JP2008064368A - Control method of temperature regulation effect by utilizing temperature sensors disposed at both of sending side and returning side of circulation-type temperature regulation device - Google Patents

Control method of temperature regulation effect by utilizing temperature sensors disposed at both of sending side and returning side of circulation-type temperature regulation device Download PDF

Info

Publication number
JP2008064368A
JP2008064368A JP2006241856A JP2006241856A JP2008064368A JP 2008064368 A JP2008064368 A JP 2008064368A JP 2006241856 A JP2006241856 A JP 2006241856A JP 2006241856 A JP2006241856 A JP 2006241856A JP 2008064368 A JP2008064368 A JP 2008064368A
Authority
JP
Japan
Prior art keywords
temperature
temperature regulation
temperature control
coefficient
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006241856A
Other languages
Japanese (ja)
Inventor
Ren Dan
錬 段
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YURIKAI CO Ltd
Original Assignee
YURIKAI CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YURIKAI CO Ltd filed Critical YURIKAI CO Ltd
Priority to JP2006241856A priority Critical patent/JP2008064368A/en
Publication of JP2008064368A publication Critical patent/JP2008064368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems in a conventional circulation-type temperature regulation device where temperature regulation effect is adjusted on the basis of parameters such as a flow rate of a circulated medium and PID inside of the device, that the temperature regulation effect of the temperature regulation device cannot be flexibly set, the device has poor adaptability to changing load and a temperature region of wide range, and the temperature regulation devices of various performances must be respectively used to various requests for temperature regulation. <P>SOLUTION: Two sensors are respectively disposed at a sending side and a returning side of a circulation circuit, and the information of two sensors are calculated based on a temperature regulation coefficient F to calculate a reference temperature provided to the temperature regulation device, thus the temperature regulation effect can be adjusted higher or lower than designed temperature regulation performance without changing the temperature regulation parameters such as PID of the temperature regulation device and a circulation flow rate, and the device can cope with dynamic temperature load and the temperature region of wide range by controlling the coefficient from a control device of high order. Further the coefficient F is relate to only the temperature regulation effect and is not relate to temperature regulation accuracy. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液体、気体などの媒体による循環式温調装置の温調効果の制御方法に関するものである。       The present invention relates to a method for controlling a temperature control effect of a circulating temperature controller using a medium such as liquid or gas.

製造装置の温度制御、建物の空調などによく使われている液体、気体を媒体とする循環式温調装置の殆どが設置の便利上、温度センサーは循環式温調装置の媒体送り側(送風、送液側)か、媒体戻り側(吸気、吸液側)のどちらか一方に設けて、そのセンサー情報によって温度調整するものである。 For the convenience of installation, most of the circulating temperature control devices that use liquid or gas as a medium, which are often used for temperature control of manufacturing equipment, air conditioning in buildings, etc. , Liquid supply side) or medium return side (intake, liquid absorption side), and the temperature is adjusted according to the sensor information.

送り側のみに温度センサーを設ける場合、温調対象の実際温度と関係なく、設定された温度の媒体しか出力しないため、温調対象が設定温度に到達するまで時間がかかり、温調効果が遅いアンダーシュートの傾向がある。この場合、理論的には無限に設定温度に近づくが永遠に到達できない。     When a temperature sensor is provided only on the feed side, only the medium of the set temperature is output regardless of the actual temperature of the temperature adjustment target, so it takes time until the temperature adjustment target reaches the set temperature, and the temperature adjustment effect is slow. There is a tendency to undershoot. In this case, the temperature approaches the set temperature indefinitely but cannot be reached forever.

戻り側のみに温度センサーを設ける場合、温調対象の実際温度と関係なく、戻りの媒体の温度が設定温度に到達するまで一気に温度調整を行い、温調対象に対して、速く設定温度に到達するが、オーバーシュートの傾向がある。       When a temperature sensor is provided only on the return side, regardless of the actual temperature of the temperature adjustment target, temperature adjustment is performed at once until the temperature of the return medium reaches the set temperature, and the set temperature is reached quickly for the temperature adjustment target. There is a tendency to overshoot.

一方、循環式温調装置の殆どは温調効果、即ち温度変化に対する反応速度の調整は循環流量によって行うが、流量の調整ができない場合、その循環式温調装置の温調効果も調整できない。つまり、決められた温調装置に対して、その温調装置のパフォーマンスが構成された要素で決められ、ほぼ一定の性能で働くのが殆どである。       On the other hand, most of the circulation type temperature control devices adjust the temperature adjustment effect, that is, the reaction rate with respect to the temperature change by the circulation flow rate. If the flow rate cannot be adjusted, the temperature adjustment effect of the circulation type temperature adjustment device cannot be adjusted. That is, for the determined temperature control device, the performance of the temperature control device is determined by the constituent elements, and it works almost at a constant performance.

