preferably 1 to 20, further preferably 1 to 10, and particularly preferably 1 to 5. When the carbon number of such an alkyl group exceeds the upper limit, the compatibility with the liquid crystal compound is lowered and the vertical alignment tends to be inhibited. Such an alkyl group may be linear or branched, and includes, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, It may be a t-butyl group or the like.
 また、前記R~Rとして選択され得る前記アルキル基は、上述のように、置換基を有していてもよい。このような置換基としては、特に制限されず、例えば、ハロゲン原子、ヒドロキシル基、カルボキシル基及びその塩、アルコキシ基、スルホ基及びその塩等が挙げられ、中でも、化学的安定性の観点から、ヒドロキシル基、アルコキシ基が好ましく、ヒドロキシル基がより好ましい。 Further, the alkyl group that can be selected as the R 1 to R 3 may have a substituent as described above. Such a substituent is not particularly limited and includes, for example, a halogen atom, a hydroxyl group, a carboxyl group and a salt thereof, an alkoxy group, a sulfo group and a salt thereof, among others, from the viewpoint of chemical stability, A hydroxyl group and an alkoxy group are preferred, and a hydroxyl group is more preferred.
 このような置換基を有していてもよい炭素数1~30のアルキル基としては、化学的安定性の観点から、メチル基、エチル基、プロピル基、n-ブチル基、イソブチル基、t-ブチル基、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、メトキシメチル基、エトキシメチル基、メトキシエチル基が好ましく、メチル基、エチル基、プロピル基、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基がより好ましく、ヒドロキシメチル基、ヒドロキシエチル基が特に好ましい。 As the alkyl group having 1 to 30 carbon atoms which may have such a substituent, from the viewpoint of chemical stability, a methyl group, an ethyl group, a propyl group, an n-butyl group, an isobutyl group, t- A butyl group, a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a methoxymethyl group, an ethoxymethyl group, and a methoxyethyl group are preferable, and a methyl group, an ethyl group, a propyl group, a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group are preferable. More preferred are a hydroxymethyl group and a hydroxyethyl group.
 また、一般式(1)中のR~Rとして選択され得る置換基を有していてもよいアリール基は、上述のように、炭素数が6~18のものである。このような置換基を有していてもよいアリール基の炭素数としては6~12であることがより好ましく、6~9であることが更に好ましい。このようなアリール基の炭素数が前記上限を超えると、液晶化合物との相溶性が低下して、垂直配向性を阻害する傾向にある。 In addition, as described above, the aryl group which may have a substituent which can be selected as R 1 to R 3 in the general formula (1) has 6 to 18 carbon atoms. The aryl group which may have such a substituent preferably has 6 to 12 carbon atoms, more preferably 6 to 9 carbon atoms. When the number of carbon atoms in the aryl group exceeds the upper limit, the compatibility with the liquid crystal compound is lowered and the vertical alignment tends to be inhibited.
 また、前記R~Rとして選択され得る前記アリール基は、上述のように、置換基を有していてもよい。このような置換基としては、特に制限されず、例えば、ハロゲン原子、アルキル基、アルコキシ基、ハロゲン化アルキル基等が挙げられる。このような置換基としては、中でも、液晶化合物との相溶性の観点から、ハロゲン原子、炭素数1~4(より好ましくは1~2)のアルキル基、炭素数1~4(より好ましくは1~2)のアルコキシ基、炭素数1~4(より好ましくは1~2)のハロゲン化アルキル基がより好ましい。 In addition, the aryl group that can be selected as the R 1 to R 3 may have a substituent as described above. Such a substituent is not particularly limited, and examples thereof include a halogen atom, an alkyl group, an alkoxy group, and a halogenated alkyl group. Among these substituents, among these, from the viewpoint of compatibility with the liquid crystal compound, a halogen atom, an alkyl group having 1 to 4 carbon atoms (more preferably 1 to 2), and 1 to 4 carbon atoms (more preferably 1 carbon atom). To 2) an alkoxy group, and a halogenated alkyl group having 1 to 4 (more preferably 1 to 2) carbon atoms are more preferred.
 このような置換基を有していてもよい炭素数6~18のアリール基としては、例えば、フェニル基、トリル基、キシリル基、クメニル基、メトキシフェニル基、スルホフェニル基、ハロゲン化フェニル基、カルボキシフェニル基等が挙げられ、中でも、液晶化合物との相溶性の観点から、フェニル基、メトキシフェニル基が好ましく、フェニル基が特に好ましい。 Examples of the aryl group having 6 to 18 carbon atoms which may have such a substituent include, for example, phenyl group, tolyl group, xylyl group, cumenyl group, methoxyphenyl group, sulfophenyl group, halogenated phenyl group, A carboxyphenyl group etc. are mentioned, Among these, a phenyl group and a methoxyphenyl group are preferable from a compatible viewpoint with a liquid crystal compound, and a phenyl group is especially preferable.
 さらに、前記ホスフィン化合物は、基材と液晶フィルムとの密着性、垂直配向の促進等の観点から、第一級~第三級のホスフィンであることが好ましく、第二級~第三級のホスフィンであることがより好ましく、第三級ホスフィンであることが特に好ましい。また、前記ホスフィン化合物が前記一般式(1)で表わされる化合物である場合、R~Rのうちの少なくとも1つが水素原子以外の基(置換基を有していてもよい炭素数1~30のアルキル基及び置換基を有していてもよい炭素数6~18(より好ましくは6~12)のアリール基からなる群から選択されるいずれか1種)であること(前記ホスフィン化合物が第一級~第三級のホスフィンであること)が好ましく、R~Rのうちの少なくとも2つが水素原子以外の基であること(前記ホスフィン化合物が第二級~第三級のホスフィンであること)がより好ましく、R~Rがいずれも水素原子以外の基あること(前記ホスフィン化合物が第三級ホスフィンであること)が更に好ましい。 Further, the phosphine compound is preferably a primary to tertiary phosphine from the viewpoint of adhesion between the substrate and the liquid crystal film, promotion of vertical alignment, etc., and secondary to tertiary phosphine. Is more preferable, and tertiary phosphine is particularly preferable. Further, when the phosphine compound is a compound represented by the general formula (1), at least one of R 1 to R 3 is a group other than a hydrogen atom (having 1 to 1 carbon atoms which may have a substituent). 30 alkyl groups and any one selected from the group consisting of aryl groups having 6 to 18 carbon atoms (more preferably 6 to 12 carbon atoms) which may have a substituent (the phosphine compound is Primary to tertiary phosphine) is preferred, and at least two of R 1 to R 3 are groups other than hydrogen atoms (the phosphine compound is a secondary to tertiary phosphine). It is more preferable that R 1 to R 3 are all groups other than hydrogen atoms (the phosphine compound is a tertiary phosphine).
 また、本発明にかかるホスフィン化合物としては、基材と液晶フィルムとの密着性、垂直配向の促進及び重合性液晶化合物との相溶性の観点から、前記一般式(1)で表わされ且つ該式中のR~Rがそれぞれ独立に、前記置換基を有していてもよい炭素数1~30のアルキル基及び前記置換基を有していてもよい炭素数6~12のアリール基からなる群から選択されるいずれか1種である第三級ホスフィンの中から選択される少なくとも1種であることがより好ましい。 In addition, the phosphine compound according to the present invention is represented by the general formula (1) from the viewpoint of adhesion between the base material and the liquid crystal film, promotion of vertical alignment, and compatibility with the polymerizable liquid crystal compound, and In the formula, R 1 to R 3 each independently represents an alkyl group having 1 to 30 carbon atoms which may have the above substituent and an aryl group having 6 to 12 carbon atoms which may have the above substituent. More preferably, it is at least one selected from among tertiary phosphines that are any one selected from the group consisting of:
 また、このようなホスフィン化合物としては、入手容易性や重合性液晶化合物との相溶性の観点から、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン(より好ましくはトリ-n-ブチルホスフィン、トリ-tert-ブチルホスフィン)、トリ-n-オクチルホスフィン、トリシクロヘキシルホスフィン、トリスヒドロキシメチルホスフィン、トリスヒドロキシエチルホスフィン、トリフェニルホスフィン、トリスメトキシフェニルホスフィン、トリスエトキシフェニルホスフィンが好ましく、トリメチルホスフィン、トリエチルホスフィン、トリ-n-ブチルホスフィン、トリ-tert-ブチルホスフィン、トリ-n-オクチルホスフィン、トリシクロヘキシルホスフィン、トリスヒドロキシメチルホスフィン、トリスヒドロキシエチルホスフィン、トリフェニルホスフィン、トリスメトキシフェニルホスフィン、トリスエトキシフェニルホスフィンがより好ましく、トリメチルホスフィン、トリエチルホスフィン、トリスヒドロキシメチルホスフィン、トリスヒドロキシエチルホスフィン、トリフェニルホスフィン、トリ-n-ブチルホスフィン、トリ-tert-ブチルホスフィン、トリ-n-オクチルホスフィン、及びトリシクロヘキシルホスフィンが更に好ましく、トリスヒドロキシメチルホスフィン、トリフェニルホスフィンが特に好ましい。なお、このようなホスフィン化合物は1種を単独で用いてもよく、或いは、2種以上を組み合わせて用いてもよい。また、このようなホスフィン化合物を製造するための方法としては特に制限されず、公知の方法を適宜採用することができる。また、このようなホスフィン化合物は市販品を利用してもよい。 Such phosphine compounds include trimethylphosphine, triethylphosphine, tributylphosphine (more preferably tri-n-butylphosphine, tri-tert-butyl) from the viewpoint of easy availability and compatibility with polymerizable liquid crystal compounds. Phosphine), tri-n-octylphosphine, tricyclohexylphosphine, trishydroxymethylphosphine, trishydroxyethylphosphine, triphenylphosphine, trismethoxyphenylphosphine, trisethoxyphenylphosphine, trimethylphosphine, triethylphosphine, tri-n- Butylphosphine, tri-tert-butylphosphine, tri-n-octylphosphine, tricyclohexylphosphine, trishydroxymethylphosphine, Lishydroxyethylphosphine, triphenylphosphine, trismethoxyphenylphosphine, and trisethoxyphenylphosphine are more preferable. Trimethylphosphine, triethylphosphine, trishydroxymethylphosphine, trishydroxyethylphosphine, triphenylphosphine, tri-n-butylphosphine, tris -Tert-butylphosphine, tri-n-octylphosphine, and tricyclohexylphosphine are more preferable, and trishydroxymethylphosphine and triphenylphosphine are particularly preferable. In addition, such a phosphine compound may be used individually by 1 type, or may be used in combination of 2 or more type. Moreover, it does not restrict | limit especially as a method for manufacturing such a phosphine compound, A well-known method is employable suitably. Moreover, you may utilize a commercial item for such a phosphine compound.
 〈重合開始剤:(C)成分〉
 このような重合開始剤としては、特に制限されず、公知の重合開始剤を適宜利用することができる。このように、前記重合開始剤は、公知の重合開始剤の中から、組成物中の前記重合性液晶化合物の種類に応じて、より効率よく前記重合性液晶化合物の重合を開始させることが可能なものを適宜選択して利用すればよい。
<Polymerization initiator: (C) component>
Such a polymerization initiator is not particularly limited, and a known polymerization initiator can be appropriately used. As described above, the polymerization initiator can start the polymerization of the polymerizable liquid crystal compound more efficiently according to the type of the polymerizable liquid crystal compound in the composition from among known polymerization initiators. What is necessary is just to select suitably and use.
 また、このような重合開始剤は、熱重合開始剤(熱重合反応を利用する際の開始剤)であっても、光重合開始剤(光や電子線の照射を利用する際の開始剤)であってもよい。このような重合開始剤としては、液晶フィルムを製造する際の基材としてプラスチックフィルム等を用いる場合に、熱によりその基材等が変形したり、変質したりすることを防止するといった観点から、光重合開始剤を用いることがより好ましい。このような光重合開始剤としては、例えば、α-カルボニル化合物、アシロインエーテル、α-炭化水素置換芳香族アシロイン化合物、多核キノン化合物、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとを組み合わせたもの、アクリジン及びフェナジン化合物及びオキサジアゾール化合物等が挙げられる。なお、このようなα-カルボニル化合物としては、例えば、米国特許2367661号明細書や米国特許2367670号明細書に記載のα-カルボニル化合物等が挙げられ、前記アシロインエーテルとしては、例えば、米国特許2448828号明細書に記載のもの等が挙げられる。また、α-炭化水素置換芳香族アシロイン化合物としては、例えば、米国特許2722512号明細書に記載のもの等が挙げられ、前記多核キノン化合物としては、例えば、米国特許3046127号明細書や米国特許2951758号明細書に記載のもの等が挙げられる。また、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとを組み合わせたものとしては、例えば、米国特許3549367号明細書に記載されているもの等が挙げられ、前記アクリジン及びフェナジン化合物としては、例えば、特開昭60-105667号公報、米国特許4239850号明細書等に記載のもの等が挙げられ、更に、前記オキサジアゾール化合物としては、例えば、米国特許4212970号明細書に記載のもの等が挙げられる。 Moreover, even if such a polymerization initiator is a thermal polymerization initiator (an initiator when utilizing a thermal polymerization reaction), a photopolymerization initiator (an initiator when utilizing light or electron beam irradiation) It may be. As such a polymerization initiator, in the case of using a plastic film or the like as a base material when producing a liquid crystal film, from the viewpoint of preventing the base material and the like from being deformed or altered by heat, It is more preferable to use a photopolymerization initiator. Examples of such photopolymerization initiators include α-carbonyl compounds, acyloin ethers, α-hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, and triarylimidazole dimers and p-aminophenyl ketones. And acridine and phenazine compounds and oxadiazole compounds. Examples of such α-carbonyl compounds include α-carbonyl compounds described in US Pat. No. 2,367,661 and US Pat. No. 2,367,670. Examples of the acyloin ether include US Pat. The thing etc. which are described in 2448828 specification are mentioned. Examples of the α-hydrocarbon-substituted aromatic acyloin compound include those described in US Pat. No. 2,722,512. Examples of the polynuclear quinone compound include US Pat. No. 3,046,127 and US Pat. No. 2,951,758. And the like described in the specification. Examples of the combination of triarylimidazole dimer and p-aminophenyl ketone include those described in US Pat. No. 3,549,367. Examples of the acridine and phenazine compound include, for example, Examples described in JP-A-60-105667, US Pat. No. 4,239,850 and the like, and examples of the oxadiazole compound include those described in US Pat. No. 4,212,970. .
 また、このような光重合開始剤としては、市販品を利用してもよく、例えば、Ciba-Geigy社製の光重合開始剤(商品名「イルガキュア907」、商品名「イルガキュア651」、商品名「イルガキュア184」)や、Union Carbide社社製の光重合開始剤(商品名「UVI6974」)等を適宜使用してもよい。なお、このような光重合開始剤は、光又は電子線の照射により、自由ラジカルを生成するものや、イオンを生成するもの等があるが、組成物中の前記重合性液晶化合物の種類や重合反応の条件等に応じて、自由ラジカルを生成する光重合開始剤(例えば、Ciba-Geigy社製の商品名「イルガキュア651」等)や、イオンを生成する光重合開始剤(例えば、Union Carbide社社製の光重合開始剤(商品名「UVI6974」))の中から好適なものを適宜選択して利用すればよい。 Further, as such a photopolymerization initiator, a commercially available product may be used. For example, a photopolymerization initiator (trade name “Irgacure 907”, trade name “Irgacure 651”, trade name, manufactured by Ciba-Geigy) “Irgacure 184”), a photopolymerization initiator (trade name “UVI6974”) manufactured by Union Carbide, Inc. may be used as appropriate. Such photopolymerization initiators include those that generate free radicals and those that generate ions upon irradiation with light or an electron beam, and the type and polymerization of the polymerizable liquid crystal compound in the composition. A photopolymerization initiator that generates free radicals (for example, “Irgacure 651” manufactured by Ciba-Geigy) or a photopolymerization initiator that generates ions (for example, Union Carbide, Inc.) depending on the reaction conditions. A suitable photopolymerization initiator (trade name “UVI6974”) manufactured by the company may be appropriately selected and used.
 〈溶媒:(D)成分〉
 このような溶媒は、前記(A)~(C)成分を溶解可能なもの(溶解するためのもの)である。このような溶媒を組成物中に含有させることで、溶媒中に各成分が均一に溶解され、かかる組成物を利用して液晶フィルムを製造する際に、より均質な液晶配向フィルムが得られる。
<Solvent: Component (D)>
Such a solvent is capable of dissolving the components (A) to (C) (for dissolving). By including such a solvent in the composition, each component is uniformly dissolved in the solvent, and a more uniform liquid crystal alignment film is obtained when a liquid crystal film is produced using such a composition.
 また、このような溶媒としては、特に制限されず、液晶組成物に利用することが可能な公知の溶媒を適宜利用することができる。このような溶媒としては、例えば、テトラヒドロフラン、γ-ブチロラクトン、N-メチルピロリドンなどの複素環類;酢酸2-メトキシエチル、プロピレングリコール1-モノメチルエーテル2-アセタート等のグリコール誘導体;クロロホルム、ジクロロメタン、テトラクロロエタン、トリクロロエチレン、テトラクロロエチレン、クロロベンゼン等のハロゲン化炭化水素類;ベンゼン、トルエン、ザイレン(zylene)、メトキシベンゼン、1,2-ジメトキシベンゼン等の芳香族炭化水素類;アセトン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン等のケトン類;イソプロピルアルコール、n-ブタノール等のアルコール類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;等が挙げられる。 Further, such a solvent is not particularly limited, and a known solvent that can be used for the liquid crystal composition can be appropriately used. Examples of such solvents include heterocyclic rings such as tetrahydrofuran, γ-butyrolactone, and N-methylpyrrolidone; glycol derivatives such as 2-methoxyethyl acetate, propylene glycol 1-monomethyl ether 2-acetate; chloroform, dichloromethane, tetra Halogenated hydrocarbons such as chloroethane, trichloroethylene, tetrachloroethylene, chlorobenzene; aromatic hydrocarbons such as benzene, toluene, zylene, methoxybenzene, 1,2-dimethoxybenzene; acetone, methyl ethyl ketone, cyclohexanone, cyclopentanone Ketones such as isopropyl alcohol and n-butanol; cellosolves such as methyl cellosolve, ethyl cellosolve and butyl cellosolve; and the like.
