JP2011206661A - Thermostat - Google Patents

Thermostat Download PDF

Info

Publication number
JP2011206661A
JP2011206661A JP2010076059A JP2010076059A JP2011206661A JP 2011206661 A JP2011206661 A JP 2011206661A JP 2010076059 A JP2010076059 A JP 2010076059A JP 2010076059 A JP2010076059 A JP 2010076059A JP 2011206661 A JP2011206661 A JP 2011206661A
Authority
JP
Japan
Prior art keywords
temperature
upstream
downstream
detection means
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010076059A
Other languages
Japanese (ja)
Other versions
JP5456536B2 (en
Inventor
Osamu Obata
修 小幡
Ichiro Takagi
一郎 高木
Hiroshi Sotoyama
博士 外山
Shinji Kitamura
信二 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2010076059A priority Critical patent/JP5456536B2/en
Publication of JP2011206661A publication Critical patent/JP2011206661A/en
Application granted granted Critical
Publication of JP5456536B2 publication Critical patent/JP5456536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Use In Laboratory Experiments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermostat capable of saving energy consumption, while uniformly controlling the internal temperature distribution of the thermostat.SOLUTION: This thermostat 1 can keep the temperature of a sample arrangement part 2 on which a heating sample piece W is arranged, at a level near the preset value, and comprises an air blower 12, a heating means 13 and a damper part 21. Inside the thermostat 1, upstream side temperature sensors 16 and 17 are arranged on the upstream side of the air flow direction, while downstream side temperature sensors 18 and 20 are arranged on the downstream side. When the temperature of the sample arrangement part 2 is controlled so as to retain a preset value, the blast level of the air blower 12 can be increased or decreased so that the temperature difference representing the specified range from not less than the lower limit temperature difference to not more than the upper limit temperature difference may exist between the upstream side temperature A detected by the upstream side temperature sensors 16 and 17 and the downstream side temperature B dctected by the downstream side temperature sensors 18 and 20.

Description

本発明は、所定の庫内や室内を目標とする温度に調節可能な恒温装置に関するもので、特にはバーンイン試験装置や環境試験装置として好適で、庫内や室内の温度分布を実用上充分に均一化することができ、且つ省エネルギーである恒温装置に関するものである。   The present invention relates to a thermostatic device that can be adjusted to a target temperature in a predetermined chamber or room, and is particularly suitable as a burn-in test device or an environmental test device, and the temperature distribution in the chamber or room is practically sufficient. The present invention relates to a thermostatic device that can be made uniform and save energy.

半導体デバイスなどの電子機器は、製造における最終工程で、バーンイン試験を行って不良品が除かれる。ここで、バーンイン試験とは、半導体デバイスなどの電子機器を、通常の温度環境よりも高い温度に晒した状態で、通常の使用電圧よりも高い電圧を掛けて、不良品を見分ける検査である。特許文献1には、このようなバーンイン試験を行うための温度制御装置が開示されている。なお、バーンイン試験においては、半導体デバイスに対して給電するため、半導体デバイスが発熱する。   Electronic devices such as semiconductor devices are subjected to a burn-in test in the final process of manufacturing to remove defective products. Here, the burn-in test is an inspection in which an electronic device such as a semiconductor device is exposed to a temperature higher than a normal temperature environment, and a defective product is identified by applying a voltage higher than a normal use voltage. Patent Document 1 discloses a temperature control apparatus for performing such a burn-in test. In the burn-in test, since power is supplied to the semiconductor device, the semiconductor device generates heat.

ところで、バーンイン試験では、複数の同種の半導体デバイス等が同じ恒温装置(バーンイン試験装置)に載置されるため、それぞれの半導体デバイス等に対してほぼ同じ環境で試験が行えるように、各半導体デバイス等に供給する電力や、恒温装置の内部の温度分布をほぼ均一に維持する制御を実行することが望ましい。このように制御することで、バーンイン試験において、高い試験精度を確保することができる。   By the way, in the burn-in test, a plurality of semiconductor devices of the same type are mounted on the same thermostat (burn-in test apparatus), so that each semiconductor device can be tested in almost the same environment. It is desirable to execute control to maintain the power supplied to the temperature etc. and the temperature distribution inside the thermostatic device substantially uniformly. By controlling in this way, high test accuracy can be ensured in the burn-in test.

しかしながら、恒温装置内は、半導体デバイス等が通電によって発熱するため、内部を循環する空気は、半導体デバイス等を通過する前後で温度差が拡大し、全体の温度分布が不均一となる場合があった。
そこで、この種の恒温装置では、強力な送風機を用いて恒温装置内を強く攪拌して、内部に高速の空気の流れを形成することで、温度差を小さくして温度分布の均一化を図っている。
具体的には、送風機は、恒温装置内部の設定温度や半導体デバイス等の予測し得る最大発熱量を基に、予め設定された一定の送風量を確保することができる強力なものが選定される。また、従来技術においては、バーンイン試験の間、送風機は一定の風量となるように一定の回転数で回転される。
多くの場合、バーンイン試験の間、送風機はフル回転で回転される。
However, because the semiconductor device, etc., generates heat when energized in the thermostat, the temperature difference between the air circulating inside and outside the semiconductor device may increase and the overall temperature distribution may become uneven. It was.
Therefore, in this type of thermostatic device, a strong air blower is used to vigorously stir the interior of the thermostatic device to form a high-speed air flow inside, thereby reducing the temperature difference and making the temperature distribution uniform. ing.
Specifically, a strong blower is selected that can ensure a preset constant blown air volume based on the set temperature inside the thermostatic apparatus and the maximum heat generation amount that can be predicted by a semiconductor device or the like. . Further, in the prior art, during the burn-in test, the blower is rotated at a constant rotational speed so as to have a constant air volume.
In many cases, the blower is rotated at full speed during the burn-in test.

特開2000−214933号公報JP 2000-214933 A

近年、半導体デバイスの高機能・高性能化に伴い、その個々の容量が増大しているため、半導体デバイスに対する通電量が増加し、その発熱量も年々増加の傾向を辿っている。一方、バーンイン試験を行う恒温装置に対しては、要求される性能に変わりはない。そのため、最近では、恒温装置内部の温度分布の均一性を維持するために、恒温装置に採用される送風機のモータが大容量化している。即ち、恒温装置内における攪拌量を増大させて温度分布の均一化を図っている。   In recent years, with the increase in functionality and performance of semiconductor devices, their individual capacities have increased. As a result, the amount of current supplied to the semiconductor devices has increased, and the amount of heat generated has been increasing year by year. On the other hand, there is no change in required performance for a thermostatic apparatus for performing a burn-in test. Therefore, recently, in order to maintain the uniformity of the temperature distribution inside the thermostat, the capacity of the motor of the blower employed in the thermostat has been increased. That is, the amount of stirring in the thermostatic device is increased to make the temperature distribution uniform.

かかる構成を備えた従来の恒温装置は、発熱量が高い半導体デバイスをバーンイン試験することが可能であるが、送風機の制御は試料体としての半導体デバイスの種類や搭載量などの条件が変化したとしても、前記したように一定の送風量に制御されるため、試験によっては必要以上に温度分布が均一化される場合があった。
また、モータの容量が増強された送風機は、空気を攪拌する仕事量も大幅に増加されているため、攪拌熱によって恒温装置内の温度を昇温させてしまう。そしてこの熱量は、冷却装置で吸収する必要がある。
従来の恒温装置では、このような送風機を、恒温装置の運転初期から試験終了まで一貫して、一定の送風量で作動させるため、恒温装置内部の温度状況によっては送風量が過大である場合もあり、空気の攪拌と冷却の仕事量分だけ無駄な電力消費を生じていた。
Although the conventional thermostatic apparatus having such a configuration can perform a burn-in test on a semiconductor device having a high calorific value, the control of the blower assumes that conditions such as the type and mounting amount of the semiconductor device as a sample body have changed. However, since the air flow is controlled to be constant as described above, the temperature distribution may be made more uniform than necessary depending on the test.
Moreover, since the work amount which stirs air is greatly increased in the blower with the increased capacity of the motor, the temperature in the thermostatic device is raised by the heat of stirring. This amount of heat needs to be absorbed by the cooling device.
In the conventional thermostatic device, such a blower is operated with a constant air flow rate from the initial operation of the thermostatic device to the end of the test, so the air flow rate may be excessive depending on the temperature condition inside the thermostatic device. In other words, wasteful power consumption was generated by the work of air agitation and cooling.

即ち、従来技術の恒温装置では、試験条件や恒温装置内部の温度、試料体の発熱量の相違等に応じることなく、恒温装置の運転開始から停止までほぼ一貫して、送風機の送風量が一定に制御されるため、大容量のモータを備えた送風機が採用された場合、電力消費量が必要以上に大きくなり、省エネルギーを図ることが困難であった。
また送風機が空気を攪拌するエネルギーが過大となり、恒温装置内の温度が昇温してしまい、恒温装置の温度上昇を抑えるために冷凍機を運転しなければならないという無駄が生じ、この点からも省エネルギーを図ることが困難であった。
That is, in the conventional thermostat, the air flow rate of the blower is almost constant from the start to the stop of the thermostat without depending on the test conditions, the temperature inside the thermostat, the difference in the calorific value of the sample body, etc. Therefore, when a blower equipped with a large-capacity motor is adopted, the power consumption becomes unnecessarily large and it is difficult to save energy.
In addition, the energy that the blower agitates the air becomes excessive, the temperature inside the thermostatic device rises, and there is a waste that the refrigerator must be operated to suppress the temperature rise of the thermostatic device. It was difficult to save energy.

そこで、本発明では、上記した従来技術の問題に鑑み、恒温装置内の温度分布を適正に制御しつつ、省エネルギーを図ることができる恒温装置を提供することを課題とする。   In view of the above-described problems of the prior art, an object of the present invention is to provide a thermostatic device capable of saving energy while appropriately controlling the temperature distribution in the thermostatic device.

上記課題を解決するため、請求項1に記載の発明は、発熱する発熱試料体が配置される試料配置部と、試料配置部において空気を一定方向に流動させることが可能な送風機と、試料配置部の温度を上昇させることが可能な加熱手段と、試料配置部の温度を降下させることが可能な温度降下手段とを有し、試料配置部内の温度を設定値に維持可能な恒温装置であって、恒温装置内部には、試料配置部に対して空気の流れ方向上流側の温度を検知する上流側温度検知手段と、試料配置部に対して空気の流れ方向下流側の温度を検知する下流側温度検知手段とを有し、試料配置部の温度を設定値に制御する際には、上流側温度検知手段が検知する上流側温度と下流側温度検知手段が検知する下流側温度との間に所定の適正温度差が存在するように、送風機の送風量を増減させることを特徴とする恒温装置である。   In order to solve the above-described problems, the invention described in claim 1 includes a sample placement section in which a heat generating sample body that generates heat is disposed, a blower that can flow air in a certain direction in the sample placement section, and a sample placement This is a constant temperature apparatus that has a heating means that can raise the temperature of the section and a temperature lowering means that can lower the temperature of the sample placement section, and can maintain the temperature in the sample placement section at a set value. In the constant temperature apparatus, an upstream temperature detecting means for detecting the temperature upstream of the sample arrangement portion in the air flow direction and a downstream for detecting the temperature downstream of the sample arrangement portion in the air flow direction. When the temperature of the sample placement portion is controlled to a set value, the temperature between the upstream temperature detected by the upstream temperature detector and the downstream temperature detected by the downstream temperature detector So that a certain appropriate temperature difference exists in A thermostatic apparatus characterized by increasing or decreasing the air volume of air blower.

ここで適正温度差は、摂氏4度とか摂氏6度と言うような特定の温度差であってもよく、摂氏4度から摂氏6度という様な幅をもった温度差であってもよい。
実際上は、摂氏4度とか摂氏6度と言うような特定の温度差を目標としてインバータによる比例制御やオンオフ制御を行うが、その場合であっても制御上その温度差に正確に一致させることが困難であれば、ある程度の温度差の範囲を保つ様に制御されることとなる。
Here, the appropriate temperature difference may be a specific temperature difference such as 4 degrees Celsius or 6 degrees Celsius, or may be a temperature difference having a width of 4 degrees Celsius to 6 degrees Celsius.
In practice, proportional control and on / off control by an inverter is performed with a specific temperature difference of 4 degrees Celsius or 6 degrees Celsius as a target, but even in that case, the temperature difference must be accurately matched to the control. If this is difficult, control is performed so as to maintain a certain temperature difference range.

本発明の恒温装置は、試料配置部に対して空気の流れ方向上流側と下流側にそれぞれ温度検知手段が設けられ、試料配置部の温度を設定値に制御する際に、上流側の温度と下流側の温度との間の温度差が適正温度差となる様に送風機の送風量を増減させる制御が実行される。   The thermostat of the present invention is provided with temperature detection means on the upstream side and the downstream side in the air flow direction with respect to the sample placement unit, respectively, and when controlling the temperature of the sample placement unit to the set value, Control is performed to increase or decrease the air flow rate of the blower so that the temperature difference with the downstream temperature becomes an appropriate temperature difference.

例えば、下流側温度が上流側温度より高温である温度条件下で、両者の温度差が適正温度差を超えて外れている場合には、送風機の送風量を増加する制御を実行する。これにより、試料配置部を流動する空気の流速が増加するため、流動空気が発熱試料体により加熱され得る時間(滞留時間)が短縮されて、前記温度差が適正温度差に近づく。   For example, when the temperature difference between the two is greater than the appropriate temperature difference under the temperature condition where the downstream temperature is higher than the upstream temperature, control is performed to increase the air flow rate of the blower. As a result, the flow rate of the air flowing through the sample placement portion increases, so the time during which the flowing air can be heated by the exothermic sample body (residence time) is shortened, and the temperature difference approaches the appropriate temperature difference.