前述の従来の温調装置の温調時のオーバーシュートとアンダーシュートを抑え、より速く温調対象の温度に調整できる方法として、温調装置の送り側と戻り側両方に温度センサーを設置する方法がある。それらの方法が送り側と戻り側の温度センサーの片方のセンサーの情報だけに頼らず、もう一方のセンサーの情報を参考にして、オーバーシュートとアンダーシュートの傾向を抑えて温調することを目的としている。
そのような2つのセンサーの情報の扱いはセンサーAの情報をセンサーBの方向に修正するもので、つまり、修正後のデータがセンサーAとBの間にしかないのが特徴である。
A method of installing temperature sensors on both the feed side and return side of the temperature control device as a method to suppress the overshoot and undershoot during temperature control of the above-mentioned conventional temperature control device and to adjust the temperature to the temperature control target faster. There is. The purpose of these methods is to control the temperature while suppressing the tendency of overshoot and undershoot by referring to the information of the other sensor without relying only on the information of the temperature sensor on the sending side and the returning side. It is said.
The handling of the information of such two sensors is to correct the information of sensor A in the direction of sensor B, that is, the corrected data is only between sensors A and B.

一方、すべての温調装置は必ずしも温度変化に対して速やかに収束することが最適なパターンではない。例えば従来のアンダーシュート気味な温調装置で調整済みの加工プロセスに、温度の収束性のよい温調装置が必ずしもよい効果を発揮できるものではない。そういう場合は、温調装置の本来の性能より控えめなパフォーマンスに調整する必要がある。
(循環式温調装置の殆どは温調効果、即ち温度変化に対する反応速度の調整は循環流量によって行うが、流量の調整ができない場合、その循環式温調装置の温調効果も調整できない。)
On the other hand, it is not always the optimal pattern that all temperature control devices converge quickly with respect to temperature changes. For example, a temperature control device with good temperature convergence cannot always exert a good effect on a processing process that has been adjusted with a conventional temperature control device with an undershoot. In such a case, it is necessary to adjust to a modest performance than the original performance of the temperature control device.
(Most of the circulating temperature control devices adjust the temperature control effect, that is, the reaction rate with respect to the temperature change by the circulation flow rate, but when the flow rate cannot be adjusted, the temperature control effect of the circulation temperature control device cannot be adjusted.)

一つの温調装置を異なる温調パフォーマンスにするには温調装置内部のPIDなどのパラメーターを変えることによっても調整可能だが、一般的にはPIDの調整が最短時間内に設定温度に収束させることと温度の安定性を目的として設計されているので、そのPIDの調整は温調装置の基本性能をも影響されるため、PIDの調整で意図的に温調装置のパフォーマンスを変えて制御するのに限界がある。又、PIDなどの温調装置の内部パラメーターは装置によっては温度域によって異なることもあり、広温度範囲に変化する温調装置に対してPIDなどのパラメーターだけでは、対応しきれないこともある。       Although it is possible to adjust one temperature control device to different temperature control performance by changing parameters such as PID inside the temperature control device, in general, the PID adjustment should converge to the set temperature within the shortest time. Because the PID adjustment is affected by the basic performance of the temperature control device, the PID adjustment intentionally changes the performance of the temperature control device. There is a limit. Also, the internal parameters of the temperature control device such as PID may vary depending on the temperature range depending on the device, and the temperature control device that changes to a wide temperature range may not be able to cope with only the parameters such as PID.

一部の循環式温調装置には送り側と戻り側に温度センサーを装備しているが、そのどちらかを使用(選択)するか、又はその両方を平均して使うなど固定的に使われ、オーバーシュート又はアンダーシュートを抑える温調効果の改善に過ぎない。
特開平07−293946
Some circulating temperature control devices are equipped with temperature sensors on the sending side and return side, but either one is used (selected) or both are averaged. It is only an improvement of the temperature control effect that suppresses overshoot or undershoot.
JP 07-293946 A

本発明は従来よりも、循環式温調装置の温度制御をオーバーシュートとアンダーシュートを最小限に抑え、速やかに設定温度に収束する効果を実現する2つのセンサー方式を有すると共に、必要によって、温調の基本パラメーターPIDを変更せずに、意図的に設定されたオーバーシュート若しくはアンダーシュート的な温調をも行える温調方法で、1つの温調装置を必要に応じて、その性能を控えるようなパフォーマンスでアンダーシュート的に働くか、その性能よりもダイナミックにオーバーシュート的に働くかにすることによって、より多様なパフォーマンスを達成できることを目的とする。       The present invention has two sensor systems that achieve the effect of quickly converging to the set temperature by minimizing overshoot and undershoot in the temperature control of the circulating temperature control device as compared with the prior art. This is a temperature control method that allows you to perform overshoot or undershoot temperature control that is intentionally set without changing the basic parameter PID of the control. The goal is to achieve a wider variety of performance by working undershoot with a good performance or overshooting more dynamically than the performance.

