JP2003177825A - Overshoot prevention type temperature controller - Google Patents

Overshoot prevention type temperature controller

Info

Publication number
JP2003177825A
JP2003177825A JP2001375981A JP2001375981A JP2003177825A JP 2003177825 A JP2003177825 A JP 2003177825A JP 2001375981 A JP2001375981 A JP 2001375981A JP 2001375981 A JP2001375981 A JP 2001375981A JP 2003177825 A JP2003177825 A JP 2003177825A
Authority
JP
Japan
Prior art keywords
temperature
control
inlet side
control unit
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001375981A
Other languages
Japanese (ja)
Other versions
JP3863420B2 (en
Inventor
Ichiro Takagi
一郎 高木
Katsuhiko Watabe
克彦 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2001375981A priority Critical patent/JP3863420B2/en
Publication of JP2003177825A publication Critical patent/JP2003177825A/en
Application granted granted Critical
Publication of JP3863420B2 publication Critical patent/JP3863420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Temperature (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature controller which quickly obtains a stable average temperature control state while suppressing the excessive temperature rising at the inlet side of air to be made in contact with a sample. <P>SOLUTION: This temperature controller for a thermostatic chamber is provided with a temperature rising control part 4 and a transition control part 5. The temperature rising control part 4 controls the heating quantity of a heater 12 by outputting a Pd<SB>1</SB>so that a blowoff port temperature t<SB>1</SB>becomes a set temperature ts as a temperature tc to be controlled in a temperature rising process, and the transition control part 5 controls the temperature tc to be controlled after the temperature rising so that the temperature tc becomes an average temperature ta of the blowoff port temperature t<SB>1</SB>and a suction port temperature t<SB>2</SB>detected by a suction temperature sensor 3 by changing the temperature tc little by little by generating a Pd<SB>2</SB>. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被処理物に目的と
する所定温度の環境を付与する温度環境付与空間に加熱
器で加熱された気体を入口側から入れて出口側から出す
ようにした温度環境付与装置の前記気体の温度を制御す
る温度制御装置に関し、発熱試料が入れられることが多
い恒温槽の温度制御技術として好都合に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is designed such that a gas heated by a heater is introduced into an environment where a desired temperature environment is applied to an object to be treated from an inlet side and is discharged from an outlet side. The temperature control device for controlling the temperature of the gas in the temperature environment providing device is conveniently used as a temperature control technique for a thermostatic chamber in which a heat-generating sample is often placed.

【0002】[0002]

【従来の技術】発熱試料が入れられる恒温槽では、一般
に、槽内への空気の吹出口及び吸込口に温度センサを設
けて、これらの温度の平均値である平均温度を槽内の温
度分布の中心温度とし、これを制御対象温度としてこの
温度が設定温度になるように制御している。しかしなが
ら、このような制御装置では、試料等の熱容量により、
例えば、温度上昇時に吸込口温度の上昇が遅れて吹出口
温度との温度差が大きくなり、従って吹出口温度と平均
温度との差も大きくなるため、平均温度が設定温度に到
達した時点では、それから時間が経過して安定制御状態
に入ったときに較べて吹出口温度が設定温度より相当高
くなるという吹出口温度のオーバーシュート現象が生ず
る。又、発熱負荷があって試料を発熱状態で試験すると
きには、反対に吸込口温度が設定温度である平均温度及
び吹出口温度より高くなってオーバーシュートするとい
う問題がある。
2. Description of the Related Art Generally, in a thermostatic chamber in which a heat-generating sample is placed, temperature sensors are provided at the outlet and the inlet of the air into the chamber, and the average temperature, which is the average of these temperatures, is used to determine the temperature distribution in the chamber. Is set as the central temperature, and this temperature is controlled as the control target temperature so that this temperature becomes the set temperature. However, in such a control device, due to the heat capacity of the sample,
For example, when the temperature rises, the rise in the inlet temperature is delayed and the temperature difference from the outlet temperature increases, and therefore the difference between the outlet temperature and the average temperature also increases, so at the time when the average temperature reaches the set temperature, After that, an overshoot phenomenon of the outlet temperature occurs in which the outlet temperature becomes considerably higher than the set temperature as compared with when the stable control state is entered. On the other hand, when a sample is tested in a heat generation state due to a heat generation load, there is a problem that the suction port temperature becomes higher than the set temperature, that is, the average temperature and the blowout port temperature, resulting in overshoot.

【0003】そして最近では、半導体等の試料の試験さ
れる温度がその試料の限界温度に近くなっているため、
試料に付与する温度の精度を上げると共に、昇温時や試
料発熱時において吹出口又は吸込口の近傍の試料が設定
温度より高くなる状態を十分抑制する必要が生じてい
る。この場合、中心温度に代えて吹出口温度を制御温度
にすれば、昇温時における吹出口温度のオーバーシュー
トを防止できるが、前記のように発熱負荷があるときの
吸込側の温度上昇を防止できない。
Recently, since the temperature of a sample such as a semiconductor to be tested is close to the limit temperature of the sample,
It is necessary to improve the accuracy of the temperature applied to the sample and sufficiently suppress the state in which the temperature of the sample near the blowout port or the suction port becomes higher than the set temperature when the temperature is raised or when the sample heats up. In this case, if the outlet temperature is set to the control temperature instead of the center temperature, overshoot of the outlet temperature at the time of temperature rise can be prevented, but as described above, the rise in temperature on the suction side is prevented when there is a heat load. Can not.

【0004】発熱試料を扱う恒温槽におけるこのような
温度制御の問題を解決するべく、昇温時を含めて吸込口
温度が吹出口温度より2〜3℃高くなるまで吹出口温度
を制御温度とし、試験のために発熱試料を発熱させた結
果吸込口温度が吹出口温度より2〜3℃高くなると、そ
の時点で吹出口温度に代えて平均温度を制御温度にし、
昇温時の吹出口温度の過度な上昇を防止すると共に、試
料の発熱後には、吸込口温度のオーバーシュートを防止
しつつ槽内の中心部の温度を制御するようにした発熱試
料処理用恒温槽の温度制御方法が提案されている(特開
平3−137707号公報参照)。
In order to solve such a problem of temperature control in a thermostatic chamber that handles exothermic samples, the outlet temperature is set to a control temperature until the inlet temperature becomes higher than the outlet temperature by 2 to 3 ° C. If, as a result of causing the exothermic sample to generate heat for the test, the inlet temperature becomes 2-3 ° C higher than the outlet temperature, the average temperature is set to the control temperature instead of the outlet temperature at that time,
A constant temperature for sample processing that prevents excessive rise of the outlet temperature during temperature rise and, after heat generation of the sample, controls the temperature of the center of the tank while preventing overshoot of the inlet temperature. A bath temperature control method has been proposed (see Japanese Patent Laid-Open No. 3-137707).

【0005】しかしながら、この制御方法では、発熱負
荷の影響によって吹出口温度と吸込口温度との高低関係
が逆転するまで、目的とする最終制御状態である中心温
度制御に到達しないので、安定した中心温度制御状態へ
の到達時間が長くかかると共に切換時に制御が乱れると
いう問題がある。又、試料を発熱させることなく試験す
るときの問題が解決されていない。
However, according to this control method, the target temperature control, which is the final control state, is not reached until the height relationship between the outlet temperature and the inlet temperature reverses due to the influence of the heat generation load, so that a stable center is achieved. There is a problem that it takes a long time to reach the temperature control state and control is disturbed at the time of switching. Also, the problem of testing the sample without heating it has not been solved.

