JP2011204469A - Square sealed secondary battery - Google Patents

Square sealed secondary battery Download PDF

Info

Publication number
JP2011204469A
JP2011204469A JP2010070669A JP2010070669A JP2011204469A JP 2011204469 A JP2011204469 A JP 2011204469A JP 2010070669 A JP2010070669 A JP 2010070669A JP 2010070669 A JP2010070669 A JP 2010070669A JP 2011204469 A JP2011204469 A JP 2011204469A
Authority
JP
Japan
Prior art keywords
spacer
peripheral wall
insulating plate
secondary battery
sealed secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010070669A
Other languages
Japanese (ja)
Inventor
Atsushi Obayashi
篤史 大林
Takuya Morimoto
卓弥 森本
Hideyuki Inomata
秀行 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010070669A priority Critical patent/JP2011204469A/en
Publication of JP2011204469A publication Critical patent/JP2011204469A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a square sealed secondary battery more improved in safety and reliability against a rise of the internal pressure of the battery and leakage of electrolyte by improving an impact resistance of the square sealed secondary battery relative to external force such as vibration force and a fall impact, while properly maintaining sensitivity of a gas discharge valve.SOLUTION: In this square sealed secondary battery, a seal plate including the gas discharge valve is disposed, and an insulating plate and a spacer are disposed under the seal plate. The insulating plate having a peripheral edge wall part 201 and/or the spacer having a peripheral edge wall part is provided with a bridging part 202 or a pair of ribs to reinforce the impact resistance of these members.

Description

本発明は、角形密閉二次電池の衝撃耐性を高める技術に関する。   The present invention relates to a technique for increasing impact resistance of a rectangular sealed secondary battery.

近年、二次電池を駆動源とする携帯電話やノートパソコンなどのモバイル型電子機器や、ハイブリッド自動車(HEV)や電気自動車(EV)などが急速に進展しており、従来に増して安全性に優れ二次電池が求められている。   In recent years, mobile electronic devices such as mobile phones and laptop computers that use secondary batteries as a drive source, hybrid vehicles (HEV), and electric vehicles (EV) are making rapid progress. There is a need for excellent secondary batteries.

密閉電池は、高温環境下に放置されたり過充電されたときに電池内圧が高まるが、電池内圧の上昇は電池の破裂を招来する。このため密閉電池には、電池内圧が一定値以上に高まったときに、電池内圧原因であるガスを電池外に排出するガス排出弁が組み込まれている。ガス排出弁は、電池内部ガスに対する安全性を高める観点からは、ガス圧の変化に鋭敏に応答するものが好ましい。   When the sealed battery is left in a high temperature environment or overcharged, the battery internal pressure increases, but the increase in the battery internal pressure causes the battery to burst. For this reason, the sealed battery incorporates a gas discharge valve that discharges the gas that is the cause of the battery internal pressure to the outside of the battery when the battery internal pressure increases to a certain value or more. The gas discharge valve is preferably one that responds sensitively to changes in gas pressure from the viewpoint of enhancing safety against the gas inside the battery.

しかし、電池の安全性は、ガス排出弁の感度を高めることのみによっては達成できない。例えば、電池や電池が実装された機器が強く振動されたときや誤って落下されたときなどにおいては、電池内部の圧力が変動し、ガス排出弁近傍においては、瞬間的に圧力が上昇することがある。このような瞬間的な電池内圧の上昇によってもガス排出弁が作動することがある。そして、その結果として電解液が電池外に漏れ出て、電池周辺の器機を損傷させるという問題が生じる。   However, battery safety cannot be achieved by only increasing the sensitivity of the gas discharge valve. For example, when a battery or a battery-mounted device is vigorously vibrated or accidentally dropped, the pressure inside the battery fluctuates, and the pressure rises momentarily near the gas discharge valve. There is. Such a momentary increase in battery internal pressure may cause the gas discharge valve to operate. As a result, there is a problem that the electrolyte leaks out of the battery and damages the equipment around the battery.

つまり、電池内部で発生するガスに対する安全性を高める観点からは、ガス圧の変化に鋭敏に反応するガス排出弁が好ましいが、誤作動防止の観点からは、振動や落下衝撃によって作動しない、鋭敏過ぎないガス排出弁が望ましい。しかし、このような相反する2つの要件を満たすガス排出弁を実現することは難しい。   In other words, from the viewpoint of enhancing the safety against the gas generated inside the battery, a gas discharge valve that reacts sensitively to changes in gas pressure is preferable, but from the viewpoint of preventing malfunction, it does not operate due to vibration or a drop impact. A gas exhaust valve that is not too high is desirable. However, it is difficult to realize a gas discharge valve that satisfies these two conflicting requirements.

このようなことから、特許文献1は、電池缶内の発電要素と、電池缶を蓋するガス排出弁を有する蓋体との間に絶縁板を配置し、当該絶縁板でガス排出弁部分の全面を覆うことによって落下衝撃などに対する耐久性を高める技術を提案している。   For this reason, Patent Document 1 arranges an insulating plate between a power generation element in a battery can and a lid having a gas discharge valve that covers the battery can, and the insulating plate is used for the gas discharge valve portion. We have proposed a technology that increases the durability against drop impacts by covering the entire surface.

また、特許文献2は、電池温度を検出する温度センサーを組み込んだガス排出弁機構を提案している。   Patent Document 2 proposes a gas discharge valve mechanism incorporating a temperature sensor for detecting battery temperature.

特開2008-192414公報JP 2008-192414 A 特開平11-25938公報Japanese Patent Laid-Open No. 11-25938

本発明の目的は、ガス排出弁の感度を適正に保ちつつ、振動力や落下衝撃力などが電池に加わったときにおける衝撃耐性を高めることによって、電池内圧や電解液漏れに対する安全性、信頼性を一層高めることにある。   The object of the present invention is to increase the impact resistance when a vibration force or a drop impact force is applied to the battery while maintaining the sensitivity of the gas discharge valve appropriately, thereby ensuring safety and reliability against battery internal pressure and electrolyte leakage. Is to further increase

上記課題を解決するための角形密閉二次電池にかかる第1の発明は、正極タブを備えた正極板と負極タブを備えた負極板とがセパレータを介して、巻回され扁平状に加工されてなる電極体と、前記電極体を収容する有底角形の電池缶と、前記電池缶の開口を封口する、ガス排出弁を備えた封口板と、前記電池缶内に収容された前記電極体の上方に配置された絶縁性のスペーサと、前記スペーサと前記封口板との間に配置された絶縁板と、を備え、前記スペーサと前記絶縁板が前記電極体の前記封口板側を覆うように配置された角形密閉二次電池において、前記絶縁板が、ガスが通過可能な貫通穴を備えた略長方形状であり、当該絶縁板の外周縁を構成する絶縁板周縁壁部の高さが、その内側よりも高く、かつ前記絶縁板周縁壁部の直線部には、対向する側にまで延びる絶縁板架橋部が形成されている、ことを特徴とする。   A first invention relating to a rectangular sealed secondary battery for solving the above-described problem is that a positive electrode plate having a positive electrode tab and a negative electrode plate having a negative electrode tab are wound and processed into a flat shape via a separator. An electrode body, a bottomed rectangular battery can that accommodates the electrode body, a sealing plate that seals an opening of the battery can, and a gas exhaust valve, and the electrode body that is accommodated in the battery can An insulating spacer disposed above and an insulating plate disposed between the spacer and the sealing plate, the spacer and the insulating plate covering the sealing plate side of the electrode body In the square sealed secondary battery arranged in the above, the insulating plate has a substantially rectangular shape with a through-hole through which gas can pass, and the height of the insulating plate peripheral wall constituting the outer peripheral edge of the insulating plate is , Higher than the inside, and in the straight part of the peripheral wall of the insulating plate Insulating plate bridge which extends to the opposite sides are formed, characterized in that.