逆に、下流側温度と上流側温度との温度差が適正温度差未満である場合には、送風機の送風量を減少する制御を実行する。
これにより、試料配置部を流動する空気の流速が減少するため、流動空気が発熱試料体により加熱され得る時間(滞留時間)が増加されて、前記温度差が適正温度差に近づく。
Conversely, when the temperature difference between the downstream temperature and the upstream temperature is less than the appropriate temperature difference, control is performed to reduce the air flow rate of the blower.
As a result, the flow rate of the air flowing through the sample placement portion is reduced, so the time during which the flowing air can be heated by the exothermic sample body (residence time) is increased, and the temperature difference approaches the appropriate temperature difference.

従って本発明によると試料配置部の温度分布を一定にしつつ、送風機の消費電力を抑制することができる。   Therefore, according to the present invention, it is possible to suppress the power consumption of the blower while keeping the temperature distribution of the sample placement portion constant.

即ち、本発明の恒温装置によれば、試料配置部の上流側と下流側に設けた温度検知手段により、試料配置部における上流側から下流側に渡る温度分布が所定の上下限の範囲内にあるか否かで送風機の送風量を制御できるため、試料配置部に載置された全発熱試料体の温度環境を適正な範囲にしつつ、消費電力を低減して温度制御を行うことができる。これにより、大容量のモータを備えた送風機を採用した場合であっても、過大な電力消費が抑制されるため、従来の恒温装置と比較すると省エネルギーの恒温装置を提供することができる。   That is, according to the thermostatic apparatus of the present invention, the temperature detection means provided on the upstream side and the downstream side of the sample placement unit allows the temperature distribution from the upstream side to the downstream side in the sample placement unit to be within a predetermined upper and lower limit range. Since the blower amount of the blower can be controlled depending on whether or not there is, the temperature control can be performed while reducing the power consumption while keeping the temperature environment of all the exothermic sample bodies placed on the sample placement unit within an appropriate range. Thereby, even if it is a case where the air blower provided with the large capacity motor is employ | adopted, since excessive power consumption is suppressed, compared with the conventional thermostat, the energy-saving thermostat can be provided.

送風機の送風量を増減させる方策としては、送風機の回転数を変化させる構成が推奨される。
かかる構成によれば、送風機の送風量を回転数により増減させるため、目的の風量に制御しやすい。例えば、この手段としては、送風機のモータとして直流モータを採用した場合は、当該直流モータを電圧制御する方策がある。また、送風機のモータとして交流モータを採用した場合は、当該交流モータをインバータ制御するなどの方策が挙げられる。
As a measure for increasing or decreasing the amount of air blown from the blower, a configuration in which the rotational speed of the blower is changed is recommended.
According to such a configuration, the amount of air blown from the blower is increased or decreased depending on the number of rotations, so that it is easy to control the air flow to the target. For example, as this means, when a DC motor is adopted as the motor of the blower, there is a measure for controlling the voltage of the DC motor. Moreover, when an AC motor is employed as the motor of the blower, measures such as inverter control of the AC motor can be cited.

請求項2に記載の発明は、上流側温度と下流側温度との間の温度差が適正温度差未満である場合は、送風機の送風量を減少させ、前記温度差が適正温度差を超える場合は、送風機の送風量を増大させることを特徴とする請求項1に記載の恒温装置である。   When the temperature difference between the upstream temperature and the downstream temperature is less than the appropriate temperature difference, the invention described in claim 2 reduces the air volume of the blower, and the temperature difference exceeds the appropriate temperature difference. Increases the amount of air blown by the blower.

かかる構成によれば、下流側温度と上流側温度との温度差が所定の適正温度差となる様に送風機の送風量が増減されるため、試料配置部の温度差が試験に悪影響を与えない範囲であり且つ省エネルギーが可能な範囲に安定させることができる。
即ち、本発明では、下流側温度と上流側温度との温度差が適正温度差未満である場合は前記所定範囲にある場合に比べて送風機の送風量を減少させ、前記温度差が適正温度差を超える場合は適正温度差にある場合に比べて送風機の送風量を増大させる。そのため前記温度差が試験に悪影響を与える範囲にまで拡がることなく、且つ過剰なまでに温度差がなくなることもない。そのため本発明によれば、送風機の電力消費をより低減することができる。
According to such a configuration, the air flow rate of the blower is increased or decreased so that the temperature difference between the downstream temperature and the upstream temperature becomes a predetermined appropriate temperature difference, so the temperature difference of the sample placement portion does not adversely affect the test. The range can be stabilized within a range where energy saving is possible.
That is, in the present invention, when the temperature difference between the downstream temperature and the upstream temperature is less than the appropriate temperature difference, the air flow rate of the blower is reduced compared to the case where the temperature difference is within the predetermined range, and the temperature difference is the appropriate temperature difference. In the case where the temperature exceeds the value, the air flow rate of the blower is increased as compared with the case where the temperature difference is appropriate. Therefore, the temperature difference does not extend to a range that adversely affects the test, and the temperature difference does not disappear to an excessive extent. Therefore, according to this invention, the power consumption of a fan can be reduced more.

請求項3に記載の発明は、上流側温度検知手段と下流側温度検知手段の内の少なくとも一方は、複数設けられていることを特徴とする請求項1又は2に記載の恒温装置である。   The invention described in claim 3 is the thermostatic device according to claim 1 or 2, wherein a plurality of at least one of the upstream temperature detecting means and the downstream temperature detecting means is provided.

かかる構成によれば、上流側温度検知手段又は下流側温度検知手段が複数設けられているため、誤検知が排除でき、温度検知手段を1つしか設けない場合よりも高い性能で制御を行うことができる。また、複数ある温度検知手段のいずれか1つが故障しても、別の温度検知手段で対応できるため、本発明においては制御が実行できないという不具合が生じることがない。   According to such a configuration, since there are a plurality of upstream temperature detection means or downstream temperature detection means, erroneous detection can be eliminated, and control is performed with higher performance than when only one temperature detection means is provided. Can do. Further, even if any one of a plurality of temperature detecting means fails, another temperature detecting means can cope with it, so that the problem that the control cannot be executed does not occur in the present invention.

発熱試料体を載置した試料配置部では、恒温装置を作動すると共に発熱試料体に通電するため、一定時間が経過すると発熱試料体の発熱により、下流側温度が上流側温度より高くなる。逆に発熱が無い場合には上流側温度が下流側温度より高くなる。また上流側温度についても、空気の流れ方によって位置によるバラツキが生じる。同様に下流側温度についても、位置によるバラツキがある。
そこで請求項4に記載の発明は、上流側温度検知手段及び下流側温度検知手段のうち、複数設けられた温度検知手段はそれぞれ離れた位置に配置され、下流側温度検知手段が検知する検知温度の中の最高温度または最低温度と、上流側温度検知手段が検知する検知温度の中の最低温度または最高温度との温度差に基づいて送風機の送風量が制御されることを特徴とする請求項3に記載の恒温装置である。
In the sample placement unit on which the exothermic sample body is placed, the thermostat is operated and the energizing sample body is energized. Therefore, the downstream temperature becomes higher than the upstream temperature due to heat generation of the exothermic sample body after a certain period of time. Conversely, when there is no heat generation, the upstream temperature is higher than the downstream temperature. Further, the upstream temperature also varies depending on the position depending on the air flow. Similarly, the downstream temperature also varies depending on the position.
Accordingly, the invention according to claim 4 is the detection temperature detected by the downstream temperature detection means, wherein the plurality of temperature detection means among the upstream temperature detection means and the downstream temperature detection means are arranged at separate positions. The flow rate of the blower is controlled based on a temperature difference between the highest temperature or the lowest temperature in the temperature and the lowest temperature or the highest temperature among the detected temperatures detected by the upstream temperature detection means. 3.

かかる構成によれば、上流側温度検知手段が複数ある場合は上流側温度検知手段がそれぞれ間隔を空けて配置され、下流側温度検知手段が複数ある場合は下流側温度検知手段がそれぞれ間隔を空けて配置されているため、温度検知領域の温度ムラを検知することができる。即ち、本発明の恒温装置は、下流側温度の最高温度または最低温度と上流側温度の最低温度又は最高温度との温度差に基づいて送風機の送風量を制御することで、試料配置部全体を確実に設定温度近傍に近づけることができる。
なお下流側温度及び上流側温度の組み合わせは任意であり、下流側温度の最高温度と上流側温度の最低温度を採用する方策、下流側温度の最高温度と上流側温度の最高温度を採用する方策、下流側温度の最低温度と上流側温度の最低温度を採用する方策、下流側温度の最低温度と上流側温度の最高温度を採用する方策を採用可能である。ただしより下流側温度と上流側温度との温度差をより正確に制御するという観点から、下流側温度の最高温度と上流側温度の最低温度を採用する方策を採用することが推奨される。
According to this configuration, when there are a plurality of upstream temperature detection means, the upstream temperature detection means are arranged at intervals, and when there are a plurality of downstream temperature detection means, the downstream temperature detection means are spaced apart from each other. Therefore, temperature unevenness in the temperature detection region can be detected. That is, the thermostat of the present invention controls the entire air volume of the sample placement unit by controlling the air flow rate of the blower based on the temperature difference between the maximum temperature or minimum temperature of the downstream side temperature and the minimum temperature or maximum temperature of the upstream side temperature. It can be surely brought close to the set temperature.
The combination of the downstream temperature and the upstream temperature is arbitrary, and the policy that adopts the maximum temperature of the downstream side temperature and the minimum temperature of the upstream side, the policy that adopts the maximum temperature of the downstream side temperature and the maximum temperature of the upstream side It is possible to adopt a measure that adopts the lowest temperature of the downstream temperature and the lowest temperature of the upstream temperature, and a measure that adopts the lowest temperature of the downstream temperature and the highest temperature of the upstream temperature. However, from the viewpoint of more accurately controlling the temperature difference between the downstream side temperature and the upstream side temperature, it is recommended to adopt a measure that employs the maximum temperature of the downstream side temperature and the minimum temperature of the upstream side temperature.

請求項5に記載の発明は、上流側温度検知手段及び下流側温度検知手段のうち、複数設けられた温度検知手段はそれぞれ離れた位置に配置され、上流側温度検知手段が複数設けられている場合は複数の上流側温度検知手段が検知する検知温度の平均値を上流側温度とし、上流側温度検知手段の数が単数である場合は当該一つの上流側温度検知手段が検知する検知温度を上流側温度とし、下流側温度検知手段が複数設けられている場合は複数の下流側温度検知手段が検知する検知温度の平均値を下流側温度とし、下流側温度検知手段の数が単数である場合は当該一つの下流側温度検知手段が検知する検知温度を下流側温度とし、上流側温度と下流側温度との間に所定の適正温度差が存在するように、送風機の送風量を増減させることを特徴とする請求項3に記載の恒温装置である。   In the invention according to claim 5, among the upstream temperature detection means and the downstream temperature detection means, a plurality of temperature detection means are arranged at positions separated from each other, and a plurality of upstream temperature detection means are provided. In this case, the average value of the detected temperatures detected by the plurality of upstream temperature detecting means is set as the upstream temperature, and when the number of the upstream temperature detecting means is singular, the detected temperature detected by the one upstream temperature detecting means is When there are a plurality of downstream temperature detection means provided as the upstream temperature, the average value of the detection temperatures detected by the plurality of downstream temperature detection means is the downstream temperature, and the number of the downstream temperature detection means is singular. In this case, the detected temperature detected by the one downstream temperature detecting means is set as the downstream temperature, and the air flow rate of the blower is increased or decreased so that a predetermined appropriate temperature difference exists between the upstream temperature and the downstream temperature. It is characterized by A thermostatic device according to claim 3.

かかる構成によれば、上流側温度検知手段が複数ある場合は上流側温度検知手段がそれぞれ間隔を空けて配置され、下流側温度検知手段が複数ある場合は下流側温度検知手段がそれぞれ間隔を空けて配置されているため、温度検知領域の温度ムラを検知することができる。そして、上流側及び下流側の内の複数ある側の平均温度を用いて算出された温度差に基づいて送風機の送風量を制御することで、温度検知手段の不具合等により検知温度に異常値があった場合であっても、平均値を演算することで異常値が緩和されるため、異常値による制御の不具合を抑制できる。   According to this configuration, when there are a plurality of upstream temperature detection means, the upstream temperature detection means are arranged at intervals, and when there are a plurality of downstream temperature detection means, the downstream temperature detection means are spaced apart from each other. Therefore, temperature unevenness in the temperature detection region can be detected. Then, by controlling the air flow rate of the blower based on the temperature difference calculated using the average temperature of a plurality of upstream and downstream sides, an abnormal value is detected in the detected temperature due to a malfunction of the temperature detecting means or the like. Even in such a case, since the abnormal value is reduced by calculating the average value, it is possible to suppress the malfunction of the control due to the abnormal value.

請求項6に記載の発明は、複数の上流側温度検知手段と複数の下流側温度検知手段とを有し、試料配置部を通過する空気の流れは大まかに複数の層に分かれ、複数の層の上流側に前記上流側温度検知手段があり、当該層の下流側に前記上流側温度検知手段と対応する下流側温度検知手段が設置され、上流側温度検知手段が検知する上流側温度とこれに対応する下流側温度検知手段が検知する下流側温度の差の内で最大である温度差を基準温度差とし、この基準温度差が適正温度差となる様に送風機の送風量を増減させることを特徴とする請求項3に記載の恒温装置である。   The invention according to claim 6 has a plurality of upstream temperature detection means and a plurality of downstream temperature detection means, and the air flow passing through the sample placement portion is roughly divided into a plurality of layers, and the plurality of layers The upstream temperature detecting means is upstream of the layer, and the downstream temperature detecting means corresponding to the upstream temperature detecting means is installed downstream of the layer, and the upstream temperature detecting means detects the upstream temperature detected by the upstream temperature detecting means. The maximum temperature difference among the downstream temperature differences detected by the downstream temperature detection means corresponding to the reference temperature difference is set as a reference temperature difference, and the air flow rate of the blower is increased or decreased so that the reference temperature difference becomes an appropriate temperature difference. The constant temperature device according to claim 3.