【0006】一方、降温時には、降温到達時の温度が昇
温時より低いため、試料の限界温度の点では問題ない。
しかしながら、平均温度制御によって温度降下させる場
合には、設定温度到達時に吹出温度が設定温度よりかな
り低くなり、その後次第に設定温度に接近するというア
ンダーシュートが生じ、試験時の試料の量や種類等によ
ってアンダーシュート量が異なってくるため、どの試料
に対しても同じ温度条件を付与して試験するという試験
の再現性が低下するという問題がある。これを防止する
ため、吹出温度制御で降温し、降温到達後通常の方法で
吹出温度制御から平均温度制御に切り換えるとすれば、
切換時の温度変動によって制御乱れが生ずる。ところ
が、降温時のこのような問題を解決できる制御装置は従
来から知られていない。
On the other hand, when the temperature is lowered, the temperature when the temperature is reached is lower than when the temperature is raised, so that there is no problem in the limit temperature of the sample.
However, when the temperature is lowered by the average temperature control, the blowout temperature becomes considerably lower than the set temperature when the set temperature is reached, and then an undershoot that gradually approaches the set temperature occurs, depending on the amount and type of sample at the time of the test. Since the amount of undershoot is different, there is a problem that the reproducibility of the test in which the same temperature condition is applied to all the samples is lowered. In order to prevent this, if the temperature is lowered by blowout temperature control and the blowout temperature control is switched to the average temperature control by a normal method after the temperature is reached,
Control fluctuations occur due to temperature fluctuations during switching. However, a control device that can solve such a problem at the time of lowering the temperature has not heretofore been known.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明は、従来
技術における上記問題を解決し、被処理物に付与する温
度が目的とする温度以上に過度に上昇するのを抑制しつ
つ、早く安定した温度制御状態に到達する温度制御装置
を提供することを課題とする。又、試験時における被処
理物の量が一定でない場合でも試験温度が変わらず、試
験時の温度再現性の良い温度制御装置を提供することを
課題とする。
SUMMARY OF THE INVENTION Therefore, the present invention solves the above problems in the prior art and suppresses the temperature applied to the object to be processed from being excessively raised to a desired temperature or higher, and is stabilized quickly. It is an object to provide a temperature control device that reaches a temperature control state. It is another object of the present invention to provide a temperature control device having good temperature reproducibility at the time of testing without changing the test temperature even when the amount of the object to be processed at the time of testing is not constant.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するために、被処理物に目的とする所定温度の環境を付
与する温度環境付与空間に加熱器で加熱された気体を入
口側から入れて出口側から出すようにした温度環境付与
装置の前記気体の温度を制御する温度制御装置におい
て、前記入口側の温度を検出する入口側温度検出手段
と、前記出口側の温度を検出する出口側温度検出手段
と、前記気体を前記所定温度に上昇させる昇温過程で前
記入口側温度検出手段が検出した前記入口側の温度を制
御対象温度として該制御対象温度が前記所定温度になる
ように前記加熱器の加熱量を制御する昇温制御部と、前
記入口側の温度が前記所定温度に到達すると前記制御対
象温度が前記入口側の温度と前記出口側温度検出手段が
検出した前記出口側の温度との平均温度になるように前
記制御対象温度を漸次変化させて前記加熱器の加熱量を
制御する移行制御部と、を有することを特徴とする。
In order to solve the above problems, the present invention provides a gas heated by a heater to a temperature environment applying space for applying an environment of a predetermined temperature to an object to be processed from an inlet side. In a temperature control device for controlling the temperature of the gas in a temperature environment providing device which is put in and put out from an outlet side, an inlet side temperature detecting means for detecting a temperature at the inlet side, and an outlet for detecting a temperature at the outlet side Side temperature detection means, and the temperature of the inlet side detected by the inlet side temperature detection means in the temperature rising process of raising the gas to the predetermined temperature is set as the control target temperature so that the control target temperature becomes the predetermined temperature. A temperature raising control unit that controls the heating amount of the heater, and when the temperature on the inlet side reaches the predetermined temperature, the temperature to be controlled is the temperature on the inlet side and the outlet side detected by the outlet side temperature detecting means. The temperature of Characterized by having a a transition control unit for controlling the heating amount of the heater gradually changing the control target temperature so that the average temperature of the.

【0009】請求項2の発明は、上記に加えて、前記気
体を前記所定温度より低い他の所定温度に下降させる降
温過程を有し、該降温過程で前記入口側温度検出手段が
検出した前記入口側の温度を制御対象温度として該制御
対象温度が前記他の所定温度になるように前記加熱器の
加熱量を制御する降温制御部と、前記入口側の温度が前
記他の所定温度に到達すると前記制御対象温度が前記入
口側の温度と前記出口側温度検出手段が検出した前記出
口側の温度との平均温度になるように前記制御対象温度
を漸次変化させて前記加熱器の加熱量を制御する他の移
行制御部と、有することを特徴とする。
In addition to the above, the invention of claim 2 has a temperature lowering process of lowering the gas to another predetermined temperature lower than the predetermined temperature, and the inlet side temperature detecting means detects the temperature during the temperature lowering process. A temperature decrease control unit that controls the heating amount of the heater so that the temperature of the inlet side is the temperature to be controlled and the temperature of the control target is the other predetermined temperature, and the temperature of the inlet side reaches the other predetermined temperature. Then, the controlled object temperature is gradually changed so that the controlled object temperature becomes an average temperature of the inlet side temperature and the outlet side temperature detected by the outlet side temperature detecting means, and the heating amount of the heater is changed. It is characterized by having another transition control unit for controlling.

【0010】[0010]

【発明の実施の形態】図1は本発明を適用した温度制御
装置及びこの装置が装備される温度環境付与装置の一例
である恒温槽の全体構成の一例を示す。本例の温度制御
装置は、被処理物としてバーンインボード100に搭載
されたIC101に目的とする所定温度である設定温度
tsとして例えば125℃の環境を付与する温度環境付
与空間である試験室11に加熱器12で加熱された気体
として通常空気を入口側である吹出口13から入れて出
口側である吸込口14から出すようにした恒温槽1の空
気の温度を制御する装置であり、入口側温度検出手段と
しての吹出温度センサ2、出口側温度検出手段としての
吸込温度センサ3、昇温制御部4、移行制御部5、等で
構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of the overall configuration of a temperature control device to which the present invention is applied and a thermostatic chamber which is an example of a temperature environment providing device equipped with this device. The temperature control device of the present example is applied to the test chamber 11, which is a temperature environment application space that provides an environment of, for example, 125 ° C. as the set temperature ts which is the target predetermined temperature to the IC 101 mounted on the burn-in board 100 as the object to be processed. It is a device for controlling the temperature of the air in the thermostatic chamber 1 in which normal air is introduced as the gas heated by the heater 12 from the outlet 13 on the inlet side and is discharged from the inlet 14 on the outlet side. It is composed of a blow-out temperature sensor 2 as a temperature detecting means, a suction temperature sensor 3 as an outlet side temperature detecting means, a temperature raising control section 4, a transition control section 5, and the like.

【0011】バーンイン試験用の恒温槽1は、通常の構
成部分として、矢印で示すように試験室11に加熱され
た空気である熱風を供給可能なように設けられた送気側
ダクト15、試験室11から熱風を吸入可能なように設
けられた吸込側ダクト16、これから前記加熱器12を
介して熱風を吸い込み送気ダクト15を介して熱風を試
験室11に吹き出すように熱風を循環供給する送風機1
7、その駆動モータ17a、これらを囲う断熱ケーシン
グ18、通常作動状態で試験されて発熱するIC101
が発熱したときに必要に応じて試験室11に冷却用の空
気を送る冷却ファン19、そのモータ19a、冷却用空
気を取り入れるための給気口20、そのときの余剰空気
を排出する排気口21、等で構成されている。吹出口1
3及び吸込口14は、空気が試験室11内を平行に流れ
るように多孔板になっている。
The constant-temperature bath 1 for burn-in test is, as a normal component, an air supply side duct 15 provided so as to be able to supply hot air that is heated air to the test chamber 11 as shown by an arrow, and a test. A suction side duct 16 provided so that hot air can be sucked from the chamber 11, and hot air is circulated and supplied so that hot air is sucked from the chamber 12 through the heater 12 and blown into the test chamber 11 through the air supply duct 15. Blower 1
7, its drive motor 17a, the heat insulation casing 18 which surrounds these, IC101 tested and heat | fever-generated under normal operating conditions.
Cooling fan 19 which sends cooling air to the test chamber 11 when necessary, the motor 19a thereof, an air supply port 20 for taking in the cooling air, and an exhaust port 21 for discharging excess air at that time. , Etc. Outlet 1
3 and the suction port 14 are perforated plates so that air flows in parallel in the test chamber 11.

【0012】吹出温度センサ2は、吹出口13の温度を
検出するが、本例では吹出口13の近傍の送気側ダクト
15内に設けられている。吹出温度センサ3は、吸込口
14の温度を検出するが、本例では吸込口14の近傍の
吸込側ダクト16内に設けられている。
The blowout temperature sensor 2 detects the temperature of the blowout port 13, but in this example, it is provided in the air supply side duct 15 near the blowout port 13. The blow-out temperature sensor 3 detects the temperature of the suction port 14, but is provided in the suction side duct 16 in the vicinity of the suction port 14 in this example.

【0013】昇温制御部4は、気体である空気を所定温
度である設定温度tsに上昇させる昇温過程において、
吹出温度センサ2が検出した入口側の温度である吹出口
温度t1 を制御対象温度tcとしてこの温度が設定温度
tsになるように加熱器12の加熱量を制御する。
The temperature raising control section 4 raises the temperature of the air, which is a gas, to a set temperature ts which is a predetermined temperature during the temperature raising process.
The outlet temperature t 1 that is the inlet temperature detected by the outlet temperature sensor 2 is set as a control target temperature tc, and the heating amount of the heater 12 is controlled so that this temperature becomes the set temperature ts.