この構成の「略長方形状」には、長方形、長方形の4つの角を落とした形状、または半円状の一対のコーナーと両コーナーを繋ぐ略直線部とを有するトラック形状が含まれ、「角を落とした形状」には、角を丸くした形状や、角を鈍角とした形状が含まれる(以下同様)。   The “substantially rectangular shape” of this configuration includes a rectangular shape, a shape in which four corners of the rectangle are dropped, or a track shape having a pair of semicircular corners and a substantially straight portion connecting both corners. "Shaped shape" includes a shape with rounded corners and a shape with obtuse angles (the same applies hereinafter).

上記構成によると、絶縁板架橋部が絶縁板の強度を補強し、絶縁板下にあるスペーサ間との空間体積を保持するように作用する。よって、外部からの衝撃力により発生する瞬間的な圧力の上昇が緩和され、この結果としてガス排出弁の誤作動が抑制される。ガス排出弁の誤作動は、電解液漏れや電池寿命の終焉を結果し、電解液漏れは電池が組み込まれた機器を損傷させるが、上記構成によると、架橋部の付加という簡単な構造により、無用にガス排出弁が作動しない信頼性の高い角形密閉二次電池を実現させることができる。   According to the said structure, an insulating board bridge | crosslinking part reinforces the intensity | strength of an insulating board and acts so that the space volume between the spacers under an insulating board may be hold | maintained. Therefore, an instantaneous pressure increase generated by an external impact force is alleviated, and as a result, malfunction of the gas discharge valve is suppressed. The malfunction of the gas discharge valve results in electrolyte leakage and the end of the battery life, and the electrolyte leakage damages the device in which the battery is incorporated, but according to the above configuration, due to the simple structure of adding a bridging part, A highly reliable square sealed secondary battery in which the gas discharge valve does not operate unnecessarily can be realized.

また、第2の発明は、上記第1の発明にかかる角形密閉二次電池において、前記絶縁板に代えて、ガスが通過可能な貫通穴を備えた略長方形状であり、当該絶縁板外周縁を構成する絶縁板周縁壁部の高さが、その内側よりも高くなっており、前記絶縁板周縁壁部の対向する直線部であって中間に前記貫通穴が存在する部分に、一対の絶縁板周縁壁部のそれぞれから当該貫通穴の手前にまで延びるリブがそれぞれ形成された絶縁板を用いた、ことを特徴とする。   The second invention is a rectangular sealed secondary battery according to the first invention, wherein the square sealed secondary battery has a substantially rectangular shape provided with a through-hole through which a gas can pass instead of the insulating plate. The insulating plate peripheral wall portion constituting the height of the insulating plate peripheral wall portion is higher than the inner side thereof, and a pair of insulating portions is formed in the opposing straight portion of the insulating plate peripheral wall portion and the portion having the through hole in the middle. An insulating plate in which ribs extending from each of the plate peripheral wall portions to the front of the through hole are formed is used.

この構成では、絶縁板に設けた一対のリブが、絶縁板下部にあるスペーサ間との空間体積を保持するように作用する。これによって、上記第1の発明と同様な作用効果を奏する。   In this configuration, the pair of ribs provided on the insulating plate acts so as to maintain the space volume between the spacers below the insulating plate. As a result, the same effects as those of the first invention can be obtained.

また、第3の発明は、正極タブを備えた正極板と負極タブを備えた負極板とがセパレータを介して巻回され扁平状に加工されてなる電極体と、前記電極体を収容する有底角形の電池缶と、前記電池缶の開口を封口する、ガス排出弁を備えた封口板と、前記電池缶内に収容された前記電極体の上方に配置された絶縁性のスペーサと、前記スペーサと前記封口板との間に配置された絶縁板と、を備え、前記スペーサと前記絶縁板が前記電極体の前記封口板側を覆うように配置された角形密閉二次電池において、前記スペーサは、ガス及び負極タブを通すことが可能なスリットを備えた略長方形状であり、当該スペーサの外周縁を構成するスペーサ周縁壁部の高さが、その内側よりも高く、かつ前記スペーサ周縁壁部の直線部には、対向する側にまで延びる架橋部が形成されている、ことを特徴とする。     According to a third aspect of the present invention, there is provided an electrode body in which a positive electrode plate having a positive electrode tab and a negative electrode plate having a negative electrode tab are wound through a separator and processed into a flat shape, and the electrode body is accommodated. A bottom square battery can, a sealing plate provided with a gas exhaust valve for sealing the opening of the battery can, an insulating spacer disposed above the electrode body housed in the battery can, and An insulating plate disposed between a spacer and the sealing plate, wherein the spacer and the insulating plate are disposed so as to cover the sealing plate side of the electrode body. Is a substantially rectangular shape having a slit through which gas and a negative electrode tab can pass, and the height of the spacer peripheral wall portion constituting the outer peripheral edge of the spacer is higher than the inside thereof, and the spacer peripheral wall On the opposite side of the straight part. Bridge extending is formed, characterized in that.

この構成では、スペーサに設けた架橋部が、絶縁板との空間体積を保持するように作用する。これによって、上記第1の発明と同様な作用効果を奏する。   In this configuration, the bridging portion provided in the spacer acts so as to maintain the space volume with the insulating plate. As a result, the same effects as those of the first invention can be obtained.

また、第4の発明は、上記第3の発明にかかる角形密閉二次電池において、前記スペーサに代えて、ガス及び負極タブを通すことが可能なスリットを備え備えた略長方形状であり、当該スペーサの外周縁を構成するスペーサ周縁壁部の高さが、その内側よりも高くなっており、前記スペーサ周縁壁部の直線部であって対向するスペーサ周縁壁部の間にスリットが位置する部分に、一対のスペーサ周縁壁部のそれぞれから当該スリットの手前にまで延びるリブがそれぞれ形成されていたスペーサを用いた、ことを特徴とする。   Further, a fourth invention is a rectangular sealed secondary battery according to the third invention, wherein the square sealed secondary battery has a substantially rectangular shape provided with a slit through which a gas and a negative electrode tab can be passed instead of the spacer. The height of the spacer peripheral wall portion constituting the outer peripheral edge of the spacer is higher than the inside thereof, and is a straight portion of the spacer peripheral wall portion where the slit is located between the opposing spacer peripheral wall portions In addition, a spacer in which a rib extending from each of the pair of spacer peripheral wall portions to the front of the slit is formed is used.

この構成では、スペーサに設けた一対のリブが、絶縁板との空間体積を保持するように作用する。これによって、上記第1の発明と同様な作用効果を奏する。   In this configuration, the pair of ribs provided on the spacer acts so as to maintain the space volume with the insulating plate. As a result, the same effects as those of the first invention can be obtained.

また、第5の発明は、上記第1の発明にかかる角形密閉二次電池において、前記スペーサは、ガス及び負極タブを通すことが可能なスリットを備えた略長方形状であり、当該スペーサの外周縁を構成するスペーサ周縁壁部の高さが、その内側よりも高く、かつ前記スペーサ周縁壁部の直線部には、対向する側にまで延びる架橋部が形成されている、ことを特徴とする。   According to a fifth aspect of the present invention, in the prismatic sealed secondary battery according to the first aspect, the spacer has a substantially rectangular shape with a slit through which a gas and a negative electrode tab can pass. The height of the spacer peripheral wall portion constituting the peripheral edge is higher than the inside thereof, and a bridging portion extending to the opposite side is formed in the linear portion of the spacer peripheral wall portion. .

この構成では、絶縁板に設けた架橋部とスペーサに設けた架橋部の両者が、絶縁板とスペーサ間の空間体積を保持するように作用するので、一層確実に空間体積を保持することができる。   In this configuration, since both the bridging portion provided on the insulating plate and the bridging portion provided on the spacer act so as to maintain the space volume between the insulating plate and the spacer, the space volume can be more reliably maintained. .