恒温装置の試料配置部には、棚等が設けられることが多く、当該棚によって実質的に空気流路が形成される場合が多い。即ち試料配置部の棚は、空気の流通を厳密に遮断するものではないが、棚の存在によって試料配置部を通過する空気の流れは大まかに複数の層に分かれる。また試料の配置も棚単位に行われるため、棚ごとに試料の有無が決まるといっても過言ではない。
そして本発明は、複数の層の上流側に前記上流側温度検知手段があり、当該層の下流側に前記上流側温度検知手段と対応する下流側温度検知手段が設置されている。従って上流側温度検知手段とこれに対応する下流側温度検知手段が一対となり、当該層を流れる空気の温度差を測定することとなり、複数の層の温度差が個別に検知される。
そして本発明では、複数の層の温度差の内、最も温度差が大きいものを基準とし、この温度差に基づいて送風機の送風量を増減させる。
またさらにこれを発展させ、試料配置部を通過する空気の流れを複数の層に分けるための仕切等を設けてもよい。
A shelf or the like is often provided in the sample placement portion of the thermostatic device, and an air flow path is substantially formed by the shelf in many cases. That is, the shelf of the sample placement section does not strictly block air flow, but the air flow passing through the sample placement section is roughly divided into a plurality of layers due to the presence of the shelf. In addition, since the arrangement of samples is performed in units of shelves, it is no exaggeration to say that the presence or absence of samples is determined for each shelf.
In the present invention, the upstream temperature detection means is provided upstream of the plurality of layers, and the downstream temperature detection means corresponding to the upstream temperature detection means is provided downstream of the layers. Therefore, the upstream temperature detecting means and the corresponding downstream temperature detecting means are paired to measure the temperature difference of the air flowing through the layer, and the temperature differences of the plurality of layers are individually detected.
In the present invention, the temperature difference between the plurality of layers is based on the largest temperature difference, and the air flow rate of the blower is increased or decreased based on this temperature difference.
Further, this may be further developed, and a partition or the like may be provided for dividing the air flow passing through the sample placement portion into a plurality of layers.

前記温度降下手段は、試料配置部内の空気を外気と置換して、試料配置部内の温度を降下させるものであることが望ましい。   It is desirable that the temperature lowering unit lowers the temperature in the sample placement unit by replacing the air in the sample placement unit with outside air.

かかる構成によれば、温度降下手段は、試料配置部内の空気を置換して温度を降下させるものであるため、冷凍機などを用いて温度を低下させるよりも電力消費が低い。実施形態としては、例えば、温度降下手段には、試料配置部を通過した空気の一部又は全部が排気される排気部と、外部の空気を給気する給気部と、当該排気部と給気部を通過する空気の通過量を調整可能な開閉手段とで構成されるダンパ装置が考えられる。   According to this configuration, the temperature lowering unit lowers the temperature by substituting the air in the sample placement unit, and therefore consumes less power than when the temperature is decreased using a refrigerator or the like. As an embodiment, for example, the temperature lowering means includes an exhaust part that exhausts part or all of the air that has passed through the sample placement part, an air supply part that supplies external air, and the exhaust part. A damper device configured with opening / closing means capable of adjusting the amount of air passing through the air portion is conceivable.

また下流側温度が上流側温度より低い温度条件下の場合には、上流側温度に基づいて送風機の送風量が制御されることが推奨される。   Further, when the temperature on the downstream side is lower than the temperature on the upstream side, it is recommended that the blower amount of the blower be controlled based on the upstream temperature.

かかる構成によれば、下流側温度が上流側温度より低い場合は、上流側温度に基づいて送風機の送風量が制御されるため、試料配置部の温度を効率的に昇温させることが可能である。ここで、送風機の送風量が増大されると、送風機による空気を攪拌する仕事量が増加するため、昇温効率が上がる。即ち、下流側温度が上流側温度より低いような、急な昇温が求められるような状況においては、高温側の上流側温度を基準として、送風量を増大させることで、短期間で試料配置部を昇温させることができる。   According to such a configuration, when the downstream temperature is lower than the upstream temperature, the air flow rate of the blower is controlled based on the upstream temperature, so that the temperature of the sample placement unit can be increased efficiently. is there. Here, when the amount of air blown by the blower is increased, the amount of work for stirring the air by the blower is increased, so that the temperature raising efficiency is increased. In other words, in situations where a sudden temperature increase is required, such as when the downstream temperature is lower than the upstream temperature, the sample can be placed in a short period of time by increasing the air flow rate based on the upstream temperature on the high temperature side. The temperature of the part can be raised.

また試料配置部内の温度自体は設定値に維持されるが、本発明の恒温装置は、試料配置部の上流側と下流側に温度差があることが前提であるから、いずれの部位の温度を基準とするかによって全体の温度が変わってしまう。
試料配置部内の温度自体を設定値に維持する際における基準となる温度は、上流側温度、下流側温度あるいはこれらの平均を利用することができる。
In addition, although the temperature in the sample placement unit itself is maintained at a set value, the thermostat of the present invention is based on the premise that there is a temperature difference between the upstream side and the downstream side of the sample placement unit. The overall temperature changes depending on whether it is set as a reference.
As a reference temperature for maintaining the temperature in the sample placement portion at a set value, an upstream temperature, a downstream temperature, or an average of these can be used.

即ち請求項7に記載の発明は、試料配置部内の温度は、上流側温度検知手段の検知温度に基づいて設定値に維持されることを特徴とする請求項1乃至6のいずれかに記載の恒温装置である。   That is, the invention according to claim 7 is characterized in that the temperature in the sample placement portion is maintained at a set value based on the temperature detected by the upstream temperature detecting means. It is a thermostatic device.

請求項8に記載の発明は、試料配置部内の温度は、下流側温度検知手段の検知温度に基づいて設定値に維持されることを特徴とする請求項1乃至6のいずれかに記載の恒温装置である。   According to an eighth aspect of the present invention, the temperature in the sample placement section is maintained at a set value based on the detected temperature of the downstream temperature detecting means. The constant temperature according to any one of the first to sixth aspects Device.

請求項9に記載の発明は、試料配置部内の温度は、上流側温度検知手段の検知温度と下流側温度検知手段の検知温度の平均に基づいて設定値に維持されることを特徴とする請求項1乃至6のいずれかに記載の恒温装置である。   The invention according to claim 9 is characterized in that the temperature in the sample placement section is maintained at a set value based on the average of the detected temperature of the upstream temperature detecting means and the detected temperature of the downstream temperature detecting means. Item 7. The thermostat according to any one of Items 1 to 6.

本発明の恒温装置は、発熱試料体が配置される試料配置部における空気の流れ方向上流側と下流側に温度検知手段が設けられており、試料配置部の温度を設定値に制御する際に、試料配置部の上流側と下流側の温度差が一定の範囲内に存在するように送風機の送風量を増減することができる。これにより、大容量のモータを備えた送風機で試料配置部の温度分布を所定の試験環境に維持する場合であっても、省エネルギーを図った制御が実行される恒温装置を提供することができる。   The thermostat of the present invention is provided with temperature detection means on the upstream side and the downstream side in the air flow direction in the sample placement part in which the exothermic sample body is placed, and when the temperature of the sample placement part is controlled to a set value. The air flow rate of the blower can be increased or decreased so that the temperature difference between the upstream side and the downstream side of the sample placement unit is within a certain range. Thereby, even if it is a case where the temperature distribution of a sample arrangement | positioning part is maintained in a predetermined test environment with the air blower provided with the large capacity motor, the constant temperature apparatus with which control aiming at energy saving is performed can be provided.

本発明の実施形態に係る恒温装置を概念的に示す断面図である。It is sectional drawing which shows notionally the thermostat which concerns on embodiment of this invention. 図1の恒温装置の制御部とその他の機器との関係を示すブロック図である。It is a block diagram which shows the relationship between the control part of the thermostat of FIG. 1, and another apparatus. 比較例を説明するものであり、恒温装置の試料配置部における上流側温度Aと下流側温度Bと、時間との一般的関係を簡易的に示すグラフである。It is a graph for explaining a comparative example and simply showing a general relationship between the upstream temperature A, the downstream temperature B, and time in the sample placement portion of the thermostatic apparatus. 比較例を説明するものであり、恒温装置の試料配置部における上流側温度Aと下流側温度Bと、時間との関係を簡易的に示すグラフであって送風機の送風量が少ない場合を示す。It is a graph for explaining a comparative example, and is a graph simply showing the relationship between the upstream temperature A, the downstream temperature B, and the time in the sample placement portion of the thermostat, and shows a case where the blower volume of the blower is small. 比較例を説明するものであり、恒温装置の試料配置部における上流側温度Aと下流側温度Bと、時間との関係を簡易的に示すグラフであって送風機の送風量が多い場合を示す。It is a graph for explaining a comparative example, and is a graph simply showing the relationship between the upstream temperature A, the downstream temperature B, and the time in the sample placement portion of the thermostatic device, and shows a case where the blower has a large blast volume. 本発明の実施形態を説明するものであり、図1の恒温装置の試料配置部における上流側温度Aと下流側温度Bと、時間との関係を及び送風量の関係を簡易的に示すグラフである。FIG. 3 is a graph for explaining the embodiment of the present invention, and simply shows the relationship between the upstream temperature A and the downstream temperature B in the sample placement portion of the thermostatic device in FIG. is there. 上段は図1の恒温装置の試料配置部における温度差C(下流側温度B−上流側温度A)と、時間との関係を簡易的に示すグラフであり、下段は送風機の送風量の状態を示すグラフである。The upper row is a graph simply showing the relationship between the temperature difference C (downstream temperature B-upstream temperature A) and time in the sample placement portion of the thermostat of FIG. 1, and the lower row shows the state of the blower air flow rate. It is a graph to show. 別の実施形態の恒温装置を図1の恒温装置の試料配置部における上流側温度Aと下流側温度Bと、時間との関係を簡易的に示すグラフである。It is a graph which shows simply the relationship between the upstream temperature A in the sample arrangement | positioning part of the thermostat of FIG. 1, the downstream temperature B, and time in the thermostat of another embodiment. 図8と同一の実施例に関し、上段は恒温装置の試料配置部における温度差C(下流側温度B−上流側温度A)と、時間との関係を簡易的に示すグラフであり、下段は送風機の送風量の状態を示すグラフである。8 is a graph simply showing the relationship between the temperature difference C (downstream temperature B-upstream temperature A) in the sample placement portion of the thermostatic apparatus and time, and the lower part is a blower. It is a graph which shows the state of the blast volume.

以下、本発明の実施形態に係る恒温装置1ついて説明する。
なお、本実施形態の恒温装置1は、半導体デバイス(発熱試料体W)をバーンイン試験するバーンイン試験装置であり、発熱試料体Wの発熱量が年々増加傾向を辿っている背景を踏まえて、高発熱の発熱試料体Wを検査できる構成とされいる。具体的には、発熱試料体Wの合計発熱量が、7〜8kwh程度までが対象とされている。
Hereinafter, the thermostat 1 according to the embodiment of the present invention will be described.
The thermostat 1 of the present embodiment is a burn-in test apparatus for performing a burn-in test on a semiconductor device (heat generating sample body W), and is based on the background that the amount of heat generated by the heat generating sample body W is increasing year by year. The exothermic sample W is configured to be inspected. Specifically, the total calorific value of the exothermic sample body W is about 7 to 8 kwh.

恒温装置1は、図1に示すように、外部の温度変化の影響を受けないように外枠が断熱壁3で形成されており、図示しない扉を閉じることによって、内部を密閉状態とすることができる。また、前記扉を開くことによって、発熱試料体Wたる半導体デバイス等の出し入れを行うことができる。また、恒温装置1の内部においては、発熱試料体Wを配置する試料配置部2と、空気が流れる通路部5とに分けられた構成である。なお、バーンイン試験は、先にも説明したように、通電すると発熱する発熱試料体Wに対して、通常の温度環境よりも高い温度に晒した状態で、通常の使用電圧よりも高い電圧を掛けて、不良品を見分ける検査である。   As shown in FIG. 1, the thermostatic device 1 has an outer frame formed of a heat insulating wall 3 so as not to be affected by an external temperature change, and the inside is sealed by closing a door (not shown). Can do. Moreover, the semiconductor device etc. which are the exothermic sample bodies W can be taken in and out by opening the said door. In the constant temperature apparatus 1, the structure is divided into a sample placement portion 2 for placing the heat generation sample body W and a passage portion 5 through which air flows. In the burn-in test, as described above, a voltage higher than the normal working voltage is applied to the exothermic sample body W that generates heat when energized, while being exposed to a temperature higher than the normal temperature environment. This is an inspection to identify defective products.

試料配置部2は、図1に示すように、恒温装置1のほぼ中央に位置し、空気の流れ方向上流側と下流側に通路部5が隣接している。また、試料配置部2は、バーンインボードと称される試料載置棚6が鉛直方向に複数並べられ、さらに各試料載置棚6には発熱試料体Wに通電するための図示しない端子が設けられて構成されている。即ち、試料配置部2を通過する空気は、試料載置棚6に沿ってほぼ平行に流れる。即ち試料配置部2を通過する空気は、試料載置棚6によって大まかに5層に分かれて並行に流れる。より具体的には図1の様にa層からe層に分かれて流れることとなる。
そして、試料配置部2を通過する空気は、通電されて発熱した発熱試料体Wと熱交換する。
As shown in FIG. 1, the sample placement unit 2 is positioned substantially at the center of the thermostatic device 1, and the passage unit 5 is adjacent to the upstream side and the downstream side in the air flow direction. The sample placement section 2 includes a plurality of sample placement shelves 6 called burn-in boards arranged in the vertical direction, and each sample placement shelf 6 is provided with a terminal (not shown) for energizing the heat generating sample body W. Is configured. That is, the air passing through the sample placement unit 2 flows along the sample placement shelf 6 substantially in parallel. That is, the air passing through the sample placement unit 2 is roughly divided into five layers by the sample placement shelf 6 and flows in parallel. More specifically, as shown in FIG. 1, the flow is divided into a layer and e layer.
And the air which passes through the sample arrangement | positioning part 2 is heat-exchanged with the exothermic sample body W which generate | occur | produced the electricity and was heated.