【0014】そのため、t1 及びtsを取り入れてこれ
らを比較し、t1 がtsより小さければ昇温過程にある
と判断し、t1 をtcとし、これとtsとによって例え
ばこれらの間の差に対応して昇温中加熱出力信号Pd1
を発生させ、t1 がtsになると昇温過程が終了したと
判断してt1 を出力する。Pd1 及びt1 は移行制御部
5に送られる。設定温度tsは、恒温槽1の操作制御盤
22に設けられた温度設定器221から供給される。昇
温制御部4も温度調節器として図示の如く通常操作制御
盤22に組み込まれる。
Therefore, t 1 and ts are taken in and compared with each other. If t 1 is smaller than ts, it is judged that there is a temperature rising process, and t 1 is defined as tc. Corresponding to the heating output signal Pd 1 during heating
When t 1 becomes ts, it is determined that the temperature raising process is completed, and t 1 is output. Pd 1 and t 1 are sent to the shift controller 5. The set temperature ts is supplied from a temperature setter 221 provided on the operation control panel 22 of the constant temperature bath 1. The temperature raising control unit 4 is also incorporated in the normal operation control panel 22 as a temperature controller as shown in the figure.

【0015】移行制御部5は、吹出口温度t1 がtsに
到達すると、制御対象温度tcがt 1 と吸込温度センサ
3が検出した出口側の温度である吸込口温度t2 との平
均温度taになるように漸次変化させて加熱器12の加
熱量を制御するように昇温到達後加熱出力信号Pd2
発生させる。そのため、上記のPd1 及びt1 を取り入
れると共にts及びt2 を取り入れるように構成されて
いて、計算部分51、出力部分52及び切換部分53を
備えている。
The transition control unit 5 controls the outlet temperature t1To ts
When it reaches, the temperature tc to be controlled is t 1And suction temperature sensor
Suction port temperature t, which is the temperature on the outlet side detected by 32Tonohira
The temperature of the heater 12 is gradually changed by gradually changing the temperature so that the temperature becomes equal to ta.
Heating output signal Pd after reaching the temperature so as to control the amount of heat2To
generate. Therefore, the above Pd1And t1Take in
And ts and t2Configured to take in
The calculation part 51, the output part 52 and the switching part 53.
I have it.

【0016】計算部分51は、昇温制御部4を経由した
1 が入ると昇温到達とし、t1 をtaに漸次変化させ
るための制御対象温度tcを計算する。出力部分52
は、tc及びtsにより、例えばこれらの間の差に対応
した昇温到達後加熱出力Pd2を発生させる。切換部分
53は、昇温制御部4からt1 の出力がなくPd1 のみ
を取り入れているときには、Pd1 をそのまま通過させ
て発信し、昇温制御部4がt1 を発生させることによっ
て出力部分52が上記Pd2 を発生させると、Pd1
代えてPd2 を発信する。Pd1 又はPd2 は加熱器に
送られてその加熱量即ち加熱出力を制御する。
The calculation unit 51 calculates that the temperature has reached the temperature when t 1 passed through the temperature raising control unit 4 and calculates the controlled temperature tc for gradually changing t 1 to ta. Output part 52
Generates a heating output Pd 2 after reaching the temperature corresponding to the difference between them by tc and ts. When there is no output of t 1 from the temperature raising control unit 4 and only Pd 1 is taken in, the switching unit 53 passes Pd 1 as it is and transmits it, and the temperature raising control unit 4 generates t 1 to output. When the portion 52 generates the above Pd 2 , it emits Pd 2 instead of Pd 1 . Pd 1 or Pd 2 is sent to a heater to control its heating amount or heating output.

【0017】計算部分51でtcを計算する方法はいろ
いろあるが、本例では、最も簡単な方法として、t1
らtaに経過時間に対応して比例的に移行させる方法を
採用している。即ち、タイマー51aを備えていて、t
1 がtsに到達するとタイマー51aをスタートさせ、
tcをt1 からtaにするまでの移行時間をTとして、
このTにおける1からnまでの制御周期毎に、任意の制
御周期iまでの時間Ti及びその制御周期のときに入力
したt1 及びt2 により、次の計算式(1)、(2)に
よってそのときの制御対象温度tiを計算し、このti
をtcとしてこれが設定温度tsになるように制御す
る。
There are various methods for calculating tc in the calculation portion 51, but in this example, the simplest method is to shift from t 1 to ta in proportion to the elapsed time. That is, the timer 51a is provided and t
When 1 reaches ts, the timer 51a is started,
Let T be the transition time from t 1 to t 1
For each control cycle from 1 to n in T, the time Ti up to an arbitrary control cycle i and t 1 and t 2 input at that control cycle are used to calculate the following formulas (1) and (2). The control target temperature ti at that time is calculated, and this ti
Is set as tc, and this is controlled to reach the set temperature ts.

【0018】 ti=t1 −(t1 −ta)Ti/T−−−−−−(1) ここで、ta=(t1 +t2 )/2 −−−−−−(2) 以上のような恒温槽及びその温度制御装置は次のように
運転されてその作用効果を発揮する。
Ti = t 1 − (t 1 −ta) Ti / T −−−−−− (1) where ta = (t 1 + t 2 ) / 2 −−−−− (2) The constant temperature bath and its temperature control device are operated as follows to exert their effects.

【0019】試料としてのIC101を装着したバーン
インボード100を試験室11内の図示しないラックに
搭載し、操作制御盤22の温度設定器221でバーンイ
ン試験のための温度である設定温度tsを例えば125
℃に設定し、図示しないスタートボタンを押して恒温槽
を作動させる。これにより、通常、図において二点鎖線
の矢印で示すように最初に冷却ファン19が運転されて
給気口20から外気が取り入れら排気口21から排出さ
れ、試験室11内の雰囲気が置換された後、冷却ファン
が停止すると共に給排気口が図示しないダンパで閉鎖さ
れ、送風機17及び加熱器12が運転される。これによ
り、送風機17から加熱された空気が送出され、順次、
送気側ダクト15、試験室11、吸込側ダクト16及び
加熱器12を経由して再び送風機17に吸入され、空気
が循環されつつ加熱昇温される。循環空気の温度は、吹
出温度センサ2及び吸込温度センサ3により、それぞれ
吹出口温度t1 及び吸込口温度t2 として常時検出され
ている。
The burn-in board 100 having the IC 101 as a sample is mounted on a rack (not shown) in the test chamber 11, and the temperature setter 221 of the operation control panel 22 sets the set temperature ts for the burn-in test to, for example, 125.
Set the temperature to ℃ and press the start button (not shown) to activate the thermostatic chamber. As a result, normally, the cooling fan 19 is first operated as shown by the double-dashed line arrow in the figure, and outside air is taken in through the air supply port 20 and exhausted through the exhaust port 21 to replace the atmosphere in the test chamber 11. After that, the cooling fan is stopped, the air supply / exhaust ports are closed by a damper (not shown), and the blower 17 and the heater 12 are operated. As a result, the heated air is delivered from the blower 17, and sequentially,
It is again sucked into the blower 17 via the air supply side duct 15, the test chamber 11, the suction side duct 16 and the heater 12, and the air is circulated and heated and heated. The temperature of the circulating air is constantly detected by the outlet temperature sensor 2 and the inlet temperature sensor 3 as the outlet temperature t 1 and the inlet temperature t 2 , respectively.

【0020】この昇温過程では、循環空気を設定温度t
sに到達させるが、昇温制御部4により、前記t1 を制
御対象温度tcとしてこれがtsになるように加熱器1
2の加熱量を制御する。そのため昇温制御部4は、まず
1 及びtsを取り入れてこれらを比較し、その大小に
よって昇温中であるかどうかを判断し、t1 <tsであ
れば、昇温中であるとしてt1 をtcにする。そして、
1 =tcとtsとの差に対応した出力として昇温中加
熱出力信号Pd1 を発生させる。このPd1 は、移行制
御部5を経由して加熱器12に与えられる。この段階で
は、制御部4から制御部5に送られる信号はPd1 だけ
である。
In this temperature raising process, the circulating air is fed to the set temperature t.
s, but the temperature raising control unit 4 sets the above-mentioned t 1 as the temperature to be controlled tc so that it becomes ts.
Control the heating amount of 2. Therefore, the temperature raising control unit 4 first takes in t 1 and ts, compares them, and determines whether or not the temperature is being raised based on the magnitude thereof. If t 1 <ts, it is determined that the temperature is being raised. Set 1 to tc. And
A heating output signal Pd 1 during temperature increase is generated as an output corresponding to the difference between t 1 = tc and ts. This Pd 1 is given to the heater 12 via the transfer control unit 5. At this stage, the only signal sent from the control unit 4 to the control unit 5 is Pd 1 .