また、第6の発明は、上記第1の発明にかかる角形密閉二次電池において、前記スペーサは、ガス及び負極タブを通すことが可能なスリットを備えた略長方形状であり、当該スペーサの外周縁を構成するスペーサ周縁壁部の高さが、その内側よりも高くなっており、
前記スペーサ周縁壁部の直線部であって対向するスペーサ周縁壁部の間にスリットが位置する部分に、一対のスペーサ周縁壁部のそれぞれから当該スリットの手前にまで延びるリブがそれぞれ形成されている、ことを特徴とする。
According to a sixth aspect of the present invention, in the prismatic sealed secondary battery according to the first aspect, the spacer has a substantially rectangular shape having a slit through which gas and a negative electrode tab can pass. The height of the spacer peripheral wall portion constituting the periphery is higher than the inside thereof,
Ribs extending from each of the pair of spacer peripheral wall portions to the front of the slit are formed in the straight portion of the spacer peripheral wall portion where the slit is located between the opposing spacer peripheral wall portions. It is characterized by that.

この構成では、絶縁板に設けた架橋部とスペーサに設けた一対のリブの両者が、絶縁板とスペーサ間の空間体積を保持するように作用するので、一層確実に空間体積を保持することができる。   In this configuration, both the bridging portion provided on the insulating plate and the pair of ribs provided on the spacer act so as to maintain the space volume between the insulating plate and the spacer, so that the space volume can be more reliably maintained. it can.

また、第7の発明は、上記第2の発明にかかる角形密閉二次電池において、前記スペーサは、ガス及び負極タブを通すことが可能なスリットを備えた略長方形状であり、当該スペーサの外周縁を構成するスペーサ周縁壁部の高さが、その内側よりも高く、かつ前記スペーサ周縁壁部の直線部には、対向する側にまで延びる架橋部が形成されている、ことを特徴とする。   According to a seventh aspect of the present invention, in the prismatic sealed secondary battery according to the second aspect of the present invention, the spacer has a substantially rectangular shape with a slit through which gas and a negative electrode tab can pass. The height of the spacer peripheral wall portion constituting the peripheral edge is higher than the inside thereof, and a bridging portion extending to the opposite side is formed in the linear portion of the spacer peripheral wall portion. .

この構成では、絶縁板に設けた一対のリブとスペーサに設けた架橋部の両者が、絶縁板とスペーサ間の空間体積を保持するように作用するので、一層確実に空間体積を保持することができる。   In this configuration, both the pair of ribs provided on the insulating plate and the bridging portion provided on the spacer act so as to maintain the space volume between the insulating plate and the spacer, so that the space volume can be more reliably maintained. it can.

また、第8の発明は、上記第2の発明にかかる角形密閉二次電池において、前記スペーサは、ガス及び負極タブを通すことが可能なスリットを備えた略長方形状であり、当該スペーサの外周縁を構成するスペーサ周縁壁部の高さが、その内側よりも高くなっており、前記スペーサ周縁壁部の直線部であって対向するスペーサ周縁壁部の間にスリットが位置する部分に、一対のスペーサ周縁壁部のそれぞれから当該スリットの手前にまで延びるリブがそれぞれ形成されている、ことを特徴とする。   An eighth invention is the prismatic sealed secondary battery according to the second invention, wherein the spacer has a substantially rectangular shape with a slit through which gas and a negative electrode tab can pass. A pair of spacer peripheral wall portions constituting the peripheral edge have a height higher than the inner side thereof, and a straight portion of the spacer peripheral wall portion where a slit is positioned between the opposing spacer peripheral wall portions. Ribs extending from each of the spacer peripheral wall portions to the front of the slit are formed.

この構成では、絶縁板に設けた一対のリブとスペーサに設けた一対のリブの両者が、絶縁板とスペーサ間の空間体積を保持するように作用するので、一層確実に空間体積を保持することができる。   In this configuration, both the pair of ribs provided on the insulating plate and the pair of ribs provided on the spacer act so as to maintain the space volume between the insulating plate and the spacer. Can do.

また、第9の発明は、上記第1ないし8の何れかの発明にかかる角形密閉二次電池において、前記絶縁板架橋部およびスペーサ架橋部は、前記封口板のガス排出弁を電池缶軸方向へ投影したとき、当該投影面内ではなく、投影面の近傍に位置する、ことを特徴とする。   According to a ninth invention, in the rectangular sealed secondary battery according to any one of the first to eighth inventions, the insulating plate bridging portion and the spacer bridging portion are configured such that the gas discharge valve of the sealing plate is connected to the battery can axis direction. It is characterized in that it is located in the vicinity of the projection plane, not in the projection plane.

架橋部がガスの通り道にあると、電池内ガスのスムーズな排出が邪魔される。よって架橋部は、ガス排出弁を電池缶軸方向へ投影したときにおける投影面内ではなく、投影面の近傍に位置させるのがよい。上記投影面は電池内で発生したガスが封口板ガス排出弁に至る最短経路であるので、この経路はガス通路として確保するのが好ましいからである。   When the bridging portion is in the gas passage, smooth discharge of the gas in the battery is disturbed. Therefore, it is preferable that the bridging portion be positioned not in the projection plane when the gas discharge valve is projected in the battery can axis direction but in the vicinity of the projection plane. This is because the projection plane is the shortest path from the gas generated in the battery to the sealing plate gas discharge valve, and it is preferable to secure this path as a gas passage.

また、第10の発明は、上記第2ないし8の何れかの発明にかかる角形密閉二次電池において、前記絶縁板リブおよびスペーサリブは、前記封口板のガス排出弁を電池缶軸方向へ投影したとき、当該投影面内またはその近傍に位置する、ことを特徴とする。   According to a tenth aspect of the invention, in the rectangular sealed secondary battery according to any one of the second to eighth aspects of the invention, the insulating plate rib and the spacer rib project the gas discharge valve of the sealing plate toward the battery can axis. And is located in or near the projection plane.

リブは、架橋部と異なり、ガスの通り道である貫通穴やスリットを塞がない構造としてあるので、上記投影面内にあってもガスの通過が邪魔されない。よって、リブは上記投影面内またはその近傍に位置させるのがよい。   Unlike the bridging portion, the rib has a structure that does not block the through hole or slit, which is a passage for gas, so that the passage of gas is not obstructed even in the projection plane. Therefore, the rib is preferably positioned in the projection plane or in the vicinity thereof.

本発明によると、振動力や落下衝撃力などが電池に加わったときにおける電池の衝撃耐性を顕著に高めることできるので、ガス排出弁の感度を適正に保ちつつ、電池内圧や電解液漏れに対する安全性、信頼性に優れた角形密閉二次電池を提供することができる。   According to the present invention, since the impact resistance of the battery when a vibration force or a drop impact force is applied to the battery can be remarkably enhanced, the safety of the battery internal pressure and electrolyte leakage is maintained while maintaining the sensitivity of the gas discharge valve appropriately. It is possible to provide a square sealed secondary battery that is excellent in reliability and reliability.