通路部5は、図1に示すように、試料配置部2を囲繞するように位置している。具体的には、通路部5は、断熱壁3と試料配置部2との間にあり、試料配置部2における空気の流れ方向上流側(右側)と隣接した送風通路10と、試料配置部2における空気の流れ方向下流側(左側)と隣接した排気通路11と、送風通路10と排気通路11とに挟まれ送風機12及びヒータ(加熱手段)13が配される循環通路15とにより構成されている。なお、試料配置部2と、送風通路10及び排気通路11との間には仕切はなく、試料配置部2と循環通路15との間にのみ仕切板29が設けられている。   As shown in FIG. 1, the passage portion 5 is located so as to surround the sample placement portion 2. Specifically, the passage portion 5 is between the heat insulating wall 3 and the sample placement portion 2, and the air passage 10 adjacent to the upstream side (right side) in the air flow direction in the sample placement portion 2 and the sample placement portion 2. And an exhaust passage 11 adjacent to the downstream side (left side) in the air flow direction, and a circulation passage 15 sandwiched between the blower passage 10 and the exhaust passage 11 and provided with a blower 12 and a heater (heating means) 13. Yes. Note that there is no partition between the sample placement unit 2 and the air passage 10 and the exhaust passage 11, and a partition plate 29 is provided only between the sample placement unit 2 and the circulation passage 15.

また、通路部5には、排気通路11を通過した空気の一部又は全部が外部に排気される排気部22と、外部から循環通路15に空気を給気する給気部23と、排気部22と給気部23を通過する空気の通過流量を調整可能な開閉板24とが設けられ、ダンパ部21が形成されている。具体的には、排気部22は、排気通路11における空気の流れ方向下流側に位置し、給気部23は、循環通路15における空気の流れ方向上流側に位置している。そして、排気部22と給気部23は、それぞれ排気ダクト34又は給気ダクト35と接続されている。   Further, the passage portion 5 includes an exhaust portion 22 that exhausts part or all of the air that has passed through the exhaust passage 11 to the outside, an air supply portion 23 that supplies air to the circulation passage 15 from the outside, and an exhaust portion. 22 and an opening / closing plate 24 capable of adjusting the flow rate of air passing through the air supply unit 23 are provided, and a damper unit 21 is formed. Specifically, the exhaust part 22 is located downstream of the exhaust passage 11 in the air flow direction, and the air supply part 23 is located upstream of the circulation passage 15 in the air flow direction. The exhaust unit 22 and the air supply unit 23 are connected to the exhaust duct 34 or the air supply duct 35, respectively.

ダンパ部21は、開閉板(開閉手段)24が、図示しないモータによって開度調整され、当該開閉板24によって排気部22と給気部23を通過する空気の通過流量を同時に調整することができる。より具体的には、開閉板24は、排気部22と給気部23を同時に覆うことができる程度の大きさを備えた1枚の金属板である。また、開閉板24にはヒンジ25が配されている。即ち、開閉板24は、ヒンジ25を基準に回動させることで、排気部22と給気部23の開度を同時に調整することができる。即ち、ダンパ部21の開度調整は、後述する制御部30から生成される信号に基づいて、前記モータが駆動されてヒンジ25を基準に開閉板24が回動して行われる。従って、ダンパ部21は、排気部22と給気部23との開度を調節することで、恒温装置1内部の加熱された空気を排気しつつ、外部の低温空気を給気できるため、試料配置部2の温度を降下させることができる(温度降下手段)。即ち、ダンパ部21により、恒温装置1内部の空気を外気と置換させることができる。なお、上記開閉板24は、所謂バタフライ式であるが、ゲート式でもよい。   The damper portion 21 has an opening / closing plate (opening / closing means) 24 whose opening is adjusted by a motor (not shown), and the opening / closing plate 24 can simultaneously adjust the flow rate of air passing through the exhaust portion 22 and the air supply portion 23. . More specifically, the opening / closing plate 24 is a single metal plate having a size that can cover the exhaust unit 22 and the air supply unit 23 at the same time. A hinge 25 is disposed on the opening / closing plate 24. That is, the opening / closing plate 24 can be adjusted with respect to the opening degree of the exhaust unit 22 and the air supply unit 23 simultaneously by rotating with respect to the hinge 25. That is, the opening degree adjustment of the damper unit 21 is performed by driving the motor and rotating the opening / closing plate 24 with respect to the hinge 25 based on a signal generated from the control unit 30 described later. Therefore, the damper part 21 can supply the external low-temperature air while exhausting the heated air inside the constant temperature apparatus 1 by adjusting the opening degree of the exhaust part 22 and the air supply part 23, so that the sample The temperature of the arrangement part 2 can be lowered (temperature drop means). That is, the damper portion 21 can replace the air inside the thermostatic device 1 with the outside air. The opening / closing plate 24 is a so-called butterfly type, but may be a gate type.

さらに、本実施形態に採用されたダンパ部21は、開閉板24の開閉速度が制御可能な構成である。これにより、試料配置部2の温度調整をより円滑に行うことが可能となる。なお、この開閉板24の開閉速度制御は、本発明に直接的に関わらないため、簡単に説明する。即ち、試料配置部2の温度を急激に下げたい場合には開閉板24の開速度を増加し、試料配置部2の温度を急激に上げたい場合には開閉板24の閉速度を増加する。   Furthermore, the damper portion 21 employed in the present embodiment has a configuration in which the opening / closing speed of the opening / closing plate 24 can be controlled. Thereby, the temperature adjustment of the sample placement unit 2 can be performed more smoothly. Note that the opening / closing speed control of the opening / closing plate 24 is not directly related to the present invention and will be described briefly. That is, the opening speed of the opening / closing plate 24 is increased when the temperature of the sample placement section 2 is desired to be rapidly lowered, and the closing speed of the opening / closing plate 24 is increased when the temperature of the sample placement section 2 is desired to be raised rapidly.

送風通路10は、鉛直方向に延びた通路で、2つの温度センサ(上流側温度検知手段)16,17が配されている。具体的には、通路の鉛直方向上部側に上流側上部温度センサ(上流側温度検知手段)16が配され、通路の鉛直方向下部側に上流側下部温度センサ(上流側温度検知手段)17が配されている。
前記した様に試料配置部2を通過する空気は、a層からe層に分かれて流れることとなるから、上流側上部温度センサ16はa層に導入される空気の温度を測定することとなり、上流側下部温度センサ17はe層に導入される空気の温度を測定することとなる。
これにより、送風通路10において鉛直方向に温度ムラがあっても、温度センサ16,17の平均温度や、最低、最高温度を基準とすることで制御性能を高めることができる。また、複数の温度センサを設けることで、いずれかの温度センサが故障した場合であっても、試料配置部2の温度制御を確実に実行することができる。
なお本実施形態では、2つの温度センサ(上流側温度検知手段)16,17の検知温度の平均値を上流側温度Aとして制御が行われる。
The air passage 10 is a passage extending in the vertical direction, and two temperature sensors (upstream temperature detecting means) 16 and 17 are arranged. Specifically, an upstream upper temperature sensor (upstream temperature detection means) 16 is disposed on the upper side in the vertical direction of the passage, and an upstream lower temperature sensor (upstream temperature detection means) 17 is provided on the lower side in the vertical direction of the passage. It is arranged.
As described above, the air passing through the sample placement unit 2 flows separately from the a layer to the e layer, so the upstream upper temperature sensor 16 measures the temperature of the air introduced into the a layer, The upstream side lower temperature sensor 17 measures the temperature of the air introduced into the e layer.
Thereby, even if there is temperature unevenness in the vertical direction in the air passage 10, the control performance can be enhanced by using the average temperature, the minimum, and the maximum temperature of the temperature sensors 16, 17 as a reference. In addition, by providing a plurality of temperature sensors, the temperature control of the sample placement unit 2 can be reliably executed even when any one of the temperature sensors fails.
In the present embodiment, the control is performed with the average value of the detected temperatures of the two temperature sensors (upstream temperature detecting means) 16 and 17 as the upstream temperature A.

また、送風通路10には、空気を一定方向に円滑に流すことができる規制板36が鉛直方向に4つ並べて設けられている。   Further, four regulating plates 36 that can smoothly flow air in a certain direction are arranged in the air passage 10 in a vertical direction.

排気通路11は、通路の延伸方向が送風通路10と同じであり、2つの温度センサ(下流側温度検知手段)18,20が配されている。具体的には、通路の鉛直方向下部側に下流側下部温度センサ(下流側温度検知手段)18が配され、通路の鉛直方向上部側に下流側上部温度センサ(下流側温度検知手段)20が配されている。前記した様に試料配置部2を通過する空気は、a層からe層に分かれて流れることとなるから、下流側上部温度センサ20はa層から排出される空気の温度を測定することとなり、下流側下部温度センサ18はe層から排出される空気の温度を測定することとなる。
これにより、排気通路11において鉛直方向に温度ムラがあっても、温度センサ18,20の平均温度や、最低、最高温度を基準とすることで制御性能を高めることができる。また、前記したように、いずれかの温度センサが故障した場合であっても、試料配置部2の温度制御を実行することができる。
なお本実施形態では、2つの温度センサ(下流側温度検知手段)18,20の検知温度の平均値を下流側温度Bとして制御が行われる。
また、排気通路11にも、前記同様の規制板36が1つ設けられている。
The exhaust passage 11 has the same extending direction as that of the air passage 10, and two temperature sensors (downstream temperature detecting means) 18 and 20 are arranged. Specifically, a downstream lower temperature sensor (downstream temperature detection means) 18 is disposed on the lower side in the vertical direction of the passage, and a downstream upper temperature sensor (downstream temperature detection means) 20 is provided on the upper side in the vertical direction of the passage. It is arranged. As described above, the air passing through the sample placement unit 2 flows separately from the a layer to the e layer, so the downstream upper temperature sensor 20 measures the temperature of the air discharged from the a layer, The downstream side lower temperature sensor 18 measures the temperature of the air discharged from the e layer.
Thereby, even if there is temperature unevenness in the vertical direction in the exhaust passage 11, the control performance can be enhanced by using the average temperature of the temperature sensors 18, 20 and the minimum and maximum temperatures as a reference. Further, as described above, even if any of the temperature sensors fails, the temperature control of the sample placement unit 2 can be executed.
In the present embodiment, the control is performed with the average value of the detected temperatures of the two temperature sensors (downstream temperature detecting means) 18 and 20 as the downstream temperature B.
The exhaust passage 11 is also provided with one restriction plate 36 similar to the above.

循環通路15は、試料配置部2の上部側に位置し、送風通路10及び排気通路11に対してほぼ直交する方向に延びた通路である。即ち、循環通路15は、空気の流れ方向上流側に排気通路11が隣接しており、空気の流れ方向下流側に送風通路10が隣接している。即ち、循環通路15においては、排気通路11を通過した一部の空気及び給気部23から給気された外部の空気が通過するか、排気通路11を通過した全部の空気が通過する。また、循環通路15には送風機12及びヒータ13が配されており、送風機12がヒータ13よりも空気の流れ方向下流側に位置している。即ち、ヒータ13で加熱された空気が、送風機12によって送風通路10に送り出される。   The circulation passage 15 is a passage that is located on the upper side of the sample placement section 2 and extends in a direction substantially orthogonal to the air passage 10 and the exhaust passage 11. That is, in the circulation passage 15, the exhaust passage 11 is adjacent to the upstream side in the air flow direction, and the blower passage 10 is adjacent to the downstream side in the air flow direction. That is, in the circulation passage 15, a part of the air that has passed through the exhaust passage 11 and the external air that has been supplied from the air supply unit 23 pass, or all the air that has passed through the exhaust passage 11 passes. In addition, a blower 12 and a heater 13 are arranged in the circulation passage 15, and the blower 12 is located downstream of the heater 13 in the air flow direction. That is, the air heated by the heater 13 is sent out to the blower passage 10 by the blower 12.

本実施形態では、ヒータ13は6つ設けられており、その内の1つは常時作動する常時ヒータ13aで、残りの5つは短時間に急激な温度上昇を行う必要がある場合に作動する臨時ヒータ13b〜13fである。なお、全てのヒータ13a〜13fは、入力を変更することで発熱量を調整することができる。   In the present embodiment, six heaters 13 are provided, one of which is a constant heater 13a that always operates, and the other five that operate when it is necessary to perform a rapid temperature increase in a short time. Temporary heaters 13b to 13f. In addition, all the heaters 13a-13f can adjust the emitted-heat amount by changing an input.

送風機12は、インバータを備えた遠心ファンであり、インバータにより周波数が変更されることで、図示しないモータの回転数を無段階に増減可能である。また、本実施形態の恒温装置1では、従来の恒温装置に用いられる送風機12よりもモータの容量が大きいものが採用されている。これは、高発熱化された近年の発熱試料体Wに対応するためである。具体的には、本実施形態に採用される送風機12のモータの容量としては、9kw(4.5kw程度のモータが2つ)程度のものである。   The blower 12 is a centrifugal fan provided with an inverter, and the number of rotations of a motor (not shown) can be increased or decreased steplessly by changing the frequency by the inverter. Moreover, in the thermostat 1 of this embodiment, the thing whose capacity | capacitance of a motor is larger than the air blower 12 used for the conventional thermostat is employ | adopted. This is in order to cope with the recent exothermic sample body W which has increased in heat. Specifically, the capacity of the motor of the blower 12 employed in the present embodiment is about 9 kw (two motors of about 4.5 kw).