【0021】図2は本発明を適用した図1の温度制御装
置によって循環空気の温度を制御したときの試験室11
内の循環空気の温度変化の状態を示す。このうち(a)
は発熱負荷がない場合であり、(b)はIC101を動
作試験するときのように試料が発熱する場合である。
FIG. 2 shows a test chamber 11 when the temperature of the circulating air is controlled by the temperature control device of FIG. 1 to which the present invention is applied.
The state of temperature change of the circulating air inside is shown. Of these (a)
The case where there is no heat load is shown, and the case (b) shows the case where the sample generates heat as in the operation test of the IC 101.

【0022】昇温過程では、バーンインボードやICや
ラック等の主として試料関連部分の熱容量により、これ
らの部分を通過する循環空気の前後の温度t1 、t2
間にかなりの差が生じ、従ってt1 とtaとの間にも差
が生じ、t1 が早くtsに到達するので、t1 をtcに
することによって昇温到達時間Tuを短くすることがで
きる。又、昇温中には最も高くなるt1 そのものをtc
にしていることにより、t1 がtsになるように制御さ
れるので、その温度が異常に高くなることがない。
In the temperature raising process, a large difference occurs between the temperatures t 1 and t 2 before and after the circulating air passing through these parts due to the heat capacity of the sample-related parts such as the burn-in board, the IC and the rack, Therefore, a difference also occurs between t 1 and ta, and t 1 reaches ts earlier, so that the temperature rise reaching time Tu can be shortened by setting t 1 to tc. Also, during the temperature rise, t 1 which becomes the highest becomes tc
With this setting, t 1 is controlled to be ts, so that the temperature does not become abnormally high.

【0023】これに対して、従来の装置のうち昇温過程
においてもtaをtcにするものでは、図3(a)及び
(b)のように、taがtsに到達したときには、t1
がオーバーシュートしてtsよりもΔt1 だけかなり高
くなり、試料が試験されるときの限界温度に接近し、試
験時における試料の安全性が低下するという問題があっ
たが、本発明を適用した図1の装置では、このように問
題が発生しない。
On the other hand, in the conventional apparatus, in which ta is set to tc even in the temperature rising process, when ta reaches ts as shown in FIGS. 3 (a) and 3 (b), t 1
However, the present invention has been applied to the problem that the sample becomes much higher than ts by Δt 1 and approaches the limit temperature when the sample is tested, and the safety of the sample during the test is lowered. The apparatus of FIG. 1 does not have such a problem.

【0024】次に、加熱空気の循環によって槽内が昇温
し、t1 がtsになると、昇温制御部4は昇温過程が終
了したと判断し、移行制御部5にt1 を出力する。この
ときには、Pd1 及びt1 の両方が移行制御部5に送ら
れることになる。但し、昇温制御部4でPd1 に代えて
1 だけを送るようにしてもよい。
Next, when the temperature in the tank rises due to the circulation of the heated air and t 1 becomes ts, the temperature raising control unit 4 judges that the temperature raising process has ended, and outputs t 1 to the transition control unit 5. To do. At this time, both Pd 1 and t 1 are sent to the transition control unit 5. However, the temperature raising control unit 4 may send only t 1 instead of Pd 1 .

【0025】移行制御部5がt1 を取り入れると、その
計算部分51が、このt1 と常時入力されているt2
により、式(1)、(2)によって制御対象温度tcを
計算し、出力部分52が、このtcと予め入力されてい
るtsとの差に対応した昇温到達後加熱出力Pd2 を発
生させ、切換部分53が、このPd2 を取り入れると、
これまで通過させていたPd1 に代えてPd2 を通過さ
せ、加熱器12がPd 2 によって制御されることにな
る。
The transition control unit 5 is t1When you introduce
The calculation part 511Is always input2When
Therefore, the controlled object temperature tc is calculated by the equations (1) and (2).
Calculated and output part 52 is pre-input with this tc
Heating output Pd after reaching the temperature corresponding to the difference with ts2From
And the switching portion 53 is2Incorporating
Pd that has been passed so far1Instead of Pd2Passed through
Let the heater 12 be Pd 2To be controlled by
It

【0026】式(1)、(2)によれば、t1 制御をt
a制御に移行させるまでの移行時間Tの制御周期毎にt
aを計算し、t1 とtaとの差を、Tに対する昇温到達
から任意の制御周期iまでに経過した時間Tiの比率
(Ti/T)分だけ−(t1 −ta)Ti/Tとして差
し引いて修正するので、t1 からtaへの急激な変化が
なく、従ってt1 がtsからオーバーシュートすること
がないと共に、時間が経過するに従ってtaによる制御
比率が大きくなり、円滑にta制御に移行させることが
できる。
According to the equations (1) and (2), the t 1 control is t
a for each control cycle of the transition time T until transition to control
a is calculated, and the difference between t 1 and ta is calculated by the ratio (Ti / T) of the time Ti elapsed from reaching the temperature rise to T to an arbitrary control cycle i − (t 1 −ta) Ti / T Since there is no abrupt change from t 1 to ta, and therefore t 1 does not overshoot from ts, the control ratio by ta increases with the passage of time, and ta control is performed smoothly. Can be moved to.

【0027】この移行制御を分かりやすくするために、
図2(a)では、実際とは異なるが昇温到達時のTo時
間から移行完了の時間である移行時間Tまで、t1 、t
2 、taのそれぞれの間の差が一定であったと仮定した
状態を二点鎖線で示している。これによれば、例えばn
=10としてiを1から10まで10回に分けてT/1
0の制御周期毎にt1 をta側に修正する場合には、
(t1 −ta)=xとすれば、i=2でT2 =2T/1
0=T/5のときのt1 の修正分はx/5であり、従っ
てt1 の上昇はx/5になる。i=5では修正分はx/
2であり、従ってt1 の上昇分とtaの未到達分とが共
にx/2になる。i=10の移行完了時にはt1 の修正
分がxになり、従ってti=tc=t1 −(t1 −t
a)=taになり、taが完全にtcになり、t1 はx
だけ上昇することになる。このように移行制御部5によ
れば、制御対象温度tcを急変させることなく、制御状
態を連続的に漸次変化させ、制御の安定性を維持しつつ
tcをt1 からtaに移行させることができる。
In order to make this transition control easy to understand,
In FIG. 2 (a), from the time To when the temperature rise is reached to the transition time T which is the transition completion time, t 1 , t
2 shows a state in which the difference between ta and ta is constant, which is indicated by a chain double-dashed line. According to this, for example, n
= 10, i is divided into 1 to 10 in 10 times, and T / 1
When t 1 is corrected to the ta side every control cycle of 0,
If (t 1 −ta) = x, i = 2 and T 2 = 2T / 1
When 0 = T / 5, the correction amount of t 1 is x / 5, and thus the increase of t 1 is x / 5. When i = 5, the correction is x /
Therefore, the increase of t 1 and the unachieved amount of ta are both x / 2. When the shift of i = 10 is completed, the correction of t 1 becomes x, and therefore ti = tc = t 1 − (t 1 −t
a) = ta, ta becomes completely tc, and t 1 is x
Will only rise. As described above, according to the transition control unit 5, the control state can be continuously and gradually changed without suddenly changing the control target temperature tc, and tc can be transitioned from t 1 to ta while maintaining control stability. it can.

【0028】そしてこの場合、実際には、時間の経過と
共に試料関連部分が昇温し、t1 とt2 、従ってt1
taが接近するので、結局、上記図2(a)の実線及び
一点鎖線のように、t1 は設定温度tsからΔt1 だけ
僅かに上昇するに止まり、最終的にはtaとの差が図示
のようなxnになって安定した連続制御状態に到達す
る。このときには、t2 とtaとの差も当然xnにな
る。このように、本発明によれば、t1 の上昇を押さえ
てオーバーシュートさせることなく、予め定めた移行時
間Tで安定制御状態への早期到達を図ることができる。
In this case, in reality, the temperature of the sample-related portion rises with the lapse of time, and t 1 and t 2 , and therefore t 1 and ta approach each other, so that the solid line and the solid line in FIG. As indicated by the alternate long and short dash line, t 1 only slightly increases from the set temperature ts by Δt 1 , and finally the difference from ta becomes xn as shown in the figure to reach a stable continuous control state. At this time, the difference between t 2 and ta is naturally xn. As described above, according to the present invention, it is possible to quickly reach the stable control state within a predetermined transition time T without suppressing the rise of t 1 and causing overshoot.