 また、このような溶媒としては、均一な膜厚となるように溶液を塗布するのに適切な乾燥速度、取扱い容易性(環境への有害性)および重合性液晶化合物に対する溶解性の観点から、プロピレングリコール1-モノメチルエーテル2-アセタート、酢酸2-メトキシエチル、トルエン、ザイレン、メトキシベンゼン、1,2-メトキシベンゼン、シクロヘキサノン、シクロペンタノン、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、γ-ブチロラクトンが好ましく、プロピレングリコール1-モノメチルエーテル2-アセタート、γ-ブチロラクトンがより好ましい。なお、このような溶媒としては1種を単独であるいは2種以上を組み合わせて利用してもよい。また、基材の種類によっては、溶媒の種類によって腐食が生じる場合もあることから、基材の種類に応じて好適な溶媒を適宜選択して利用することが好ましい。 In addition, as such a solvent, from the viewpoint of drying speed suitable for applying the solution so as to obtain a uniform film thickness, ease of handling (harmful to the environment) and solubility in the polymerizable liquid crystal compound, Propylene glycol 1-monomethyl ether 2-acetate, 2-methoxyethyl acetate, toluene, xylen, methoxybenzene, 1,2-methoxybenzene, cyclohexanone, cyclopentanone, methyl cellosolve, ethyl cellosolve, butyl cellosolve, γ-butyrolactone are preferred, Propylene glycol 1-monomethyl ether 2-acetate and γ-butyrolactone are more preferred. In addition, you may utilize 1 type as such a solvent individually or in combination of 2 or more types. In addition, depending on the type of base material, corrosion may occur depending on the type of solvent. Therefore, it is preferable to select and use a suitable solvent according to the type of base material.
 以上、本発明の液晶組成物に含まれる(A)~(D)成分を分けて説明したが、以下、これらの成分を含有する本発明の液晶組成物について説明する。なお、前記(A)~(D)成分を含有する本発明の液晶組成物は、基材等に塗布した後に、溶媒を除去することで前記重合性液晶化合物((A)成分)の配向状態をホメオトロピック配向の状態とすることができ、これを重合して配向状態を固定化することで、効率よくホメオトロピック配向の液晶フィルムを製造することが可能なものである。そのため、本発明の液晶組成物によれば、該組成物の塗布、溶媒の除去、固定化といった簡易な工程でホメオトロピック配向液晶フィルムを製造することが可能であり、ホメオトロピック配向液晶フィルムの工業的な生産等に利用する材料等として特に有用である。 The components (A) to (D) contained in the liquid crystal composition of the present invention have been described above separately. Hereinafter, the liquid crystal composition of the present invention containing these components will be described. The liquid crystal composition of the present invention containing the components (A) to (D) is applied to a substrate and then the solvent is removed to remove the alignment state of the polymerizable liquid crystal compound (component (A)). Can be brought into a homeotropic alignment state, and this is polymerized to fix the alignment state, whereby a homeotropic alignment liquid crystal film can be efficiently produced. Therefore, according to the liquid crystal composition of the present invention, it is possible to produce a homeotropic alignment liquid crystal film by a simple process such as application of the composition, removal of a solvent, and immobilization. It is particularly useful as a material used for typical production.
 本発明の液晶組成物は、(A)~(D)成分を含むものである。このような本発明の液晶組成物における前記ホスフィン化合物((B)成分)の含有量としては、前記重合性液晶化合物((A)成分)100質量部に対して0.5~10質量部であることが好ましく、1~5質量部であることがより好ましい。このようなホスフィン化合物の含有量が前記下限未満では、ホメオトロピック配向液晶フィルムの製造時に、垂直配向に要する時間が長くなったり、固定化前のフィルムの段階で(組成物から溶媒を乾燥等して除去した時点で)、フィルム中に形成される垂直配向に欠陥が生じたりする傾向にあり、他方、前記上限を超えると基材と液晶フィルムとの間の密着性(液晶フィルムの密着力)が低下する傾向にある。 The liquid crystal composition of the present invention contains components (A) to (D). The content of the phosphine compound (component (B)) in the liquid crystal composition of the present invention is 0.5 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound (component (A)). It is preferably 1 to 5 parts by mass. When the content of such a phosphine compound is less than the above lower limit, the time required for vertical alignment becomes longer during the production of homeotropic alignment liquid crystal film, or at the film stage before immobilization (such as drying the solvent from the composition). When the above upper limit is exceeded, the adhesion between the substrate and the liquid crystal film (adhesive strength of the liquid crystal film) tends to occur. Tend to decrease.
 また、本発明の液晶組成物における前記重合開始剤の含有量((C)成分)としては、前記重合性液晶化合物100質量部に対して1~10質量部であることが好ましく、3~5質量部であることがより好ましい。このような重合開始剤の含有量が前記下限未満では得られる液晶フィルムの硬化性が不十分となる傾向にあり、他方、前記上限を超えると、液晶の垂直配向に欠陥を生じる傾向にある。 In addition, the content (component (C)) of the polymerization initiator in the liquid crystal composition of the present invention is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. More preferably, it is part by mass. If the content of the polymerization initiator is less than the lower limit, the resulting liquid crystal film tends to have insufficient curability. On the other hand, if the content exceeds the upper limit, defects tend to occur in the vertical alignment of the liquid crystal.
 また、本発明の液晶組成物における溶媒の含有量としては、その組成物の使用方法(例えば液晶フィルムを形成するために使用する場合には、その厚さの設計やコーティング方法等も含めた使用方法等)等によっても異なるものであり、一概には言えないが、30~98質量%であることが好ましく、50~95質量%であることがより好ましく、70~90質量%であることが更に好ましく、80~90質量%であることが特に好ましい。このような溶媒の含有量が前記下限未満では、前記(A)~(C)成分の総量に対する溶媒の量が少なくなるため、保管中に液晶が析出したり、液晶組成物の粘度が高くなって湿潤(wetting)性が低下するため液晶フィルムの製造時にコーティングすることが困難となる傾向にあり、他方、前記上限を超えると、溶媒を除去する場合にその除去時間(乾燥時間)が長くかかり、フィルムを製造する場合に作業効率が低下するばかりか、液晶組成物を基材上にコーティングした場合に表面の流動が激しくなるため、均一な液晶フィルムを製造するために組成物を用いることが困難となる傾向にある。このように、本発明の液晶組成物においては、前記(A)~(C)成分の総量(溶媒以外の成分の混合物の量)は、前記(A)~(D)成分の総量に対して、質量基準で5~70質量%であることが好ましく、10~50質量%であることがより好ましく、10~30質量%であることが更に好ましく、10~20質量%であることが特に好ましい。 In addition, the content of the solvent in the liquid crystal composition of the present invention is the use method of the composition (for example, when used to form a liquid crystal film, including the design of the thickness, the coating method, etc.) Depending on the method and the like, and cannot be generally described, but is preferably 30 to 98% by mass, more preferably 50 to 95% by mass, and 70 to 90% by mass. More preferred is 80 to 90% by mass. If the content of the solvent is less than the lower limit, the amount of the solvent with respect to the total amount of the components (A) to (C) decreases, so that liquid crystal is deposited during storage or the viscosity of the liquid crystal composition increases. Since the wettability of the liquid crystal film is reduced, it tends to be difficult to coat the liquid crystal film. On the other hand, if the upper limit is exceeded, the removal time (drying time) takes longer when the solvent is removed. When the film is manufactured, not only the working efficiency is lowered, but also when the liquid crystal composition is coated on the substrate, the flow of the surface becomes intense, so that the composition can be used to produce a uniform liquid crystal film. It tends to be difficult. Thus, in the liquid crystal composition of the present invention, the total amount of the components (A) to (C) (the amount of the mixture of components other than the solvent) is based on the total amount of the components (A) to (D). , Preferably 5 to 70% by mass, more preferably 10 to 50% by mass, still more preferably 10 to 30% by mass, and particularly preferably 10 to 20% by mass. .
 また、本発明の液晶組成物においては、その効果を損なわない範囲で、液晶組成物中に含有されている各成分の種類等に応じて、反応活性化剤、増感剤、消泡剤、レベリング剤等を適宜添加してもよい。 Further, in the liquid crystal composition of the present invention, the reaction activator, sensitizer, antifoaming agent, and the like, depending on the type of each component contained in the liquid crystal composition, as long as the effect is not impaired. You may add a leveling agent etc. suitably.
 また、このような本発明の液晶組成物を製造するための方法は特に制限されず、前記(A)~(D)成分を含む液晶組成物を得ることが可能な方法を適宜利用することができ、例えば、前記(A)~(C)成分を前記(D)成分中に添加し、混合して液晶組成物を得る方法を利用してもよい。なお、このような方法を採用して、前記(A)~(C)成分を前記(D)成分に添加し、混合する場合に、各成分を添加する順序等は特に制限されず、前記(A)~(C)成分を前記(D)成分に溶解することが可能となるように各成分を適宜添加すればよく、例えば、(D)成分中に(A)~(C)成分を順次(順不同で)添加する方法、(D)成分中に(A)~(B)成分の混合物を添加した後に(C)成分を添加する方法、(D)成分中に(A)成分と(C)成分の混合物を添加した後に(B)成分を添加する方法、(D)成分中に前記(A)~(C)成分の混合物を添加する方法などを適宜採用してもよい。 Further, the method for producing such a liquid crystal composition of the present invention is not particularly limited, and a method capable of obtaining a liquid crystal composition containing the components (A) to (D) can be appropriately used. For example, a method of adding the components (A) to (C) to the component (D) and mixing them to obtain a liquid crystal composition may be used. In addition, when such a method is adopted and the components (A) to (C) are added to the component (D) and mixed, the order of adding the components is not particularly limited, and the ( Each component may be appropriately added so that the components A) to (C) can be dissolved in the component (D). For example, the components (A) to (C) are sequentially added to the component (D). A method of adding (in no particular order), a method of adding component (C) after adding a mixture of components (A) to (B) in component (D), component (A) and component (C) in component (D) A method of adding the component (B) after adding the mixture of the component (A), a method of adding the mixture of the components (A) to (C) to the component (D), etc. may be appropriately employed.
 また、本発明の液晶組成物は、上述のように、配向状態をホメオトロピック配向の状態で固定化した液晶フィルム(以下、単に「ホメオトロピック配向液晶フィルム」という。)を製造するための材料として好適に利用することができる。このようなホメオトロピック配向液晶フィルムとしては、後述の本発明のホメオトロピック配向液晶フィルムの製造方法を利用して得られたものであることが好ましい。 Further, as described above, the liquid crystal composition of the present invention is used as a material for producing a liquid crystal film in which the alignment state is fixed in a homeotropic alignment state (hereinafter simply referred to as “homeotropic alignment liquid crystal film”). It can be suitably used. As such a homeotropic alignment liquid crystal film, it is preferable that it was obtained using the manufacturing method of the homeotropic alignment liquid crystal film of this invention mentioned later.
 [ホメオトロピック配向液晶フィルム]
 本発明のホメオトロピック配向液晶フィルムは、配向状態がホメオトロピック配向の状態で固定化されたホメオトロピック配向液晶フィルムであって、上記本発明の液晶組成物を用いて得られるものである。
[Homeotropic alignment liquid crystal film]
The homeotropic alignment liquid crystal film of the present invention is a homeotropic alignment liquid crystal film that is fixed in a homeotropic alignment state, and is obtained using the liquid crystal composition of the present invention.
 このようなホメオトロピック配向液晶フィルムは、上記本発明の液晶組成物を用いて、配向状態をホメオトロピック配向の状態で固定化して得られる液晶フィルムであればよく、特に制限されないが、基材上に上記本発明の液晶組成物を塗布して塗膜を形成し、該塗膜から溶媒を除去して前記重合性液晶化合物をホメオトロピック配向させた後に、該重合性液晶化合物を重合することにより配向状態を固定化することで得られるホメオトロピック配向液晶フィルムであることが好ましい。なお、上述のように、上記本発明の液晶組成物は、塗布後、溶媒を除去することで、重合性液晶化合物の配向状態をホメオトロピック配向の状態とすることが可能なものであり、簡便にホメオトロピック配向液晶フィルムを製造することが可能なものである。 Such homeotropic alignment liquid crystal film is not particularly limited as long as it is a liquid crystal film obtained by fixing the alignment state in a homeotropic alignment state using the liquid crystal composition of the present invention. The liquid crystal composition of the present invention is applied to form a coating film, the solvent is removed from the coating film and the polymerizable liquid crystal compound is homeotropically aligned, and then the polymerizable liquid crystal compound is polymerized. A homeotropic alignment liquid crystal film obtained by fixing the alignment state is preferable. In addition, as described above, the liquid crystal composition of the present invention is capable of changing the alignment state of the polymerizable liquid crystal compound into a homeotropic alignment state by removing the solvent after coating, and is simple. In addition, a homeotropic alignment liquid crystal film can be produced.
 ここにおいて、「配向状態がホメオトロピック配向の状態で固定化された」という状態は、前記重合性液晶化合物を重合して配向を固定化した後に得られる液晶フィルムにおいて、ホメオトロピック配向(いわゆる垂直配向:液晶分子の長軸方向が基材に対して実質的に垂直方向に整列している配向)が確認されることをいい、前記液晶組成物中に含有される重合性液晶化合物等に由来する成分(好ましくは重合性液晶化合物に由来する成分:その重合性液晶化合物自体、その重合性液晶化合物が分解されて形成された構成物やその重合性液晶化合物の重合物等を含む。)のうちのいずれかが、ホメオトロピック配向の状態で固定化されていればよい。 Here, the state that “the alignment state is fixed in a homeotropic alignment state” is a homeotropic alignment (so-called vertical alignment) in a liquid crystal film obtained after polymerizing the polymerizable liquid crystal compound to fix the alignment. : Alignment in which the major axis direction of the liquid crystal molecules is aligned in a direction substantially perpendicular to the substrate) is derived from the polymerizable liquid crystal compound and the like contained in the liquid crystal composition Among the components (preferably a component derived from the polymerizable liquid crystal compound: the polymerizable liquid crystal compound itself, a composition formed by decomposing the polymerizable liquid crystal compound, a polymer of the polymerizable liquid crystal compound, and the like). Any of these may be fixed in a homeotropic alignment state.
 また、このような液晶フィルムにおけるホメオトロピック配向の確認方法としては、以下のような方法を採用してもよい。このようなホメオトロピック配向の確認方法としては、公知の方法を適宜採用でき、特に制限されるものではないが、一対の直交偏光板(一方の偏向板が偏向する方向と、他方の偏向板が偏向する方向が垂直となる一対の偏光板)の間に液晶フィルム(基材との積層体の状態のもの等であってもよい。)を配置した試料を用いて、肉眼で透過光を確認する方法や液晶フィルムを偏光顕微鏡で観察する方法を採用してもよい。前記いずれの方法を採用した場合においても、前記液晶フィルムがホメオトロピック配向液晶フィルムである場合には、その試料中の液晶フィルムの表面に対して垂直な方向から光を入射させると光の位相差が生じず、光が試料を透過できないことから試料が黒色に見え、他方、その試料に対して入射させる光の入射角を傾けると位相差が発生して光の透過が生じ、試料が明るく見える。そのため、このような試料の明暗を光の入射角をずらしながら肉眼や偏光顕微鏡を通して測定することでホメオトロピック配向の有無を確認することができる。また、ホメオトロピック配向液晶フィルムは、上述のように光の入射角に応じて位相差の特性が異なるものとなることから、前記ホメオトロピック配向の確認方法としては、例えば、液晶フィルムの表面に対して垂直な方向(垂直入射角)の位相差と前記垂直入射角から特定の角度に光の入射角を傾けた場合の位相差とを測定することが可能な複屈折測定装置(例えばaxo-matrix社製の商品名「axoscan」、日本王子計測機械社製の商品名「KOBRA-21ADH」等)を用いて、視野角0°(液晶フィルムに対して垂直は方向)から視野角がより大きくなる方向に角度を適宜変更しながら位相差の測定を行い、複数の視野角において前記試料の位相差をそれぞれ求め、液晶フィルムの表面に対して垂直な方向において位相差が確認されず、液晶フィルムの表面に対して視野角がより大きくなる方向において位相差が大きくなること、及び、視野角の-方向と+方向との値が互いに対称性をみせること、を確認することに基づいて、ホメオトロピック配向の有無を確認する方法を採用してもよい。 In addition, as a method for confirming homeotropic alignment in such a liquid crystal film, the following method may be employed. As a method for confirming such homeotropic alignment, a known method can be appropriately employed, and is not particularly limited. However, a pair of orthogonal polarizing plates (a direction in which one deflecting plate is deflected and a direction in which the other deflecting plate is Using a sample in which a liquid crystal film (which may be in the form of a laminate with a base material) is disposed between a pair of polarizing plates whose deflection directions are perpendicular to each other, the transmitted light is confirmed with the naked eye. And a method of observing the liquid crystal film with a polarizing microscope may be employed. In any of the above methods, when the liquid crystal film is a homeotropic alignment liquid crystal film, the light phase difference is obtained when light is incident from a direction perpendicular to the surface of the liquid crystal film in the sample. The sample appears black because the light cannot pass through the sample. On the other hand, if the incident angle of the light incident on the sample is tilted, a phase difference occurs and the light is transmitted, and the sample appears bright. . Therefore, the presence or absence of homeotropic orientation can be confirmed by measuring the brightness of such a sample through the naked eye or a polarizing microscope while shifting the incident angle of light. In addition, since the homeotropic alignment liquid crystal film has different phase difference characteristics depending on the incident angle of light as described above, a method for confirming the homeotropic alignment is, for example, on the surface of the liquid crystal film. A birefringence measuring apparatus (for example, an axo-matrix) capable of measuring a phase difference in a vertical direction (perpendicular incident angle) and a phase difference when the incident angle of light is tilted from the vertical incident angle to a specific angle. The viewing angle becomes larger from 0 ° viewing angle (perpendicular to the liquid crystal film) using the product name “axoscan” manufactured by Nihon Oji Co., Ltd. and the product name “KOBRA-21ADH” manufactured by Nippon Oji Scientific Instruments. Measure the phase difference while changing the angle appropriately, determine the phase difference of the sample at multiple viewing angles, and position it in the direction perpendicular to the surface of the liquid crystal film. The difference is not confirmed, the phase difference becomes larger in the direction in which the viewing angle becomes larger with respect to the surface of the liquid crystal film, and the values of the − direction and the + direction of the viewing angle show symmetry with each other. A method of confirming the presence or absence of homeotropic alignment may be employed based on the confirmation.
 また、このような液晶フィルムの厚み(液晶組成物の硬化膜の膜厚)としては、用途や求める特性によっても異なるものではあるが、0.1~10μmであることが好ましく、0.2~5μmであることがより好ましく、0.3~2μmであることが更に好ましい。このような液晶フィルムの厚みが前記下限未満では所望の位相差を発現できなくなる傾向にあり、他方、前記上限を超えると液晶の配向性が低下する傾向にある。 The thickness of such a liquid crystal film (thickness of the cured film of the liquid crystal composition) is preferably 0.1 to 10 μm, although it varies depending on the application and required characteristics, and is preferably 0.2 to It is more preferably 5 μm, and further preferably 0.3 to 2 μm. If the thickness of such a liquid crystal film is less than the lower limit, a desired retardation may not be exhibited. On the other hand, if the thickness exceeds the upper limit, the orientation of the liquid crystal tends to decrease.