図1は、実施例1にかかる角形密閉二次電池の外観斜視図である。1 is an external perspective view of a square sealed secondary battery according to Example 1. FIG. 図2は、図1のX−X線を垂直に下ろした場合における断面図である。FIG. 2 is a cross-sectional view when the line XX in FIG. 1 is lowered vertically. 図3(a)は、架橋部を有する絶縁板の裏面を示す平面図であり、(b)は側面図である。Fig.3 (a) is a top view which shows the back surface of the insulating board which has a bridge | crosslinking part, (b) is a side view. 図4は、図3に示す架橋部を有する絶縁板の裏面形状を示す斜視図である。FIG. 4 is a perspective view showing a back surface shape of the insulating plate having the bridging portion shown in FIG. 図5(a)は、架橋部を有するスペーサのオモテ面の平面図であり、(b)はY−Y線断面図である。Fig.5 (a) is a top view of the front surface of the spacer which has a bridge | crosslinking part, (b) is a YY sectional view taken on the line. 図6は、図5に示す架橋部を有するスペーサのオモテ面形状を示す斜視図である。FIG. 6 is a perspective view showing a front surface shape of a spacer having a bridging portion shown in FIG. 図7(a)は、リブを有するスペーサのオモテ面の平面図であり、(b)はY−Y線断面図である。FIG. 7A is a plan view of a front surface of a spacer having ribs, and FIG. 7B is a cross-sectional view taken along line YY. 図8は、図7(a)のZ−Z線断面図である。FIG. 8 is a cross-sectional view taken along the line Z-Z in FIG. 図9(a)は、リブを有する絶縁板の裏面の平面図であり、(b)はY−Y線断面図である。Fig.9 (a) is a top view of the back surface of the insulating board which has a rib, (b) is a YY sectional view taken on the line. 図10は、図9に示すリブを有する絶縁板の裏面形状を示す斜視図である。FIG. 10 is a perspective view showing the back surface shape of the insulating plate having the rib shown in FIG. 図11は、架橋部およびリブの何れもが設けられていないスペーサのオモテ面の平面図であり、(b)はY−Y線断面図である。FIG. 11 is a plan view of a front surface of a spacer provided with neither a bridging portion nor a rib, and (b) is a cross-sectional view taken along line YY. 図12は、架橋部およびリブの何れもが設けられていない絶縁板の裏の平面図であり、(b)はY−Y線断面図である。FIG. 12 is a plan view of the back side of the insulating plate in which neither the bridging portion nor the rib is provided, and (b) is a cross-sectional view taken along the line YY. 図13は、架橋部およびリブの何れもが設けられていないと共に、貫通穴が1つしか設けられていない絶縁板の裏面平面図であり、(b)はY−Y線断面図である。FIG. 13 is a plan view of the back surface of an insulating plate in which neither a bridging portion nor a rib is provided and only one through hole is provided, and (b) is a cross-sectional view taken along line YY. 図14は、架橋部およびリブの何れもが設けられていず、一方端部側の貫通穴が平坦面に設けられた構造の絶縁板であり、(A)はその裏面平面図、(b)はY−Y線断面図である。FIG. 14 shows an insulating plate having a structure in which neither a bridging portion nor a rib is provided and a through hole on one end side is provided on a flat surface, (A) is a plan view of the back surface, and (b). Is a cross-sectional view taken along line YY. 図15は、架橋部およびリブの何れもが設けられていず、一方端部側のスリットが平坦面に設けられた構造のスペーサであり、(A)はそのオモテ面平面図、(b)はY−Y線断面図である。FIG. 15 shows a spacer having a structure in which neither a bridging portion nor a rib is provided and a slit on one end side is provided on a flat surface, (A) is a plan view of its front surface, and (b) is a plan view of its front surface. It is a YY line sectional view.

本発明を実施する形態を扁平状渦巻型電極体を使用した角形密閉二次電池を用いて説明する。   An embodiment for carrying out the present invention will be described using a rectangular sealed secondary battery using a flat spiral electrode body.

(実施例1)
実施例1にかかる角形密閉二次電池を次のようにして作製した。コバルト酸リチウム(LiCoO2)からなる正極活物質と、アセチレンブラックまたはグラファイトなどの炭素系導電剤と、ポリビニリデンフルオライド(PVDF)などの結着剤を有機溶剤(例えばN−メチル−2−ピロリドン)に溶解させた結着剤溶液とを、適当な比率で混ぜ合わせて正極活物質スラリーを調製した。この正極活物質スラリーを帯状アルミニウム箔に塗布し乾燥して正極板107となした。
Example 1
A square sealed secondary battery according to Example 1 was manufactured as follows. A positive electrode active material made of lithium cobalt oxide (LiCoO 2 ), a carbon-based conductive agent such as acetylene black or graphite, and a binder such as polyvinylidene fluoride (PVDF) are mixed with an organic solvent (for example, N-methyl-2-pyrrolidone). The positive electrode active material slurry was prepared by mixing the binder solution dissolved in (1) at an appropriate ratio. This positive electrode active material slurry was applied to a strip-shaped aluminum foil and dried to form a positive electrode plate 107.

他方、負極活物質としての黒鉛粉末と、結着剤(例えばスチレンブタジエンゴム)と、増粘剤(例えばカルボキシメチルセルロース)と、水とを適当に混合して負極活物質スラリーを調製した。このスラリーを帯状銅箔に塗布し乾燥して負極板106となした。   On the other hand, a negative electrode active material slurry was prepared by appropriately mixing graphite powder as a negative electrode active material, a binder (for example, styrene butadiene rubber), a thickener (for example, carboxymethyl cellulose), and water. This slurry was applied to a strip-shaped copper foil and dried to form a negative electrode plate 106.

上記正極板と上記負極板とをポリオレフィン系の微多孔膜からなるセパレータを間に挟んで重ね合わせ、巻取機で巻き取った後、その終端を絶縁性の巻き止めテープで止めて巻取体とした。この巻取体を加圧成形して扁平状の電極体108となした。   The positive electrode plate and the negative electrode plate are overlapped with a separator made of a polyolefin-based microporous film interposed therebetween, wound up with a winder, and then terminated with an insulating winding tape to wind up the wound body It was. The wound body was pressure-molded to form a flat electrode body 108.

この電極体は、最外周に正極芯体(アルミニウム箔)が露出するように構成されており、最外周に位置する部分には予めアルミニウム箔の一部を切り起こす切り込み部が形成されている。巻取機で巻き取り電極体とした後、上記切り込み部を起こして、正極タブとなした。他方、負極芯体である帯状銅箔の巻回始端側には、予めニッケル製のタブが取り付け、これを負極タブとした。   This electrode body is configured such that the positive electrode core (aluminum foil) is exposed at the outermost periphery, and a cut portion for cutting out a part of the aluminum foil is formed in advance at a portion located at the outermost periphery. After making it a take-up electrode body with a winder, the cut portion was raised to form a positive electrode tab. On the other hand, a tab made of nickel was previously attached to the winding start end side of the strip-shaped copper foil as the negative electrode core, and this was used as the negative electrode tab.

図1〜5を参照しつつ電池の組み立て作業手順を説明する。図1は実施例1の角形密閉二次電池の外観図であり、図2は図1のX−X線を垂直に下ろした場合における断面図である。図3(a)は絶縁板200を電池内部側から見た裏面平面図、図3(b)は図3(a)におけるY-Y線断面図である。図4は絶縁板200を電池内部側(裏側)から見た斜視図である。また、図11は実施例1で使用した補強構造を有しないスペーサ600を示し、(a)はスペーサ600のオモテ面平面図、(b)は(a)におけるY-Y線断面図である。   The battery assembly procedure will be described with reference to FIGS. FIG. 1 is an external view of a rectangular sealed secondary battery of Example 1, and FIG. 2 is a cross-sectional view when the XX line of FIG. 1 is lowered vertically. 3A is a plan view of the back surface of the insulating plate 200 as viewed from the inside of the battery, and FIG. 3B is a cross-sectional view taken along line YY in FIG. FIG. 4 is a perspective view of the insulating plate 200 as seen from the battery inner side (back side). 11 shows a spacer 600 having no reinforcing structure used in Example 1, (a) is a plan view of the front surface of the spacer 600, and (b) is a cross-sectional view taken along line YY in (a).