【0029】以上では試料が発熱せず温度上昇時に低温
熱負荷になる場合について説明したが、ICを動作状態
で試験するときには、試料が発熱して温度キープ時の高
温熱負荷になる。このときの温度変化の状態を図2
(b)に示す。ICの動作試験の開始時期従って発熱時
期は、試料や試験の内容によって異なるが、通常、最初
に試料に当たる循環空気従って吹出口温度t1 の空気が
設定温度tsに到達した時又はその少し前後の時期であ
る。仮にt1 がtsになった昇温到達時に試料を動作状
態にするとすれば、図示の如く、一部分を二点鎖線で示
す(a)の状態よりもt2 及びtaの温度が試料の発熱
によって早く上昇する。そして、試料関連部分が短時間
で低温熱負荷から高温熱負荷に変化する。
Although the case where the sample does not generate heat and has a low temperature heat load when the temperature rises has been described above, when the IC is tested in an operating state, the sample generates heat and becomes a high temperature heat load when the temperature is kept. The state of temperature change at this time is shown in FIG.
It shows in (b). The start time of the IC operation test, that is, the heat generation time varies depending on the sample and the content of the test, but normally, when the circulating air that hits the sample first, that is, when the air at the outlet temperature t 1 reaches the set temperature ts, or slightly before or after that. It's time. Assuming that the sample is put into an operating state when the temperature rises when t 1 becomes ts, as shown in the figure, the temperature of t 2 and ta is higher than that of the state (a) partially shown by the chain double-dashed line due to heat generation of the sample. Rise fast. Then, the sample-related portion changes from the low temperature heat load to the high temperature heat load in a short time.

【0030】その結果、始めのうちはtaがt1 に早く
接近し、式(1)において図1のxに相当するt1 の修
正分は小さくなり、従ってt1 がtc以上に上昇する温
度Δt1 は小さくなり、試料が高温熱負荷になると、t
1 よりもt2 及びtaが高くなり、t1 がtcより低く
なり、今度はt1 がプラス側に修正される。このときに
も、t1 は制御周期の経過した時間に比例して修正され
るので、急変することがなく制御の安定性は維持され
る。そして、最終的にtc=taの制御になるので、試
料の中心温度制御によりt2 が高くなり過ぎることもな
い。従って、試料が発熱する場合にも、制御の安定性を
確保しつつ予め定められた時間Tによる最終制御状態へ
の早期到達を図ることができる。
As a result, at the beginning, ta approaches t 1 earlier, and the correction of t 1 corresponding to x in FIG. 1 in the equation (1) becomes smaller, so that the temperature at which t 1 rises above tc. Δt 1 becomes small, and when the sample is exposed to high temperature heat load, t
T 2 and ta is higher than 1, t 1 becomes lower than tc, turn t 1 is corrected to the positive side. Also at this time, t 1 is corrected in proportion to the elapsed time of the control cycle, so that the stability of the control is maintained without a sudden change. Then, since tc = ta is finally controlled, t 2 does not become too high by controlling the center temperature of the sample. Therefore, even when the sample heats up, it is possible to achieve the final control state at an early stage by the predetermined time T while ensuring the stability of control.

【0031】なお、試料が発熱する場合には、Pd2
小さい値になり、加熱器12の負荷を下げる制御をする
ことになるが、時間が経過すると加熱器の負荷制御だけ
では設定温度tsを維持できなくなるので、Pd2 の一
定値以下の低出力によって冷却ファン19を運転し、外
気を取り入れて冷却作用をさせつつ、十分小さい値のP
2 によって温度制御することになる。
When the sample heats up, Pd 2 becomes a small value and the load on the heater 12 is controlled to be reduced. However, when the time elapses, only the load control of the heater is performed to set the temperature ts. Therefore, the cooling fan 19 is operated by a low output of Pd 2 equal to or lower than a certain value, and a sufficiently small value of Pd is obtained while taking in the outside air to perform a cooling action.
The temperature is controlled by d 2 .

【0032】このような本発明を適用した温度制御装置
に対して、従来の装置のうちt1 を昇温到達後もそのま
まtcにする制御方式のものでは、図3(c)のよう
に、発熱負荷がない場合には、昇温中から昇温到達後ま
でt1 の過大な温度上昇がなく安定した制御が可能にな
るが、発熱負荷がある場合には、同図(d)のように発
熱によって吸込口温度t2 が高くなり過ぎるという問題
がある。本発明の制御では、t1 制御から円滑に移行さ
せたta制御にするので、このようにt2 が高くなり過
ぎるという不具合が発生しない。
In contrast to such a temperature control device to which the present invention is applied, in the conventional control device of the control system in which t 1 remains tc even after reaching the temperature rise, as shown in FIG. When there is no heat generation load, stable control is possible without excessive temperature rise of t 1 from the temperature rise to after the temperature rise is reached. In addition, there is a problem that the suction port temperature t 2 becomes too high due to heat generation. In the control of the present invention, the ta control is used, which is a smooth transition from the t 1 control, and thus the problem that t 2 becomes too high does not occur.

【0033】又、従来の装置のうち、昇温過程ではt1
をtcにし、発熱負荷によって吸込口温度が吹出口温度
より2〜3℃高くなるとt1 制御からta制御に切り換
えるようにしたものでは、昇温到達時のt1 の過度な上
昇をなくすることはできるが、温度到達後もそのままt
1 制御を持続するので、最終的な中心温度制御であるt
a制御に移行させる時期が遅くなると共に、昇温到達後
発熱負荷の影響が現れてt1 とt2 とが逆転しその温度
が2〜3℃になると、そのとき突然t1 制御からta制
御に切り換えるので、制御乱れによる試験室温度の急変
等の発生が避けられず、更に、発熱負荷のない試験に対
応できない。本発明を採用した温度制御装置では、この
ような問題がすべて解決されている。
Among the conventional devices, t 1
It was brought to tc, intended inlet temperature that was switched to ta control from 2 to 3 ° C. higher when t 1 control than outlet temperature by heating load, to eliminate the excessive increase of t 1 during heating reaches Although it can be done, it remains t even after the temperature is reached.
Since 1 control is maintained, t is the final center temperature control.
When the timing of shifting to the a control becomes late, and the influence of the heat generation load after reaching the temperature rise causes t 1 and t 2 to reverse and the temperature becomes 2 to 3 ° C., the control from the t 1 control to the ta control suddenly occurs at that time. Since it is switched to, it is unavoidable that a sudden change in the temperature of the test chamber due to control disturbance occurs, and it is not possible to cope with a test without a heat load. The temperature control device adopting the present invention solves all of these problems.

【0034】図4は、本発明を適用した温度制御装置を
装備した恒温槽による温度制御の実験結果を示す。なお
図では、温度上昇過程における100℃以下の部分の図
示を省略している。
FIG. 4 shows experimental results of temperature control by a thermostatic chamber equipped with a temperature control device to which the present invention is applied. It should be noted that in the figure, the illustration of the portion at 100 ° C. or lower in the temperature rising process is omitted.

【0035】本実験は、tsを125℃とし、昇温到達
前後の制御対象温度tcをそれぞれt1 及び式(1)、
(2)で計算したtiとし、移行時間Tを約20分に設
定して実施された。制御周期は3秒である。この実験に
よれば、温度到達後のt1 の上昇Δt1 をオーバーシュ
ートのない1℃程度という十分小さい値にすることがで
きた。なお、Δt1 が2〜3℃程度であっても実用上問
題がないので、Δt1をその程度まで許容するとすれ
ば、約20分の移行時間Tを更に短縮することができ
る。
In this experiment, ts is set to 125 ° C., the temperature tc to be controlled before and after the temperature rise is t 1 and equation (1),
It was carried out by setting ti calculated in (2) and setting the transition time T to about 20 minutes. The control cycle is 3 seconds. According to this experiment, the rise Δt 1 of t 1 after reaching the temperature could be set to a sufficiently small value of about 1 ° C. without overshoot. It should be noted that even if Δt 1 is about 2 to 3 ° C., there is no problem in practical use. Therefore, if Δt 1 is allowed up to that level, the transition time T of about 20 minutes can be further shortened.

【0036】なお、本実験は実験装置の関係等により発
熱負荷のない状態で行われたが、発熱負荷があるときに
はその発熱量によって移行時間等を多少変えることにな
るが、その場合でも、図2(a)及び(b)に示すよう
に同様な運転結果が得られることが予測される。
Although this experiment was carried out in the absence of a heat load due to the relationship of the experimental equipment, when there is a heat load, the transition time will be slightly changed depending on the amount of heat generated. It is expected that similar operation results will be obtained as shown in 2 (a) and (b).