 また、前記液晶フィルムは、その用途等によっては、膜厚だけでなく、特定の位相差値を有することが要求され得る。ここで、液晶フィルムの面内の最大屈折率方向を示す方向の屈折率をNx、それと直交する方向の屈折率をNy、厚さ方向の屈折率をNz、液晶フィルムの厚さをd(nm)とすると、ホメオトロピック配向液晶フィルムの屈折率の関係は、通常、Nz>Nx≧Nyとなる。このようなホメオトロピック配向液晶フィルムの面内のリターデーション値(Re=(Nx-Ny)×d[nm])としては、0nm~20nm(より好ましくは0nm~10nm)であることが好ましく、厚さ方向のリターデーション値(Rth={(Nx+Ny)/2-Nz}×d[nm])としては、80nm~200nm(より好ましくは130nm~170nm)であることが好ましい。なお、このようなRe及びRthは波長550nm光に対する値である。このようなリターデーション値としては、複屈折を測定することが可能な装置(例えばaxo-matrix社製の商品名「axoscan」、日本王子計測機械社製の商品名「KOBRA-21ADH」等)を用いて測定した値を採用することができる。 In addition, the liquid crystal film may be required to have a specific retardation value as well as a film thickness depending on its use. Here, the refractive index in the direction indicating the maximum refractive index direction in the plane of the liquid crystal film is Nx, the refractive index in the direction perpendicular thereto is Ny, the refractive index in the thickness direction is Nz, and the thickness of the liquid crystal film is d (nm). ), The refractive index relationship of the homeotropic alignment liquid crystal film is usually Nz> Nx ≧ Ny. The in-plane retardation value (Re = (Nx−Ny) × d [nm]) of such homeotropic alignment liquid crystal film is preferably 0 nm to 20 nm (more preferably 0 nm to 10 nm), The retardation value in the vertical direction (Rth = {(Nx + Ny) / 2−Nz} × d [nm]) is preferably 80 nm to 200 nm (more preferably 130 nm to 170 nm). Such Re and Rth are values for light having a wavelength of 550 nm. As such retardation value, an apparatus capable of measuring birefringence (for example, a trade name “axoscan” manufactured by axo-matrix, a product name “KOBRA-21ADH” manufactured by Nippon Oji Scientific Instruments), etc.) is used. The value measured by using can be adopted.
 また、このようなホメオトロピック配向液晶フィルムは、基材上に上記本発明の液晶組成物を塗布して製造した場合には基材との密着性が十分に高度なものとなるため、基材との積層体の状態で光学フィルム等として好適に利用することができる。なお、このような基材については、後述の本発明のホメオトロピック配向液晶フィルムの製造方法において詳細に説明する。 Further, such homeotropic alignment liquid crystal film has a sufficiently high adhesion to the base material when manufactured by applying the liquid crystal composition of the present invention on the base material. And can be suitably used as an optical film or the like. In addition, about such a base material, it demonstrates in detail in the manufacturing method of the homeotropic alignment liquid crystal film of this invention mentioned later.
 [ホメオトロピック配向液晶フィルムの製造方法]
 本発明のホメオトロピック配向液晶フィルムの製造方法は、基材上に上記本発明の液晶組成物を塗布して塗膜を形成する工程(工程(A))と、該塗膜から溶媒を除去して前記重合性液晶化合物をホメオトロピック配向させた後に、該重合性液晶化合物を重合することにより配向状態を固定化し、配向状態がホメオトロピック配向の状態で固定化されたホメオトロピック配向液晶フィルムを得る工程(工程(B))とを含む方法である。以下、各工程を分けて説明する。
[Method for producing homeotropic alignment liquid crystal film]
The method for producing a homeotropic alignment liquid crystal film of the present invention includes a step of applying the liquid crystal composition of the present invention on a substrate to form a coating film (step (A)), and removing the solvent from the coating film. After the homeotropic alignment of the polymerizable liquid crystal compound, the alignment state is fixed by polymerizing the polymerizable liquid crystal compound to obtain a homeotropic alignment liquid crystal film in which the alignment state is fixed in the homeotropic alignment state. A step (step (B)). Hereinafter, each process will be described separately.
 工程(A)は、基材上に上記本発明の液晶組成物を塗布して塗膜を形成する工程である。このような基材としては、光学フィルムに利用できるものであればよく、特に制限されず、公知の光学フィルム用の基材を適宜利用することができる。このような基材としては、例えば、有機高分子材料からなる基材、無機材料からなる基材(例えば、ガラス板、金属板、アルミニウム等の金属から形成されるフィルム等)を挙げることができる。 Step (A) is a step of forming a coating film by applying the liquid crystal composition of the present invention on a substrate. Such a substrate is not particularly limited as long as it can be used for an optical film, and a known substrate for an optical film can be appropriately used. Examples of such a base material include a base material made of an organic polymer material and a base material made of an inorganic material (for example, a glass plate, a metal plate, a film formed from a metal such as aluminum). .
 このような基材としては、該基材と前記ホメオトロピック配向液晶フィルムとの積層体を液晶ディスプレイなどへ光学フィルムとして用いる際に光学フィルムとしての光学特性を維持するといった観点から、光学的等方性が高く且つ光透過率が80%以上のものを好適に利用することができる。また、このような基材としては、コストや連続生産性の観点から、有機高分子材料からなる基材を用いることが好ましい。このような有機高分子材料(ポリマー)としては、例えば、ポリビニルアルコール、ポリイミド、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルケトン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアリレート、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー;ジアセチルセルロースやトリアセチルセルロース等のセルロース系ポリマー;ポリカーボネート系ポリマー;ポリメチル(メタ)アクリレート等の(メタ)アクリル系ポリマー等の透明ポリマー;ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系ポリマー;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のオレフィン系ポリマー;ノボルネン誘導体等の環状オレフィンポリマー(ポリシクロオレフィン);塩化ビニル系ポリマー;ナイロンや芳香族ポリアミド等のアミド系ポリマー;等のポリマー材料及びこれらのブレンド物が挙げられる。また「環状オレフィンポリマー」は、ノルボルネン、ジシクロペンタジエン、テトラシクロドデセンやそれらの誘導体等の環状オレフィンから得られる樹脂の一般的な総称である。また、このような基材の材料としての有機高分子材料としては、光学フィルムに好適な特性(例えば透明性等)を示すことが可能となること等から、セルロース系ポリマー、ポリカーボネート系ポリマー、環状オレフィンポリマー(シクロオレフィンポリマー:COP)がより好ましい。 Such a substrate is optically isotropic from the viewpoint of maintaining optical properties as an optical film when a laminate of the substrate and the homeotropic alignment liquid crystal film is used as an optical film for a liquid crystal display or the like. Those having high properties and light transmittance of 80% or more can be suitably used. Moreover, as such a base material, it is preferable to use the base material which consists of organic polymer materials from a viewpoint of cost or continuous productivity. Examples of such an organic polymer material (polymer) include polyvinyl alcohol, polyimide, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyether ketone, polyether sulfone, polyether ether ketone, polyarylate, polyethylene terephthalate, and polyethylene naphthalate. Polyester polymers such as: Cellulose polymers such as diacetyl cellulose and triacetyl cellulose; Polycarbonate polymers; Transparent polymers such as (meth) acrylic polymers such as polymethyl (meth) acrylate; Polystyrene, acrylonitrile / styrene copolymers, etc. Styrene polymers; Olefin polymers such as polyethylene, polypropylene, and ethylene / propylene copolymers; nobornene derivatives Cyclic olefin polymer (polycycloolefin); amide polymers such as nylon and aromatic polyamide; vinyl chloride polymer polymer materials and blends thereof of the like. “Cyclic olefin polymer” is a general generic name for resins obtained from cyclic olefins such as norbornene, dicyclopentadiene, tetracyclododecene and derivatives thereof. In addition, as the organic polymer material as the material of such a base material, it is possible to exhibit characteristics (for example, transparency) suitable for an optical film, and therefore, a cellulose polymer, a polycarbonate polymer, a cyclic polymer, and the like. An olefin polymer (cycloolefin polymer: COP) is more preferable.
 このようなセルロース系ポリマーとしては、セルロースの低級脂肪酸エステルが更に好ましい。このような低級脂肪酸としては、炭素原子数が6以下の脂肪酸が好ましい。またこのような低級脂肪酸の炭素原子数としては2~4であることがより好ましい。このようなセルロース系ポリマーとしては、例えば、セルロースアセテート、セルロースプロピオネート又はセルロースブチレートが挙げられる。また、このようなセルロース系ポリマーの中でも、セルローストリアセテートが特に好ましい。なお、セルロース系ポリマーとしては、セルロースアセテートプロピオネートやセルロースアセテートブチレートのような混合脂肪酸エステルを用いてもよい。 As such a cellulose polymer, a lower fatty acid ester of cellulose is more preferable. As such a lower fatty acid, a fatty acid having 6 or less carbon atoms is preferable. Further, the number of carbon atoms of such a lower fatty acid is more preferably 2-4. Examples of such a cellulose polymer include cellulose acetate, cellulose propionate, and cellulose butyrate. Among such cellulose polymers, cellulose triacetate is particularly preferable. As the cellulose polymer, a mixed fatty acid ester such as cellulose acetate propionate or cellulose acetate butyrate may be used.
 また、前記環状オレフィンポリマー(COP)としては、例えば、環状オレフィンの開環重合体、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレン等のα-オレフィンとのランダム共重合体、これらを不飽和カルボン酸やその誘導体等で変性したグラフト変性体、これらの水素化物等が挙げられる。また、このような環状オレフィンとしては、ノルボルネン及びその誘導体、ジシクロペンタジエンが好ましい。 Examples of the cyclic olefin polymer (COP) include cyclic olefin ring-opening polymers, cyclic olefin addition polymers, random copolymers of cyclic olefins and α-olefins such as ethylene and propylene, and the like. Examples include graft-modified products modified with saturated carboxylic acid and derivatives thereof, and hydrides thereof. Moreover, as such a cyclic olefin, norbornene, its derivative (s), and dicyclopentadiene are preferable.
 また、このような有機高分子材料からなる基材としては、透明性が高く、入手が容易であること等からは、トリアセチルセルロース、ポリカーボネート、環状オレフィンポリマー(シクロオレフィンポリマー:COP)からなるフィルム状の基材(プラスチックフィルム)がより好ましい。また、このようなフィルム状の基材(プラスチックフィルム)の中でも、液晶組成物が(メタ)アクリレート系液晶化合物を含有する場合に十分に高度な密着性を付与することが可能となるという観点からは、環状オレフィンポリマーからなるフィルム(以下、場合により「COPフィルム」という。)が特に好ましい。 Moreover, as a base material made of such an organic polymer material, a film made of triacetyl cellulose, polycarbonate, a cyclic olefin polymer (cycloolefin polymer: COP) is highly transparent and easily available. A base material (plastic film) is more preferable. In addition, among such film-like substrates (plastic films), when the liquid crystal composition contains a (meth) acrylate-based liquid crystal compound, it is possible to impart sufficiently high adhesion. Is particularly preferably a film made of a cyclic olefin polymer (hereinafter sometimes referred to as “COP film”).
 さらに、このような基材は市販品を適宜利用してもよく、例えば、基材としてCOPフィルムを利用する場合、日本ゼオン株式会社製の商品名「ゼオネックス」、日本ゼオン株式会社製の商品名「ゼオノア」、JSR株式会社製の商品名「アートン」、積水化学株式会社製の商品名「エスシーナ」、Topas Advanced Polymers GmbH社製の商品名「Topas」、三井化学株式会社製の商品名「アペル」等を適宜利用することができる。 Further, commercially available products may be used as appropriate for such base materials. For example, when a COP film is used as the base material, trade names “ZEONEX” manufactured by ZEON CORPORATION, trade names manufactured by ZEON CORPORATION "Zeonor", JSR Corporation product name "Arton", Sekisui Chemical Co., Ltd. product name "Essina", Topas Advanced Polymers GmbH product name "Topas", Mitsui Chemicals Co., Ltd. product name "Apel" Or the like can be used as appropriate.
 また、このような基材としては、特に制限されるものではないが、形成される液晶フィルムと基材との積層体をそのまま光学フィルム等に用いる場合等において、その用途等に応じて、位相差機能を有するものとしてもよい。更に、このような基材は、一軸延伸したもの(いわゆる一軸延伸フィルム)であっても二軸延伸したもの(いわゆる二軸延伸フィルム)であってもよい。なお、このような基材は、これを縦方向および横方向に延伸することにより、二軸性の光学異方性を発現させて、光学異方性を有するフィルムとして利用してもよい。 In addition, such a substrate is not particularly limited, but in the case of using the formed laminate of the liquid crystal film and the substrate as it is for an optical film or the like, depending on the application, etc. It may have a phase difference function. Further, such a substrate may be uniaxially stretched (so-called uniaxially stretched film) or biaxially stretched (so-called biaxially stretched film). Such a base material may be used as a film having optical anisotropy by developing biaxial optical anisotropy by stretching the base material in the vertical direction and the horizontal direction.
 また、このような基材としては、Z軸配向処理を施したものを用いてもよい。更に、このような基材としては、その接着性を制御する目的で、片面もしくは両面にコロナ処理、プラズマ処理、UV-オゾン処理、ケン化処理等の表面処理を適宜行ってもよい。このような表面処理を採用する際の処理条件としては、利用する基材等に応じて適宜設定すればよく、特に制限されず、公知の条件を適宜採用すればよい。なお、本発明においては、前記基材上に上記本発明の液晶組成物を塗布して塗膜を形成した後、その塗膜から溶媒を除去することで、塗膜中の前記重合性液晶化合物をホメオトロピック配向の状態に配向させることが可能であるため、前記基材には必ずしも配向膜を形成しなくてもよく、この場合には、配向膜の形成工程を短縮することが可能である。そして、このように、配向膜を形成しない場合には、配向膜の厚みを計算せずに基材を利用できることから、用途に応じて、より効率よく基材の設計(特性や厚み等)を変更することが可能である。 Further, as such a base material, a substrate that has been subjected to a Z-axis orientation treatment may be used. Further, such a substrate may be appropriately subjected to surface treatment such as corona treatment, plasma treatment, UV-ozone treatment, saponification treatment on one or both sides for the purpose of controlling the adhesion. The treatment conditions for adopting such a surface treatment may be appropriately set according to the base material to be used, and are not particularly limited, and known conditions may be appropriately adopted. In the present invention, the polymerizable liquid crystal compound in the coating film is formed by coating the liquid crystal composition of the present invention on the substrate to form a coating film, and then removing the solvent from the coating film. Can be aligned in a homeotropic alignment state, it is not always necessary to form an alignment film on the substrate, and in this case, the alignment film forming step can be shortened. . And, when the alignment film is not formed in this way, the base material can be used without calculating the thickness of the alignment film, so the base material design (characteristics, thickness, etc.) can be made more efficient depending on the application. It is possible to change.
 また、工程(A)において、前記基材上に上記本発明の液晶組成物を塗布する方法としては、特に制限されず、公知の方法を適宜採用することができる。このような塗布方法としては、例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スピンコーティング法等を適宜採用することができる。 In the step (A), the method for applying the liquid crystal composition of the present invention on the substrate is not particularly limited, and a known method can be appropriately employed. As such a coating method, for example, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, a spin coating method, or the like can be appropriately employed.
 このようにして上記本発明の液晶組成物を前記基材上に塗布することで、塗膜を得ることができる。このような塗膜としては、上記本発明の液晶組成物中の溶媒の含有量等によっても異なるものであり、一概には言えないが、乾燥前の塗膜の厚み(ウエット膜厚)が3~50μmであることが好ましく、5~20μmであることがより好ましい。このような厚み(ウエット膜厚)が前記下限未満では、所望の光学特性を得るために液晶組成物中の固形分(液晶化合物等)の濃度を濃くする必要が生じるため、組成物中に固形分の析出が生じ易くなって均一な液晶フィルムを得ることが困難となるばかりか、均一な塗布も困難となり液晶フィルムの平滑性が低下する傾向にあり、他方、前記上限を超えると所望の光学特性とするための液晶組成物中の固形分の濃度が薄くなるため、塗布後の乾燥時間が長くなる傾向にある。 Thus, a coating film can be obtained by applying the liquid crystal composition of the present invention on the substrate. Such a coating film is different depending on the content of the solvent in the liquid crystal composition of the present invention and cannot be generally described. However, the thickness of the coating film (wet film thickness) before drying is 3 It is preferably ˜50 μm, more preferably 5 to 20 μm. If such a thickness (wet film thickness) is less than the lower limit, it is necessary to increase the concentration of solid content (liquid crystal compound, etc.) in the liquid crystal composition in order to obtain desired optical characteristics. In addition to the difficulty of obtaining a uniform liquid crystal film due to the occurrence of minute precipitation, uniform coating is difficult and the smoothness of the liquid crystal film tends to decrease. Since the concentration of the solid content in the liquid crystal composition for obtaining the characteristics is thin, the drying time after coating tends to be long.
 以上、工程(A)について説明したが、以下、工程(B)について説明する。工程(B)は、前記塗膜から溶媒を除去して前記重合性液晶化合物(液晶組成物中の(A)成分)をホメオトロピック配向させた後に、該重合性液晶化合物を重合することにより配向状態を固定化し、配向状態がホメオトロピック配向の状態で固定化されたホメオトロピック配向液晶フィルムを得る工程である。 The process (A) has been described above, but the process (B) will be described below. In step (B), the solvent is removed from the coating film, and the polymerizable liquid crystal compound (component (A) in the liquid crystal composition) is homeotropically aligned, and then the polymerizable liquid crystal compound is polymerized for alignment. This is a step of obtaining a homeotropic alignment liquid crystal film in which the state is fixed and the alignment state is fixed in a homeotropic alignment state.
 工程(B)においては、工程(A)により形成された塗膜から溶媒を除去する。なお、このように前記塗膜から溶媒を除去することで、塗膜中の前記重合性液晶化合物はホメオトロピック配向の状態に配向される。 In step (B), the solvent is removed from the coating film formed in step (A). In addition, by removing the solvent from the coating film in this way, the polymerizable liquid crystal compound in the coating film is aligned in a homeotropic alignment state.