続いて、恒温装置1における制御部とその他の機器との関係について、図面を用いて説明する。   Next, the relationship between the control unit and other devices in the thermostatic device 1 will be described with reference to the drawings.

本実施形態の恒温装置1では、試料配置部2内の温度ばらつきが所定の適正温度差となる様に温度センサ16,17,18,20が検知する温度に基づいた送風機12の制御が実行される。即ち、図2に示すように、温度センサ16,17,18,20と制御部30は、信号線31で接続され、送風機12と制御部30は、信号線32で接続されている。   In the thermostatic device 1 of the present embodiment, the control of the blower 12 based on the temperature detected by the temperature sensors 16, 17, 18, and 20 is executed so that the temperature variation in the sample placement unit 2 becomes a predetermined appropriate temperature difference. The That is, as shown in FIG. 2, the temperature sensors 16, 17, 18, 20 and the control unit 30 are connected by a signal line 31, and the blower 12 and the control unit 30 are connected by a signal line 32.

また制御部30は、前記温度センサ16の検知温度に基づいて、ダンパ部21とヒータ13の各機器を制御することができる。即ち、制御部30は、図2に示すように、ダンパ部21とヒータ13の各機器と、信号線33,34で接続されている。   Further, the control unit 30 can control each device of the damper unit 21 and the heater 13 based on the temperature detected by the temperature sensor 16. That is, as shown in FIG. 2, the control unit 30 is connected to each device of the damper unit 21 and the heater 13 by signal lines 33 and 34.

本実施形態の恒温装置1では、具体的には試料配置部2内の温度が設定値となる様にヒータ13a〜13fの入力が制御される。試料配置部2内の温度は、送風機12の吹き出し部の温度を基準とすることが通例であり、本実施形態では、上流側上部温度センサ16が最も送風機12の吹き出し部に近い。そこで本実施形態では、試料配置部2の温度は、上流側上部温度センサ温度センサ16の検知温度で決定され、上流側上部温度センサ16の検知温度を基準にヒータ13a〜13fの入力がPID制御される。   In the thermostat 1 of this embodiment, specifically, the inputs of the heaters 13a to 13f are controlled so that the temperature in the sample placement unit 2 becomes a set value. The temperature in the sample placement unit 2 is usually based on the temperature of the blowing part of the blower 12, and in this embodiment, the upstream side upper temperature sensor 16 is closest to the blowing part of the blower 12. Therefore, in this embodiment, the temperature of the sample placement unit 2 is determined by the detected temperature of the upstream upper temperature sensor temperature sensor 16, and the inputs of the heaters 13a to 13f are PID controlled based on the detected temperature of the upstream upper temperature sensor 16. Is done.

また、前記した制御部30には、図示しない演算部が備えられ、当該演算部により、試料配置部2における上流側温度Aと、下流側温度Bとの温度差C(下流側温度B−上流側温度A)が演算される。
なお、本実施形態では、前記した様に二つの上流側温度センサ16,17の平均温度が上流側温度Aであり、二つの下流側温度センサ18,20の平均温度が下流側温度Bである。当該上流側温度A自体及び下流側温度B自体も前記演算部で演算されている。即ち本実施形態では、上流側における平均温度と下流側における平均温度が演算され、さらに上流側温度Aと下流側温度Bとの温度差C(下流側温度B−上流側温度A)が演算される。
Further, the control unit 30 includes a calculation unit (not shown), and the calculation unit calculates a temperature difference C between the upstream temperature A and the downstream temperature B in the sample placement unit 2 (downstream temperature B-upstream). The side temperature A) is calculated.
In the present embodiment, as described above, the average temperature of the two upstream temperature sensors 16 and 17 is the upstream temperature A, and the average temperature of the two downstream temperature sensors 18 and 20 is the downstream temperature B. . The upstream temperature A itself and the downstream temperature B itself are also calculated by the calculation unit. That is, in this embodiment, the average temperature on the upstream side and the average temperature on the downstream side are calculated, and the temperature difference C between the upstream temperature A and the downstream temperature B (downstream temperature B−upstream temperature A) is calculated. The

次に、本実施形態の恒温装置1の機能について説明する。
本実施形態の恒温装置1では、試料配置部2の試料載置棚6に発熱試料体Wを載置し、熱風によって試料配置部2を加熱すると共に発熱試料体Wに通電して発熱試料体Wを試験する。試料配置部2の設定温度(設定値)は例えば摂氏125度といった高温である。
本実施形態の恒温装置1は、前記した様に送風機12の吹き出し部の温度を試料配置部2の温度とし、試料配置部2の温度は、上流側温度センサ16の検知温度を基準にヒータ13a〜13fの入力をPID制御して調節される。
Next, the function of the thermostat 1 of this embodiment is demonstrated.
In the thermostatic device 1 of the present embodiment, the heat generating sample body W is placed on the sample mounting shelf 6 of the sample placing section 2, the sample placing section 2 is heated with hot air, and the heat generating sample body W is energized to generate heat. Test W. The set temperature (set value) of the sample placement unit 2 is a high temperature such as 125 degrees Celsius.
As described above, the thermostatic device 1 of the present embodiment uses the temperature of the blowing portion of the blower 12 as the temperature of the sample placement portion 2, and the temperature of the sample placement portion 2 is based on the temperature detected by the upstream temperature sensor 16 as a heater 13a. ˜13f input is adjusted by PID control.

またダンパ部21は、試料配置部2の実際の温度に基づいて開閉される。具体的には、上流側上部温度センサ16が検知する温度が低い場合(設定温度の8〜9割程度の温度、設定温度が125度であるならば摂氏100度から110度程度)は、ダンパ部21の開度を閉状態にしつつ、ヒータ13を作動する。一方、上流側上部温度センサ16が検知する温度が高い場合(設定温度の9割を超える温度)は、ダンパ部21の開度を開状態にする。
また、本実施形態では、試料配置部2の温度分布を均一に制御し、且つ上流側温度検知手段が検知する上流側温度と下流側温度検知手段が検知する下流側温度との間に所定の適正温度差が存在するように、送風機12の送風量がPID制御される。
なお、以下の説明では、恒温装置1における送風量を無段階に増減させることが可能な構成として説明する。
The damper unit 21 is opened and closed based on the actual temperature of the sample placement unit 2. Specifically, when the temperature detected by the upstream upper temperature sensor 16 is low (a temperature of about 80 to 90% of the set temperature, or about 100 to 110 degrees Celsius if the set temperature is 125 degrees), the damper The heater 13 is operated while the opening of the section 21 is closed. On the other hand, when the temperature detected by the upstream side upper temperature sensor 16 is high (temperature exceeding 90% of the set temperature), the opening degree of the damper portion 21 is opened.
In this embodiment, the temperature distribution of the sample placement unit 2 is uniformly controlled, and a predetermined temperature is detected between the upstream temperature detected by the upstream temperature detection means and the downstream temperature detected by the downstream temperature detection means. The air flow rate of the blower 12 is PID controlled so that an appropriate temperature difference exists.
In addition, in the following description, it demonstrates as a structure which can increase / decrease the ventilation volume in the thermostat 1 continuously.

なお本実施形態の恒温装置1は、前記した様に上流側温度検知手段が検知する上流側温度と下流側温度検知手段が検知する下流側温度との間に所定の適正温度差が存在するように、送風機12の送風量がPID制御される点に特徴があるが、この機能の作用を説明するために、最初に送風機12の送風量が一定である場合(PID制御しない状態)の挙動を比較例として説明する。
即ち本実施形態に対する比較として、恒温装置1の試料配置部2に発熱試料体Wを満載し、且つ送風機12の送風量を一定にして、バーンイン試験を行った場合の試料配置部2の温度分布について説明する。
In the thermostat 1 of the present embodiment, as described above, there is a predetermined appropriate temperature difference between the upstream temperature detected by the upstream temperature detection means and the downstream temperature detected by the downstream temperature detection means. However, in order to explain the operation of this function, the behavior when the air flow rate of the air blower 12 is initially constant (the state where PID control is not performed) is described. This will be described as a comparative example.
That is, as a comparison with the present embodiment, the temperature distribution of the sample placement unit 2 when a burn-in test is performed with the sample placement unit 2 of the thermostatic device 1 fully loaded with the exothermic sample body W and the blast volume of the blower 12 kept constant. Will be described.

発熱試料体Wが満載された状態でバーンイン試験を行う場合、試料配置部2の上流側と下流側の温度は、一般に、図3(a)又は図3(b)のグラフのように変化する。即ち発熱試料体Wが、試料配置部2に設置され、ヒータ13を作動させて試料配置部2を昇温するとともに、送風機12を起動し、且つ送風機12の回転数を一定に維持して空気を試料載置棚6に沿ってほぼ平行に流すと、試料配置部2の上流側と下流側の温度が図3(a)又は図3(b)のグラフのように変化する。
即ち恒温装置1の初期動作時においては、発熱試料体Wの発熱量は低く、試料配置部2を通過する空気の熱が試料載置棚6やその他の内部材料及び発熱試料体W自体に奪われるため、上流側温度Aと下流側温度Bとを比較すると、下流側温度Bのほうが低い状態となる。
その後、発熱試料体Wの発熱によって試料載置棚6やその他の内部材料が加熱されて昇温し、時間の経過と共に上流側温度Aと下流側温度Bの温度差が小さくなる。
When the burn-in test is performed in a state where the exothermic sample body W is fully loaded, the temperature on the upstream side and the downstream side of the sample placement unit 2 generally changes as shown in the graph of FIG. 3 (a) or FIG. 3 (b). . That is, the exothermic sample body W is installed in the sample placement unit 2, the heater 13 is operated to raise the temperature of the sample placement unit 2, the blower 12 is started, and the rotational speed of the blower 12 is kept constant to air. When flowing in parallel along the sample mounting shelf 6, the temperatures on the upstream side and the downstream side of the sample placement unit 2 change as shown in the graph of FIG. 3 (a) or FIG. 3 (b).
That is, during the initial operation of the thermostat 1, the heat generation amount of the exothermic sample body W is low, and the heat of the air passing through the sample placement unit 2 is taken away by the sample mounting shelf 6 and other internal materials and the exothermic sample body W itself. Therefore, when the upstream temperature A and the downstream temperature B are compared, the downstream temperature B is in a lower state.
Thereafter, the sample mounting shelf 6 and other internal materials are heated by the heat generated by the exothermic sample body W and the temperature rises, and the temperature difference between the upstream temperature A and the downstream temperature B decreases with time.

そして、さらに時間が経過すると、上流側温度Aと下流側温度Bの高低が図3の様に逆転する。即ち、発熱試料体Wの発熱によって試料配置部2を通過する空気が昇温され、下流側温度Bの方が上流側温度Aよりも高くなる。なお下流側温度Bの方が上流側温度Aよりも高くなる時期は、試料載置棚6やその他の熱容量と、発熱試料体Wの発熱量との関数であり、試料載置棚6等の熱容量が大きく、発熱試料体Wの発熱量が小さい場合には図3(a)の様に試料配置部2の温度が設定温度近傍となった後となる。
逆に試料載置棚6等の熱容量が小さく、発熱試料体Wの発熱量が大きい場合には図3(b)の様に試料配置部2の温度が設定温度となる前に、下流側温度Bの方が上流側温度Aよりも高くなる。
Then, when the time further elapses, the levels of the upstream temperature A and the downstream temperature B are reversed as shown in FIG. That is, the temperature of the air passing through the sample placement portion 2 is increased by the heat generation of the heat generation sample body W, and the downstream temperature B becomes higher than the upstream temperature A. The time when the downstream temperature B becomes higher than the upstream temperature A is a function of the sample mounting shelf 6 and other heat capacities and the heat generation amount of the heat generating sample body W. When the heat capacity is large and the calorific value of the exothermic sample body W is small, it is after the temperature of the sample placement portion 2 becomes close to the set temperature as shown in FIG.
Conversely, when the heat capacity of the sample mounting shelf 6 or the like is small and the calorific value of the exothermic sample body W is large, before the temperature of the sample placement unit 2 reaches the set temperature as shown in FIG. B is higher than upstream temperature A.

また、試料配置部2の温度は、ダンパ部21の開閉や、ヒータ13の制御によって許容される範囲の設定温度に保たれる。そして発熱試料体Wの発熱量が一定であり、この発熱試料体Wが発生する熱と、ダンパ部21を経由して外部に排出される熱とヒータ13によって補正的に追加される熱及び送風機12による攪拌熱が平衡し、且つ送風機12の送風量が一定であるならば、上流側温度Aは、図3(a)(b)に示すように、設定温度の近傍で安定する。   In addition, the temperature of the sample placement unit 2 is maintained at a set temperature that is allowed by opening / closing the damper unit 21 and controlling the heater 13. The calorific value of the exothermic sample body W is constant, the heat generated by the exothermic sample body W, the heat discharged to the outside via the damper portion 21, the heat added by the heater 13 in a corrective manner, and the blower As shown in FIGS. 3A and 3B, the upstream temperature A is stabilized in the vicinity of the set temperature if the heat of stirring by 12 is balanced and the amount of air blown from the blower 12 is constant.