[封口体の作製]
ガス排出弁103、注液口105および電極外部端子の取付穴104’が設けられたアルミニウム合金製の封口板102と絶縁板200とを、電極外部端子穴104’と絶縁板の締結穴204とが連通するように重ね合わせ、所定箇所にガスケット及び電極内部端子部材を配置し且つ上記穴に電極外部端子を挿入し公知の方法でカシメて、各部材を一体化した封口体を形成した。
[Preparation of sealing body]
The sealing plate 102 made of aluminum alloy provided with the gas discharge valve 103, the liquid injection port 105, and the electrode external terminal mounting hole 104 'and the insulating plate 200 are connected to the electrode external terminal hole 104' and the insulating plate fastening hole 204. The gasket and the electrode internal terminal member were arranged at predetermined positions, and the electrode external terminal was inserted into the hole and crimped by a known method to form a sealing body in which the members were integrated.

[電池の組み立て]
扁平状の電極体108を角形電池缶101に収容し、この電極体108の上方に絶縁樹脂製のスペーサ600を配置した。この際、角形電池缶101の内側壁とスペーサ600の端部との間に正極タブを挟み電池缶101の内側壁に沿ってその先端を電池缶101の開口にまで導いた。他方、負極タブについては、スペーサ600の一つのスリット603を通してタブを上方に導き、上記封口体の電極内部端子部材に接続した。
[Battery assembly]
The flat electrode body 108 was accommodated in the rectangular battery can 101, and a spacer 600 made of an insulating resin was disposed above the electrode body 108. At this time, a positive electrode tab was sandwiched between the inner wall of the prismatic battery can 101 and the end portion of the spacer 600, and the tip thereof was led to the opening of the battery can 101 along the inner wall of the battery can 101. On the other hand, the negative electrode tab was guided upward through one slit 603 of the spacer 600 and connected to the electrode internal terminal member of the sealing body.

この後、角形電池缶101に上記封口体をかぶせ封口板と電池缶の嵌合部に上記した正極タブを挟み込んだ状態で、嵌合部の全周をレーザ溶接した。この後、注液口105から電解液を注液し、しかる後に注液口105に封止栓を挿入しレーザ溶接して封止栓を固定した。電解液としては、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネートの混合溶媒に、LiPFを溶解した電解液を用いた。 Thereafter, the sealing body was covered with the rectangular battery can 101, and the entire periphery of the fitting portion was laser welded in a state where the positive electrode tab was sandwiched between the fitting portion of the sealing plate and the battery can. Thereafter, an electrolytic solution was injected from the injection port 105, and then a sealing plug was inserted into the injection port 105 and laser welding was performed to fix the sealing plug. As the electrolytic solution, an electrolytic solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate was used.

このようにして、電池外観の厚みが5.2mm、幅34mm、高さ50mmで、電池容量1050 ItAの角形密閉二次電池を完成させた。   Thus, a rectangular sealed secondary battery having a battery external thickness of 5.2 mm, a width of 34 mm, and a height of 50 mm and a battery capacity of 1050 ItA was completed.

次に実施例1にかかる角形密閉二次電池の主要部材である絶縁板200(補強構造あり)とスペーサ600(補強構造なし)の構造について説明する。   Next, the structure of the insulating plate 200 (with the reinforcing structure) and the spacer 600 (without the reinforcing structure), which are the main members of the rectangular sealed secondary battery according to the first embodiment, will be described.

[絶縁板]
図3、図4に示されるように、絶縁板200は、両端部が半円形であり、長手方向の中央部がやや内側に窪んだトラック状形状である。その長さ(長手方向長)は32mm、幅(短手方向長)は4.0mmである。図3、4中、符号201は絶縁板周縁壁部であり、裏面における絶縁板周縁壁部201は、その内側よりも高さ(肉厚)が高くなっており、絶縁板周縁壁部201の肉厚(全高)が0.7mm、幅が0.4mmであり、その内側の肉厚が0.3mmに設定されている。
[Insulating plate]
As shown in FIGS. 3 and 4, the insulating plate 200 has a track shape in which both end portions are semicircular and the central portion in the longitudinal direction is slightly recessed inward. Its length (longitudinal length) is 32 mm, and its width (longitudinal length) is 4.0 mm. 3 and 4, reference numeral 201 denotes an insulating plate peripheral wall portion, and the insulating plate peripheral wall portion 201 on the back surface has a height (thickness) higher than the inner side thereof. The wall thickness (overall height) is 0.7 mm, the width is 0.4 mm, and the inner wall thickness is set to 0.3 mm.

絶縁板200の中央には、締結穴204が設けられ、その左右には貫通穴203・203が設けられている。また、この絶縁板200には、一方の貫通穴203よりも若干中央寄りに、長手方向の2つの辺同士(絶縁板周縁壁部201の対向する長辺同士)を繋ぐように、絶縁板架橋部202が設けられている。絶縁板架橋部202は、絶縁板の強度を補強する役割を担うものであり、絶縁板周縁壁部201の対向する長辺と同様の厚み(0.7mm)および幅(0.4mm)に形成されている。また、この架橋部202は、絶縁板200を封口板102に下側に配置したときに、ガス排出弁103の直下の近傍に配置されるように、予め絶縁板との関係で位置決めし、形成されている。   A fastening hole 204 is provided at the center of the insulating plate 200, and through holes 203 and 203 are provided on the left and right sides thereof. In addition, the insulating plate 200 is connected to the insulating plate 200 so that the two sides in the longitudinal direction (the opposing long sides of the insulating plate peripheral wall 201) are connected to each other slightly closer to the center than the one through hole 203. A unit 202 is provided. The insulating plate bridging portion 202 plays a role of reinforcing the strength of the insulating plate, and is formed to have the same thickness (0.7 mm) and width (0.4 mm) as the opposing long sides of the insulating plate peripheral wall portion 201. Has been. In addition, the bridging portion 202 is formed by positioning in advance in relation to the insulating plate so as to be disposed in the vicinity immediately below the gas discharge valve 103 when the insulating plate 200 is disposed below the sealing plate 102. Has been.

また、図4(b)に示されるように、絶縁板200に、裏面側における絶縁板周縁壁部201の両端部(コーナー部分)に下側に凸な凸部205が形成されている。この凸部205は後記するスペーサの凹部304と嵌め合わせる部分である。ただし、凸部205および凹部304は不可欠な要素ではない。ここで、下側とは電池缶の缶底方向を意味し、上側とは電池缶の開口側(外部端子側)を意味する。   Further, as shown in FIG. 4B, the insulating plate 200 is formed with convex portions 205 protruding downward at both end portions (corner portions) of the insulating plate peripheral wall portion 201 on the back surface side. The convex portion 205 is a portion to be fitted with a concave portion 304 of a spacer which will be described later. However, the convex portion 205 and the concave portion 304 are not indispensable elements. Here, the lower side means the bottom direction of the battery can, and the upper side means the opening side (external terminal side) of the battery can.

上記貫通穴203は、少なくとも1つあればよいが、貫通穴203は好ましくはガス排出弁103の直下に位置させる。また、実施例1では絶縁板架橋部202を1つとしたが、架橋部を2箇所以上に設けることもできる。   There may be at least one through hole 203, but the through hole 203 is preferably positioned directly below the gas exhaust valve 103. Moreover, although the insulating plate bridge | bridging part 202 was made into one in Example 1, a bridge | crosslinking part can also be provided in two or more places.

[スペーサ]
図11(a)、(b)に示されるように、スペーサ600は、両端部が半円形のトラック状形状であり、長さ(長手方向長)が32mm、幅(短手方向長)が4.0mmに設定されている。図中、符号301はスペーサ周縁壁部であり、オモテ面におけるスペーサ周縁壁部301の内側が窪んだ形状となっている。スペーサ周縁壁部601の肉厚(全高)は0.6mm、幅は0.3mmであり、周縁壁部で囲まれた内側の肉厚は0.3mmとなっている。
[Spacer]
As shown in FIGS. 11A and 11B, the spacer 600 has a semicircular track shape at both ends, a length (longitudinal length) of 32 mm, and a width (short side length) of 4. .0 mm is set. In the figure, reference numeral 301 denotes a spacer peripheral wall portion, which has a shape in which the inside of the spacer peripheral wall portion 301 on the front surface is recessed. The spacer peripheral wall portion 601 has a thickness (overall height) of 0.6 mm and a width of 0.3 mm, and the inner thickness surrounded by the peripheral wall portion is 0.3 mm.