 このような溶媒の除去の方法としては、上記本発明の液晶組成物中の溶媒の種類等によっても異なるものであり、一概に言えるものではなく、特に制限されるものではない。例えば、溶媒の種類によっては、常温(25℃)でも塗膜から溶媒を乾燥除去することが可能である。このように、上記本発明の液晶組成物によれば、溶媒の種類等によっては、特に加熱処理を施すことなく、ホメオトロピック液晶フィルムを製造することも可能である。また、このような溶媒除去工程における温度条件としては、15~110℃であることが好ましく、20~70℃であることがより好ましい。このような温度条件が前記下限未満では冷却設備が必要となり効率的な製造が困難となる場合があり、他方、前記上限を超えると基材が熱により歪んで光学特性等が変化してしまい、所望の光学特性が得られなくなる傾向がある。 Such a method for removing the solvent varies depending on the kind of the solvent in the liquid crystal composition of the present invention, and is not generally limited, and is not particularly limited. For example, depending on the type of solvent, the solvent can be removed from the coating film even at room temperature (25 ° C.). As described above, according to the liquid crystal composition of the present invention, a homeotropic liquid crystal film can be produced without particular heat treatment depending on the kind of the solvent. Further, the temperature condition in such a solvent removal step is preferably 15 to 110 ° C, more preferably 20 to 70 ° C. If such a temperature condition is less than the lower limit, cooling equipment may be required and efficient production may be difficult.On the other hand, if the upper limit is exceeded, the base material is distorted by heat and optical characteristics and the like change, There is a tendency that desired optical characteristics cannot be obtained.
 また、このような溶媒除去工程における圧力条件としては、特に制限されないが、600~1400hPaであることが好ましく、900~1100hPaであることがより好ましい。このような圧力条件が前記下限未満では溶媒の乾燥が急速であり、乾燥ムラが生じる傾向にあり、他方、前記上限を超えると溶媒の乾燥に時間がかかる傾向にある。このような溶媒除去工程の時間(乾燥時間)としては、特に制限されないが、10秒~60分とすることが好ましく、1分~30分とすることがより好ましい。このような乾燥時間が前記下限未満では溶媒の乾燥が急速であり、液晶フィルムの平滑性が低下する(乾燥ムラが生じる)傾向にあり、他方、前記上限を超えると製造速度が遅くなり、生産性が低下する傾向にある。なお、このような溶媒除去工程に乾燥装置を利用する場合においては、前記塗膜と乾燥装置との相対的な移動速度を、相対風速が60m/分~1200m/分となるように制御することが好ましい。 The pressure condition in such a solvent removal step is not particularly limited, but is preferably 600 to 1400 hPa, and more preferably 900 to 1100 hPa. When the pressure condition is less than the lower limit, the solvent is rapidly dried and uneven drying tends to occur. On the other hand, when the upper limit is exceeded, the solvent tends to take longer to dry. The time for the solvent removal step (drying time) is not particularly limited, but is preferably 10 seconds to 60 minutes, and more preferably 1 minute to 30 minutes. If the drying time is less than the lower limit, the solvent is rapidly dried, and the smoothness of the liquid crystal film tends to be reduced (drying unevenness occurs). Tend to decrease. In the case where a drying apparatus is used for such a solvent removal step, the relative moving speed between the coating film and the drying apparatus is controlled so that the relative wind speed is 60 m / min to 1200 m / min. Is preferred.
 このようにして、前記塗膜から溶媒を除去することで前記重合性液晶化合物をホメオトロピック配向させることができる。そして、前記重合性液晶化合物を配向させた後においては、重合性液晶化合物を重合することにより、形成された液晶状態(ホメオトロピック配向の配向状態)を固定化することができる。 In this way, the polymerizable liquid crystal compound can be homeotropically aligned by removing the solvent from the coating film. Then, after the polymerizable liquid crystal compound is aligned, the formed liquid crystal state (homeotropic alignment state) can be fixed by polymerizing the polymerizable liquid crystal compound.
 前記重合性液晶化合物を重合して配向状態を固定化する方法としては、用いる前記重合開始剤や前記重合性液晶化合物の種類等に応じて、重合が可能な公知の方法を適宜採用することができる。このような配向状態の固定化(重合・固定化)の方法としては、例えば、重合開始剤の種類等に応じて、光照射及び/又は加熱処理を施すことにより、前記重合性基(反応性官能基)を反応させてホメオトロピック配向の配向状態で配向を固定化する方法を採用してもよい。 As a method for polymerizing the polymerizable liquid crystal compound to fix the alignment state, a known method capable of polymerization may be appropriately employed depending on the type of the polymerization initiator used or the type of the polymerizable liquid crystal compound. it can. As a method for fixing such an alignment state (polymerization / fixation), for example, the polymerizable group (reactive property) can be obtained by performing light irradiation and / or heat treatment depending on the kind of the polymerization initiator. A method may be adopted in which the orientation is fixed in the homeotropic orientation state by reacting the functional group).
 前記重合開始剤が光の照射により開始剤の機能を発現するようなものである場合(例えば、いわゆる光カチオン発生剤の場合)には、光照射によりホメオトロピック配向の配向状態を固定化することが好ましい。このような光照射の方法としては特に制限されず、例えば、用いる重合開始剤の吸収波長領域にスペクトルを有する光源(例えば、10mW/cm以上の照度を有する、メタルハライドランプ、中圧或いは高圧水銀灯(中圧或いは高圧水銀紫外ランプ)、超高圧水銀灯、低圧水銀灯、キセノンランプ、アークランプ、レーザーなど)を用いて、その光源からの光を照射する方法が挙げられる。なお、このような光の照射により反応開始剤を活性化させることが可能となり、効率よく反応性官能基を反応させることが可能となる。 When the polymerization initiator is such that it exhibits the function of an initiator by light irradiation (for example, in the case of a so-called photocation generator), the alignment state of homeotropic alignment is fixed by light irradiation. Is preferred. The light irradiation method is not particularly limited. For example, a light source having a spectrum in the absorption wavelength region of the polymerization initiator used (for example, a metal halide lamp, an intermediate pressure or a high pressure mercury lamp having an illuminance of 10 mW / cm 2 or more. (Medium pressure or high pressure mercury ultraviolet lamp), ultra high pressure mercury lamp, low pressure mercury lamp, xenon lamp, arc lamp, laser, etc.) and irradiating light from the light source. In addition, it becomes possible to activate a reaction initiator by such light irradiation, and it becomes possible to react a reactive functional group efficiently.
 また、このような光照射の方法において光の積算照射量としては、波長365nmでの積算露光量として、10~2000mJ/cmであることが好ましく、100~1500mJ/cmであることがより好ましい。ただし、前記重合開始剤の吸収領域と、光源のスペクトルが著しく異なる場合や、重合性液晶化合物自身に光源波長光の吸収能がある場合等は、この限りではない。これらの場合には、より効率よく配向状態を維持したまま、塗膜を固定化(硬化)させるという観点から、適当な光増感剤や、吸収波長の異なる2種以上の重合開始剤を混合して用いる等の方法を採用してもよい。また、このような光照射時の温度条件は、前記重合性液晶化合物がホメオトロピック配向の配向状態を維持できる温度範囲とすればよく、特に制限されない。なお、光照射時に、塗膜の表面温度が液晶温度の範囲を維持できるように、基材と光源(紫外線ランプ等)との間には、コールドミラーやその他の冷却装置を設けてもよい。 As the integrated irradiation dose of light in such a method of light irradiation of accumulative exposure at a wavelength 365 nm, it is preferably 10 ~ 2000mJ / cm 2, and more to be 100 ~ 1500mJ / cm 2 preferable. However, this is not the case when the absorption region of the polymerization initiator and the spectrum of the light source are significantly different, or when the polymerizable liquid crystal compound itself has the ability to absorb light of the light source wavelength. In these cases, an appropriate photosensitizer and two or more polymerization initiators having different absorption wavelengths are mixed from the viewpoint of fixing (curing) the coating film while maintaining the orientation state more efficiently. For example, a method such as use may be employed. Further, the temperature condition during such light irradiation is not particularly limited as long as the polymerizable liquid crystal compound can maintain a homeotropic alignment state. A cold mirror or other cooling device may be provided between the substrate and the light source (such as an ultraviolet lamp) so that the surface temperature of the coating film can maintain the range of the liquid crystal temperature during light irradiation.
 さらに、このような光照射時の雰囲気の条件としては、特に制限されず、大気雰囲気であっても或いは反応効率を高めるために酸素を遮断した窒素雰囲気下であってもよい。なお、雰囲気中の酸素濃度は重合度に関与するため、空気中で所望の重合度に達しない場合には、窒素置換等の方法により酸素濃度を低下させた雰囲気で光照射することが好ましい。このような場合の雰囲気ガス中の酸素濃度としては、10容量%以下であることが好ましく、7容量%以下であることがさらに好ましく、3容量%以下であることが最も好ましい。 Furthermore, the conditions of the atmosphere at the time of such light irradiation are not particularly limited, and may be an air atmosphere or a nitrogen atmosphere in which oxygen is blocked in order to increase reaction efficiency. Since the oxygen concentration in the atmosphere is related to the degree of polymerization, when the desired degree of polymerization is not reached in the air, it is preferable to perform light irradiation in an atmosphere in which the oxygen concentration is reduced by a method such as nitrogen substitution. In such a case, the oxygen concentration in the atmospheric gas is preferably 10% by volume or less, more preferably 7% by volume or less, and most preferably 3% by volume or less.
 また、前記重合開始剤が熱により開始剤の機能を発現するようなものである場合(例えば、いわゆる熱カチオン発生剤の場合)には、加熱処理によりホメオトロピック配向の配向状態で配向を固定化することが好ましい。このような加熱処理の条件としては、特に制限されず、前記重合開始剤の種類に応じて、配向状態が十分に維持されるように温度条件を選択すればよく、公知の条件を適宜採用することができる。 In addition, when the polymerization initiator is such that the function of the initiator is manifested by heat (for example, in the case of a so-called thermal cation generator), the orientation is fixed in a homeotropic alignment state by heat treatment. It is preferable to do. The conditions for such heat treatment are not particularly limited, and the temperature conditions may be selected so that the orientation state is sufficiently maintained according to the type of the polymerization initiator, and known conditions are appropriately employed. be able to.
 なお、基材が耐熱性の低いものである場合には、前記重合開始剤として光の照射により開始剤の機能を発現するようなものを用い、光照射によりホメオトロピック配向の配向状態を固定化することが好ましい。 In addition, when the base material has low heat resistance, a material that exhibits the function of an initiator by light irradiation is used as the polymerization initiator, and the homeotropic alignment state is fixed by light irradiation. It is preferable to do.
 このようにして、前記基材上に前記液晶組成物を塗布した後に、塗膜から溶媒を除去して、前記重合性液晶化合物を配向させ、その液晶状態を固定化することによって、配向状態がホメオトロピック配向の状態で固定化されたホメオトロピック配向液晶フィルムを前記基材上に形成することができる。このようにして得られるホメオトロピック配向液晶フィルムは、前記基材との間の密着性が十分に高いものとなることから、基材との積層体の状態で、そのまま光学フィルムとして利用することができ、その場合、使用時の基材からの剥がれなどによる破損等が十分に抑制される。 Thus, after applying the liquid crystal composition on the substrate, the solvent is removed from the coating film, the polymerizable liquid crystal compound is aligned, and the liquid crystal state is fixed. A homeotropic alignment liquid crystal film fixed in a homeotropic alignment state can be formed on the substrate. The homeotropic alignment liquid crystal film thus obtained has sufficiently high adhesion to the base material, so that it can be directly used as an optical film in the state of a laminate with the base material. In that case, damage due to peeling from the base material during use is sufficiently suppressed.
 また、このようにして得られるホメオトロピック配向液晶フィルムの厚み(乾燥硬化後の膜厚)は、用途や求める特性によっても異なるものではあるが、0.1~10μmとすることが好ましく、0.2~5μmとすることがより好ましく、0.3~2μmとすることが更に好ましい。このような厚みが前記下限未満では所望の位相差を発現できなくなる傾向にあり、他方、前記上限を超えると液晶の配向性が低下する傾向にある。 The thickness of the homeotropic alignment liquid crystal film thus obtained (thickness after drying and curing) varies depending on the application and required properties, but is preferably 0.1 to 10 μm. It is more preferably 2 to 5 μm, and further preferably 0.3 to 2 μm. If the thickness is less than the lower limit, a desired retardation may not be exhibited. On the other hand, if the thickness exceeds the upper limit, the orientation of the liquid crystal tends to decrease.
 また、このような本発明のホメオトロピック配向液晶フィルムの製造方法は、上記本発明の液晶組成物の塗膜から溶媒を除去することにより、ホメオトロピック配向の配向状態を形成することができることから、基材上に配向膜を形成する工程を別途実施する必要がないため、工程の短縮やコストの低減を図れるとともに、上記本発明の液晶組成物の塗膜から溶媒の除去後、溶媒除去直後又は溶媒除去後から短時間(例えば数分程度)で配向状態を形成させることが可能であることから、基材として例えばプラスチックフィルムを利用した場合には、いわゆるロール・ツー・ロール方式(roll-to-roll方式)でホメオトロピック配向性液晶フィルムを製造することも可能であり、ホメオトロピック配向液晶フィルムを工業的に大量生産することも可能である。また、本発明のホメオトロピック配向液晶フィルムの製造方法は、上述のように、基材上に配向膜を形成する必要がなく、配向膜形成時の加熱処理を基材に施す必要がないため、耐熱性が比較的低いフィルムであっても基材として用いることができるばかりか、配向膜の厚みの分、液晶フィルムと基材との積層体の厚みを薄くすることもでき、基材の選択肢を十分に拡大可能なため、目的の設計に応じて基材を適宜選択して効率よくホメオトロピック配向液晶フィルムを製造することが可能である。 Moreover, since the method for producing such a homeotropic alignment liquid crystal film of the present invention can form an alignment state of homeotropic alignment by removing the solvent from the coating film of the liquid crystal composition of the present invention, Since it is not necessary to separately perform the step of forming the alignment film on the substrate, the process can be shortened and the cost can be reduced, and after removing the solvent from the coating film of the liquid crystal composition of the present invention, Since it is possible to form an alignment state in a short time (for example, several minutes) after the solvent is removed, when a plastic film is used as a base material, for example, a so-called roll-to-roll method (roll-to-roll method) -Roll method), homeotropic alignment liquid crystal films can be produced. It is also possible to quantity production. In addition, as described above, the method for producing the homeotropic alignment liquid crystal film of the present invention does not need to form an alignment film on the substrate, and does not need to be subjected to heat treatment during formation of the alignment film. Even a film with relatively low heat resistance can be used as a base material, and the thickness of the laminate of the liquid crystal film and the base material can be reduced by the thickness of the alignment film. Therefore, it is possible to efficiently produce a homeotropic alignment liquid crystal film by appropriately selecting a substrate according to the target design.
 [偏光板]
 本発明の偏光板は、上記本発明のホメオトロピック配向性液晶フィルムを備えるものである。
[Polarizer]
The polarizing plate of the present invention includes the homeotropic alignment liquid crystal film of the present invention.
 このような偏光板としては、特に制限されないが、上記本発明のホメオトロピック配向性液晶フィルムの特性を利用することが可能となるように、上記本発明のホメオトロピック配向性液晶フィルムを公知の光学部材と適宜組み合わせる等して偏光板として利用すればよく、例えば、上記本発明のホメオトロピック配向性液晶フィルムと直線偏光板とを組み合わせて楕円偏光板としてもよく、上記本発明のホメオトロピック配向性液晶フィルムと輝度上昇フィルムとを組み合わせてLCDバックライト側用偏光板としてもよい。このように、前記偏光板の構成は特に制限されず、上記本発明のホメオトロピック配向性液晶フィルムの特性や、その使用目的等に応じて、他の光学部材との組み合わせ等を適宜考慮して、その設計を適宜変更することができ、これにより各種偏光板として利用すればよい。なお、ここにおいて、本発明のホメオトロピック配向性液晶フィルムは基材との積層体の状態で利用することができる。 Such a polarizing plate is not particularly limited, but the homeotropic alignment liquid crystal film of the present invention is used as a known optical material so that the characteristics of the homeotropic alignment liquid crystal film of the present invention can be used. It may be used as a polarizing plate by appropriately combining with a member. For example, the homeotropic alignment liquid crystal film of the present invention may be combined with a linear polarizing plate to form an elliptical polarizing plate, or the homeotropic alignment of the present invention. It is good also as a polarizing plate for LCD backlight sides combining a liquid crystal film and a brightness enhancement film. As described above, the configuration of the polarizing plate is not particularly limited, and the combination with other optical members is appropriately considered depending on the characteristics of the homeotropic alignment liquid crystal film of the present invention and the purpose of use thereof. The design can be changed as appropriate, so that it can be used as various polarizing plates. Here, the homeotropic alignment liquid crystal film of the present invention can be used in the state of a laminate with a substrate.
 ここで、このような本発明の偏光板について、その好適な一実施形態として、上記本発明のホメオトロピック配向性液晶フィルムに直線偏光板を積層して得ることが可能な楕円偏光板を例に挙げて説明する。このような楕円偏光板としては、例えば、上記本発明のホメオトロピック配向性液晶フィルムと前記直線偏光板とを積層一体化したものが挙げられる。このような直線偏光板としては特に制限されず、公知の直線偏光板を適宜利用することができ、例えば、偏光子の片側または両側に保護フィルムを有するものを使用できる。 このような偏光子は特に制限されず、各種公知のものを適宜使用でき、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等のポリエン系配向フィルム等が挙げられる。これらのなかでもポリビニルアルコール系フィルムを延伸して二色性材料(沃素、染料)を吸着、配向したものが好適に用いられる。また、このような偏光子の厚さも特に制限されないが、5~80μm程度が一般的である。 Here, as a preferred embodiment of the polarizing plate of the present invention, an elliptical polarizing plate that can be obtained by laminating a linear polarizing plate on the homeotropic alignment liquid crystal film of the present invention is taken as an example. I will give you a description. Examples of such an elliptically polarizing plate include those obtained by laminating and integrating the homeotropic alignment liquid crystal film of the present invention and the linear polarizing plate. Such a linear polarizing plate is not particularly limited, and a known linear polarizing plate can be appropriately used. For example, one having a protective film on one side or both sides of a polarizer can be used. Such a polarizer is not particularly limited, and various known materials can be used as appropriate. For example, hydrophilicity such as polyvinyl alcohol film, partially formalized polyvinyl alcohol film, ethylene / vinyl acetate copolymer partially saponified film, etc. Examples include polymer films that are uniaxially stretched by adsorbing dichroic substances such as iodine and dichroic dyes, polyene-based oriented films such as dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride. It is done. Among these, a film obtained by stretching a polyvinyl alcohol film and adsorbing and orienting a dichroic material (iodine, dye) is preferably used. The thickness of such a polarizer is not particularly limited, but is generally about 5 to 80 μm.