これに対して、下流側温度Bは、ほぼ一定の温度だけ上流側温度Aよりも高い状態を維持して上流側温度Aと同じように平衡状態となって安定する。
そして、送風機12の送風量が少ない場合には、図4に示すように、上流側温度Aと下流側温度Bの温度差Cが大きくなり、送風機12の送風量が多い場合には、図5に示すように、上流側温度Aと下流側温度Bの温度差Cが小さくなる。
以上は、本実施形態の効果を説明するための比較例であり、送風機12の送風量を一定にして、バーンイン試験を行った場合の試料配置部2の温度分布について説明したものであるが、本実施形態では、前記した様に上流側温度検知手段が検知する上流側温度と下流側温度検知手段が検知する下流側温度との間に所定の適正温度差が存在するように、送風機12の送風量をPID制御している。
On the other hand, the downstream temperature B is maintained in a state higher than the upstream temperature A by a substantially constant temperature and is in an equilibrium state and stabilized in the same manner as the upstream temperature A.
When the blower 12 has a small amount of blown air, as shown in FIG. 4, the temperature difference C between the upstream temperature A and the downstream temperature B becomes large, and when the blower 12 has a large blown amount, FIG. As shown, the temperature difference C between the upstream temperature A and the downstream temperature B becomes small.
The above is a comparative example for explaining the effect of the present embodiment, and describes the temperature distribution of the sample placement unit 2 when the burn-in test is performed with the air flow rate of the blower 12 being constant. In the present embodiment, as described above, the blower 12 has a predetermined appropriate temperature difference between the upstream temperature detected by the upstream temperature detection means and the downstream temperature detected by the downstream temperature detection means. The air flow is PID controlled.

以下、本実施形態の様に上流側温度検知手段が検知する上流側温度と下流側温度検知手段が検知する下流側温度との間に所定の適正温度差が存在するように、送風機12の送風量をPID制御する場合の試料配置部2の温度分布について説明する。   Hereinafter, as in this embodiment, the fan 12 is fed so that a predetermined appropriate temperature difference exists between the upstream temperature detected by the upstream temperature detecting means and the downstream temperature detected by the downstream temperature detecting means. The temperature distribution of the sample placement unit 2 when the air volume is PID controlled will be described.

即ち本実施形態では、上流側温度Aと下流側温度Bの温度差Cが、適正温度差となるように、送風機12の送風量を増減させる。
また試験中に発熱試料体Wの発熱量(全発熱試料体Wの総発熱量)が、試験条件の変化や発熱試料体W自身の故障によって変化し、発熱試料体Wが発生する熱と、ダンパ部21を経由して外部に排出される熱とヒータ13によって追加される熱及び送風機12による攪拌熱の平衡が崩れて上流側温度Aが設定温度を外れると、ヒータ13の発熱量が調整されて上流側温度Aを設定温度の近傍に戻す。
That is, in this embodiment, the air flow rate of the blower 12 is increased or decreased so that the temperature difference C between the upstream temperature A and the downstream temperature B becomes an appropriate temperature difference.
Also, during the test, the heat generation amount of the heat generation sample body W (total heat generation amount of all the heat generation sample bodies W) changes due to a change in test conditions or a failure of the heat generation sample body W itself, When the balance between the heat discharged outside via the damper 21 and the heat added by the heater 13 and the stirring heat by the blower 12 is lost and the upstream temperature A deviates from the set temperature, the amount of heat generated by the heater 13 is adjusted. Thus, the upstream temperature A is returned to the vicinity of the set temperature.

図6は、本発明の実施形態を説明するものであり、図1の恒温装置の試料配置部における上流側温度Aと下流側温度Bと、時間との関係を簡易的に示すグラフである。
また上流側温度Aと下流側温度Bの温度差Cをグラフにすると図7の通りである。
即ち、恒温装置1の初期動作時においては、図7に示すように、一旦、上流側温度Aと下流側温度Bとの温度差Cが大きくなる(マイナス側)が、発熱試料体Wの発熱により、経時的に当該温度差Cが小さくなる方に変化する。そして、上流側温度Aと下流側温度Bとの温度差Cが0度となったところを境として、下流側温度Bが上流側温度Aより高温となる。即ち、温度差Cが0度となったところを境に、発熱試料体Wの表面温度が送風機12により送り出される空気の温度よりも高くなり、試料配置部2を通過する空気が発熱試料体Wによって加熱される。なお、本実施形態では、恒温装置1が作動してから一定時間経過し、恒温装置1内の温度が設定温度(設定値)になるまでの動作を初期動作と言っている。本実施形態では、恒温装置1内の温度が設定温度(設定値)になるまでの間(初期動作期間)は、恒温装置1内の温度が上昇過程にあるので、送風機12を全力で回転させる。
FIG. 6 illustrates an embodiment of the present invention, and is a graph simply showing the relationship between the upstream temperature A, the downstream temperature B, and the time in the sample placement portion of the thermostatic device of FIG.
FIG. 7 is a graph showing the temperature difference C between the upstream temperature A and the downstream temperature B.
That is, during the initial operation of the constant temperature apparatus 1, as shown in FIG. 7, the temperature difference C between the upstream temperature A and the downstream temperature B once increases (minus side), but the heat generation of the heat generating sample body W occurs. As a result, the temperature difference C changes over time. Then, the downstream temperature B becomes higher than the upstream temperature A when the temperature difference C between the upstream temperature A and the downstream temperature B becomes 0 degrees. That is, when the temperature difference C becomes 0 degree, the surface temperature of the exothermic sample body W becomes higher than the temperature of the air sent out by the blower 12, and the air passing through the sample placement unit 2 becomes the exothermic sample body W. Heated by. In the present embodiment, an operation until a certain time has elapsed after the thermostat 1 is activated and the temperature in the thermostat 1 reaches a set temperature (set value) is referred to as an initial operation. In this embodiment, since the temperature in the constant temperature apparatus 1 is in the process of rising until the temperature in the constant temperature apparatus 1 reaches the set temperature (set value) (initial operation period), the blower 12 is rotated at full power. .

初期動作期間を終えると、試料載置棚6やその他の内部材料が昇温し、さらに発熱試料体Wの温度が高くなり、下流側温度Bが上流側温度Aより高温となる。初期動作期間を越えると、恒温装置1内の温度が設定温度(設定値)となるが、試料配置部2を流れる空気が発熱試料体Wの熱によりさらに加熱されるため、図6、図7に示すように、下流側温度Bと上流側温度Aとの温度差Cが次第に大きくなる。
しかしながら本実施形態では、初期動作期間を終えると、上流側温度検知手段が検知する上流側温度と下流側温度検知手段が検知する下流側温度との間に所定の適正温度差が存在するように、送風機12の送風量がPID制御される。そのため送風機12の送風量が増減されるので、図6のa−b間の様に送風機12の送風量は低下傾向となる。その結果下流側温度Bと上流側温度Aとの温度差Cは、図6、図7の様に適正温度差に収束して安定する。
When the initial operation period ends, the temperature of the sample mounting shelf 6 and other internal materials rises, the temperature of the exothermic sample body W becomes higher, and the downstream temperature B becomes higher than the upstream temperature A. When the initial operation period is exceeded, the temperature in the thermostatic device 1 becomes a set temperature (set value), but the air flowing through the sample placement unit 2 is further heated by the heat of the exothermic sample body W, so that FIGS. As shown, the temperature difference C between the downstream temperature B and the upstream temperature A gradually increases.
However, in the present embodiment, when the initial operation period ends, a predetermined appropriate temperature difference exists between the upstream temperature detected by the upstream temperature detection means and the downstream temperature detected by the downstream temperature detection means. The air flow rate of the blower 12 is PID controlled. Therefore, since the air flow rate of the blower 12 is increased or decreased, the air flow rate of the blower 12 tends to decrease as between a and b in FIG. As a result, the temperature difference C between the downstream temperature B and the upstream temperature A converges to an appropriate temperature difference and stabilizes as shown in FIGS.

即ち、本実施形態では、初期動作期間を終えると、試料配置部2の温度分布の変化に鑑み、上流側温度センサ16,17と、下流側温度センサ18,20が検知する検知温度に基づいて送風機12の送風量をPID制御して、試料配置部2の温度分布を許容できる所定の範囲に保つ構成とされている。具体的には、初期動作時には試料配置部2の温度は低温であり、試料配置部2の温度が上昇過程にあるので、送風機12を全力で回転させる。そして、初期動作期間を終えると、発熱試料体Wの加熱により高温側が逆転して下流側温度Bが過剰に高くなるが、高温側の下流側温度Bと低温側の上流側温度Aの間に適正温度差を維持し、温度分布が所定の範囲となるように、送風機の送風量を制御する。即ち、高温側の下流側温度Bと低温側の上流側温度Aの温度差Cが、下限温度差以上であって上限温度差以下の所定範囲の温度差となるように、送風機の送風量の強弱を調整する。
これにより、本実施形態の恒温装置1では、バーンイン試験において、試料配置部2の温度環境を効率的に設定温度に近づけると共に、許容可能な範囲の温度分布にして、省エネルギーを図ることが可能となる。
That is, in the present embodiment, after the initial operation period is over, based on the detected temperatures detected by the upstream temperature sensors 16 and 17 and the downstream temperature sensors 18 and 20 in view of the change in the temperature distribution of the sample placement unit 2. It is set as the structure which carries out PID control of the ventilation volume of the air blower 12, and keeps the temperature distribution of the sample arrangement | positioning part 2 in the predetermined | prescribed range which can accept | permit. Specifically, during the initial operation, the temperature of the sample placement unit 2 is low, and the temperature of the sample placement unit 2 is in the rising process, so the blower 12 is rotated at full power. When the initial operation period ends, the high temperature side reverses due to heating of the exothermic sample W and the downstream temperature B becomes excessively high, but between the high temperature downstream temperature B and the low temperature upstream temperature A. The air flow rate of the blower is controlled so that an appropriate temperature difference is maintained and the temperature distribution falls within a predetermined range. That is, the air flow rate of the blower is set so that the temperature difference C between the downstream temperature B on the high temperature side and the upstream temperature A on the low temperature side is equal to or higher than a lower limit temperature difference and a predetermined range of temperature difference below the upper limit temperature difference. Adjust strength.
Thereby, in the thermostat 1 of this embodiment, in the burn-in test, it is possible to efficiently bring the temperature environment of the sample placement unit 2 close to the set temperature and to achieve energy saving by making the temperature distribution within an allowable range. Become.

以下に、バーンイン試験を行った場合における、本実施形態の恒温装置1の動作について具体的に説明する。   Hereinafter, the operation of the thermostatic device 1 of the present embodiment when the burn-in test is performed will be specifically described.

恒温装置1が運転されて、バーンイン試験が開始されると、主に試料配置部2の温度を予め設定された設定値(摂氏125度)に近づけるため、上流側上部温度センサ16が検知する上流側温度を基準に各機器が制御される。本実施形態では、主にヒータ13の入力がPID制御されて上流側上部温度センサ16が検知する上流側温度が、設定値(摂氏125度)となる様に調節される。   When the constant temperature apparatus 1 is operated and the burn-in test is started, the upstream side temperature sensor 16 detects the upstream side mainly to bring the temperature of the sample placement unit 2 close to a preset set value (125 degrees Celsius). Each device is controlled based on the side temperature. In the present embodiment, mainly the input of the heater 13 is PID-controlled and the upstream temperature detected by the upstream upper temperature sensor 16 is adjusted to be a set value (125 degrees Celsius).

より具体的に説明すると、運転開始から一定時間が経過するまでの初期動作時においては、試料配置部2の温度を効率的に昇温させるため、ダンパ部21を全閉状態とし、且つ全てのヒータ13をフル稼働で作動する。また送風機12は全力で回転される。
さらに、上流側温度センサ16の検知温度が、摂氏100度〜摂氏110度程度に至ると、ダンパ部21が開かれ、且つヒータ13の入力が比例制御に基づいて減ぜられる。
More specifically, in the initial operation from when the operation starts until a certain time elapses, in order to efficiently raise the temperature of the sample placement unit 2, the damper unit 21 is fully closed, and all The heater 13 is operated at full operation. The blower 12 is rotated at full power.
Further, when the temperature detected by the upstream temperature sensor 16 reaches about 100 degrees Celsius to 110 degrees Celsius, the damper portion 21 is opened and the input of the heater 13 is reduced based on proportional control.

また、このとき、発熱試料体Wに対して通電されているため、発熱試料体Wは発熱しているが、試料載置棚6やその他の内部材料の温度が低いため上流側温度Aが下流側温度Bより高温であり、且つ上流側温度Aと下流側温度Bとの温度差は大きい。そのため、初期動作時においては、図7のタイムチャートに示すように、送風機12は、送風量が強となるように回転数が制御される。この制御により、初期動作時においては、恒温装置1内部の空気は大きく攪拌されながら、試料配置部2と通路部5を循環するため、設定温度(摂氏125度)に向かって急速に昇温する。   At this time, since the heat generation sample body W is energized, the heat generation sample body W is generating heat, but the temperature A of the upstream side A is downstream because the temperature of the sample mounting shelf 6 and other internal materials is low. The temperature is higher than the side temperature B, and the temperature difference between the upstream temperature A and the downstream temperature B is large. Therefore, at the time of initial operation, as shown in the time chart of FIG. 7, the rotation speed of the blower 12 is controlled so that the blown air amount becomes strong. By this control, in the initial operation, the air inside the thermostatic device 1 is circulated through the sample placement unit 2 and the passage unit 5 while being largely agitated, so that the temperature rapidly rises toward the set temperature (125 degrees Celsius). .