また、スペーサ周縁壁部601で囲まれた領域には、貫通穴からなるスリット603・603が2つ設けられている。また、スペーサ600の長手方向の両端には上に凹の凹部304が形成されており、この凹部304に先に説明した絶縁板200の凸部205が嵌め込まれることになる。スリット603は、少なくとも1つあればよく、スリット603は、負極タブを通す穴として機能するとともに、電池内部ガスを通す穴として機能する。スリットを1つとしたときには、好ましくはガス排出弁103と対向する位置に設ける。   In addition, two slits 603 and 603 each having a through hole are provided in a region surrounded by the spacer peripheral wall portion 601. Further, concave portions 304 are formed on both ends of the spacer 600 in the longitudinal direction, and the convex portions 205 of the insulating plate 200 described above are fitted into the concave portions 304. There may be at least one slit 603, and the slit 603 functions as a hole through which the negative electrode tab passes and also functions as a hole through which the gas inside the battery passes. When there is one slit, it is preferably provided at a position facing the gas discharge valve 103.

上記絶縁板200およびスペーサ600は、鋳型成形法、射出成形法、その他の方法で作製することができ、素材樹脂としては例えばポリプロピレン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル重合樹脂、エチレン-テトラフルオロエチレン重合樹脂、ポリテトラフルオロエチレン、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、など絶縁性を有し電解液と反応しない材料を用いることができる。また、それらの形状は上述のようなトラック形状の他に長方形形状でもよく、また、封口板の平面形状や外装缶の断面形状と相似形状とすることもできる。そして、電極体の封口板側を覆うようにして、封口板と電極体が接触しないように絶縁する。   The insulating plate 200 and the spacer 600 can be manufactured by a mold molding method, an injection molding method, or other methods. Examples of the material resin include polypropylene, tetrafluoroethylene-perfluoroalkyl vinyl ether polymerized resin, and ethylene-tetrafluoroethylene. A material that has an insulating property and does not react with the electrolytic solution, such as a polymer resin, polytetrafluoroethylene, polyphenylene sulfide resin, or polyether ether ketone resin, can be used. In addition to the track shape as described above, the shape may be a rectangular shape, or may be similar to the planar shape of the sealing plate or the cross-sectional shape of the outer can. Then, insulation is performed so as to cover the sealing plate side of the electrode body so that the sealing plate does not contact the electrode body.

なお、図符号は、同一構造及び同一機能の部分には原則として同一数字を割り当てられている。例えば、図11と図5、6の図符号数字が同じ部分は同一構造及び同一機能であることを意味する。   Note that, as for the reference numerals, the same numerals are assigned to the same structure and the same function in principle. For example, parts having the same reference numerals in FIGS. 11 and 5 and 6 have the same structure and the same function.

(実施例2)
実施例2にかかる角形密閉二次電池では、実施例1と同様の架橋部を有する絶縁板200を使用した。また、スペーサについても架橋部を有するスペーサ300を使用した。これ以外は実施例1と同様にして角形密閉二次電池作製した。
(Example 2)
In the square sealed secondary battery according to Example 2, the insulating plate 200 having the same bridging portion as in Example 1 was used. Moreover, the spacer 300 which has a bridge | crosslinking part was used also about the spacer. Except for this, a square sealed secondary battery was fabricated in the same manner as in Example 1.

図5、図6に基づいて、実施例2で用いたスペーサ300の構造を説明する。図5(a)はスペーサオモテ面の平面図であり、図5(b)は図5(a)におけるY-Y線断面図である。図6はスペーサ300の斜視図である。図5、図6に示されるように、スペーサ300は、実施例1にかかるスペーサと同様、両端部が半円形のトラック状形状であり、長手方向長が32mm、短手方向長が4.0mmに設定されている。また、スペーサ周縁壁部301の肉厚(全高)は0.6mm、幅は0.3mmであり、周縁壁部で囲まれた内側の肉厚は0.3mmとなっている。   The structure of the spacer 300 used in Example 2 will be described with reference to FIGS. 5A is a plan view of the spacer front surface, and FIG. 5B is a cross-sectional view taken along line YY in FIG. 5A. FIG. 6 is a perspective view of the spacer 300. As shown in FIGS. 5 and 6, the spacer 300 has a semicircular track shape at both ends, like the spacer according to the first embodiment, and has a longitudinal length of 32 mm and a lateral length of 4.0 mm. Is set to The spacer peripheral wall 301 has a wall thickness (overall height) of 0.6 mm and a width of 0.3 mm, and the inner wall surrounded by the peripheral wall is 0.3 mm.

ただし、実施例2のスペーサ300は、実施例1で使用したスペーサ600と異なり、スペーサ周縁壁部301で囲まれた領域には、図面左から中、小、大のスリット303・305・306が3つ設けられており、中、小のスリットの間にスペーサ架橋部302が設けられている。スペーサ架橋部302は、スペーサ周縁壁部301の対向する一対の長辺と同様の厚み(0.6mm)および幅(0.3mm)であり、両長辺を繋ぐように形成されている。スペーサ架橋部302は、ガス排出弁103の下方投影面の近傍に設けられており、主にスペーサ300の幅方向の強度の補強し、絶縁板とスペーサ間の空間体積の圧縮を抑制する障壁としての役割を担っている。   However, unlike the spacer 600 used in the first embodiment, the spacer 300 according to the second embodiment has slits 303, 305, and 306 from the left to the middle, small, and large in the region surrounded by the spacer peripheral wall 301. Three spacer bridging portions 302 are provided between the middle and small slits. The spacer bridging portion 302 has the same thickness (0.6 mm) and width (0.3 mm) as the pair of opposing long sides of the spacer peripheral wall portion 301, and is formed so as to connect both long sides. The spacer bridging portion 302 is provided in the vicinity of the lower projection surface of the gas exhaust valve 103, and mainly serves as a barrier that reinforces the strength of the spacer 300 in the width direction and suppresses the compression of the space volume between the insulating plate and the spacer. Have a role.

なお、絶縁板の場合と同様、スペーサ架橋部302は2つ以上設けることもできる。また、スリット303は少なくとも1つあればよい。   As in the case of the insulating plate, two or more spacer bridging portions 302 can be provided. Further, at least one slit 303 is sufficient.

(実施例3)
実施例3では、図12に示す架橋部を有さない絶縁板700を用い、スペーサについては上記実施例2で使用したと同様の架橋部を有するスペーサ300(図5参照)を使用した。これ以外の事項については実施例1と同様にして実施例3にかかる角形密閉二次電池を作製した。
(Example 3)
In Example 3, the insulating plate 700 having no bridging portion shown in FIG. 12 was used, and the spacer 300 (see FIG. 5) having the bridging portion similar to that used in Example 2 was used as the spacer. About the matter other than this, it carried out similarly to Example 1, and the square sealed secondary battery concerning Example 3 was produced.

実施例3で使用した絶縁板700は、架橋部202が形成されていない点で上記した絶縁板200(図3,4参照)と異なり、これ以外は絶縁板200と同様である。よって、その説明を省略する。   The insulating plate 700 used in Example 3 is the same as the insulating plate 200 except for the above-described insulating plate 200 (see FIGS. 3 and 4) in that the bridging portion 202 is not formed. Therefore, the description is omitted.