【0037】従って、本発明を適用した温度制御装置で
は、実際に製造する装置において、このような試運転を
したり実用運転中に、t1 の過度の上昇を防止しつつ安
全で安定した制御により早く移行完了できるような移行
時間Tを確認することにより、恒温槽の温度制御の最適
化を図ることができる。
Therefore, in the temperature control device to which the present invention is applied, in a device which is actually manufactured, a safe and stable control is performed while preventing an excessive rise of t 1 during such a test operation or a practical operation. By confirming the transition time T at which the transition can be completed quickly, the temperature control of the constant temperature bath can be optimized.

【0038】図5は従来の装置のように昇温時を含めて
ta制御をする場合の実験結果を参考として示した図で
ある。この実験によれば、Δt1 が約6℃という大きい
値になり、t1 が大きくオーバーシュートすることが確
認された。
FIG. 5 is a diagram showing, as a reference, an experimental result in the case where ta control is performed including the temperature rise as in the conventional apparatus. According to this experiment, it was confirmed that Δt 1 has a large value of about 6 ° C. and t 1 largely overshoots.

【0039】図6は本発明を適用した温度制御装置の他
の例を示す。本例の装置は、気体である空気を所定温度
である設定温度tsより低い他の所定温度としての低設
定温度ts1 に下降させる降温過程を有するときに、そ
の降温過程で、入口側温度検出手段である吹出温度セン
サ2が検出した入口側の温度である吹出口温度t1 を制
御対象温度tcとして、tcがts1 になるように加熱
器12の加熱量を制御する降温制御部6を備えている。
FIG. 6 shows another example of the temperature control device to which the present invention is applied. When the apparatus of this example has a temperature lowering process of lowering the air, which is a gas, to a low preset temperature ts 1 as another predetermined temperature lower than the preset temperature ts which is the predetermined temperature, in the temperature lowering process, the inlet side temperature detection is performed. The outlet temperature t 1 which is the temperature on the inlet side detected by the outlet temperature sensor 2 which is the means is set as the control target temperature tc, and the temperature decrease control unit 6 that controls the heating amount of the heater 12 so that tc becomes ts 1. I have it.

【0040】又、吹出口温度t1 がts1 に到達する
と、制御対象温度tcがt1 と吸込温度センサ3が検出
した出口側の温度である吸込口温度t2 との平均温度t
aになるように漸次変化させて加熱器12の加熱量を制
御するように降温到達後加熱出力信号Pd3 を発生させ
る他の移行制御部である降温移行制御部7を備えてい
る。そのため、上記のPd1 及びt1 を取り入れると共
にts1 及びt2 を取り入れるように構成されていて、
計算部分54、出力部分55及び切換部分56を備えて
いる。
When the outlet temperature t 1 reaches ts 1 , the temperature tc to be controlled is the average temperature t 1 of t 1 and the inlet temperature t 2 which is the outlet temperature detected by the inlet temperature sensor 3.
The temperature decrease transition control unit 7 is provided as another transition control unit that generates the heating output signal Pd 3 after reaching the temperature decrease so as to control the heating amount of the heater 12 by gradually changing it to a. Therefore, it is configured to take in ts 1 and t 2 together with taking in the above Pd 1 and t 1 .
It comprises a calculation part 54, an output part 55 and a switching part 56.

【0041】なお、本例では図1の装置と図6の装置と
を別の装置として説明しているが、実際には、昇温制御
部4及び降温制御部6を一体化すると供に、移行制御部
5及び降温移行制御部7を一体化し、これらをマイコン
等を用いた1つの制御装置として形成することになる。
In this example, the device of FIG. 1 and the device of FIG. 6 are described as different devices, but in reality, the temperature raising control unit 4 and the temperature lowering control unit 6 are integrated, The transfer control unit 5 and the temperature drop transfer control unit 7 are integrated, and these are formed as one control device using a microcomputer or the like.

【0042】本例の装置では、又、図1の冷却ファン1
9に代えて、給気口20及び排気口21の開度を同時に
調整可能な1枚のダンパ22を設け、送風機17によっ
て給気口20から外気を取り入れ排気口と21から排出
することにより、試験室11内を急冷できるようにして
いる。但し、図1の装置と同様に、冷却ファン19によ
って同様の作用をさせてもよい。
In the apparatus of this example, the cooling fan 1 shown in FIG. 1 is also used.
In place of 9, a single damper 22 capable of adjusting the opening degrees of the air supply port 20 and the exhaust port 21 at the same time is provided, and the outside air is taken in from the air supply port 20 by the blower 17 and discharged from the exhaust port and 21. The inside of the test chamber 11 can be rapidly cooled. However, similar to the device of FIG. 1, the cooling fan 19 may perform the same operation.

【0043】本例の温度制御装置も、昇温時と降温時と
の相違を除いて図1の装置と同様に作動する。この場合
本例の装置では、降温制御部6では、t1 がts1 より
大きければ降温過程にあると判断する。又、式(1)
は、 ti=t1 +(ta−t1 )Ti/T−−−−−−(1)’ となる。
The temperature control device of this embodiment also operates in the same manner as the device of FIG. 1 except for the difference between the temperature rising and the temperature falling. In this case, in the apparatus of this example, the temperature decrease control unit 6 determines that the temperature is being decreased if t 1 is larger than ts 1 . Also, equation (1)
Is ti = t 1 + (ta−t 1 ) Ti / T −−−−−− (1) ′.

【0044】このときの循環空気の温度の制御状態は、
図1の装置の図2に対して図7のようになる。即ち、降
温時にも、時間Tをかけてt1 制御からta制御に円滑
に移行する。その結果、tc=taにして降温させると
きには、taがts1 に到達したときにt1 が下がり過
ぎるアンダーシュートが発生するが、本例の装置により
これを防止することができる。その結果、試験室11内
に入れられる試料の量が変わりその熱容量が変わって
も、試料を常に同じ状態で温度降下させることができ
る。即ち、試験条件の再現性を良好にすることができ
る。又、アンダーシュートの値自体が小さくなるので、
厳密な試験条件が規定されている場合でも、これをクリ
アーすることができる。
The control state of the temperature of the circulating air at this time is as follows.
As for FIG. 2 of the apparatus of FIG. 1, it becomes like FIG. That is, even when the temperature is lowered, the time t is smoothly changed from the t 1 control to the ta control. As a result, when the temperature is lowered with tc = ta, undershoot occurs when t 1 reaches ts 1 and t 1 drops too much, but this can be prevented by the apparatus of this example. As a result, even if the amount of the sample put in the test chamber 11 changes and its heat capacity changes, the temperature of the sample can be always lowered in the same state. That is, the reproducibility of the test conditions can be improved. Also, since the undershoot value itself becomes small,
This can be cleared even when strict test conditions are specified.

【0045】なお、以上の図1及び図6の装置では、昇
温中から昇温到達後の制御及び降温中から降温到達後の
制御、即ち、tcをt1 からtaに移行させる場合につ
いて説明したが、設定温度到達後の温度一定制御から昇
温又は降温させる制御じ移行制御部を用いた制御を行う
ことが望ましい。
In the above-described apparatus shown in FIGS. 1 and 6, a description will be given of the control after the temperature is raised from the temperature rise and the control after the temperature is lowered from the temperature drop, that is, when tc is shifted from t 1 to ta. However, it is desirable to perform the control using the transition control unit for increasing or decreasing the temperature from the constant temperature control after reaching the set temperature.

【0046】即ち、低設定温度ts1 からtsに昇温さ
せるときには、図1の昇温制御部4及び移行制御部5と
同様の制御装置により、プログラム運転等でtc=ta
=ts1 の一定温度制御状態から昇温指令が出ると、t
aになっているtcを、時間Tをかけてt1 に移行させ
てt1 制御に切り換える。その後昇温してt1 がtsに
到達すると、図1の移行制御部5によって再びtcをt
1 からtaに切り換える。なお、このような制御では、
昇温過程であるため加熱器12だけを使用する。従っ
て、図1の冷却ファン19は停止している。図6の装置
では、ダンパ22が実線の閉鎖位置になっている。
That is, when the temperature is raised from the low set temperature ts 1 to ts, tc = ta in a program operation or the like by a control device similar to the temperature raising control unit 4 and the transition control unit 5 in FIG.
= The temperature increase instruction from the constant temperature control state of ts 1 exits, t
The time tc, which is a, is shifted to t 1 over time T and switched to t 1 control. After that, when the temperature rises and t 1 reaches ts, the transition control unit 5 in FIG.
Switch from 1 to ta. In addition, in such control,
Since it is a heating process, only the heater 12 is used. Therefore, the cooling fan 19 of FIG. 1 is stopped. In the device of FIG. 6, the damper 22 is in the closed position indicated by the solid line.