本発明の提案する温調装置は従来のPID制御による温調特性を維持したまま、温度変化に対する収束パターンだけを変えることによって、温調効果を変えられるので、温調装置が特別な温調効果を達成できるだけでなく、変動温調負荷、広範囲な温度域の温調などにも温調装置が安定、均一な性能が容易に達成でき、様々な用途に合わせやすい特徴を有する。 Since the temperature control device proposed by the present invention can change the temperature control effect by changing only the convergence pattern with respect to the temperature change while maintaining the temperature control characteristic by the conventional PID control, the temperature control device has a special temperature control effect. In addition, the temperature control device can easily achieve stable and uniform performance for variable temperature control load, temperature control in a wide range of temperature, etc., and has features that make it easy to adapt to various applications.

本発明は、従来と同じ、PIDなどのパラメーターを予め最適な状態に設定済みの温調ユニットを有する循環回路に2つのセンサーをそれぞれ循環回路の送り側と戻り側に配置し、その2つのセンサー情報を温調係数Fに基づく計算で制御参考温度を算出して、温度制御を行う。       In the present invention, two sensors are arranged on the feed side and the return side of the circulation circuit, respectively, in the circulation circuit having the temperature control unit in which the parameters such as PID are set in an optimum state in advance, and the two sensors are the same as before. The control reference temperature is calculated by calculating the information based on the temperature adjustment coefficient F, and temperature control is performed.

温調係数Fは2つのセンサーが測定した温度情報を計算に加え、センサーAとセンサーBのデータを平均するか、比例することによって温調の参考温度を算出するだけではなく、AとBの形成した1次元(一直線)上で任意に設定することもできる。       The temperature adjustment coefficient F not only calculates the reference temperature of the temperature control by adding the temperature information measured by the two sensors to the calculation and averaging or proportional to the data of the sensors A and B. It can be arbitrarily set on the formed one dimension (a straight line).

温調係数Fの設定によって算出した参考温度値がAとBの間にする場合、温調対象の温度変化がオーバーシュートとアンダーシュートを抑える効果がある。       When the reference temperature value calculated by setting the temperature adjustment coefficient F is between A and B, the temperature change of the temperature adjustment target has an effect of suppressing overshoot and undershoot.

温調係数Fの設定によって算出した参考温度値がAとBの間の範囲を超える場合、逆に、オーバーシュート若しくはアンダーシュートの現象が発生し、それを制御することによって、従来の温調と異なる温調パターンを実現できる。 When the reference temperature value calculated by setting the temperature adjustment coefficient F exceeds the range between A and B, on the contrary, the phenomenon of overshoot or undershoot occurs, and by controlling it, Different temperature control patterns can be realized.

温調係数Fは2つのセンサーが温度の変化を検出した時のみ働き、温度の変化が設定温度に近づくにつれ、次第にFの影響も小さくなり、最終的には温調装置固有の温調精度、安定度に復帰するので、温厚係数Fは単に温度収束のパターン、時間を修正し、温調装置の最終的な性能に影響しないことは本発明の1つの特徴である。 The temperature control coefficient F works only when the two sensors detect a change in temperature. As the temperature change approaches the set temperature, the influence of F gradually decreases, and finally the temperature control accuracy inherent to the temperature control device, It is one feature of the present invention that the temperature coefficient F simply corrects the temperature convergence pattern and time and does not affect the final performance of the temperature control device because it returns to stability.

つまり従来の温調循環回路の要素と温調装置の性能を変えることがなく、温調装置の送り側と戻り側の2つのセンサーの測定値に温調係数Fを加えて計算することにより、その温調循環回路の温調効果がより速く設定温度に収束するか、或いは意図的に予定された収束パターンを辿って収束することができることとなった。       In other words, without changing the elements of the conventional temperature control circuit and the performance of the temperature control device, by calculating by adding the temperature control coefficient F to the measured values of the two sensors on the sending side and the return side of the temperature control device, The temperature control effect of the temperature control circuit has converged to the set temperature more quickly, or can be converged by following the intentionally planned convergence pattern.