また、図6、図7に示すように、試料配置部2の温度が設定値に向かって昇温していく過程で、試料配置部2を通過した発熱試料体Wにより加熱された空気の温度(下流側温度B)が、次第に上流側温度Aに近づき、両者の温度差Cがなくなった後(温度差Cが摂氏0度)上流側温度Aが設定温度(摂氏125度)に到達する。ここまでは前記した様に送風機12は全力(強)で運転されている。
その後、図7に示すように、温度差Cが所定の範囲となるよう、送風機12の回転数が落ち、送風量が少ない状態となる(図6のa−b間)。
そして、下流側温度Bが発熱試料体Wの発熱により高温となり、温度差Cが拡大しようとするので、これに合わせて送風量が次第に増加する(図6のb−c間)。つまり温度差Cが拡がり過ぎて温度分布が所定の範囲を超えることを防止するために、送風機12の送風量が制御される。
Further, as shown in FIGS. 6 and 7, the temperature of the air heated by the exothermic sample body W that has passed through the sample placement unit 2 in the process of raising the temperature of the sample placement unit 2 toward the set value. After the (downstream temperature B) gradually approaches the upstream temperature A and the temperature difference C between the two disappears (temperature difference C is 0 degrees Celsius), the upstream temperature A reaches the set temperature (125 degrees Celsius). Up to this point, as described above, the blower 12 is operated with full power (strong).
Thereafter, as shown in FIG. 7, the rotational speed of the blower 12 is decreased so that the temperature difference C falls within a predetermined range, and the amount of blown air is small (between a and b in FIG. 6).
And since the downstream temperature B becomes high temperature by the heat_generation | fever of the exothermic sample body W and the temperature difference C is going to expand, an air flow volume increases gradually according to this (between bc of FIG. 6). That is, the air flow rate of the blower 12 is controlled in order to prevent the temperature difference C from being excessively widened and the temperature distribution from exceeding a predetermined range.

具体的には、温度差Cに基づいて送風機12の制御を実行する場合、下流側温度Bと上流側温度Aとの差の程度に応じて、送風機12の回転数を制御して送風量を増減する。
即ち、本実施形態においては、温度差Cに基づいて制御を実行する場合、温度差Cが一定となる様に送風機12の送風量が制御される。
Specifically, when controlling the blower 12 based on the temperature difference C, according to the degree of the difference between the downstream temperature B and the upstream temperature A, the rotational speed of the blower 12 is controlled to control the blowing amount. Increase or decrease.
That is, in the present embodiment, when the control is executed based on the temperature difference C, the air flow rate of the blower 12 is controlled so that the temperature difference C is constant.

一方、下流側温度センサ18,20が検知する下流側温度Bが発熱試料体Wの熱により上昇して、下流側温度Bと上流側温度Aとの差が拡がり、温度差Cが適正温度差を超えると、送風機12の回転数を増加させ、適正温度差に戻す。   On the other hand, the downstream temperature B detected by the downstream temperature sensors 18 and 20 rises due to the heat of the exothermic sample body W, the difference between the downstream temperature B and the upstream temperature A widens, and the temperature difference C is an appropriate temperature difference. If it exceeds, the rotation speed of the air blower 12 will be increased and it will return to an appropriate temperature difference.

そして、試料配置部2の温度差Cが適正温度差に制御されつつも、上流側温度センサ16の検知温度が、設定値(摂氏125度)を超えると、ヒータ13の入力を下げると共にダンパ部21の開閉板24を開く方向に開度調整する。逆に試料配置部2の温度差Cが適正温度差に制御されつつも、上流側温度センサ16の検知温度が設定値を下回ると、ヒータ13の入力を上げると共にダンパ部21の開閉板24を閉じる方向に開度調整される。   When the temperature difference C of the sample placement unit 2 is controlled to an appropriate temperature difference and the detected temperature of the upstream temperature sensor 16 exceeds the set value (125 degrees Celsius), the input of the heater 13 is lowered and the damper unit The opening degree is adjusted in the direction in which the open / close plate 24 of the 21 is opened. Conversely, when the temperature difference C of the sample placement unit 2 is controlled to an appropriate temperature difference but the detected temperature of the upstream temperature sensor 16 falls below the set value, the input of the heater 13 is raised and the opening / closing plate 24 of the damper unit 21 is turned on. The opening is adjusted in the closing direction.

従って、本実施形態の恒温装置1では、上流側温度センサ16の検知温度、又は、下流側温度センサ18,20の検知温度と上流側温度センサ16,17の検知温度との温度差に基づいた風量制御が行われることで、試料配置部2の温度分布を適正に保ちつつ、無駄な電力消費を低減することができる。   Therefore, in the thermostat 1 of this embodiment, it is based on the detected temperature of the upstream temperature sensor 16 or the temperature difference between the detected temperature of the downstream temperature sensors 18 and 20 and the detected temperature of the upstream temperature sensors 16 and 17. By performing the air volume control, it is possible to reduce wasteful power consumption while maintaining an appropriate temperature distribution of the sample placement unit 2.

次に、本実施形態の恒温装置1を使用してバーンイン試験を行っている際に、外乱が発生した場合の温度変化の挙動について説明する。
例えば図6に示すように、時間T1の時に外乱として発熱試料体Wの発熱量の低下が生じ、下流側温度センサ18,20の検知温度が低下したとすると、試料配置部2の温度差Cが適正温度差未満となる。送風機12は、温度差Cが適正温度差を維持する様にPID制御されているから、時間T1以降は送風機12の回転数が低下し送風量が下がる。そのため下流側温度センサ18,20の検知温度が上昇し、温度差Cが適正温度差に戻る。
Next, the behavior of the temperature change when a disturbance occurs during the burn-in test using the thermostatic device 1 of the present embodiment will be described.
For example, as shown in FIG. 6, if the amount of heat generated by the heat generating sample body W is reduced as a disturbance at time T1, and the temperature detected by the downstream temperature sensors 18 and 20 is decreased, the temperature difference C of the sample placement unit 2 is reduced. Is less than the appropriate temperature difference. Since the blower 12 is PID-controlled so that the temperature difference C maintains an appropriate temperature difference, after the time T1, the rotational speed of the blower 12 decreases and the blown air volume decreases. Therefore, the temperature detected by the downstream temperature sensors 18 and 20 rises, and the temperature difference C returns to the appropriate temperature difference.

しかしながら送風機12の回転数を低下させると、送風機12の攪拌によるエネルギーが減少するから、試料配置部2に供給される熱量が低下し、全体の温度が下がる。即ち時間T2から上流側温度センサ16の検知温度が次第に低下する現象が見られる。
ここで本実施形態では、ヒータ13は上流側上部温度センサ16の検知温度が設定温度となる様にPID制御されているから、ヒータ13の入力が増大し、適正温度差を維持したままの状態で、全体の温度が上昇する。その結果、試料配置部2の温度が設定温度であり、且つ試料配置部2の温度差Cが適正温度差となる。
However, when the rotational speed of the blower 12 is lowered, energy by stirring of the blower 12 is reduced, so that the amount of heat supplied to the sample placement unit 2 is lowered and the overall temperature is lowered. That is, a phenomenon is observed in which the temperature detected by the upstream temperature sensor 16 gradually decreases from time T2.
Here, in this embodiment, the heater 13 is PID-controlled so that the temperature detected by the upstream upper temperature sensor 16 becomes the set temperature, so that the input of the heater 13 increases and the appropriate temperature difference is maintained. As a result, the overall temperature rises. As a result, the temperature of the sample placement unit 2 is the set temperature, and the temperature difference C of the sample placement unit 2 is an appropriate temperature difference.

なお、本発明では、以下の式により算出される送風量を目標値として、送風機12の送風量が制御されている。   In the present invention, the air flow rate of the blower 12 is controlled using the air flow rate calculated by the following equation as a target value.

V=Q・860/(Cp・γ・(B−A)・60) 式1 V = Q · 860 / (Cp · γ · (BA) · 60) Equation 1

V:目標送風量[立方メートルパー分 m3 /min]
Q:恒温装置1内部で発熱し得る全ての機器の発熱量[kw]
860[kcal/kw]
Cp:空気の定圧比熱[kcal/kg・K]
γ:空気の密度[キログラムパー立法メートル kg/m3
B:下流側温度
A:上流側温度
V: Target air flow [cubic meter par m 3 / min]
Q: Calorific value [kw] of all devices that can generate heat inside the thermostat 1
860 [kcal / kw]
Cp: Constant pressure specific heat of air [kcal / kg · K]
γ: air density [kilogram par cubic meter kg / m 3 ]
B: Downstream temperature A: Upstream temperature

上記実施形態では、送風機12の送風量(モータの回転数)を無段階に切り替え可能とした構成を示したが、本発明はこれに限定されず、送風機12の送風量を段階的に切り換えることができるものであっても構わない。
また上記実施形態では、送風機12の送風量やヒータをPID制御したが、これらをオンオフ制御してもよい。
図8、図9は、送風量を二段階にオンオフ切り替え(正確には強弱切り替え)することによって送風量を調節する際の温度変化を示すものであり、温度が一定の周期で昇降する。
In the said embodiment, although the structure which enabled the air flow volume (rotational speed of the motor) of the air blower 12 to be switched continuously was shown, this invention is not limited to this, The air flow rate of the air blower 12 is switched in steps. It does not matter if it can be.
Moreover, in the said embodiment, although PID control of the ventilation volume and the heater of the air blower 12 was carried out, you may carry out on-off control of these.
FIG. 8 and FIG. 9 show temperature changes when the air flow rate is adjusted by switching the air flow rate on and off in two stages (more precisely, the strength is switched), and the temperature rises and falls at a constant cycle.

なお、推奨される適正温度差は、摂氏4〜6度程度であるが、試験条件によって適正温度差が異なるので、適正温度差を適宜設定変更することができることが望ましい。   The recommended appropriate temperature difference is about 4 to 6 degrees Celsius, but since the appropriate temperature difference varies depending on the test conditions, it is desirable that the appropriate temperature difference can be appropriately changed.

上記実施形態では、送風通路10及び排気通路11に2つずつの温度センサを設けた構成を示したが、本発明はこれに限定されず、例えば、温度センサを送風通路10と排気通路11のいずれか一方にのみに複数設け、他方には1つだけ設ける構成や、送風通路10及び排気通路11に1つずつ又は3つ以上ずつ設ける構成であっても構わない。   In the above embodiment, a configuration in which two temperature sensors are provided in each of the air passage 10 and the exhaust passage 11 is shown. However, the present invention is not limited to this. There may be a configuration in which only one of them is provided, and only one is provided in the other, or one or three or more are provided in the air passage 10 and the exhaust passage 11.

上記実施形態では、制御部30が2つの温度センサの平均温度を演算して、その平均温度を上流側温度Aや下流側温度Bとして採用する構成を示したが、本発明はこれに限定されず、例えば、制御部30が上流側で検知された最低温度を演算して上流側温度Aとして採用すると共に、下流側で検知された最高温度を演算して下流側温度Bとして採用する構成であっても構わない。   In the above embodiment, the control unit 30 calculates the average temperature of the two temperature sensors and adopts the average temperature as the upstream temperature A or the downstream temperature B. However, the present invention is limited to this. For example, the control unit 30 calculates the lowest temperature detected on the upstream side and adopts it as the upstream temperature A, and calculates the highest temperature detected on the downstream side and adopts it as the downstream temperature B. It does not matter.

またさらに、a層の前後に設けられた上流側上部温度センサ(上流側温度検知手段)16と、下流側上部温度センサ20とを一組として温度差を演算し、さらにこれとは別にe層の前後に設けられた上流側下部温度センサ(上流側温度検知手段)17と、下流側下部温度センサ(下流側温度検知手段)18とを一組として温度差を演算し、二つの温度差を比較してその大きい方を基準温度差とし、この基準温度差が適正温度差となる様に送風機の送風量を増減させてもよい。もちろん、上流側温度検知手段と、下流側下部温度センサは、他の層(b層、c層、d層)の前後に設けてもよい。   Furthermore, the temperature difference is calculated by setting the upstream upper temperature sensor (upstream temperature detecting means) 16 provided before and after the a layer and the downstream upper temperature sensor 20 as a set, and separately from the e layer. The upstream side lower temperature sensor (upstream side temperature detection means) 17 and the downstream side lower temperature sensor (downstream temperature detection means) 18 provided before and after are calculated as a set, and the two temperature differences are calculated. In comparison, the larger one may be used as a reference temperature difference, and the air flow rate of the blower may be increased or decreased so that the reference temperature difference becomes an appropriate temperature difference. Of course, the upstream temperature detecting means and the downstream lower temperature sensor may be provided before and after the other layers (b layer, c layer, d layer).

上記実施形態では、上流側上部温度センサ16が検知する上流側温度Aを設定値に制御したが、本発明はこれに限定されず、例えば、下流側上部温度センサ20が検知する下流側温度Bを設定値に制御する構成であっても構わない。
また、試料配置部2近傍に設けた全ての温度センサ16,17,18,20の検知温度の平均値が設定値に制御される構成であっても構わない。
In the above embodiment, the upstream temperature A detected by the upstream upper temperature sensor 16 is controlled to the set value. However, the present invention is not limited to this, for example, the downstream temperature B detected by the downstream upper temperature sensor 20. It is also possible to use a configuration in which the value is controlled to the set value.
Moreover, the structure by which the average value of the detection temperature of all the temperature sensors 16, 17, 18, and 20 provided in the sample arrangement | positioning part 2 vicinity is controlled to a setting value may be sufficient.

また上記した実施形態では、ヒータ13をPID制御あるいはオンオフ制御したが、複数のヒータの内、通電するヒータの数を変更してヒータの総出力を調整するものであってもよい。もちろん、個々のヒータのPID制御と、通電するヒータの数を変更する制御とを併用してもよい。   In the above-described embodiment, the heater 13 is PID controlled or on / off controlled. However, among the plurality of heaters, the number of heaters to be energized may be changed to adjust the total output of the heaters. Of course, PID control of each heater and control for changing the number of energized heaters may be used in combination.