(実施例4)
実施例4では、実施例3で使用した架橋部を有さない絶縁板700(図12参照)を用い、スペーサについては図7に示すリブ402・402を有するスペーサ400を使用した。これ以外の事項については実施例1と同様にして実施例4にかかる角形密閉二次電池を作製した。よって、ここではリブを有するスペーサ400の構造について説明する。
Example 4
In Example 4, the insulating plate 700 (see FIG. 12) having no bridging portion used in Example 3 was used, and the spacer 400 having the ribs 402 and 402 shown in FIG. 7 was used as the spacer. About the matter other than this, it carried out similarly to Example 1, and the square sealed secondary battery concerning Example 4 was produced. Therefore, the structure of the spacer 400 having ribs will be described here.

図7(a)にスペーサ400のオモテ面平面図、図7(b)に図7(a)におけるY-Y線断面図を示す。また、図8に図7のZ-Z線断面図を示す。このスペーサ400は、スペーサ周縁壁部301の肉厚(全高)が0.6mm、幅が0.3mmであり、周縁壁部で囲まれた内側の肉厚は0.3mmとなっている。リブ402は、図7(a)および図8に示されるように、一対の長辺(スペーサ周縁壁部301の長手方向辺)から、一対の長辺の間に設けられたスリット303の手前まで延びた構造である。その肉厚(0.6mm)および幅(0.3mm)はスペーサ周縁壁部と同様とし、スペーサ周縁壁部から突き出た長さを1.2mmとし、リブ402の先端とスリット306との間に0.3mmの間隔を空け、リブがスリット306に架からないようにしてある。   FIG. 7A shows a plan view of the front surface of the spacer 400, and FIG. 7B shows a cross-sectional view taken along line YY in FIG. 7A. FIG. 8 is a cross-sectional view taken along the line ZZ in FIG. The spacer 400 has a spacer peripheral wall portion 301 having a thickness (overall height) of 0.6 mm and a width of 0.3 mm, and an inner thickness surrounded by the peripheral wall portion is 0.3 mm. As shown in FIG. 7A and FIG. 8, the rib 402 extends from a pair of long sides (longitudinal sides of the spacer peripheral wall 301) to the front of the slit 303 provided between the pair of long sides. It is an extended structure. The thickness (0.6 mm) and width (0.3 mm) are the same as those of the spacer peripheral wall, the length protruding from the spacer peripheral wall is 1.2 mm, and the gap between the tip of the rib 402 and the slit 306 is set. An interval of 0.3 mm is provided so that the rib does not hang over the slit 306.

このリブ402も実施例2で説明したスペーサ架橋部と同様、絶縁板とスペーサ間の空間体積の圧縮を抑制する障壁として機能するものであるが、リブ402はガスの通過を邪魔しないので、ガス排出弁103の上方からのガス排出弁投影面上またはその近傍に形成することができる。   The rib 402 also functions as a barrier that suppresses the compression of the space volume between the insulating plate and the spacer, as in the spacer bridging portion described in the second embodiment. However, the rib 402 does not obstruct gas passage, It can be formed on or near the gas discharge valve projection surface from above the discharge valve 103.

(実施例5)
実施例5では、上記した架橋部202を有する絶縁板200(図3,4参照)と、上記したリブ402・402を有するスペーサ400(図7参照)を使用した。これ以外の事項については実施例1と同様にして実施例5にかかる角形密閉二次電池を作製した。
(Example 5)
In Example 5, the insulating plate 200 (see FIGS. 3 and 4) having the bridging portion 202 and the spacer 400 (see FIG. 7) having the ribs 402 and 402 described above were used. About the matter other than this, it carried out similarly to Example 1, and the square sealed secondary battery concerning Example 5 was produced.

(実施例6)
実施例6では、リブを形成した図9,10に示す絶縁板500と、補強構造を有しない図11のスペーサ600を用い、これ以外の事項については実施例1と同様にして実施例5にかかる角形密閉二次電池を作製した。
(Example 6)
In Example 6, the insulating plate 500 shown in FIGS. 9 and 10 having ribs and the spacer 600 of FIG. 11 having no reinforcing structure are used, and the other matters are the same as in Example 1 in Example 5. Such a square sealed secondary battery was produced.

絶縁板500は、リブ502・502を有する一方、絶縁板架橋部202を有しない点においてのみ、図3、4に示した絶縁板200と相違する。絶縁板リブ502・502は、図9(裏面平面図)、図10(裏面斜視図)に示されるように、一対の長辺(絶縁板周縁壁部201の長手方向辺)から、一対の長辺の間に設けられた貫通穴203の手前まで延びた構造である。その肉厚(0.7mm)および幅(0.4mm)は絶縁板周縁壁部と同様としてあり、スペーサ周縁壁部から突き出た長さは1.2mmとし、貫通穴203に架からないようにしてある。   The insulating plate 500 is different from the insulating plate 200 shown in FIGS. 3 and 4 only in that it has ribs 502 and 502 but does not have the insulating plate bridging portion 202. As shown in FIG. 9 (back surface plan view) and FIG. 10 (back surface perspective view), the insulating plate ribs 502 and 502 are formed from a pair of long sides (longitudinal direction sides of the insulating plate peripheral wall 201). This structure extends to the front of the through hole 203 provided between the sides. Its thickness (0.7 mm) and width (0.4 mm) are the same as those of the peripheral wall of the insulating plate, the length protruding from the peripheral wall of the spacer is 1.2 mm, and it should not be placed over the through hole 203. It is.

絶縁板リブ502・502は、実施例1で説明した絶縁板架橋部202と同様、空間体積の圧縮に起因するガス排出弁の誤作動を防止する役割を担う。図9,10から明らかなように、絶縁板リブ502・502はガスの通過を邪魔しないので、上記した絶縁板架橋部202の場合と異なり、ガス排出弁103を上方から電池缶底方向に投影したときにおけるガス排出弁103の投影面上に形成してもよい。   The insulating plate ribs 502 and 502 play a role of preventing malfunction of the gas discharge valve due to the compression of the space volume, like the insulating plate bridging portion 202 described in the first embodiment. As is apparent from FIGS. 9 and 10, the insulating plate ribs 502 and 502 do not interfere with the passage of gas, and unlike the case of the insulating plate bridging portion 202 described above, the gas discharge valve 103 is projected from above toward the bottom of the battery can. It may be formed on the projection surface of the gas discharge valve 103 at that time.

(比較例1)
比較例1では、上記した絶縁板700(図12参照)と同一の形状で、かつ上記した絶縁板700よりも絶縁板周縁壁部の肉厚が1mm薄い絶縁板700’を用いた。すなわち、この絶縁板の周縁壁部の肉厚は0.6mmであり、長手方向の辺幅が0.3mm、絶縁板周縁壁部で囲まれた内側の肉厚が0.3mmである。
(Comparative Example 1)
In Comparative Example 1, an insulating plate 700 ′ having the same shape as that of the above-described insulating plate 700 (see FIG. 12) and a wall thickness of the insulating plate peripheral wall 1 mm smaller than that of the above-described insulating plate 700 was used. That is, the thickness of the peripheral wall portion of this insulating plate is 0.6 mm, the side width in the longitudinal direction is 0.3 mm, and the inner thickness surrounded by the peripheral wall portion of the insulating plate is 0.3 mm.

また、スペーサについては、実施例1で使用した架橋部を有さないスペーサ600(図11参照)を用いた。これ以外の事項については実施例1と同様にして比較例1にかかる角形密閉二次電池を作製した。   Moreover, about the spacer, the spacer 600 (refer FIG. 11) which does not have the bridge | crosslinking part used in Example 1 was used. About the other matter, it carried out similarly to Example 1, and produced the square sealed secondary battery concerning the comparative example 1. FIG.