温調係数Fを導入することにより、循環温調回路の温調装置がPIDなどの温調パラメーター及び循環流量などの要素を変えずに、装置の設計能力より高く、若しくは低く調整ができ、広範囲な温度域に合わせるか、変動的な温度負荷に柔軟に対応する温調制御ができるようにした。       By introducing the temperature adjustment coefficient F, the temperature adjustment device of the circulation temperature adjustment circuit can be adjusted to be higher or lower than the design capability of the device without changing the temperature adjustment parameters such as PID and the elements such as the circulation flow rate. The temperature control can be adjusted according to the temperature range or flexibly responding to the fluctuating temperature load.

さらにその温調係数Fは上位の制御装置から変動的に与えることができ、温調の多様化、知能化などにも有利である。 Further, the temperature adjustment coefficient F can be variably given from a host control device, which is advantageous for diversification of temperature adjustment, intelligence, and the like.

本発明は、従来の温度制御のパラメーターの他に、温調係数Fを導入して、その温調係数Fを従来の温調装置の情報を意図的に修正することによって、装置の温調効果を修正する重要なパラメーターとする。       The present invention introduces a temperature adjustment coefficient F in addition to the parameters of the conventional temperature control, and intentionally corrects the information of the conventional temperature adjustment apparatus by adjusting the temperature adjustment coefficient F. Is an important parameter to correct.

本発明は、従来の温調装置のように温度センサーの測定した情報をそのまま温度制御に使うのではなく、温調装置の送り側と戻り側の循環媒体が負荷温度変動時に温度差が発生する特性を利用して、その2つの場所の媒体の温度を測定し、前述の温調係数Fに基づき、下記の数式1によって、2つのセンサーのフィードバック量で参考温度を算出して温調装置の制御に使うものである。       The present invention does not use the information measured by the temperature sensor as it is for temperature control as in the conventional temperature control device, but the temperature difference between the circulating medium on the sending side and the return side of the temperature control device occurs when the load temperature fluctuates. Using the characteristics, the temperature of the medium in the two places is measured, and based on the temperature adjustment coefficient F described above, the reference temperature is calculated by the feedback amount of the two sensors according to the following Equation 1, and the temperature adjustment device It is used for control.

上記の数式においてFは温調係数でパーセンテージとして表示し、Treは温度制御の目的温度、Tinは戻り側温度センサー計測値、Toutは送り側温度センサー計測値である。       In the above formula, F is a temperature adjustment coefficient and expressed as a percentage, Tre is a target temperature for temperature control, Tin is a return-side temperature sensor measurement value, and Tout is a feed-side temperature sensor measurement value.

温調係数Fが0より小さい場合、温調装置の温調効果が設計値よりも遅くなり、アンダーシュート的なパフォーマンスとなる。       When the temperature adjustment coefficient F is smaller than 0, the temperature adjustment effect of the temperature adjustment device is slower than the design value, resulting in undershoot-like performance.

温調係数Fが0から100%の場合、温調装置の冷却効果が従来の戻り側センサー使用時(0)の温調効果から、送り側センサー使用時(100%)の温調効果の範囲内、つまりアンダーシュート気味からオーバーシュート気味の範囲内で調整できる。しかもこの調整は温調装置のPIDなどの内部パラメーターを変更せずに行うことができる。       When the temperature control coefficient F is 0 to 100%, the cooling effect of the temperature control device ranges from the temperature control effect when the conventional return side sensor is used (0) to the temperature control effect when the feed side sensor is used (100%) It can be adjusted within the range of within, that is, from undershoot to overshoot. Moreover, this adjustment can be performed without changing internal parameters such as PID of the temperature control device.

温調係数Fが50%の場合、理論的に循環回路の中央値つまり非温調体の中央に設置したセンサーと同じ働きをする。       When the temperature control coefficient F is 50%, the same function as the sensor installed in the center of the circulation circuit, that is, the center of the non-temperature control body is theoretically obtained.

温調係数Fが100%よりも大きい場合、温調装置は戻り側センサーを使用する時よりも敏感に反応し、従来の温調装置よりオーバーシュート的な温調で、ダイナミックに働くことができる。       When the temperature control coefficient F is larger than 100%, the temperature control device reacts more sensitively than when the return side sensor is used, and can work dynamically with overshoot temperature control than the conventional temperature control device. .