 また、前記保護フィルムとしては、特に制限されず、公知の材料からなる保護フィルムを適宜利用することができる。このような保護フィルムとしては、偏光特性や耐久性などの点より、トリアセチルセルロース等のセルロース系ポリマーからなるものが好ましい。また、前記ホメオトロピック配向性液晶フィルムと前記直線偏光板とを積層一体化する方法も特に制限されないが、例えば、前記ホメオトロピック配向性液晶フィルムと前記直線偏光板の互いに積層すべき面の一方または両方に適宜な方法で粘着剤及び/又は接着剤層を形成した後、圧着すればよい。圧着は毎葉形態、長尺形態のいずれでも行うことができ、使用する装置もそれぞれの形態に適した装置を用いればよく、プレス、ラミネーター等を例示できる。また、このような粘着剤層及び/又は接着剤層を形成するための材料も特に制限されず、公知の材料を適宜利用することができる。 The protective film is not particularly limited, and a protective film made of a known material can be used as appropriate. Such a protective film is preferably made of a cellulose-based polymer such as triacetyl cellulose from the viewpoints of polarization characteristics and durability. In addition, a method for laminating and integrating the homeotropic alignment liquid crystal film and the linear polarizing plate is not particularly limited. For example, one of the surfaces of the homeotropic alignment liquid crystal film and the linear polarizing plate to be laminated with each other or What is necessary is just to crimp | bond, after forming an adhesive and / or an adhesive bond layer by an appropriate method to both. The crimping can be performed either in a leaf-like form or in a long form, and the apparatus to be used may be an apparatus suitable for each form, and examples thereof include a press and a laminator. Moreover, the material for forming such a pressure-sensitive adhesive layer and / or adhesive layer is not particularly limited, and a known material can be appropriately used.
 [画像表示装置]
 本発明の画像表示装置は、上記本発明の偏光板を備えるものである。このような本発明の画像表示装置としては、上記本発明の偏光板を備えていればよく、画像表示装置の種類は特に制限されず、液晶表示装置や有機EL表示装置、プラズマディスプレイ等のような公知の画像表示装置を適宜利用することができる。また、上記本発明の偏光板を画像表示装置に配置する方法等も特に制限されず、公知の方法を適宜利用することができる。このように、上記本発明の偏光板を備える本発明の画像表示装置は、膜厚方向に、より大きな屈折率を有するホメオトロピック配向(垂直配向)の液晶フィルムを備えるものとなることから、その特性に応じて、例えば、その画像表示装置の視野角を十分に広げたり、輝度を十分に向上させたりすること等が可能となり、これにより視野角向上や画質向上を十分に図ることができる。
[Image display device]
The image display device of the present invention includes the polarizing plate of the present invention. Such an image display device of the present invention only needs to include the polarizing plate of the present invention, and the type of the image display device is not particularly limited, such as a liquid crystal display device, an organic EL display device, and a plasma display. Such known image display devices can be used as appropriate. Further, the method for arranging the polarizing plate of the present invention in an image display device is not particularly limited, and a known method can be appropriately used. Thus, the image display device of the present invention including the polarizing plate of the present invention includes a liquid crystal film of homeotropic alignment (vertical alignment) having a larger refractive index in the film thickness direction. Depending on the characteristics, for example, the viewing angle of the image display device can be sufficiently widened, the luminance can be sufficiently improved, and the like, and thereby the viewing angle and the image quality can be sufficiently improved.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
 (実施例1)
 〈液晶組成物の調製〉
 先ず、下記一般式(110)~(113):
Example 1
<Preparation of liquid crystal composition>
First, the following general formulas (110) to (113):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
で表わされる重合性液晶化合物(アクリレート系の重合性液晶化合物)をそれぞれ準備した。なお、上記一般式(110)~(113)で表わされる各重合性液晶化合物は、それぞれ公知の方法で製造した。具体的には、上記一般式(110)で表わされる化合物(以下、場合により単に「液晶化合物(I)」という。)は、英国特許出願公開第2,280,445号明細書(GB2,280,445)に記載された方法により製造し、上記一般式(111)で表わされる化合物(以下、場合により単に「液晶化合物(II)」という。)は1989年に発行された文献(D.J.Broer et al.,“Makromol. Chem.”,vol.190,1989年,第3201頁~第3215頁)に記載された方法により製造し、上記一般式(112)で表わされる化合物(以下、場合により単に「液晶化合物(III)」という。)及び(113)で表わされる化合物(以下、場合により単に「液晶化合物(IV)」という。)は、国際公開93/22397号に記載された方法により製造した。また、上記一般式(110)~(113)で表わされる重合性液晶化合物はいずれも、室温(25℃)条件下において固体であった。 A polymerizable liquid crystal compound represented by the formula (acrylate-based polymerizable liquid crystal compound) was prepared. The polymerizable liquid crystal compounds represented by the general formulas (110) to (113) were produced by known methods. Specifically, the compound represented by the above general formula (110) (hereinafter sometimes simply referred to as “liquid crystal compound (I)”) is described in British Patent Application Publication No. 2,280,445 (GB2,280,445). The compound represented by the above general formula (111) (hereinafter sometimes simply referred to as “liquid crystal compound (II)”) is a document published in 1989 (DJ Broer). et al., “Makromol. Chem.”, vol. 190, 1989, pages 3201 to 3215), and a compound represented by the above general formula (112) (hereinafter, depending on circumstances) The compounds represented simply by “Liquid Crystal Compound (III)”) and (113) (hereinafter sometimes simply referred to as “Liquid Crystal Compound (IV)”) are disclosed in International Publication 93. It was prepared by the method described in JP 22397. Further, all of the polymerizable liquid crystal compounds represented by the above general formulas (110) to (113) were solid at room temperature (25 ° C.).
 次に、前記液晶化合物(I)~(IV)を、液晶化合物(I):35質量%、液晶化合物(II):23質量%、液晶化合物(III):23質量%、及び、液晶化合物(IV):19質量%の質量比で混合し、第一の混合物(液晶モノマー混合物)を得た。次いで、前記第一の混合物に対して、重合開始剤(スイスのCiba-Geigy社製の商品名「イルガキュア907」、室温(25℃)条件下で固体)を、前記液晶化合物(I)~(IV)の総量100質量部に対して5.0質量部となる割合で添加して、前記液晶化合物(I)~(IV)と前記重合開始剤とを混合してなる第二の混合物(固体)を得た。次いで、前記第二の混合物を、プロピレングリコール1-モノメチルエーテル2-アセタート(溶媒)中に溶解させて第三の混合物(混合溶液)を得た。なお、このような第三の混合物の製造に際しては、前記第三の混合物中の溶媒の含有量が80質量%となり、前記液晶化合物(I)~(IV)と前記重合開始剤との総量が20質量%となるようにして溶媒を用いた。 Next, the liquid crystal compounds (I) to (IV) are mixed with liquid crystal compound (I): 35 mass%, liquid crystal compound (II): 23 mass%, liquid crystal compound (III): 23 mass%, and liquid crystal compound ( IV): The first mixture (liquid crystal monomer mixture) was obtained by mixing at a mass ratio of 19% by mass. Next, a polymerization initiator (trade name “Irgacure 907” manufactured by Ciba-Geigy, Switzerland, solid at room temperature (25 ° C.)) is added to the liquid crystal compounds (I) to (1) to the first mixture. The second mixture (solid) obtained by adding 5.0 parts by mass with respect to 100 parts by mass of the total amount of IV) and mixing the liquid crystal compounds (I) to (IV) and the polymerization initiator ) Next, the second mixture was dissolved in propylene glycol 1-monomethyl ether 2-acetate (solvent) to obtain a third mixture (mixed solution). In producing the third mixture, the content of the solvent in the third mixture is 80% by mass, and the total amount of the liquid crystal compounds (I) to (IV) and the polymerization initiator is The solvent was used so that it might become 20 mass%.
 次いで、前記第三の混合物(混合溶液)に対して、トリフェニルホスフィン(キシダ化学社製の商品名「トリフェニルホスフィン」)を、前記第三の混合物(混合溶液)に含まれる前記液晶化合物(I)~(IV)の総量100質量部に対して5.0質量部となる割合で添加し、上記一般式(110)~(113)で表わされる重合性液晶化合物(前記液晶化合物(I)~(IV)の混合物)とトリフェニルホスフィンと重合開始剤と溶媒とを含む液晶組成物を得た。 Next, with respect to the third mixture (mixed solution), triphenylphosphine (trade name “Triphenylphosphine” manufactured by Kishida Chemical Co., Ltd.) is added to the liquid crystal compound contained in the third mixture (mixed solution) ( A polymerizable liquid crystal compound represented by the above general formulas (110) to (113) (the liquid crystal compound (I)) is added at a ratio of 5.0 parts by mass with respect to 100 parts by mass of the total amount of I) to (IV). To (IV) mixture), triphenylphosphine, a polymerization initiator, and a solvent were obtained.
 〈液晶フィルムの調製〉
 先ず、基材としてCOPフィルム(日本ゼオン社製の商品名「Zeonor」、膜厚:20μm)を準備し、かかる基材にコロナ放電処理(コロナ放電の照射量:100W/m・分)を施した。次いで、前記コロナ放電処理後の前記基材(COPフィルム)に対して、上述のようにして得られた液晶組成物をスピンコート法により塗布(コーティング)して、塗膜(ウエット膜厚:5μm)を形成し、塗膜と基材との積層体を得た。
<Preparation of liquid crystal film>
First, a COP film (trade name “Zeonor” manufactured by Nippon Zeon Co., Ltd., film thickness: 20 μm) is prepared as a base material, and corona discharge treatment (corona discharge irradiation amount: 100 W / m 2 · min) is applied to the base material. gave. Next, the liquid crystal composition obtained as described above was applied (coated) to the base material (COP film) after the corona discharge treatment by a spin coating method to form a coating film (wet film thickness: 5 μm). ) To obtain a laminate of the coating film and the substrate.
 次に、前記塗膜と基材との積層体を圧力:1013hPa、温度:室温(25℃)の条件下において2分間静置することにより、前記塗膜から溶媒を乾燥除去した(溶媒除去工程)。なお、基材へのコーティング完了から2分経過後には、前記塗膜の全面から溶媒が除去された。また、このような溶媒除去工程においては、一対の直交偏光板の間に前記塗膜と基材との積層体を配置して、前記塗膜と基材との積層体を静置した後(液晶組成物のコーティング完了後)、2分経過させる間において、前記塗膜面に対して垂直な方向から肉眼で前記塗膜の状態(乾燥状態及び配向状態)を確認したところ、液晶組成物のコーティング完了から約1分後には、溶媒の乾燥とともに前記塗膜中において液晶化合物がホメオトロピック配向(垂直配向)している箇所が現れ、コーティング完了から2分経過後には前記塗膜の全面から溶媒が除去され、その乾燥後の塗膜の全面に渡って液晶化合物がホメオトロピック配向(垂直配向)していることが確認された。 Next, the laminate of the coating film and the substrate was left to stand for 2 minutes under the conditions of pressure: 1013 hPa and temperature: room temperature (25 ° C.), thereby removing the solvent from the coating film by drying (solvent removal step). ). In addition, the solvent was removed from the whole surface of the said coating film after 2 minutes passed from the completion of the coating to a base material. Moreover, in such a solvent removal process, after arrange | positioning the laminated body of the said coating film and a base material between a pair of orthogonal polarizing plates, and standing the laminated body of the said coating film and a base material (liquid crystal composition) After the coating of the product is completed), the coating state of the liquid crystal composition is completed when the state of the coating film (dried state and orientation state) is confirmed with the naked eye from a direction perpendicular to the coating film surface after 2 minutes have passed. After about 1 minute, the liquid crystal compound is homeotropically aligned (vertically aligned) in the coating as the solvent is dried, and the solvent is removed from the entire surface of the coating after 2 minutes from the completion of coating. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the dried coating film.
 次いで、前記溶媒除去工程により乾燥した後の塗膜に対して、照度:15mW/cmの高圧水銀ランプを用いて、積算照射量が200mJ/cmとなるようにして、紫外光(ただし、365nmの波長の光を測定した光量)を照射することにより、前記液晶化合物を重合(硬化)して配向状態を固定化し、基材(COPフィルム)上に配向状態が固定化された液晶フィルムが積層された液晶フィルム積層体(液晶フィルムとCOPフィルムの積層体)を得た。このようにして得られた液晶フィルム積層体中の液晶フィルムの膜厚を、ニコン社製の商品名「デジマイクロ」を用いて測定したところ、液晶フィルムの膜厚は1μmであった。 Next, with respect to the coating film dried by the solvent removal step, using a high-pressure mercury lamp with an illuminance of 15 mW / cm 2 , the integrated irradiation amount is 200 mJ / cm 2, and ultraviolet light (however, A liquid crystal film in which the alignment state is fixed by polymerizing (curing) the liquid crystal compound by irradiating light having a wavelength of 365 nm, and the alignment state is fixed on the substrate (COP film). A laminated liquid crystal film laminate (a laminate of a liquid crystal film and a COP film) was obtained. When the film thickness of the liquid crystal film in the liquid crystal film laminate thus obtained was measured using a trade name “Digimicro” manufactured by Nikon Corporation, the film thickness of the liquid crystal film was 1 μm.
 〈液晶フィルムの配向状態の測定〉
 このようにして得られた液晶フィルムの光学特性を以下のようにして評価した。すなわち、測定試料として前記液晶フィルム積層体を用い、測定装置としてaxo-matrix社製の商品名「axoscan」を用い、測定光を590nmとして、視野角を0°から大きくなるように変更しながら(液晶フィルムに対して垂直な方向を視野角0°とする)、様々な視野角において位相差を測定して、液晶フィルムに対して垂直な方向と、別の角度から測定した場合(視野角をより大きな角度となるように変更した場合)との前記試料の位相差の相違を確認することにより、前記液晶フィルムの光学特性を評価した。
<Measurement of alignment state of liquid crystal film>
The optical properties of the liquid crystal film thus obtained were evaluated as follows. That is, the liquid crystal film laminate was used as a measurement sample, the product name “axoscan” manufactured by axo-matrix was used as a measurement device, the measurement light was changed to 590 nm, and the viewing angle was changed from 0 ° to larger ( When the direction perpendicular to the liquid crystal film is set to a viewing angle of 0 °, the phase difference is measured at various viewing angles, and the direction perpendicular to the liquid crystal film is measured from another angle (the viewing angle is The optical properties of the liquid crystal film were evaluated by confirming the difference in the phase difference of the sample from the case where the angle was changed to a larger angle.
 このような位相差の測定により、上述のようにして得られた液晶フィルムを備える測定試料においては、その液晶フィルムに垂直な方向(視野角を0°の方向)では位相差が確認されず(位相差がなく)、視野角が大きくなるほど位相差が増加することが確認された。また、このような位相差の測定においては、前記液晶フィルムは、視野角の-方向と+方向とにおいて位相差の値が互いに対称性を有するものであることが確認された。そのため、このようにして得られた液晶フィルムは、そのフィルム面(液晶フィルムの表面)に対して垂直な方向に液晶分子が配向したものであること(ホメオトロピック配向が形成されていること)が確認された。 In the measurement sample provided with the liquid crystal film obtained as described above by the measurement of such a phase difference, no phase difference is confirmed in a direction perpendicular to the liquid crystal film (viewing angle is 0 °) ( It was confirmed that the phase difference increases as the viewing angle increases. In addition, in the measurement of the phase difference, it was confirmed that the liquid crystal film had symmetry in the phase difference value in the − direction and the + direction of the viewing angle. Therefore, the liquid crystal film thus obtained has liquid crystal molecules aligned in a direction perpendicular to the film surface (the surface of the liquid crystal film) (homeotropic alignment is formed). confirmed.
 〈基材に対する液晶フィルムの密着性の測定〉
 基材(COPフィルム)と液晶フィルムとの間の層間密着性を調べるため、前記液晶フィルム積層体の液晶フィルムの表面上に粘着テープ(3M社製の商品名「メンディングテープ810」)を10N/mの圧力で押し付けて密着させた後、150cm/sの速度で前記粘着テープを前記液晶フィルム積層体から剥離させて、基材(COPフィルム)と液晶フィルムとの間の界面に剥離が生じるか否かを確認し、基材(COPフィルム)と液晶フィルムとの間の密着性を測定した。
<Measurement of adhesion of liquid crystal film to substrate>
In order to examine the interlayer adhesion between the substrate (COP film) and the liquid crystal film, 10 pressure-sensitive adhesive tapes (trade name “Mending Tape 810” manufactured by 3M) were applied on the surface of the liquid crystal film of the liquid crystal film laminate. After pressing and adhering at a pressure of 7 N / m 2, the adhesive tape is peeled off from the liquid crystal film laminate at a speed of 150 cm / s to form an interface between the base material (COP film) and the liquid crystal film. It was confirmed whether peeling occurred or not, and the adhesion between the substrate (COP film) and the liquid crystal film was measured.
 このような測定により、剥離は前記粘着テープと液晶フィルムとの界面に生じており、基材(COPフィルム)と液晶フィルムとの間において剥離は確認されなかった。そのため、上述のようにして得られた液晶フィルム積層体は、基材(COPフィルム)と液晶フィルムとの間の層間密着力が十分に高度なものであることが確認された。このような液晶フィルム積層体の特性等を表1に示す。 According to such measurement, peeling occurred at the interface between the adhesive tape and the liquid crystal film, and no peeling was confirmed between the base material (COP film) and the liquid crystal film. Therefore, it was confirmed that the liquid crystal film laminate obtained as described above has a sufficiently high interlayer adhesion between the base material (COP film) and the liquid crystal film. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (実施例2)
 前記トリフェニルホスフィンの添加量を、前記液晶化合物(I)~(IV)の総量100質量部に対して3.0質量部に変更した以外は実施例1と同様にして液晶フィルム積層体(基材(COPフィルム)と液晶フィルム(厚さ:1μm)との積層体)を得た。
(Example 2)
A liquid crystal film laminate (base) was prepared in the same manner as in Example 1 except that the amount of triphenylphosphine added was changed to 3.0 parts by mass with respect to 100 parts by mass of the total amount of the liquid crystal compounds (I) to (IV). A laminate of a material (COP film) and a liquid crystal film (thickness: 1 μm) was obtained.
 なお、実施例2においても、実施例1と同様に、前記溶媒除去工程において、前記塗膜の状態(乾燥状態及び配向状態)を確認したところ、液晶組成物のコーティング完了から約1分後には、溶媒の乾燥とともに前記塗膜中において液晶化合物がホメオトロピック配向(垂直配向)している箇所が現れ、コーティング完了から2分経過後には前記塗膜の全面から溶媒が除去され、その乾燥後の塗膜の全面に亘って液晶化合物がホメオトロピック配向(垂直配向)していることが確認された。 In Example 2, as in Example 1, when the state of the coating film (dried state and orientation state) was confirmed in the solvent removal step, about 1 minute after the completion of the coating of the liquid crystal composition, When the solvent is dried, a portion where the liquid crystal compound is homeotropically aligned (vertical alignment) appears in the coating film, and after 2 minutes from the completion of the coating, the solvent is removed from the entire surface of the coating film. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the coating film.