【0047】設定温度tsから低設定温度ts1 に降温
させるときには、図6の降温制御部6及び降温移行制御
部7と同様の制御装置により、ts1 に到達させるため
の制御温度tcを、時間Tをかけてtaからt1 に切り
換える。なおこのときには、降温時であるため、設定温
度と実測温度との差が大きくなっているので加熱出力P
1 は0になり、ダンパ22は図6の二点鎖線の状態、
即ち、給気口20及び排気口21は最大開度になり、給
気口20から送風機12で吸入した外気の全量を排気口
21から排出し、試験室11内が急冷される。これによ
り、t1 がts 1 に近づくと、ダンパ22の開度が小さ
くなると共に加熱出力Pd3 が0から次第に大きくな
り、t1 がts1 に到達すると、図6の制御装置による
tc=ta制御へ移行する。
From the set temperature ts to the low set temperature ts1Down to
When performing, the temperature drop control unit 6 and the temperature drop transition control of FIG.
By the control device similar to the part 7, ts1To reach
Control temperature tc of from ta to t over time T1Cut into
Change. At this time, since the temperature is falling, the set temperature
Since the difference between the temperature and the measured temperature is large, the heating output P
d1Becomes 0, and the damper 22 is in the state of the chain double-dashed line in FIG.
That is, the intake port 20 and the exhaust port 21 reach the maximum opening,
The total amount of outside air sucked by the blower 12 from the air outlet 20 is exhausted
It is discharged from 21, and the inside of the test chamber 11 is rapidly cooled. By this
, T1Is ts 1The opening of the damper 22 becomes smaller
Heating output Pd3Gradually increases from 0
, T1Is ts1When the control device of FIG. 6 is reached,
The control shifts to tc = ta control.

【0048】[0048]

【発明の効果】以上の如く本発明によれば、請求項1の
発明においては、入口側及び出口側温度検出手段によ
り、被処理物に目的とする所定温度の温度環境を付与す
る温度環境付与空間への加熱器で加熱された気体の入口
側及び出口側の温度を検出し、この気体を所定温度に上
昇させる昇温過程では、昇温制御部によって入口側の検
出温度を制御対象温度としてこの温度が所定温度になる
ように加熱器の加熱量を制御するように構成するので、
被処理物関連部分の熱容量によって昇温が遅れる出口側
温度及び中心温度よりも早く上昇する入口側温度によ
り、所定温度への到達を早くし、早く安定した温度制御
へ移行させることができる。又、平均温度制御をすると
きに発生する入口側温度の不可避的なオーバーシュート
を防止することができる。
As described above, according to the present invention, in the invention of claim 1, the temperature detecting means for the inlet side and the outlet side imparts a temperature environment of a target predetermined temperature environment to the object to be processed. In the temperature raising process of detecting the temperature of the inlet side and the outlet side of the gas heated by the heater to the space and raising the temperature of this gas to a predetermined temperature, the temperature rise control unit sets the detected temperature of the inlet side as the temperature to be controlled. Since it is configured to control the heating amount of the heater so that this temperature becomes a predetermined temperature,
The temperature at the outlet side, where the temperature rise is delayed due to the heat capacity of the object-related part, and the temperature at the inlet side, which rises faster than the central temperature, make it possible to reach the predetermined temperature quickly and to shift to stable temperature control quickly. Further, it is possible to prevent the inevitable overshoot of the inlet side temperature that occurs when the average temperature control is performed.

【0049】そして、移行制御部を設けて、入口側の温
度が所定温度に到達すると、制御対象温度が入口側温度
と出口側温度の平均温度になるように制御対象温度を漸
次変化させて加熱器の加熱量を制御するので、昇温到達
と同時に平均温度制御に切り換えるときに上記と同様に
発生する入口側温度のオーバーシュートを防止しつつ、
被処理物に付与される温度として望ましい平均温度によ
る制御に移行させることができる。又、平均温度制御に
移行したときに、温度環境付与空間の温度が急変する等
の制御乱れの発生を防止することができる。
A transition control unit is provided, and when the temperature on the inlet side reaches a predetermined temperature, the temperature to be controlled is gradually changed so that the temperature to be controlled becomes an average temperature of the temperature on the inlet side and the temperature on the outlet side. Since the heating amount of the vessel is controlled, while preventing the overshoot of the inlet side temperature that occurs in the same manner as above when switching to the average temperature control at the same time when the temperature rise is reached,
It is possible to shift the control to the desired average temperature as the temperature applied to the object to be processed. Further, it is possible to prevent the occurrence of control disturbance such as a sudden change in the temperature of the temperature environment-applying space when shifting to the average temperature control.

【0050】この場合、昇温制御部で早く所定温度に到
達させ早く昇温を完了させることができると共に、温度
環境付与装置の試運転や実用運転により、移行制御部で
漸次変化させる時間を、前記のような入口側温度の過度
の上昇を防止できる範囲で最短時間に設定することが可
能になるので、本発明によれば温度環境付与装置におけ
る温度制御の最適化を図ることができる。
In this case, the temperature raising control unit can quickly reach a predetermined temperature to complete the temperature raising quickly, and the transition control unit can gradually change the time by the trial operation or the practical operation of the temperature environment providing device. Since it is possible to set the shortest time within the range that can prevent the excessive rise of the inlet side temperature as described above, according to the present invention, the temperature control in the temperature environment providing device can be optimized.

【0051】請求項2の発明においては、上記に加え
て、気体を所定温度より低い他の所定温度に下降させる
降温過程を有するときに、所定の構成を備えた降温制御
部と他の移行制御部とを設け、制御対象温度を入口側の
温度にするので、これが他の所定温度に到達したときに
その温度以下に下がり過ぎることがない。その結果、温
度環境付与空間内に入れられる被処理物の量が変わりそ
の熱容量が変わっても、これを常に同じ状態で温度降下
させることができる。即ち、試験条件としての温度再現
性を良好にすることができる。又、被処理物に対して厳
密な試験温度条件が規定されている場合でも、これをク
リアーすることができる。
According to the invention of claim 2, in addition to the above, when there is a temperature lowering process for lowering the gas to another predetermined temperature lower than the predetermined temperature, the temperature lowering control section and the other transition control having a predetermined configuration are provided. Since the temperature to be controlled is set to the temperature on the inlet side, the temperature does not drop below that temperature when it reaches another predetermined temperature. As a result, even if the amount of the object to be placed in the temperature environment application space changes and the heat capacity changes, the temperature of the object can be always lowered in the same state. That is, the temperature reproducibility as a test condition can be improved. Further, even when a strict test temperature condition is defined for the object to be processed, this can be cleared.

【0052】そしてこの場合、入口側の温度が他の所定
温度に到達すると、他の移行制御部により、制御乱れを
生じさせることなく、被処理物に付与される温度として
望ましい平均温度制御に円滑に移行させることができ
る。
In this case, when the temperature on the inlet side reaches another predetermined temperature, another transition control unit smoothly controls the average temperature, which is a desired temperature to be applied to the object to be processed, without causing control disturbance. Can be moved to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した温度制御装置を含む恒温槽の
全体構成の一例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of the overall configuration of a constant temperature bath including a temperature control device to which the present invention is applied.

【図2】上記温度制御装置における温度制御の移行状態
を示す説明図で、(a)は発熱負荷がなく(b)は発熱
負荷がある場合の図である。
FIG. 2 is an explanatory diagram showing a transition state of temperature control in the temperature control device, where (a) is a case where there is no heat load and (b) is a diagram where there is a heat load.

【図3】(a)乃至(e)は従来の恒温槽における温度
制御の移行状態の説明図である。
3 (a) to 3 (e) are explanatory views of transition states of temperature control in a conventional constant temperature bath.

【図4】本発明を適用した温度制御装置による実験結果
を示す説明図である。
FIG. 4 is an explanatory diagram showing an experimental result by the temperature control device to which the present invention is applied.

【図5】従来の温度制御装置による実験結果を示す説明
図である。
FIG. 5 is an explanatory diagram showing an experimental result by a conventional temperature control device.

【図6】本発明を適用した温度制御装置を含む恒温槽の
全体構成の他の例を示す説明図である。
FIG. 6 is an explanatory diagram showing another example of the overall configuration of a constant temperature bath including a temperature control device to which the present invention is applied.

【図7】上記温度制御装置における温度制御の移行状態
を示す説明図で、(a)は発熱負荷がなく(b)は発熱
負荷がある場合の図である。
FIG. 7 is an explanatory diagram showing a transition state of temperature control in the temperature control device, where (a) is a case where there is no heat generation load and (b) is a case where there is a heat generation load.