温調係数Fをどのように変更しても、装置の温度変化は到達時間と関係なく、最終的に設定温度に到達する。係数Fは設定温度に到達する時間のみに関係があって、温度制御精度と関係がない。       Regardless of how the temperature adjustment coefficient F is changed, the temperature change of the apparatus finally reaches the set temperature regardless of the arrival time. The coefficient F is related only to the time to reach the set temperature, and is not related to the temperature control accuracy.

本発明は、送り側と戻り側のセンサーを利用し、送り側センサーと戻り側センサーの間(0から100%)に参考温度を算出することにより、従来の温調装置の温度調整時に発生するアンダーシュート及びオーバーシュートを克服することと、その拡張(−100%から+200%又はそれ以上)設定することによって、従来の温調装置の設計温調効果より拡大又は縮小することができる。       The present invention uses a feed-side sensor and a return-side sensor, and calculates a reference temperature between the feed-side sensor and the return-side sensor (from 0 to 100%), thereby generating the temperature adjustment of the conventional temperature control device. By overcoming the undershoot and overshoot and setting the expansion (from -100% to + 200% or more), the design temperature adjustment effect of the conventional temperature adjustment device can be expanded or reduced.

本発明は、循環式温調装置の送り側と戻り側に設けた2つのセンサー情報を係数Fに基づき、数式で参考温度を算出してから制御することによって、次の効果をもたらす:
1) 従来の温調装置のPIDなどの内部パラメーターを変動させないと調整できないオーバーシュートとアンダーシュートをそのPIDなどのパラメーターを変動せずに調整可能にした。
2) 温調対象の内部に温度センサーを設置しにくい場合、2つのセンサー情報を計算することにより温調対象の内部温度に近い温度をシュミレーションすることを可能にした。
3) 従来の温調装置の設計定値より緩やかな温調若しくはダイナミックな温調の効果を可能にした。
4) 温調係数Fを導入することによって、温調装置の基本性能のPIDによる温度の安定度などの基本性能を維持しながら、上位の制御部の指示により温度変化のパターンを変えられるようになった。
The present invention brings about the following effects by controlling the two sensor information provided on the sending side and the return side of the circulating temperature control device after calculating the reference temperature using a mathematical formula based on the coefficient F:
1) Overshoot and undershoot that cannot be adjusted without changing internal parameters such as PID of the conventional temperature control device can be adjusted without changing the parameters such as PID.
2) If it is difficult to install a temperature sensor inside the temperature control target, it is possible to simulate a temperature close to the internal temperature of the temperature control target by calculating two sensor information.
3) The effect of gradual temperature control or dynamic temperature control is possible compared to the design constant value of the conventional temperature control device.
4) By introducing the temperature adjustment coefficient F, the temperature change pattern can be changed according to instructions from the host controller while maintaining the basic performance such as the temperature stability by the PID of the basic performance of the temperature control device. became.

この温調係数Fは予め温調対象によって選定するか、温度調整する過程中に上位の制御装置から与えることもできる。その上位の制御装置で対数型、指数型、サイン波などの計算処理まで加えることができ、温度調整の知能化などの制御も可能とした。       The temperature adjustment coefficient F can be selected in advance according to the temperature adjustment target, or can be given from the host controller during the temperature adjustment process. The higher-level control device can add up to logarithmic, exponential, sine wave, and other computational processes, enabling control such as intelligent temperature adjustment.

本発明は、水、空気など液体、気体の温調媒体を循環して温度を調整するあらゆる循環式温調装置に適している。特に温調対象に温度センサーの設置が困難な場合に効果を発揮する。温調対象に循環する液体、気体などの媒体はなるべく完全循環の状態又は一定比例で戻ることが本発明の効果を発揮できる条件である。     The present invention is suitable for any circulating temperature control device that adjusts the temperature by circulating a temperature control medium such as water and air. This is particularly effective when it is difficult to install a temperature sensor on the temperature control target. It is a condition that the effect of the present invention can be exerted so that the medium such as liquid or gas circulating to the temperature control target returns as much as possible in a completely circulated state or in a certain proportion.

図3は、本発明の液体循環式温調装置の実施例の略図であって、1は循環式温調装置、2は温調対象、3は戻り側温度センサー、4は送り側温度センサーである。     FIG. 3 is a schematic diagram of an embodiment of the liquid circulation type temperature control device of the present invention, wherein 1 is a circulation type temperature control device, 2 is a temperature control target, 3 is a return side temperature sensor, and 4 is a feed side temperature sensor. is there.