 また、実施例2で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、液晶フィルム(硬化後の液晶フィルム)の配向状態を測定したところ、実施例1と同様に、液晶フィルムにおいて、液晶分子が液晶フィルム面に対して垂直な方向に配向していること(ホメオトロピック配向が形成されていること)が確認された。また、実施例2で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、基材に対する液晶フィルムの密着性の測定を行ったところ、基材(COPフィルム)と液晶フィルムとの間において剥離は確認されず、基材(COPフィルム)と液晶フィルムとの間の層間密着力が十分に高度なものであることが確認された。このような液晶フィルム積層体の特性等を表1に示す。 Moreover, when the alignment state of the liquid crystal film (cured liquid crystal film) was measured in the same manner as the method employed in Example 1 using the liquid crystal film laminate obtained in Example 2, the Example In the same manner as in No. 1, it was confirmed that the liquid crystal molecules were aligned in a direction perpendicular to the liquid crystal film surface (homeotropic alignment was formed). Moreover, when the liquid crystal film laminate obtained in Example 2 was used to measure the adhesion of the liquid crystal film to the substrate in the same manner as in Example 1, the substrate (COP) was measured. No peeling was confirmed between the film) and the liquid crystal film, and it was confirmed that the interlayer adhesion between the substrate (COP film) and the liquid crystal film was sufficiently high. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (実施例3)
 前記トリフェニルホスフィンの添加量を、前記液晶化合物(I)~(IV)の総量100質量部に対して1.0質量部に変更した以外は実施例1と同様にして液晶フィルム積層体(基材(COPフィルム)と液晶フィルム(厚さ:1μm)との積層体)を得た。
(Example 3)
A liquid crystal film laminate (base) was prepared in the same manner as in Example 1, except that the addition amount of the triphenylphosphine was changed to 1.0 part by mass with respect to 100 parts by mass of the total amount of the liquid crystal compounds (I) to (IV). A laminate of a material (COP film) and a liquid crystal film (thickness: 1 μm) was obtained.
 なお、実施例3においても、実施例1と同様に、前記溶媒除去工程において、前記塗膜の状態(乾燥状態及び配向状態)を確認したところ、液晶組成物のコーティング完了から約1分後には、溶媒の乾燥とともに前記塗膜中において液晶化合物がホメオトロピック配向(垂直配向)している箇所が現れ、コーティング完了から2分経過後には前記塗膜の全面から溶媒が除去され、その乾燥後の塗膜の全面に亘って液晶化合物がホメオトロピック配向(垂直配向)していることが確認された。 Also in Example 3, as in Example 1, when the state of the coating film (dried state and orientation state) was confirmed in the solvent removal step, about 1 minute after the completion of the coating of the liquid crystal composition. When the solvent is dried, a portion where the liquid crystal compound is homeotropically aligned (vertical alignment) appears in the coating film, and after 2 minutes from the completion of the coating, the solvent is removed from the entire surface of the coating film. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the coating film.
 また、実施例3で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、液晶フィルム(硬化後の液晶フィルム)の配向状態を測定したところ、実施例1と同様に、液晶フィルムにおいて、液晶分子が液晶フィルム面に対して垂直な方向に配向していること(ホメオトロピック配向が形成されていること)が確認された。また、実施例3で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、基材に対する液晶フィルムの密着性の測定を行ったところ、基材(COPフィルム)と液晶フィルムとの間において剥離は確認されず、基材(COPフィルム)と液晶フィルムとの間の層間密着力が十分に高度なものであることが確認された。このような液晶フィルム積層体の特性等を表1に示す。 Moreover, when the orientation state of a liquid crystal film (cured liquid crystal film) was measured in the same manner as in the method employed in Example 1 using the liquid crystal film laminate obtained in Example 3, the Example In the same manner as in No. 1, it was confirmed that the liquid crystal molecules were aligned in a direction perpendicular to the liquid crystal film surface (homeotropic alignment was formed). Moreover, when the liquid crystal film laminate obtained in Example 3 was used to measure the adhesion of the liquid crystal film to the substrate in the same manner as in the method employed in Example 1, the substrate (COP) was measured. No peeling was confirmed between the film) and the liquid crystal film, and it was confirmed that the interlayer adhesion between the substrate (COP film) and the liquid crystal film was sufficiently high. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (実施例4)
 第一の混合物(液晶モノマー混合物)を得る際の前記液晶化合物(I)~(IV)の質量比を、液晶化合物(I):38質量%、液晶化合物(II):25質量%、液晶化合物(III):25質量%、及び、液晶化合物(IV):12質量%に変更した以外は、実施例1と同様にして液晶フィルム積層体(基材(COPフィルム)と液晶フィルム(厚さ:1μm)との積層体)を得た。
(Example 4)
The mass ratio of the liquid crystal compounds (I) to (IV) in obtaining the first mixture (liquid crystal monomer mixture) is as follows: liquid crystal compound (I): 38 mass%, liquid crystal compound (II): 25 mass%, liquid crystal compound (III): A liquid crystal film laminate (base material (COP film) and liquid crystal film (thickness: thickness) in the same manner as in Example 1 except that it was changed to 25% by mass and liquid crystal compound (IV): 12% by mass. 1 μm) was obtained.
 なお、実施例4においても、実施例1と同様に、前記溶媒除去工程において、前記塗膜の状態(乾燥状態及び配向状態)を確認したところ、液晶組成物のコーティング完了から約1分後には、溶媒の乾燥とともに前記塗膜中において液晶化合物がホメオトロピック配向(垂直配向)している箇所が現れ、コーティング完了から2分経過後には前記塗膜の全面から溶媒が除去され、その乾燥後の塗膜の全面に亘って液晶化合物がホメオトロピック配向(垂直配向)していることが確認された。 Also in Example 4, as in Example 1, when the state of the coating film (dried state and orientation state) was confirmed in the solvent removal step, about 1 minute after the completion of the coating of the liquid crystal composition, When the solvent is dried, a portion where the liquid crystal compound is homeotropically aligned (vertical alignment) appears in the coating film, and after 2 minutes from the completion of the coating, the solvent is removed from the entire surface of the coating film. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the coating film.
 また、実施例4で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、液晶フィルム(硬化後の液晶フィルム)の配向状態を測定したところ、実施例1と同様に、液晶フィルムにおいて、液晶分子が液晶フィルム面に対して垂直な方向に配向していること(ホメオトロピック配向が形成されていること)が確認された。また、実施例4で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、基材に対する液晶フィルムの密着性の測定を行ったところ、基材(COPフィルム)と液晶フィルムとの間において剥離は確認されず、基材(COPフィルム)と液晶フィルムとの間の層間密着力が十分に高度なものであることが確認された。このような液晶フィルム積層体の特性等を表1に示す。 Moreover, when the orientation state of the liquid crystal film (cured liquid crystal film) was measured in the same manner as the method employed in Example 1 using the liquid crystal film laminate obtained in Example 4, the Example In the same manner as in No. 1, it was confirmed that the liquid crystal molecules were aligned in a direction perpendicular to the liquid crystal film surface (homeotropic alignment was formed). Further, when the adhesion of the liquid crystal film to the substrate was measured using the liquid crystal film laminate obtained in Example 4 in the same manner as the method employed in Example 1, the substrate (COP) was measured. No peeling was confirmed between the film) and the liquid crystal film, and it was confirmed that the interlayer adhesion between the substrate (COP film) and the liquid crystal film was sufficiently high. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (実施例5)
 前記トリフェニルホスフィンの添加量を、前記液晶化合物(I)~(IV)の総量100質量部に対して3.0質量部に変更した以外は実施例4と同様にして液晶フィルム積層体(基材(COPフィルム)と液晶フィルム(厚さ:1μm)との積層体)を得た。
(Example 5)
A liquid crystal film laminate (base) was prepared in the same manner as in Example 4 except that the amount of triphenylphosphine added was changed to 3.0 parts by mass relative to 100 parts by mass of the total amount of the liquid crystal compounds (I) to (IV). A laminate of a material (COP film) and a liquid crystal film (thickness: 1 μm) was obtained.
 なお、実施例5においても、実施例4と同様に、前記溶媒除去工程において、前記塗膜の状態(乾燥状態及び配向状態)を確認したところ、液晶組成物のコーティング完了から約1分後には、溶媒の乾燥とともに前記塗膜中において液晶化合物がホメオトロピック配向(垂直配向)している箇所が現れ、コーティング完了から2分経過後には前記塗膜の全面から溶媒が除去され、その乾燥後の塗膜の全面に亘って液晶化合物がホメオトロピック配向(垂直配向)していることが確認された。 In Example 5, as in Example 4, when the state of the coating film (dried state and orientation state) was confirmed in the solvent removal step, about 1 minute after the completion of the coating of the liquid crystal composition, When the solvent is dried, a portion where the liquid crystal compound is homeotropically aligned (vertical alignment) appears in the coating film, and after 2 minutes from the completion of the coating, the solvent is removed from the entire surface of the coating film. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the coating film.
 また、実施例5で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、液晶フィルム(硬化後の液晶フィルム)の配向状態を測定したところ、実施例1と同様に、液晶フィルムにおいて、液晶分子が液晶フィルム面に対して垂直な方向に配向していること(ホメオトロピック配向が形成されていること)が確認された。また、実施例5で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、基材に対する液晶フィルムの密着性の測定を行ったところ、基材(COPフィルム)と液晶フィルムとの間において剥離は確認されず、基材(COPフィルム)と液晶フィルムとの間の層間密着力が十分に高度なものであることが確認された。このような液晶フィルム積層体の特性等を表1に示す。 Moreover, when the orientation state of the liquid crystal film (cured liquid crystal film) was measured in the same manner as the method employed in Example 1 using the liquid crystal film laminate obtained in Example 5, the Example In the same manner as in No. 1, it was confirmed that the liquid crystal molecules were aligned in a direction perpendicular to the liquid crystal film surface (homeotropic alignment was formed). Moreover, when the liquid crystal film laminate obtained in Example 5 was used to measure the adhesion of the liquid crystal film to the base material in the same manner as in Example 1, the base material (COP) No peeling was confirmed between the film) and the liquid crystal film, and it was confirmed that the interlayer adhesion between the substrate (COP film) and the liquid crystal film was sufficiently high. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (実施例6)
 前記トリフェニルホスフィンの添加量を、前記液晶化合物(I)~(IV)の総量100質量部に対して1.0質量部に変更した以外は実施例4と同様にして液晶フィルム積層体(基材(COPフィルム)と液晶フィルム(厚さ:1μm)との積層体)を得た。
(Example 6)
A liquid crystal film laminate (base) was prepared in the same manner as in Example 4 except that the amount of triphenylphosphine added was changed to 1.0 part by mass with respect to 100 parts by mass of the total amount of the liquid crystal compounds (I) to (IV). A laminate of a material (COP film) and a liquid crystal film (thickness: 1 μm) was obtained.
 なお、実施例6においても、実施例4と同様に、前記溶媒除去工程において、前記塗膜の状態(乾燥状態及び配向状態)を確認したところ、液晶組成物のコーティング完了から約1分後には、溶媒の乾燥とともに前記塗膜中において液晶化合物がホメオトロピック配向(垂直配向)している箇所が現れ、コーティング完了から2分経過後には前記塗膜の全面から溶媒が除去され、その乾燥後の塗膜の全面に亘って液晶化合物がホメオトロピック配向(垂直配向)していることが確認された。 In Example 6, as in Example 4, when the state of the coating film (dried state and orientation state) was confirmed in the solvent removal step, about 1 minute after the completion of the coating of the liquid crystal composition. When the solvent is dried, a portion where the liquid crystal compound is homeotropically aligned (vertical alignment) appears in the coating film, and after 2 minutes from the completion of the coating, the solvent is removed from the entire surface of the coating film. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the coating film.
 また、実施例6で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、液晶フィルム(硬化後の液晶フィルム)の配向状態を測定したところ、実施例1と同様に、液晶フィルムにおいて、液晶分子が液晶フィルム面に対して垂直な方向に配向していること(ホメオトロピック配向が形成されていること)が確認された。また、実施例6で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、基材に対する液晶フィルムの密着性の測定を行ったところ、基材(COPフィルム)と液晶フィルムとの間において剥離は確認されず、基材(COPフィルム)と液晶フィルムとの間の層間密着力が十分に高度なものであることが確認された。このような液晶フィルム積層体の特性等を表1に示す。 Moreover, when the orientation state of the liquid crystal film (cured liquid crystal film) was measured in the same manner as the method employed in Example 1 using the liquid crystal film laminate obtained in Example 6, the Example In the same manner as in No. 1, it was confirmed that the liquid crystal molecules were aligned in a direction perpendicular to the liquid crystal film surface (homeotropic alignment was formed). In addition, when the liquid crystal film laminate obtained in Example 6 was used to measure the adhesion of the liquid crystal film to the substrate in the same manner as in the method employed in Example 1, the substrate (COP) was measured. No peeling was confirmed between the film) and the liquid crystal film, and it was confirmed that the interlayer adhesion between the substrate (COP film) and the liquid crystal film was sufficiently high. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (実施例7)
 前記トリフェニルホスフィンの代わりにトリスヒドロキシメチルホスフィン(アルドリッチ社製の商品名「Tris(hydroxymethyl)phosphine」)を用い、前記トリスヒドロキシメチルホスフィンの添加量を前記液晶化合物(I)~(IV)の総量100質量部に対して1.0質量部とした以外は実施例4と同様にして液晶フィルム積層体(基材(COPフィルム)と液晶フィルム(厚さ:1μm)との積層体)を得た。
(Example 7)
Instead of the triphenylphosphine, trishydroxymethylphosphine (trade name “Tris (hydroxymethyl) phosphine” manufactured by Aldrich) was used, and the amount of the trishydroxymethylphosphine added was the total amount of the liquid crystal compounds (I) to (IV). A liquid crystal film laminate (a laminate of a base material (COP film) and a liquid crystal film (thickness: 1 μm)) was obtained in the same manner as in Example 4 except that 1.0 part by mass with respect to 100 parts by mass was obtained. .
 なお、実施例7においても、実施例4と同様に、前記溶媒除去工程において、前記塗膜の状態(乾燥状態及び配向状態)を確認したところ、液晶組成物のコーティング完了から約1分後には、溶媒の乾燥とともに前記塗膜中において液晶化合物がホメオトロピック配向(垂直配向)している箇所が現れ、コーティング完了から2分経過後には前記塗膜の全面から溶媒が除去され、その乾燥後の塗膜の全面に亘って液晶化合物がホメオトロピック配向(垂直配向)していることが確認された。 In Example 7, as in Example 4, when the state of the coating film (dried state and orientation state) was confirmed in the solvent removal step, about 1 minute after the completion of the coating of the liquid crystal composition. When the solvent is dried, a portion where the liquid crystal compound is homeotropically aligned (vertical alignment) appears in the coating film, and after 2 minutes from the completion of the coating, the solvent is removed from the entire surface of the coating film. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the coating film.
 また、実施例7で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、液晶フィルム(硬化後の液晶フィルム)の配向状態を測定したところ、実施例1と同様に、液晶フィルムにおいて、液晶分子が液晶フィルム面に対して垂直な方向に配向していること(ホメオトロピック配向が形成されていること)が確認された。また、実施例7で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、基材に対する液晶フィルムの密着性の測定を行ったところ、基材(COPフィルム)と液晶フィルムとの間において剥離は確認されず、基材(COPフィルム)と液晶フィルムとの間の層間密着力が十分に高度なものであることが確認された。このような液晶フィルム積層体の特性等を表1に示す。 Moreover, when the orientation state of the liquid crystal film (cured liquid crystal film) was measured in the same manner as the method employed in Example 1 using the liquid crystal film laminate obtained in Example 7, the Example In the same manner as in No. 1, it was confirmed that the liquid crystal molecules were aligned in a direction perpendicular to the liquid crystal film surface (homeotropic alignment was formed). Further, when the adhesion of the liquid crystal film to the substrate was measured using the liquid crystal film laminate obtained in Example 7 in the same manner as in the method employed in Example 1, the substrate (COP) was measured. No peeling was confirmed between the film) and the liquid crystal film, and it was confirmed that the interlayer adhesion between the substrate (COP film) and the liquid crystal film was sufficiently high. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (比較例1)
 液晶組成物の調製時にトリフェニルホスフィンを添加せず、上記一般式(110)~(113)で表わされる重合性液晶化合物(前記液晶化合物(I)~(IV)の混合物)と重合開始剤と溶媒との混合物を比較用の液晶組成物として利用した以外は、実施例1と同様にして液晶フィルム積層体(基材(COPフィルム)と前記液晶組成物の硬化膜[液晶フィルム(厚さ:1μm)]との積層体)を得た。
(Comparative Example 1)
A polymerizable liquid crystal compound represented by the above general formulas (110) to (113) (a mixture of the liquid crystal compounds (I) to (IV)) and a polymerization initiator are added without adding triphenylphosphine during the preparation of the liquid crystal composition. A liquid crystal film laminate (a substrate (COP film) and a cured film of the liquid crystal composition [liquid crystal film (thickness: thickness)) was used in the same manner as in Example 1 except that a mixture with a solvent was used as a comparative liquid crystal composition. 1 μm)] was obtained.
 なお、一対の直交偏光板の間に前記液晶フィルム積層体を配置して液晶フィルム(前記液晶組成物の硬化膜)の表面に対して垂直な方向から、肉眼で液晶フィルム(前記液晶組成物の硬化膜)の状態を測定したところ、比較例1で得られた液晶フィルム積層体においては、激しい光の漏洩が確認され、形成された液晶フィルム(前記液晶組成物の硬化膜)において液晶分子が垂直配向していないことが分かった。このような液晶フィルム積層体の特性等を表1に示す。 The liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) Was measured, and in the liquid crystal film laminate obtained in Comparative Example 1, severe light leakage was confirmed, and the liquid crystal molecules in the formed liquid crystal film (cured film of the liquid crystal composition) were vertically aligned. I found out that it was not. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (比較例2)
 溶媒除去工程において溶媒の乾燥除去のための時間(静置した時間)を2分間から1時間に変更した以外は、比較例1と同様にして液晶フィルム積層体(基材(COPフィルム)と前記液晶組成物の硬化膜[液晶フィルム(厚さ:1μm)]との積層体)を得た。
(Comparative Example 2)
In the solvent removal step, the liquid crystal film laminate (base material (COP film) and the above-described material was used in the same manner as in Comparative Example 1 except that the time for drying and removing the solvent (time for standing) was changed from 2 minutes to 1 hour. A cured film of the liquid crystal composition [a laminate with a liquid crystal film (thickness: 1 μm)] was obtained.