【符号の説明】[Explanation of symbols]

1 恒温槽(温度環境付与装置) 2 吹出温度センサ(入口側温度検出手
段) 3 吸込温度センサ(出口側温度検出手
段) 4 昇温制御部 5 移行制御部 6 降温制御部 7 降温移行制御部(他の移行制御部) 11 試験室(温度環境付与空間) 12 加熱器 13 吹出口(入口側) 14 吸込口(出口側) 101 IC(被処理物) t1 吹出口温度(入口側の温度) t2 吸込口温度(出口側の温度) ta 平均温度 tc 制御対象温度 ts 設定温度(所定温度) ts1 低設定温度(他の所定温度)
1 Constant Temperature Chamber (Temperature Environment Applying Device) 2 Blowout Temperature Sensor (Inlet Side Temperature Detection Means) 3 Suction Temperature Sensor (Outlet Side Temperature Detection Means) 4 Temperature Increase Control Unit 5 Transition Control Unit 6 Temperature Decrease Control Unit 7 Temperature Decrease Transition Control Unit ( Other transfer control part) 11 Test chamber (temperature environment application space) 12 Heater 13 Blowout port (inlet side) 14 Suction port (outlet side) 101 IC (object to be treated) t 1 Blowout port temperature (inlet side temperature) t 2 inlet temperature (outlet temperature) ta average temperature tc controlled temperature ts set temperature (predetermined temperature) ts 1 low set temperature (other predetermined temperature)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3L054 BE02 3L060 AA06 CC01 EE00 5H323 AA29 BB05 CA02 CB25 EE01 FF01 FF04 FF10 HH02 HH03 KK05 MM06    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3L054 BE02                 3L060 AA06 CC01 EE00                 5H323 AA29 BB05 CA02 CB25 EE01                       FF01 FF04 FF10 HH02 HH03                       KK05 MM06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被処理物に目的とする所定温度の環境を
付与する温度環境付与空間に加熱器で加熱された気体を
入口側から入れて出口側から出すようにした温度環境付
与装置の前記気体の温度を制御する温度制御装置におい
て、 前記入口側の温度を検出する入口側温度検出手段と、前
記出口側の温度を検出する出口側温度検出手段と、前記
気体を前記所定温度に上昇させる昇温過程で前記入口側
温度検出手段が検出した前記入口側の温度を制御対象温
度として該制御対象温度が前記所定温度になるように前
記加熱器の加熱量を制御する昇温制御部と、前記入口側
の温度が前記所定温度に到達すると前記制御対象温度が
前記入口側の温度と前記出口側温度検出手段が検出した
前記出口側の温度との平均温度になるように前記制御対
象温度を漸次変化させて前記加熱器の加熱量を制御する
移行制御部と、を有することを特徴とする温度制御装
置。
1. A temperature environment imparting device, wherein a gas heated by a heater is introduced from an inlet side into a temperature environment imparting space for imparting an environment of a desired predetermined temperature to an object to be treated and discharged from an outlet side. In a temperature control device for controlling the temperature of a gas, an inlet temperature detecting means for detecting the temperature of the inlet side, an outlet temperature detecting means for detecting the temperature of the outlet side, and raising the gas to the predetermined temperature. A temperature raising control unit that controls the heating amount of the heater so that the temperature of the inlet side detected by the inlet side temperature detecting means in the temperature raising process is the temperature to be controlled and the temperature to be controlled becomes the predetermined temperature, When the temperature on the inlet side reaches the predetermined temperature, the temperature to be controlled is set to be the average temperature of the temperature on the inlet side and the temperature on the outlet side detected by the outlet side temperature detecting means. gradually Temperature control apparatus characterized by by reduction; and a transition control unit for controlling the heating amount of the heater.
【請求項2】 前記気体を前記所定温度より低い他の所
定温度に下降させる降温過程を有し、該降温過程で前記
入口側温度検出手段が検出した前記入口側の温度を制御
対象温度として該制御対象温度が前記他の所定温度にな
るように前記加熱器の加熱量を制御する降温制御部と、
前記入口側の温度が前記他の所定温度に到達すると前記
制御対象温度が前記入口側の温度と前記出口側温度検出
手段が検出した前記出口側の温度との平均温度になるよ
うに前記制御対象温度を漸次変化させて前記加熱器の加
熱量を制御する他の移行制御部と、有することを特徴と
する請求項1に記載の温度制御装置。
2. A temperature lowering process for lowering the gas to another predetermined temperature lower than the predetermined temperature, wherein the temperature on the inlet side detected by the inlet side temperature detecting means in the temperature lowering process is used as a control target temperature. A temperature drop control unit that controls the heating amount of the heater so that the temperature to be controlled becomes the other predetermined temperature,
When the temperature of the inlet side reaches the other predetermined temperature, the control target temperature is set to be an average temperature of the temperature of the inlet side and the temperature of the outlet side detected by the outlet side temperature detecting means. The temperature control device according to claim 1, further comprising another transition control unit that controls the heating amount of the heater by gradually changing the temperature.
JP2001375981A 2001-12-10 2001-12-10 Overshoot prevention temperature controller Expired - Lifetime JP3863420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001375981A JP3863420B2 (en) 2001-12-10 2001-12-10 Overshoot prevention temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001375981A JP3863420B2 (en) 2001-12-10 2001-12-10 Overshoot prevention temperature controller

Publications (2)

Publication Number Publication Date
JP2003177825A true JP2003177825A (en) 2003-06-27
JP3863420B2 JP3863420B2 (en) 2006-12-27

Family

ID=19184265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001375981A Expired - Lifetime JP3863420B2 (en) 2001-12-10 2001-12-10 Overshoot prevention temperature controller

Country Status (1)

Country Link
JP (1) JP3863420B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064368A (en) * 2006-09-06 2008-03-21 Yurikai Co Ltd Control method of temperature regulation effect by utilizing temperature sensors disposed at both of sending side and returning side of circulation-type temperature regulation device
JP2009236451A (en) * 2008-03-28 2009-10-15 Nippon Spindle Mfg Co Ltd Temperature adjusting device
JP2011206661A (en) * 2010-03-29 2011-10-20 Espec Corp Thermostat
JP2011252717A (en) * 2010-05-31 2011-12-15 Espec Corp Environmental testing device
CN108091586A (en) * 2016-11-21 2018-05-29 中微半导体设备(上海)有限公司 Plasma processor platform and its radio frequency window temperature control system and temprature control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064368A (en) * 2006-09-06 2008-03-21 Yurikai Co Ltd Control method of temperature regulation effect by utilizing temperature sensors disposed at both of sending side and returning side of circulation-type temperature regulation device
JP2009236451A (en) * 2008-03-28 2009-10-15 Nippon Spindle Mfg Co Ltd Temperature adjusting device
JP2011206661A (en) * 2010-03-29 2011-10-20 Espec Corp Thermostat
JP2011252717A (en) * 2010-05-31 2011-12-15 Espec Corp Environmental testing device
CN108091586A (en) * 2016-11-21 2018-05-29 中微半导体设备(上海)有限公司 Plasma processor platform and its radio frequency window temperature control system and temprature control method

Also Published As

Publication number Publication date
JP3863420B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
JP2001044176A5 (en)
JP2007085582A (en) Operating method of electric water heater
JP7246963B2 (en) Environmental test equipment and environmental test method
JP2010181042A (en) Cooling device and cooling method
JP2010133852A (en) Cold and hot impact testing machine and method for cold and hot impact testing
JP2003177825A (en) Overshoot prevention type temperature controller
US5211713A (en) Temperature control method with simultaneous heating and cooling near the set-point
US8694167B2 (en) Method for controlling vacuum pumps in an industrial furnace complex
JP2001013126A (en) Column thermostatic oven
JP4729008B2 (en) Temperature control device
KR100725737B1 (en) Cooking device and drain control method thereof
JP3724619B2 (en) Thermal shock test equipment with neutralization control function
JP3968826B2 (en) Processing method at the end of hot water supply of a hot water supply device having an instant hot water function
JPH07294596A (en) Temperature control method in constant-temperature bath for high-low-temperature handler
JP3810306B2 (en) Abnormality diagnosis method for bath return temperature sensor
JPH06257852A (en) Hot-water supplier
JP7253983B2 (en) Heat source device
JP2001193941A (en) Heating cooker
JPH04120449A (en) Method and apparatus for controlling of thermal shock testing machine
JP2006012606A (en) Induction heating cooker
KR20210142390A (en) Temperature control apparatus
KR20000025797A (en) Method for controlling cooling fan of gas oven
JP2002366233A (en) Temperature controlling method and controller thereof
JP4100640B2 (en) Electronic expansion valve controller for refrigerator for cold shock equipment
JP2552586B2 (en) Inlet water temperature detection method and hot water supply control method in water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060928

R150 Certificate of patent or registration of utility model

Ref document number: 3863420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term