センサー3と4は温調対象2の熱が発生することによって異なる温度を検出し、その温度に差が生じる。従来の温調方法の場合、温調装置1がセンサー3か4の検出した温度で温度調整を行うが、温調係数Fを加えて計算すると、センサー3と4以外の参考温度が得られる。     The sensors 3 and 4 detect different temperatures when the heat of the temperature control object 2 is generated, and a difference occurs in the temperatures. In the case of the conventional temperature adjustment method, the temperature adjustment device 1 adjusts the temperature at the temperature detected by the sensor 3 or 4, but when the temperature adjustment coefficient F is added and calculated, reference temperatures other than the sensors 3 and 4 are obtained.

係数Fの値によって温調装置1が異なる方法で温度調整するが、温調対象2の熱が安定後、参考温度は到達時間に関係なく、最終的に設定した温度に到達する。係数Fは設定温度に到達する時間のみに関係があり、温度制御精度と関係がないのである。つまり、係数Fは温調効果のみと関係があり、温度精度と関係がない温調係数である。     The temperature adjustment device 1 adjusts the temperature according to the value of the coefficient F, but after the heat of the temperature adjustment object 2 is stabilized, the reference temperature reaches the finally set temperature regardless of the arrival time. The coefficient F is related only to the time to reach the set temperature, and is not related to the temperature control accuracy. That is, the coefficient F is a temperature adjustment coefficient that is related only to the temperature adjustment effect and not related to the temperature accuracy.

この装置は温調対象としての作業部が温度センサーの設置が不可能なため、温調装置の戻り側と送り側に設置する2つのセンサーを前述の方法で50%に設定して装置内部の温度をシュミレーションする。装置がアイドリング時、作業部の温度変化がないため、温調装置の送り側と戻り側のセンサー温度が同じで、作業部の温度は送り側と戻り側のセンサー温度と同値である。装置が動作時、温調対象の作業部に熱が発生することにより温度が上昇し、循環液が加熱され温度が上昇する。作業部の温度上昇は循環液の冷却と作業による加熱が相当する場合、作業部中央の温度は安定し、その時の温度は温調装置送り側センサーと戻り側センサーの測定された温度差の概ね50%に相当する。     In this device, since the temperature sensor cannot be installed in the working unit as the temperature control target, the two sensors installed on the return side and the feed side of the temperature control device are set to 50% by the above-described method, and the inside of the device is set. Simulate temperature. When the device is idling, there is no change in the temperature of the working unit, so the sensor temperature on the sending side and the return side of the temperature control device are the same, and the temperature of the working unit is the same as the sensor temperature on the sending side and the return side. When the device is in operation, the temperature rises when heat is generated in the temperature control target working unit, and the circulating fluid is heated to raise the temperature. When the temperature rise in the work section is equivalent to cooling of the circulating fluid and heating by work, the temperature in the center of the work section is stable, and the temperature at that time is roughly the difference in temperature measured between the temperature control device feed side sensor and the return side sensor. It corresponds to 50%.

このシミュレーション温度を参考温度として温度に制御することにより、作業部の作業時の温度を制御することが可能である。ただし、このシミュレーションは作業部の熱イニシャルを0とする。同じ例の異なる利用法として、図3の循環回路で、循環液の流量が固定で、装置の温調効果が温調対象2の作業内容によって変更させる必要がある場合、従来の制御方法では困難であるが、本発明の方法を使うと、各々の作業内容に係数Fを設定し、内容に合わせてその係数Fを変えることによって温調装置は各作業内容に合わせて異なる温調効果を作り出すことが可能である。     By controlling the simulation temperature as a reference temperature, it is possible to control the temperature at the time of working of the working unit. In this simulation, however, the thermal initial value of the working unit is set to zero. As a different usage of the same example, in the circulation circuit of FIG. 3, when the flow rate of the circulating fluid is fixed and the temperature adjustment effect of the apparatus needs to be changed depending on the work contents of the temperature adjustment object 2, it is difficult with the conventional control method However, when the method of the present invention is used, the temperature control device creates a different temperature control effect according to each work content by setting the coefficient F for each work content and changing the coefficient F according to the content. It is possible.

図4は、閉鎖空間での実施例の略図である。従来の空調機は戻り空気の温度を測定して空調効果を制御しているが、空調範囲の温度が変化する時に、オーバーシュート気味な過空調現象が発生する。それを改善するために空調機のPIDのI(積分係数)を大きくしているが、それが空調機の感度を低下させ、結果的に空調範囲内の微小な温度変化に反応できず、空調精度が低かった。     FIG. 4 is a schematic illustration of an embodiment in a closed space. The conventional air conditioner measures the temperature of the return air to control the air conditioning effect. However, when the temperature of the air conditioning range changes, an overshooting phenomenon that seems to overshoot occurs. In order to improve it, I increased the PID I (integration coefficient) of the air conditioner, but this lowered the sensitivity of the air conditioner, and as a result, it could not respond to minute temperature changes within the air conditioning range, and the air conditioning The accuracy was low.