 なお、一対の直交偏光板の間に前記液晶フィルム積層体を配置して液晶フィルム(前記液晶組成物の硬化膜)の表面に対して垂直な方向から、肉眼で液晶フィルム(前記液晶組成物の硬化膜)の状態を測定すると、比較例2で得られた液晶フィルム積層体においては、激しい光の漏洩が確認され、形成された液晶フィルム(前記液晶組成物の硬化膜)において液晶分子が垂直配向していないことが分かった。このような液晶フィルム積層体の特性等を表1に示す。 The liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) Is measured, in the liquid crystal film laminate obtained in Comparative Example 2, severe light leakage is confirmed, and the liquid crystal molecules are vertically aligned in the formed liquid crystal film (cured film of the liquid crystal composition). I found out. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (比較例3)
 液晶組成物の調製時にトリフェニルホスフィンを添加せず、上記一般式(110)~(113)で表わされる重合性液晶化合物(前記液晶化合物(I)~(IV)の混合物)と重合開始剤と溶媒との混合物を比較用の液晶組成物として利用した以外は、実施例4と同様にして液晶フィルム積層体(基材(COPフィルム)と前記液晶組成物の硬化膜[液晶フィルム(厚さ:1μm)]との積層体)を得た。
(Comparative Example 3)
A polymerizable liquid crystal compound represented by the above general formulas (110) to (113) (a mixture of the liquid crystal compounds (I) to (IV)) and a polymerization initiator are added without adding triphenylphosphine during the preparation of the liquid crystal composition. A liquid crystal film laminate (a substrate (COP film) and a cured film of the liquid crystal composition [liquid crystal film (thickness: thickness)) was used in the same manner as in Example 4 except that a mixture with a solvent was used as a liquid crystal composition for comparison. 1 μm)] was obtained.
 なお、一対の直交偏光板の間に前記液晶フィルム積層体を配置して液晶フィルム(前記液晶組成物の硬化膜)の表面に対して垂直な方向から、肉眼で液晶フィルム(前記液晶組成物の硬化膜)の状態を測定したところ、比較例3で得られた液晶フィルム積層体においては、激しい光の漏洩が確認され、形成された液晶フィルム(前記液晶組成物の硬化膜)において液晶分子が垂直配向していないことが分かった。このような液晶フィルム積層体の特性等を表1に示す。 The liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) Was measured, and in the liquid crystal film laminate obtained in Comparative Example 3, severe light leakage was confirmed, and the liquid crystal molecules were vertically aligned in the formed liquid crystal film (cured film of the liquid crystal composition). I found out that it was not. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (比較例4)
 溶媒除去工程において溶媒の乾燥除去のための時間(静置した時間)を2分間から1時間に変更した以外は、比較例3と同様にして液晶フィルム積層体(基材(COPフィルム)と前記液晶組成物の硬化膜[液晶フィルム(厚さ:1μm)]との積層体)を得た。
(Comparative Example 4)
A liquid crystal film laminate (base material (COP film) and the above-mentioned) was used in the same manner as in Comparative Example 3, except that the time for drying and removing the solvent (time for standing) was changed from 2 minutes to 1 hour in the solvent removal step. A cured film of the liquid crystal composition [a laminate with a liquid crystal film (thickness: 1 μm)] was obtained.
 なお、一対の直交偏光板の間に前記液晶フィルム積層体を配置して液晶フィルム(前記液晶組成物の硬化膜)の表面に対して垂直な方向から、肉眼で液晶フィルム(前記液晶組成物の硬化膜)の状態を測定すると、比較例4で得られた液晶フィルム積層体においては、激しい光の漏洩が確認され、形成された液晶フィルム(前記液晶組成物の硬化膜)において液晶分子が垂直配向していないことが分かった。このような液晶フィルム積層体の特性等を表1に示す。 The liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) Is measured, in the liquid crystal film laminate obtained in Comparative Example 4, severe light leakage is confirmed, and the liquid crystal molecules are vertically aligned in the formed liquid crystal film (cured film of the liquid crystal composition). I found out. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (比較例5)
 前記トリフェニルホスフィンの代わりにトリエチルアミンを用い、前記トリエチルアミンの添加量を前記液晶化合物(I)~(IV)の総量100質量部に対して5.0質量部とした以外は実施例4と同様にして液晶フィルム積層体(基材(COPフィルム)と前記液晶組成物の硬化膜[液晶フィルム(厚さ:1μm)]との積層体)を得た。
(Comparative Example 5)
Example 3 was repeated except that triethylamine was used in place of the triphenylphosphine, and the addition amount of the triethylamine was 5.0 parts by mass with respect to 100 parts by mass of the total amount of the liquid crystal compounds (I) to (IV). Thus, a liquid crystal film laminate (a laminate of a substrate (COP film) and a cured film of the liquid crystal composition [liquid crystal film (thickness: 1 μm)]) was obtained.
 なお、一対の直交偏光板の間に前記液晶フィルム積層体を配置して液晶フィルム(前記液晶組成物の硬化膜)の表面に対して垂直な方向から、肉眼で液晶フィルム(前記液晶組成物の硬化膜)の状態を測定したところ、比較例5で得られた液晶フィルム積層体においては、激しい光の漏洩が確認され、形成された液晶フィルム(前記液晶組成物の硬化膜)において液晶分子が垂直配向していないことが分かった。このような液晶フィルム積層体の特性等を表1に示す。 The liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) Was measured, and in the liquid crystal film laminate obtained in Comparative Example 5, severe light leakage was confirmed, and the liquid crystal molecules were vertically aligned in the formed liquid crystal film (cured film of the liquid crystal composition). I found out that it was not. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (比較例6)
 溶媒除去工程において溶媒の乾燥除去のための時間(静置した時間)を2分間から1時間に変更した以外は、比較例5と同様にして液晶フィルム積層体(基材(COPフィルム)と前記液晶組成物の硬化膜[液晶フィルム(厚さ:1μm)]との積層体)を得た。
(Comparative Example 6)
A liquid crystal film laminate (base material (COP film) and the above-mentioned) was used in the same manner as in Comparative Example 5 except that the time for drying and removing the solvent (time for standing) was changed from 2 minutes to 1 hour in the solvent removal step. A cured film of the liquid crystal composition [a laminate with a liquid crystal film (thickness: 1 μm)] was obtained.
 なお、一対の直交偏光板の間に前記液晶フィルム積層体を配置して液晶フィルム(前記液晶組成物の硬化膜)の表面に対して垂直な方向から、肉眼で液晶フィルム(前記液晶組成物の硬化膜)の状態を測定すると、比較例6で得られた液晶フィルム積層体においては、激しい光の漏洩が確認され、形成された液晶フィルム(前記液晶組成物の硬化膜)において液晶分子が垂直配向していないことが分かった。このような液晶フィルム積層体の特性等を表1に示す。 The liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) Is measured, in the liquid crystal film laminate obtained in Comparative Example 6, severe light leakage is confirmed, and the liquid crystal molecules are vertically aligned in the formed liquid crystal film (cured film of the liquid crystal composition). I found out. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (比較例7)
 前記トリフェニルホスフィンの代わりにトリフェニルアミンを用い、前記トリフェニルアミンの添加量を前記液晶化合物(I)~(IV)の総量100質量部に対して5.0質量部とした以外は実施例4と同様にして液晶フィルム積層体(基材(COPフィルム)と前記液晶組成物の硬化膜[液晶フィルム(厚さ:1μm)]との積層体)を得た。
(Comparative Example 7)
Example except that triphenylamine was used in place of the triphenylphosphine, and the addition amount of the triphenylamine was 5.0 parts by mass with respect to 100 parts by mass of the total amount of the liquid crystal compounds (I) to (IV). 4, a liquid crystal film laminate (a laminate of a substrate (COP film) and a cured film of the liquid crystal composition [liquid crystal film (thickness: 1 μm)]) was obtained.
 なお、一対の直交偏光板の間に前記液晶フィルム積層体を配置して液晶フィルム(前記液晶組成物の硬化膜)の表面に対して垂直な方向から、肉眼で液晶フィルム(前記液晶組成物の硬化膜)の状態を測定したところ、比較例7で得られた液晶フィルム積層体においては、激しい光の漏洩が確認され、形成された液晶フィルム(前記液晶組成物の硬化膜)において液晶分子が垂直配向していないことが分かった。このような液晶フィルム積層体の特性等を表1に示す。 The liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) Was measured, and in the liquid crystal film laminate obtained in Comparative Example 7, severe light leakage was confirmed, and the liquid crystal molecules in the formed liquid crystal film (cured film of the liquid crystal composition) were vertically aligned. I found out that it was not. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (比較例8)
 溶媒除去工程において溶媒の乾燥除去のための時間(静置した時間)を2分間から1時間に変更した以外は、比較例7と同様にして液晶フィルム積層体(基材(COPフィルム)と前記液晶組成物の硬化膜[液晶フィルム(厚さ:1μm)]との積層体)を得た。
(Comparative Example 8)
The liquid crystal film laminate (base material (COP film) and the above-described material was used in the same manner as in Comparative Example 7 except that the time for drying and removing the solvent (time for standing) was changed from 2 minutes to 1 hour in the solvent removal step. A cured film of the liquid crystal composition [a laminate with a liquid crystal film (thickness: 1 μm)] was obtained.
 なお、一対の直交偏光板の間に前記液晶フィルム積層体を配置して液晶フィルム(前記液晶組成物の硬化膜)の表面に対して垂直な方向から、肉眼で液晶フィルム(前記液晶組成物の硬化膜)の状態を測定すると、比較例8で得られた液晶フィルム積層体においては、激しい光の漏洩が確認され、形成された液晶フィルム(前記液晶組成物の硬化膜)において液晶分子が垂直配向していないことが分かった。このような液晶フィルム積層体の特性等を表1に示す。 The liquid crystal film laminate is disposed between a pair of orthogonal polarizing plates, and the liquid crystal film (cured film of the liquid crystal composition) is observed with the naked eye from a direction perpendicular to the surface of the liquid crystal film (cured film of the liquid crystal composition). ) Is measured, in the liquid crystal film laminate obtained in Comparative Example 8, severe light leakage is confirmed, and liquid crystal molecules are vertically aligned in the formed liquid crystal film (cured film of the liquid crystal composition). I found out. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (比較例9)
 前記トリフェニルホスフィンの代わりにフッ素系界面活性剤(AGCセイミケミカル株式会社製の商品名「SURFLON S-386」)を用い、前記フッ素系界面活性剤の添加量を前記液晶化合物(I)~(IV)の総量100質量部に対して0.5質量部とした以外は実施例4と同様にして液晶フィルム積層体(基材(COPフィルム)と液晶フィルム(厚さ:1μm)との積層体)を得た。
(Comparative Example 9)
Instead of the triphenylphosphine, a fluorosurfactant (trade name “SURFLON S-386” manufactured by AGC Seimi Chemical Co., Ltd.) was used, and the amount of the fluorosurfactant added was determined in the liquid crystal compounds (I) to (I) IV) A liquid crystal film laminate (a laminate of a substrate (COP film) and a liquid crystal film (thickness: 1 μm)) in the same manner as in Example 4 except that the amount was 0.5 parts by mass with respect to 100 parts by mass in total. )
 また、比較例9で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、液晶フィルム(硬化後の液晶フィルム)の配向状態を測定したところ、液晶フィルムにおいて、液晶分子が液晶フィルム面に対して垂直な方向に配向していること(ホメオトロピック配向が形成されていること)が確認された。 Further, when the alignment state of the liquid crystal film (cured liquid crystal film) was measured in the same manner as the method employed in Example 1 using the liquid crystal film laminate obtained in Comparative Example 9, the liquid crystal film was measured. It was confirmed that the liquid crystal molecules were aligned in a direction perpendicular to the liquid crystal film surface (homeotropic alignment was formed).
 さらに、比較例9で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、基材に対する液晶フィルムの密着性の測定を行ったところ、基材(COPフィルム)と液晶フィルムとの間において剥離が生じた。このように、比較例9で得られた液晶フィルム積層体においては、剥離界面が基材(COPフィルム)と液晶フィルムとの間の界面であったことから、基材(COPフィルム)と液晶フィルムとの間の層間密着力は不十分なものであることが分かった。このような液晶フィルム積層体の特性等を表1に示す。 Furthermore, when the adhesion of the liquid crystal film to the substrate was measured using the liquid crystal film laminate obtained in Comparative Example 9 in the same manner as in the method employed in Example 1, the substrate (COP) Peeling occurred between the film) and the liquid crystal film. Thus, in the liquid crystal film laminate obtained in Comparative Example 9, since the peeling interface was an interface between the base material (COP film) and the liquid crystal film, the base material (COP film) and the liquid crystal film It was found that the interlaminar adhesion between the two was insufficient. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (比較例10)
 前記トリフェニルホスフィンの代わりにアセチレングリコール系界面活性剤(日信化学工業社製の商品名「オルフィンEXP4036」)を用い、前記アセチレングリコール系界面活性剤の添加量を前記液晶化合物(I)~(IV)の総量100質量部に対して0.5質量部とした以外は実施例4と同様にして液晶フィルム積層体(基材(COPフィルム)と液晶フィルム(厚さ:1μm)との積層体)を得た。
(Comparative Example 10)
In place of the triphenylphosphine, an acetylene glycol surfactant (trade name “Orphine EXP4036” manufactured by Nissin Chemical Industry Co., Ltd.) was used, and the amount of the acetylene glycol surfactant added was determined in the liquid crystal compounds (I) to (I) IV) A liquid crystal film laminate (a laminate of a substrate (COP film) and a liquid crystal film (thickness: 1 μm)) in the same manner as in Example 4 except that the amount was 0.5 parts by mass with respect to 100 parts by mass in total. )
 また、比較例10で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、液晶フィルム(硬化後の液晶フィルム)の配向状態を測定したところ、実施例1と同様に、液晶フィルムにおいて、液晶分子が液晶フィルム面に対して垂直な方向に配向していること(ホメオトロピック配向が形成されていること)が確認された。 Moreover, when the orientation state of a liquid crystal film (cured liquid crystal film) was measured in the same manner as in Example 1 using the liquid crystal film laminate obtained in Comparative Example 10, the example was In the same manner as in No. 1, it was confirmed that the liquid crystal molecules were aligned in a direction perpendicular to the liquid crystal film surface (homeotropic alignment was formed).
 さらに、比較例10で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、基材に対する液晶フィルムの密着性の測定を行ったところ、基材(COPフィルム)と液晶フィルムとの間において剥離が生じた。このように、比較例10で得られた液晶フィルム積層体においては、剥離界面が基材(COPフィルム)と液晶フィルムとの間の界面であったことから、基材(COPフィルム)と液晶フィルムとの間の層間密着力は不十分なものであることが分かった。このような液晶フィルム積層体の特性等を表1に示す。 Furthermore, when the adhesion of the liquid crystal film to the substrate was measured using the liquid crystal film laminate obtained in Comparative Example 10 in the same manner as in Example 1, the substrate (COP) Peeling occurred between the film) and the liquid crystal film. Thus, in the liquid crystal film laminate obtained in Comparative Example 10, since the peeling interface was an interface between the base material (COP film) and the liquid crystal film, the base material (COP film) and the liquid crystal film It was found that the interlaminar adhesion between the two was insufficient. The characteristics of such a liquid crystal film laminate are shown in Table 1.
 (参考例1)
 前記トリフェニルホスフィンの代わりにトリフェニルホスフィンオキシドを用い、前記トリフェニルホスフィンオキシドの添加量を前記液晶化合物(I)~(IV)の総量100質量部に対して5.0質量部とした以外は実施例4と同様にして液晶フィルム積層体(基材(COPフィルム)と液晶フィルム(厚さ:1μm)との積層体)を得た。
(Reference Example 1)
Triphenylphosphine oxide was used instead of triphenylphosphine, and the addition amount of the triphenylphosphine oxide was 5.0 parts by mass with respect to 100 parts by mass of the total amount of the liquid crystal compounds (I) to (IV). In the same manner as in Example 4, a liquid crystal film laminate (a laminate of a base material (COP film) and a liquid crystal film (thickness: 1 μm)) was obtained.
 なお、参考例1においても、実施例4と同様に、前記溶媒除去工程において、前記塗膜の状態(乾燥状態及び配向状態)を確認したところ、液晶組成物のコーティング完了から約1分後には、溶媒の乾燥とともに前記塗膜中において液晶化合物がホメオトロピック配向(垂直配向)している箇所が現れ、コーティング完了から2分経過後には前記塗膜の全面から溶媒が除去され、その乾燥後の塗膜の全面に亘って液晶化合物がホメオトロピック配向(垂直配向)していることが確認された。 Also in Reference Example 1, as in Example 4, when the state of the coating film (dried state and orientation state) was confirmed in the solvent removal step, about 1 minute after completion of the coating of the liquid crystal composition. When the solvent is dried, a portion where the liquid crystal compound is homeotropically aligned (vertical alignment) appears in the coating film, and after 2 minutes from the completion of the coating, the solvent is removed from the entire surface of the coating film. It was confirmed that the liquid crystal compound had homeotropic alignment (vertical alignment) over the entire surface of the coating film.
 また、参考例1で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、液晶フィルム(硬化後の液晶フィルム)の配向状態を測定したところ、実施例1と同様に、液晶フィルムにおいて、液晶分子が液晶フィルム面に対して垂直な方向に配向していること(ホメオトロピック配向が形成されていること)が確認された。 Moreover, when the orientation state of the liquid crystal film (cured liquid crystal film) was measured using the liquid crystal film laminate obtained in Reference Example 1 in the same manner as the method employed in Example 1, In the same manner as in No. 1, it was confirmed that the liquid crystal molecules were aligned in a direction perpendicular to the liquid crystal film surface (homeotropic alignment was formed).