1 恒温装置
2 試料配置部
5 通路部
10 送風通路
11 排気通路
15 循環通路
12 送風機
13 ヒータ(加熱手段)
16 上流側上部温度センサ(上流側温度検知手段)
17 上流側下部温度センサ(上流側温度検知手段)
18 下流側下部温度センサ(下流側温度検知手段)
20 下流側上部温度センサ(下流側温度検知手段)
21 ダンパ部(温度降下手段)
40 風量調整ダンパ
A 上流側温度
B 下流側温度
C 温度差
W 発熱試料体
DESCRIPTION OF SYMBOLS 1 Constant temperature apparatus 2 Sample arrangement | positioning part 5 Passage part 10 Blower path 11 Exhaust path 15 Circulation path 12 Fan 13 Heater (heating means)
16 Upstream upper temperature sensor (upstream temperature detection means)
17 Upstream lower temperature sensor (upstream temperature detection means)
18 Downstream lower temperature sensor (downstream temperature detection means)
20 Downstream upper temperature sensor (downstream temperature detection means)
21 Damper (Temperature drop means)
40 Airflow adjustment damper A Upstream temperature B Downstream temperature C Temperature difference W Exothermic sample body

Claims (9)

発熱する発熱試料体が配置される試料配置部と、試料配置部において空気を一定方向に流動させることが可能な送風機と、試料配置部の温度を上昇させることが可能な加熱手段と、試料配置部の温度を降下させることが可能な温度降下手段とを有し、試料配置部内の温度を設定値に維持可能な恒温装置であって、
恒温装置内部には、試料配置部に対して空気の流れ方向上流側の温度を検知する上流側温度検知手段と、試料配置部に対して空気の流れ方向下流側の温度を検知する下流側温度検知手段とを有し、
試料配置部の温度を設定値に制御する際には、上流側温度検知手段が検知する上流側温度と下流側温度検知手段が検知する下流側温度との間に所定の適正温度差が存在するように、送風機の送風量を増減させることを特徴とする恒温装置。
A sample placement part in which a heat generating sample body that generates heat is placed, a blower that can flow air in a certain direction in the sample placement part, a heating means that can raise the temperature of the sample placement part, and a sample placement A temperature-decreasing means capable of lowering the temperature of the part, and a thermostat capable of maintaining the temperature in the sample placement part at a set value,
Inside the thermostat, an upstream temperature detecting means for detecting the temperature upstream of the sample arrangement portion in the air flow direction, and a downstream temperature for detecting the temperature downstream of the sample arrangement portion in the air flow direction Detecting means,
When controlling the temperature of the sample placement unit to the set value, there is a predetermined appropriate temperature difference between the upstream temperature detected by the upstream temperature detection means and the downstream temperature detected by the downstream temperature detection means. Thus, the constant temperature apparatus characterized by increasing / decreasing the ventilation volume of an air blower.
上流側温度と下流側温度との間の温度差が適正温度差未満である場合は、送風機の送風量を減少させ、
前記温度差が適正温度差を超える場合は、送風機の送風量を増大させることを特徴とする請求項1に記載の恒温装置。
If the temperature difference between the upstream temperature and the downstream temperature is less than the appropriate temperature difference, reduce the blower volume of the blower,
The thermostatic device according to claim 1, wherein when the temperature difference exceeds an appropriate temperature difference, the air flow rate of the blower is increased.
上流側温度検知手段と下流側温度検知手段の内の少なくとも一方は、複数設けられていることを特徴とする請求項1又は2に記載の恒温装置。   The thermostat according to claim 1 or 2, wherein a plurality of at least one of the upstream temperature detecting means and the downstream temperature detecting means is provided. 上流側温度検知手段及び下流側温度検知手段のうち、複数設けられた温度検知手段はそれぞれ離れた位置に配置され、
下流側温度検知手段が検知する検知温度の中の最高温度または最低温度と、上流側温度検知手段が検知する検知温度の中の最低温度または最高温度との温度差に基づいて送風機の送風量が制御されることを特徴とする請求項3に記載の恒温装置。
Among the upstream temperature detection means and the downstream temperature detection means, a plurality of temperature detection means are arranged at positions separated from each other,
Based on the temperature difference between the maximum or minimum temperature detected by the downstream temperature detection means and the minimum or maximum temperature detected by the upstream temperature detection means, the air flow rate of the blower is The thermostat according to claim 3, wherein the thermostat is controlled.
上流側温度検知手段及び下流側温度検知手段のうち、複数設けられた温度検知手段はそれぞれ離れた位置に配置され、
上流側温度検知手段が複数設けられている場合は複数の上流側温度検知手段が検知する検知温度の平均値を上流側温度とし、上流側温度検知手段の数が単数である場合は当該一つの上流側温度検知手段が検知する検知温度を上流側温度とし、
下流側温度検知手段が複数設けられている場合は複数の下流側温度検知手段が検知する検知温度の平均値を下流側温度とし、下流側温度検知手段の数が単数である場合は当該一つの下流側温度検知手段が検知する検知温度を下流側温度とし、
上流側温度と下流側温度との間に所定の適正温度差が存在するように、送風機の送風量を増減させることを特徴とする請求項3に記載の恒温装置。
Among the upstream temperature detection means and the downstream temperature detection means, a plurality of temperature detection means are arranged at positions separated from each other,
When there are a plurality of upstream temperature detection means, the average value of the detected temperatures detected by the plurality of upstream temperature detection means is the upstream temperature, and when the number of upstream temperature detection means is singular, The detection temperature detected by the upstream temperature detection means is the upstream temperature,
When there are a plurality of downstream temperature detection means, the average value of the detected temperatures detected by the plurality of downstream temperature detection means is the downstream temperature, and when the number of downstream temperature detection means is singular, The detection temperature detected by the downstream temperature detection means is the downstream temperature,
The thermostatic device according to claim 3, wherein the air flow rate of the blower is increased or decreased so that a predetermined appropriate temperature difference exists between the upstream temperature and the downstream temperature.
複数の上流側温度検知手段と複数の下流側温度検知手段とを有し、
試料配置部を通過する空気の流れは大まかに複数の層に分かれ、
複数の層の上流側に前記上流側温度検知手段があり、当該層の下流側に前記上流側温度検知手段と対応する下流側温度検知手段が設置され、
上流側温度検知手段が検知する上流側温度とこれに対応する下流側温度検知手段が検知する下流側温度の差の内で最大である温度差を基準温度差とし、この基準温度差が適正温度差となる様に送風機の送風量を増減させることを特徴とする請求項3に記載の恒温装置。
Having a plurality of upstream temperature detection means and a plurality of downstream temperature detection means,
The flow of air passing through the sample placement area is roughly divided into multiple layers,
The upstream temperature detection means is upstream of the plurality of layers, and the downstream temperature detection means corresponding to the upstream temperature detection means is installed downstream of the layers,
The difference between the upstream temperature detected by the upstream temperature detection means and the corresponding downstream temperature detected by the downstream temperature detection means is the reference temperature difference, and this reference temperature difference is the appropriate temperature. The constant temperature apparatus according to claim 3, wherein the air flow rate of the blower is increased or decreased so as to be a difference.
試料配置部内の温度は、上流側温度検知手段の検知温度に基づいて設定値に維持されることを特徴とする請求項1乃至6のいずれかに記載の恒温装置。   The temperature control apparatus according to any one of claims 1 to 6, wherein the temperature in the sample placement section is maintained at a set value based on the temperature detected by the upstream temperature detection means. 試料配置部内の温度は、下流側温度検知手段の検知温度に基づいて設定値に維持されることを特徴とする請求項1乃至6のいずれかに記載の恒温装置。   The temperature control apparatus according to any one of claims 1 to 6, wherein the temperature in the sample placement section is maintained at a set value based on the temperature detected by the downstream temperature detection means. 試料配置部内の温度は、上流側温度検知手段の検知温度と下流側温度検知手段の検知温度の平均に基づいて設定値に維持されることを特徴とする請求項1乃至6のいずれかに記載の恒温装置。   The temperature in the sample placement unit is maintained at a set value based on an average of the detected temperature of the upstream temperature detecting means and the detected temperature of the downstream temperature detecting means. Constant temperature device.
JP2010076059A 2010-03-29 2010-03-29 Thermostatic device Active JP5456536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076059A JP5456536B2 (en) 2010-03-29 2010-03-29 Thermostatic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010076059A JP5456536B2 (en) 2010-03-29 2010-03-29 Thermostatic device

Publications (2)

Publication Number Publication Date
JP2011206661A true JP2011206661A (en) 2011-10-20
JP5456536B2 JP5456536B2 (en) 2014-04-02

Family

ID=44938367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010076059A Active JP5456536B2 (en) 2010-03-29 2010-03-29 Thermostatic device

Country Status (1)

Country Link
JP (1) JP5456536B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231654A (en) * 2012-04-27 2013-11-14 Espec Corp Environmental testing device
KR20140026260A (en) * 2012-08-24 2014-03-05 에스펙 가부시키가이샤 Environment testing apparatus
JP2015064250A (en) * 2013-09-24 2015-04-09 エスペック株式会社 Environment test device
JP2015099121A (en) * 2013-11-20 2015-05-28 エスペック株式会社 Environmental test device
KR101525880B1 (en) * 2013-04-22 2015-06-05 한국에너지기술연구원 Controler of heat pump system for drying agricultural products
CN104801358A (en) * 2015-04-03 2015-07-29 迈瑞尔实验设备(上海)有限公司 Heating constant temperature box
JP2015210144A (en) * 2014-04-25 2015-11-24 エスペック株式会社 Environmental test device
CN107390398A (en) * 2017-08-24 2017-11-24 苏州优备精密智能装备股份有限公司 Thermocirculator for liquid crystal panel aging
JP2018105786A (en) * 2016-12-27 2018-07-05 エスペック株式会社 Device and method for environmental testing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510971U (en) * 1991-07-19 1993-02-12 カルソニツク株式会社 Refrigerator control unit for refrigerated vehicles
JPH05119849A (en) * 1991-10-29 1993-05-18 Meijiyou Seisakusho:Kk In-box temperature control method
JPH11231943A (en) * 1998-02-09 1999-08-27 Tabai Espec Corp Air blowing device for environmental device
JP2000214933A (en) * 1998-11-19 2000-08-04 Tabai Espec Corp Temperature controller
JP2003177825A (en) * 2001-12-10 2003-06-27 Espec Corp Overshoot prevention type temperature controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510971U (en) * 1991-07-19 1993-02-12 カルソニツク株式会社 Refrigerator control unit for refrigerated vehicles
JPH05119849A (en) * 1991-10-29 1993-05-18 Meijiyou Seisakusho:Kk In-box temperature control method
JPH11231943A (en) * 1998-02-09 1999-08-27 Tabai Espec Corp Air blowing device for environmental device
JP2000214933A (en) * 1998-11-19 2000-08-04 Tabai Espec Corp Temperature controller
JP2003177825A (en) * 2001-12-10 2003-06-27 Espec Corp Overshoot prevention type temperature controller

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231654A (en) * 2012-04-27 2013-11-14 Espec Corp Environmental testing device
KR20140026260A (en) * 2012-08-24 2014-03-05 에스펙 가부시키가이샤 Environment testing apparatus
JP2014044089A (en) * 2012-08-24 2014-03-13 Espec Corp Environment testing device
KR101631473B1 (en) * 2012-08-24 2016-06-17 에스펙 가부시키가이샤 Environment Testing Apparatus
KR101525880B1 (en) * 2013-04-22 2015-06-05 한국에너지기술연구원 Controler of heat pump system for drying agricultural products
JP2015064250A (en) * 2013-09-24 2015-04-09 エスペック株式会社 Environment test device
JP2015099121A (en) * 2013-11-20 2015-05-28 エスペック株式会社 Environmental test device
JP2015210144A (en) * 2014-04-25 2015-11-24 エスペック株式会社 Environmental test device
CN104801358A (en) * 2015-04-03 2015-07-29 迈瑞尔实验设备(上海)有限公司 Heating constant temperature box
JP2018105786A (en) * 2016-12-27 2018-07-05 エスペック株式会社 Device and method for environmental testing
CN107390398A (en) * 2017-08-24 2017-11-24 苏州优备精密智能装备股份有限公司 Thermocirculator for liquid crystal panel aging

Also Published As

Publication number Publication date
JP5456536B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5456536B2 (en) Thermostatic device
JP5279763B2 (en) ENVIRONMENTAL TEST DEVICE AND METHOD FOR CONTROLLING ENVIRONMENTAL TEST DEVICE
JP4594276B2 (en) Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
JP5969968B2 (en) Environmental test equipment
US9060450B2 (en) Cooling arrangement and method of operation for a fan control
JPWO2014167912A1 (en) Control device for cooling system
JP3399826B2 (en) Environmental equipment blower
JP2012506128A (en) Method and apparatus for fast response thermal control in plasma processing apparatus
JP5535872B2 (en) Data center or computer system
JP2012154596A (en) Air conditioning control device and method
EP1546832A2 (en) Method and apparatus for latent temperature control for a device under test
JP2010133852A (en) Cold and hot impact testing machine and method for cold and hot impact testing
TW201738963A (en) Heat treatment device capable of uniformly carrying out temperature change of the processed article even when the temperature control conditions are changed
JP5423080B2 (en) Local cooling system, its control device, program
JP6103926B2 (en) Air conditioner operation control apparatus and method
JP6673819B2 (en) Environmental test equipment and environmental test method
JP7198917B2 (en) CLOTH PROCESSING APPARATUS CONTROL METHOD AND CLOTH PROCESSING APPARATUS
JP2000249643A (en) Cold impact-testing device
JP5306970B2 (en) Air conditioning system
CN205448156U (en) Automatic adjust thermostatic chamber
JP2014025861A (en) Environmental tester linking system
JP2001017868A (en) Thermostatic apparatus for test
JP5329481B2 (en) Thermostatic device
JP6152267B2 (en) Refrigerator operation control method and environmental test apparatus in environmental test apparatus
JP2017110849A (en) Outside air utilization type cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5456536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250