そこで温調対象2(閉鎖空間)に設置した温調装置1(空調機)の戻り空気の吸気口にセンサー3と送風口にセンサー4を設置することによって、その2つのセンサーで測定された温度を前述の方法で計算して、空調効果を制御することで、空調機のI(積分係数)を大きく設定しなくても過空調現象を避けることができる。     Therefore, by installing a sensor 3 at the return air inlet of the temperature control device 1 (air conditioner) installed in the temperature control object 2 (closed space) and a sensor 4 at the air outlet, the temperature measured by the two sensors. By controlling the air-conditioning effect by the above-described method, it is possible to avoid the over-air-conditioning phenomenon without setting a large I (integral coefficient) of the air-conditioner.

これにより、空調機は様々な空間の状況に合わせて温調係数Fを設定することにより、その空間に最適な空調効果を出せる。また、閉鎖空間の熱の変化、又は、外部からの熱の搬入の状況に応じて係数Fを選定することが可能なので、その空間の空気の流れを変えなくても、温調効果を変えることができる。つまり、空調機は様々な空間の状況に合わせて係数Fを設定することにより、その空間に最適な空調効果が出せるようになった。     Thereby, the air conditioner can produce the optimal air-conditioning effect for the space by setting the temperature adjustment coefficient F according to the situation of various spaces. In addition, since the coefficient F can be selected according to the change in the heat of the enclosed space or the state of the heat carried in from the outside, the temperature control effect can be changed without changing the air flow in the space. Can do. In other words, the air conditioner can set the coefficient F according to the situation of various spaces, so that the optimum air conditioning effect can be produced in that space.

2センサーのデータに上位制御部よりの温調係数Fを加えて計算することにより温調効果を制御方法。A method for controlling the temperature adjustment effect by adding the temperature adjustment coefficient F from the upper control unit to the data of the two sensors and calculating. 従来の温調装置のPIDのみの制御方法。A control method only for PID of a conventional temperature control device. 液体循環式温調装置の2センサー制御の例である。It is an example of 2 sensor control of a liquid circulation type temperature control apparatus. 閉鎖空間での空調機の実施方法を示した説明図である。It is explanatory drawing which showed the implementation method of the air conditioner in closed space.

符号の説明Explanation of symbols

1 温調装置
2 温調対象
3 戻り側温度センサー
4 送り側温度センサー
1 Temperature control device 2 Temperature control target 3 Return-side temperature sensor 4 Feed-side temperature sensor

Claims (2)

循環式温調装置のインレットとアウトレットの両方に温度センサーを配置し、その両方のセンサーの情報を1つの係数に基づく数学的処理をして、温調効果を調整する温調装置とその方法で、その係数は使用状況に応じて予め選定するか、若しくは温調状態に応じて、別の制御部から動的に与えることのできる方法。   A temperature control device and a method for adjusting the temperature control effect by arranging temperature sensors at both the inlet and outlet of the circulating temperature control device and mathematically processing the information of both sensors based on one coefficient. The coefficient can be selected in advance according to the use situation, or can be dynamically given from another control unit according to the temperature control state. 循環式温調装置のインレットとアウトレットの両方に温度センサーの情報に基づく数学的処理の際に使える係数は、その2つのセンサーの情報の差の間で設定するだけでなく、その2つの情報で構成する一次元上で、2つのセンサーの情報範囲を超え、過大処理、若しくは過小処理することによって、温調装置の温度変化に対して、より速く、若しくは遅く反応することができる方法。 The coefficient that can be used for mathematical processing based on the temperature sensor information at both the inlet and outlet of the circulating temperature controller is not only set between the difference of the information of the two sensors, but also by the two information. A method capable of responding to a temperature change of the temperature control device faster or slower by exceeding the information range of two sensors on one dimension to be configured, and performing an overprocessing or underprocessing.
JP2006241856A 2006-09-06 2006-09-06 Control method of temperature regulation effect by utilizing temperature sensors disposed at both of sending side and returning side of circulation-type temperature regulation device Pending JP2008064368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006241856A JP2008064368A (en) 2006-09-06 2006-09-06 Control method of temperature regulation effect by utilizing temperature sensors disposed at both of sending side and returning side of circulation-type temperature regulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241856A JP2008064368A (en) 2006-09-06 2006-09-06 Control method of temperature regulation effect by utilizing temperature sensors disposed at both of sending side and returning side of circulation-type temperature regulation device