 さらに、参考例1で得られた液晶フィルム積層体を用いて、実施例1で採用している方法と同様にして、基材に対する液晶フィルムの密着性の測定を行ったところ、基材(COPフィルム)と液晶フィルムとの間において剥離が生じた。このように、参考例1で得られた液晶フィルム積層体においては、剥離界面が基材(COPフィルム)と液晶フィルムとの間の界面であったことから、基材(COPフィルム)と液晶フィルムとの間の層間密着力は不十分なものであることが分かった。このような液晶フィルム積層体の特性等を表1に示す。 Furthermore, when the adhesion of the liquid crystal film to the substrate was measured using the liquid crystal film laminate obtained in Reference Example 1 in the same manner as in Example 1, the substrate (COP) Peeling occurred between the film) and the liquid crystal film. Thus, in the liquid crystal film laminate obtained in Reference Example 1, since the peeling interface was an interface between the base material (COP film) and the liquid crystal film, the base material (COP film) and the liquid crystal film It was found that the interlaminar adhesion between the two was insufficient. The characteristics of such a liquid crystal film laminate are shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1等に示した結果から明らかなように、本発明の液晶組成物を利用した場合(実施例1~7:ホスフィン化合物を利用した液晶組成物)においては、それにより形成された液晶フィルムがいずれもホメオトロピック配向の液晶フィルムとなっていることが確認された。また、本発明の液晶組成物を利用した場合(実施例1~7:ホスフィン化合物を利用した液晶組成物)においては、化学的に安定な成分を利用しているため作業性が高く、また、2分間の溶媒の除去といった簡便な工程でホメオトロピック配向が形成されていることから、非常に短時間で液晶化合物をホメオトロピック配向させることができ、ホメオトロピック配向液晶フィルムを効率よく製造することが可能であることが確認された。更に、本発明の液晶組成物を利用した場合(実施例1~7:ホスフィン化合物を利用した液晶組成物)においては、密着性の測定試験において、ホメオトロピック配向液晶フィルムと基材(COPフィルム)との間に層間剥離が生じておらず、ホメオトロピック配向液晶フィルムと基材(COPフィルム)との密着性が十分に高いことも確認された。このような結果から、本発明の液晶組成物を利用した場合(実施例1~7:ホスフィン化合物を利用した液晶組成物)においては、得られる液晶フィルム積層体がホメオトロピック配向液晶フィルムと基材(COPフィルム)との間の層間剥離が十分に抑制されたものとなるため、積層体の状態のままで各種用途に応用することも可能であることが分かる。 As is clear from the results shown in Table 1 and the like, when the liquid crystal composition of the present invention was used (Examples 1 to 7: liquid crystal compositions using a phosphine compound), the liquid crystal film formed thereby was Both were confirmed to be homeotropic alignment liquid crystal films. In the case of using the liquid crystal composition of the present invention (Examples 1 to 7: liquid crystal compositions using a phosphine compound), workability is high because a chemically stable component is used. Since the homeotropic alignment is formed by a simple process such as removing the solvent for 2 minutes, the liquid crystal compound can be homeotropically aligned in a very short time, and the homeotropic alignment liquid crystal film can be efficiently produced. It was confirmed that it was possible. Further, in the case of using the liquid crystal composition of the present invention (Examples 1 to 7: liquid crystal compositions using a phosphine compound), a homeotropic alignment liquid crystal film and a substrate (COP film) were used in the adhesion measurement test. It was also confirmed that there was no delamination between the layers and the adhesion between the homeotropic alignment liquid crystal film and the substrate (COP film) was sufficiently high. From these results, when the liquid crystal composition of the present invention is used (Examples 1 to 7: liquid crystal compositions using a phosphine compound), the obtained liquid crystal film laminate is a homeotropic alignment liquid crystal film and a substrate. Since the delamination between the (COP film) and the COP film is sufficiently suppressed, it can be seen that the laminate can be applied to various uses in the state of the laminate.
 一方、ホスフィン化合物を利用せず、重合性液晶化合物と重合開始剤と溶媒との混合物を比較用の液晶組成物として利用した場合(比較例1~4)においてはいずれも、液晶分子をホメオトロピック配向させることができず、溶媒の除去時間(静置した時間)を1時間にしても液晶分子をホメオトロピック配向させることができないことが確認された。また、ホスフィン化合物の代わりにトリエチルアミン又はトリフェニルアミンといった添加剤を利用した場合(比較例5~8)においては、添加剤の化学構造がホスフィン化合物の化学構造と似ているにも関わらず、溶媒の除去時間(静置した時間)を1時間にしても液晶分子をホメオトロピック配向させることができなかった。なお、ホスフィン化合物の代わりに界面活性剤からなる添加剤を利用した場合(比較例9~10)においては、得られた液晶フィルムがいずれもホメオトロピック配向の液晶フィルムとなっていたものの、密着性の測定試験においてホメオトロピック配向液晶フィルムと基材(COPフィルム)との間に層間剥離が生じ、ホメオトロピック配向液晶フィルムと基材(COPフィルム)との密着性を十分なものとすることができなかった。更に、ホスフィン化合物の変わりに、トリフェニルホスフィンオキシドを用いた参考例1においては、得られた液晶フィルムがホメオトロピック配向の液晶フィルムとなっていたものの、ホメオトロピック配向液晶フィルムと基材(COPフィルム)との密着性を必ずしも十分なものとすることができないことが分かった。 On the other hand, in the case where a mixture of a polymerizable liquid crystal compound, a polymerization initiator, and a solvent was used as a comparative liquid crystal composition (Comparative Examples 1 to 4) without using a phosphine compound, the liquid crystal molecules were homeotropic. It was confirmed that the liquid crystal molecules could not be homeotropically aligned even if the solvent could not be aligned and the solvent removal time (standing time) was 1 hour. In addition, when an additive such as triethylamine or triphenylamine is used instead of the phosphine compound (Comparative Examples 5 to 8), the chemical structure of the additive is similar to the chemical structure of the phosphine compound. The liquid crystal molecules could not be homeotropically aligned even if the removal time (time of standing) was 1 hour. In the case where an additive made of a surfactant was used instead of the phosphine compound (Comparative Examples 9 to 10), although the obtained liquid crystal films were all liquid crystals having homeotropic alignment, In the measurement test, delamination occurs between the homeotropic alignment liquid crystal film and the substrate (COP film), and the adhesion between the homeotropic alignment liquid crystal film and the substrate (COP film) can be made sufficient. There wasn't. Further, in Reference Example 1 using triphenylphosphine oxide instead of the phosphine compound, the obtained liquid crystal film was a homeotropic alignment liquid crystal film, but the homeotropic alignment liquid crystal film and the substrate (COP film) It has been found that the adhesiveness to) cannot always be sufficient.
 以上説明したように、本発明によれば、液晶フィルムの製造時の作業性を十分に向上でき、ホメオトロピック配向液晶フィルムを効率よく製造することが可能であり、しかもホメオトロピック配向液晶フィルムを基材上に製造した際に基材とホメオトロピック配向液晶フィルムとの密着性を十分に高度なものとすることが可能な液晶組成物、これを用いて得られたホメオトロピック配向液晶フィルム、偏光板及び画像表示装置、並びに、その液晶組成物を用いたホメオトロピック配向液晶フィルムの製造方法を提供することが可能となる。 As described above, according to the present invention, the workability during the production of a liquid crystal film can be sufficiently improved, and a homeotropic alignment liquid crystal film can be efficiently produced. Liquid crystal composition capable of making sufficiently high adhesion between substrate and homeotropic alignment liquid crystal film when manufactured on material, homeotropic alignment liquid crystal film and polarizing plate obtained using the same In addition, it is possible to provide an image display device and a method for producing a homeotropic alignment liquid crystal film using the liquid crystal composition.
 したがって、本発明の液晶組成物は、ホメオトロピック配向液晶フィルムを製造するための材料等として特に有用である。 Therefore, the liquid crystal composition of the present invention is particularly useful as a material for producing a homeotropic alignment liquid crystal film.

Claims (14)

  1.  (A)重合性液晶化合物、(B)ホスフィン化合物、(C)重合開始剤、及び、(D)前記(A)~(C)成分を溶解可能な溶媒を含む、液晶組成物。 A liquid crystal composition comprising (A) a polymerizable liquid crystal compound, (B) a phosphine compound, (C) a polymerization initiator, and (D) a solvent capable of dissolving the components (A) to (C).
  2.  前記ホスフィン化合物が、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、R~Rはそれぞれ独立に水素原子、置換基を有していてもよい炭素数1~30のアルキル基及び置換基を有していてもよい炭素数6~18のアリール基からなる群から選択されるいずれか1種を示す。]
    で表わされる化合物群の中から選択される少なくとも1種である請求項1に記載の液晶組成物。
    The phosphine compound has the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 to R 3 each independently represents a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, and an optionally substituted aryl group having 6 to 18 carbon atoms. Any one selected from the group consisting of groups is shown. ]
    The liquid crystal composition according to claim 1, which is at least one selected from the group of compounds represented by:
  3.  前記ホスフィン化合物が、前記一般式(1)で表わされ且つ該式中のR~Rがそれぞれ独立に置換基を有していてもよい炭素数1~30のアルキル基及び置換基を有していてもよい炭素数6~12のアリール基からなる群から選択されるいずれか1種である第三級ホスフィンの中から選択される少なくとも1種である請求項2に記載の液晶組成物。 The phosphine compound is represented by the general formula (1), and R 1 to R 3 in the formula each independently have a substituent having 1 to 30 carbon atoms and a substituent. 3. The liquid crystal composition according to claim 2, wherein the liquid crystal composition is at least one selected from tertiary phosphines which are any one selected from the group consisting of aryl groups having 6 to 12 carbon atoms which may have. object.
  4.  前記ホスフィン化合物が、トリメチルホスフィン、トリエチルホスフィン、トリ-n-ブチルホスフィン、トリ-tert-ブチルホスフィン、トリ-n-オクチルホスフィン、トリシクロヘキシルホスフィン、トリスヒドロキシメチルホスフィン、トリスヒドロキシエチルホスフィン、トリフェニルホスフィン、トリスメトキシフェニルホスフィン、及び、トリスエトキシフェニルホスフィンからなる群から選択される少なくとも1種である請求項1~3のうちのいずれか一項に記載の液晶組成物。 The phosphine compound is trimethylphosphine, triethylphosphine, tri-n-butylphosphine, tri-tert-butylphosphine, tri-n-octylphosphine, tricyclohexylphosphine, trishydroxymethylphosphine, trishydroxyethylphosphine, triphenylphosphine, The liquid crystal composition according to any one of claims 1 to 3, which is at least one selected from the group consisting of trismethoxyphenylphosphine and trisethoxyphenylphosphine.
  5.  前記ホスフィン化合物が、トリスヒドロキシメチルホスフィン及びトリフェニルホスフィンのうちの少なくとも1種である請求項1~4のうちのいずれか一項に記載の液晶組成物。 The liquid crystal composition according to any one of claims 1 to 4, wherein the phosphine compound is at least one of trishydroxymethylphosphine and triphenylphosphine.
  6.  前記重合性液晶化合物が(メタ)アクリレート系液晶化合物である請求項1~5のうちのいずれか一項に記載の液晶組成物。 The liquid crystal composition according to any one of claims 1 to 5, wherein the polymerizable liquid crystal compound is a (meth) acrylate-based liquid crystal compound.
  7.  前記ホスフィン化合物の含有量が、前記重合性液晶化合物100質量部に対して0.5~10質量部である請求項1~6のうちのいずれか一項に記載の液晶組成物。 The liquid crystal composition according to any one of claims 1 to 6, wherein a content of the phosphine compound is 0.5 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound.
  8.  前記重合開始剤の含有量が、前記重合性液晶化合物100質量部に対して1~10質量部である請求項1~7のうちのいずれか一項に記載の液晶組成物。 The liquid crystal composition according to any one of claims 1 to 7, wherein a content of the polymerization initiator is 1 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound.
  9.  配向状態がホメオトロピック配向の状態で固定化されたホメオトロピック配向液晶フィルムであって、請求項1~8のうちのいずれか一項に記載の液晶組成物を用いて得られるものである、ホメオトロピック配向液晶フィルム。 A homeotropic alignment liquid crystal film fixed in a homeotropic alignment state, wherein the homeotropic alignment liquid crystal film is obtained using the liquid crystal composition according to any one of claims 1 to 8. Tropic alignment liquid crystal film.
  10.  請求項9に記載のホメオトロピック配向液晶フィルムを備える、偏光板。 A polarizing plate comprising the homeotropic alignment liquid crystal film according to claim 9.
  11.  請求項10に記載の偏光板を備える、画像表示装置。 An image display device comprising the polarizing plate according to claim 10.
  12.  基材上に請求項1~8のうちのいずれか一項に記載の液晶組成物を塗布して塗膜を形成する工程と、該塗膜から溶媒を除去して前記重合性液晶化合物をホメオトロピック配向させた後に、該重合性液晶化合物を重合することにより配向状態を固定化し、配向状態がホメオトロピック配向の状態で固定化されたホメオトロピック配向液晶フィルムを得る工程とを含む、ホメオトロピック配向液晶フィルムの製造方法。 A step of coating the liquid crystal composition according to any one of claims 1 to 8 on a substrate to form a coating film; and removing the solvent from the coating film to convert the polymerizable liquid crystal compound into a homeo After the tropic alignment, the alignment state is fixed by polymerizing the polymerizable liquid crystal compound, and a homeotropic alignment liquid crystal film in which the alignment state is fixed in a homeotropic alignment state is obtained. A method for producing a liquid crystal film.
  13.  前記基材が環状オレフィンポリマーからなるフィルムである請求項12に記載のホメオトロピック配向液晶フィルムの製造方法。 The method for producing a homeotropic alignment liquid crystal film according to claim 12, wherein the substrate is a film made of a cyclic olefin polymer.
  14.  前記塗膜から溶媒を除去する際の温度条件が15~110℃である請求項12又は13に記載のホメオトロピック配向液晶フィルムの製造方法。 The method for producing a homeotropic alignment liquid crystal film according to claim 12 or 13, wherein a temperature condition for removing the solvent from the coating film is 15 to 110 ° C.
PCT/JP2014/057749 2013-05-31 2014-03-20 Liquid crystal composition, homeotropically oriented liquid crystal film, polarizing plate, image display device, and method for producing homeotropically oriented liquid crystal film WO2014192385A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013115344A JP5655113B2 (en) 2013-05-31 2013-05-31 Homeotropic alignment liquid crystal film, polarizing plate, image display device, and method for producing homeotropic alignment liquid crystal film
JP2013-115344 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014192385A1 true WO2014192385A1 (en) 2014-12-04

Family

ID=51988429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057749 WO2014192385A1 (en) 2013-05-31 2014-03-20 Liquid crystal composition, homeotropically oriented liquid crystal film, polarizing plate, image display device, and method for producing homeotropically oriented liquid crystal film

Country Status (3)

Country Link
JP (1) JP5655113B2 (en)
TW (1) TW201510185A (en)
WO (1) WO2014192385A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179367A (en) * 2016-03-29 2017-10-05 住友化学株式会社 Liquid crystal composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180275329A1 (en) * 2015-09-30 2018-09-27 Zeon Corporation Optical film and method for producing same
KR101994430B1 (en) 2017-06-30 2019-09-24 주식회사 엘지화학 Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193852A (en) * 2000-12-19 2002-07-10 Merck Patent Gmbh Alkenyl compound with negative dielectric constant anisotropy and liquid crystalline medium
JP2007140465A (en) * 2005-10-18 2007-06-07 Dainippon Ink & Chem Inc Composition for optical alignment layer, method for manufacturing optical alignment layer, optical anisotropic material using the same, optical element, and method for manufacturing optical element
WO2009076115A2 (en) * 2007-12-06 2009-06-18 E. I. Du Pont De Nemours And Company Compositions and processes for preparing color filter elements
JP2012236982A (en) * 2011-04-27 2012-12-06 Adeka Corp Polymerizable composition
JP2013041213A (en) * 2011-08-19 2013-02-28 Fujifilm Corp Optical film for 3d image display, 3d image display device, and 3d image display system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294240A (en) * 2001-03-30 2002-10-09 Fuji Photo Film Co Ltd Aligning method of rod-like liquid crystalline molecule and optically anisotropic element
JP3899482B2 (en) * 2001-06-11 2007-03-28 日東電工株式会社 Method for producing homeotropic alignment liquid crystal film and homeotropic alignment liquid crystal film
JP2006133652A (en) * 2004-11-09 2006-05-25 Fuji Photo Film Co Ltd Retardation plate, polarizing plate and liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193852A (en) * 2000-12-19 2002-07-10 Merck Patent Gmbh Alkenyl compound with negative dielectric constant anisotropy and liquid crystalline medium
JP2007140465A (en) * 2005-10-18 2007-06-07 Dainippon Ink & Chem Inc Composition for optical alignment layer, method for manufacturing optical alignment layer, optical anisotropic material using the same, optical element, and method for manufacturing optical element
WO2009076115A2 (en) * 2007-12-06 2009-06-18 E. I. Du Pont De Nemours And Company Compositions and processes for preparing color filter elements
JP2012236982A (en) * 2011-04-27 2012-12-06 Adeka Corp Polymerizable composition
JP2013041213A (en) * 2011-08-19 2013-02-28 Fujifilm Corp Optical film for 3d image display, 3d image display device, and 3d image display system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179367A (en) * 2016-03-29 2017-10-05 住友化学株式会社 Liquid crystal composition
CN107236550A (en) * 2016-03-29 2017-10-10 住友化学株式会社 Liquid-crystal composition
CN107236550B (en) * 2016-03-29 2022-05-03 住友化学株式会社 Liquid crystal composition

Also Published As

Publication number Publication date
TW201510185A (en) 2015-03-16
JP2014234412A (en) 2014-12-15
JP5655113B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
TWI712636B (en) Liquid crystal cured film, optical film including the liquid crystal cured film, and display device
JP6937554B2 (en) A display device including a laminated body, a circularly polarizing plate including the laminated body, and the laminated body.
WO2018186500A1 (en) Polarizing element, circularly polarizing plate and image display device
WO2021187379A1 (en) Liquid crystal display device
WO2011018864A1 (en) Liquid-crystal film and optical element obtained using same
JP2017058659A (en) Optical film, manufacturing method thereof and display device
JP5655113B2 (en) Homeotropic alignment liquid crystal film, polarizing plate, image display device, and method for producing homeotropic alignment liquid crystal film
JP4413117B2 (en) Retardation film, polarizing plate, liquid crystal panel, liquid crystal display device and method for producing retardation film
KR102532379B1 (en) Manufacturing method of optically anisotropic layer
JP2024031796A (en) Laminated body and organic EL display device
JP2008191250A (en) Retardation film and manufacturing method of retardation film
TW202012469A (en) Optical film
JP7355955B1 (en) optical laminate
JP6878662B1 (en) Manufacturing method of oriented liquid crystal film
WO2023084837A1 (en) Retardation layer-equipped polarizing plate and image display device including retardation layer-equipped polarizing plate
WO2024042818A1 (en) Laminate and organic el display device
JP7335986B2 (en) compound, liquid crystal composition, liquid crystal film
WO2023084838A1 (en) Polarizing plate having retardation layer and image display device including said polarizing plate having retardation layer
WO2022181414A1 (en) Laminate, antireflection system, and image display device
WO2022045187A1 (en) Optical film, circularly polarizing plate, and organic electroluminescent display device
WO2022059569A1 (en) Optical film, circularly polarizing plate, and organic electroluminescent display device
KR20220130603A (en) Method for manufacturing aligned liquid crystal film
JP2022144068A (en) Manufacturing method of alignment liquid crystal film
JP2024018584A (en) Optical laminate and its manufacturing method
JP2024018583A (en) Optical laminate and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804516

Country of ref document: EP

Kind code of ref document: A1