Publications (1)

Publication Number Publication Date
JP2008064368A true JP2008064368A (en) 2008-03-21

Family

ID=39287241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241856A Pending JP2008064368A (en) 2006-09-06 2006-09-06 Control method of temperature regulation effect by utilizing temperature sensors disposed at both of sending side and returning side of circulation-type temperature regulation device

Country Status (1)

Country Link
JP (1) JP2008064368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110057061A (en) * 2018-09-05 2019-07-26 佛山市顺德区德尔玛电器有限公司 A kind of humidifier atomization PID control system and method
CN114281127A (en) * 2021-12-22 2022-04-05 广州蓝勃生物科技有限公司 Reagent card incubation system, reagent card incubation method and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137707A (en) * 1989-10-24 1991-06-12 Tabai Espec Corp Temperature control method for thermostat for heating sample treatment
JPH03236580A (en) * 1990-02-13 1991-10-22 Yanmar Diesel Engine Co Ltd Control mechanism for refrigerating machine
JPH07294596A (en) * 1994-04-28 1995-11-10 Ando Electric Co Ltd Temperature control method in constant-temperature bath for high-low-temperature handler
JP2003177825A (en) * 2001-12-10 2003-06-27 Espec Corp Overshoot prevention type temperature controller
JP2004028045A (en) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd Exhaust emission control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137707A (en) * 1989-10-24 1991-06-12 Tabai Espec Corp Temperature control method for thermostat for heating sample treatment
JPH03236580A (en) * 1990-02-13 1991-10-22 Yanmar Diesel Engine Co Ltd Control mechanism for refrigerating machine
JPH07294596A (en) * 1994-04-28 1995-11-10 Ando Electric Co Ltd Temperature control method in constant-temperature bath for high-low-temperature handler
JP2003177825A (en) * 2001-12-10 2003-06-27 Espec Corp Overshoot prevention type temperature controller
JP2004028045A (en) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd Exhaust emission control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110057061A (en) * 2018-09-05 2019-07-26 佛山市顺德区德尔玛电器有限公司 A kind of humidifier atomization PID control system and method
CN110057061B (en) * 2018-09-05 2021-08-17 广东德尔玛科技股份有限公司 Humidifier atomizing PID control system
CN114281127A (en) * 2021-12-22 2022-04-05 广州蓝勃生物科技有限公司 Reagent card incubation system, reagent card incubation method and storage medium

Similar Documents

Publication Publication Date Title
US10443876B2 (en) Thermostat with heat rise compensation based on wireless data transmission
US10317862B2 (en) Systems and methods for heat rise compensation
US20100096109A1 (en) Methods and apparatus for rapidly responsive heat control in plasma processing devices
US11493220B2 (en) Systems and methods for heat rise compensation
US20160161139A1 (en) State-based control in an air handling unit
KR101561392B1 (en) Control apparatus and control method
EP3306216B1 (en) Control device for heat-pump-using system, and heat-pump-using system provided with same
JP2013200115A (en) Method for operating vapor compression system, method for controlling operation of vapor compression system, and optimization controller for optimizing performance of vapor compression system
WO2018006596A1 (en) Method of adjusting electronic expansion valve of outdoor unit of air-conditioner
CN102538148A (en) Method and system for controlling wind volume of communication room
RU2613474C2 (en) Control method for pump unit
CN108291734B (en) Method and system for operating a thermal energy exchanger
JP2008064368A (en) Control method of temperature regulation effect by utilizing temperature sensors disposed at both of sending side and returning side of circulation-type temperature regulation device
US5558274A (en) Dual duct control system
TWI660263B (en) Temperature control device and method thereof
US11047582B2 (en) Method and devices for controlling a fluid transportation network
JP6344018B2 (en) Temperature and humidity control system
EP3807578A1 (en) Method and system for controlling energy transfer of a thermal energy exchanger
US20180364658A1 (en) Adaptive control of hvac system
CN111709199B (en) Method for measuring heating value of equipment
JP6063311B2 (en) Air conditioning system and air conditioning control method
TWI643047B (en) Controlling method of cooling tower
FI126110B (en) Method, apparatus and computer software product for controlling actuators in temperature control
Price et al. Effective tuning of cascaded control loops for nonlinear HVAC systems
JP2005063743A (en) Control device of fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726