(比較例2)
比較例2では、絶縁板周縁壁部の肉厚が0.8mmであり、長手方向の辺幅が0.5mmである点を除き、図12の架橋部を有さない絶縁板700と同一の形状の絶縁板700”を用いた。また、スペーサについては、スペーサ周縁壁部の肉厚が0.8mmであり、長手方向の辺幅が0.5mmである点を除き、実施例1で使用した図11に示す架橋部を有さないスペーサ600と同一の形状のスペーサ600’を用いた。これ以外の事項については実施例1と同様にして比較例2にかかる角形密閉二次電池を作製した。
(Comparative Example 2)
In Comparative Example 2, the thickness of the peripheral wall of the insulating plate is 0.8 mm, and the same as the insulating plate 700 having no bridging portion in FIG. 12 except that the side width in the longitudinal direction is 0.5 mm. The shape of the insulating plate 700 ″ was used. Also, the spacer was used in Example 1 except that the spacer peripheral wall was 0.8 mm thick and the longitudinal side width was 0.5 mm. The spacer 600 ′ having the same shape as the spacer 600 having no bridging portion shown in FIG.11 was used, and the rectangular sealed secondary battery according to the comparative example 2 was manufactured in the same manner as in the example 1 with respect to other matters. did.

(比較例3)
比較例3では、ガスの通り道である貫通穴を一つとした図13に示す絶縁板800を用い、スペーサについては、実施例1と同様の架橋部を有さないスペーサ600(図11)を用い、これ以外の事項については実施例1と同様にして比較例3にかかる角形密閉二次電池を作製した。
(Comparative Example 3)
In Comparative Example 3, the insulating plate 800 shown in FIG. 13 with one through hole as a gas passage is used, and the spacer 600 (FIG. 11) having no bridging portion similar to that in Example 1 is used as the spacer. For other matters, a rectangular sealed secondary battery according to Comparative Example 3 was fabricated in the same manner as in Example 1.

上記絶縁板800(図11)は、貫通穴を一つとしたこと及び絶縁板周縁壁部の厚みを1mm薄くしたこと以外は、絶縁板700(図12)と同様であり、絶縁板周縁壁部201の肉厚が0.6mm、長手方向の辺幅が0.3mmであり、絶縁板周縁壁部の内側の肉厚が0.3mmである。   The insulating plate 800 (FIG. 11) is the same as the insulating plate 700 (FIG. 12) except that one through hole is used and the thickness of the insulating plate peripheral wall is reduced by 1 mm. The thickness of 201 is 0.6 mm, the side width in the longitudinal direction is 0.3 mm, and the inner thickness of the peripheral wall of the insulating plate is 0.3 mm.

(比較例4)
比較例4では、図14に示す絶縁板900を用い、スペーサについては、実施例1と同様の架橋部を有さないスペーサ600(図11)を用い、これ以外の事項については実施例1と同様にして比較例4にかかる角形密閉二次電池を作製した。
(Comparative Example 4)
In the comparative example 4, the insulating plate 900 shown in FIG. 14 is used, and the spacer is the spacer 600 (FIG. 11) that does not have the same bridging portion as in the first embodiment. Similarly, a square sealed secondary battery according to Comparative Example 4 was produced.

絶縁板900は、図14に示されるように、半円形のトラック形状の一方端部が、窪みのない絶縁板平坦面902となっており、この絶縁板平坦面902に1つの貫通穴903が形成されている。この絶縁板平坦面902を除く部分は、前記した絶縁板500(図12)と同様な形状であり、絶縁板周縁壁部901の内側領域に締結穴204ともう一つの貫通穴203とが形成されている。絶縁板周縁壁部901の肉厚は0.6mm、長手方向の辺幅は0.3mmであり、絶縁板周縁壁部の内側の肉厚が0.3mmとしてある。絶縁板平坦面902の肉厚は絶縁板周縁壁部901と同じ0.6mmである。なお、図14は裏面から見た平面図である。   As shown in FIG. 14, the insulating plate 900 has a semicircular track-shaped one end portion which is an insulating plate flat surface 902 having no depression, and one through hole 903 is formed on the insulating plate flat surface 902. Is formed. The portion excluding the insulating plate flat surface 902 has the same shape as the insulating plate 500 (FIG. 12), and a fastening hole 204 and another through hole 203 are formed in the inner region of the insulating plate peripheral wall 901. Has been. The thickness of the insulating plate peripheral wall portion 901 is 0.6 mm, the side width in the longitudinal direction is 0.3 mm, and the inner thickness of the insulating plate peripheral wall portion is 0.3 mm. The thickness of the insulating plate flat surface 902 is 0.6 mm, which is the same as that of the insulating plate peripheral wall 901. FIG. 14 is a plan view seen from the back side.

(比較例5)
比較例5では、絶縁板として、形状が図14に示す絶縁板900と同様であるが、絶縁板周縁壁部901の肉厚と絶縁板平坦面902の肉厚が上記した絶縁板900よりも厚い絶縁板900’を用いた。すなわち、絶縁板周縁壁部901が0.7mm、長手方向の辺幅は0.4mmであり、絶縁板周縁壁部の内側の肉厚が0.3mmであり、絶縁板平坦面902の肉厚が0.7mmである絶縁板を用いた。この絶縁板を絶縁板900’(不図示)とする。
(Comparative Example 5)
In Comparative Example 5, the shape of the insulating plate is the same as that of the insulating plate 900 shown in FIG. 14, but the thickness of the insulating plate peripheral wall portion 901 and the thickness of the insulating plate flat surface 902 are larger than those of the insulating plate 900 described above. A thick insulating plate 900 ′ was used. That is, the insulating plate peripheral wall portion 901 is 0.7 mm, the side width in the longitudinal direction is 0.4 mm, the inner thickness of the insulating plate peripheral wall portion is 0.3 mm, and the insulating plate flat surface 902 is thick. An insulating plate having a thickness of 0.7 mm was used. This insulating plate is referred to as an insulating plate 900 ′ (not shown).

また、スペーサにとしては、図15に示すスペーサ1000を用いた。スペーサ1000は、図15に示されるように、両端部が半円形のトラック形状の一方側が、窪みのないスペーサ平坦面1002となっており、このスペーサ平坦面1002に1つのスリット1003が形成されている。スペーサ周縁壁部301の肉厚は0.6mm、長手方向の辺幅は0.3mmであり、スペーサ周縁壁部の内側の肉厚が0.3mmである。スペーサ平坦面1002の肉厚はスペーサ周縁壁部301と同じ0.6mmである。   As the spacer, a spacer 1000 shown in FIG. 15 was used. As shown in FIG. 15, the spacer 1000 has a semi-circular track-shaped one end on both sides of a spacer flat surface 1002 having no recess, and one slit 1003 is formed on the spacer flat surface 1002. Yes. The spacer peripheral wall portion 301 has a thickness of 0.6 mm, the side width in the longitudinal direction is 0.3 mm, and the inner thickness of the spacer peripheral wall portion is 0.3 mm. The thickness of the spacer flat surface 1002 is 0.6 mm, which is the same as that of the spacer peripheral wall portion 301.

このスペーサ1000は、架橋部が存在しないこと、半円形の一方端部がスペーサ平坦面1002となっていることの2点において、前記したスペーサ400(図11)と異なる。   This spacer 1000 is different from the spacer 400 (FIG. 11) in two points, that there is no bridging portion and that one end of the semicircular shape is a spacer flat surface 1002.

(落下試験)
以上で作製した角形密閉二次電池について、落下試験を行いガス排出弁の破壊程度を調べた。具体的には、実施例1〜6及び比較例1〜5の角形密閉二次電池をそれぞれ10個作製し、これらの電池を25℃雰囲気中で120mAの定電流で電池電圧が2.75Vとなるまで放電した。次いで、電池の正極外部端子側を下向きにして、1.9mの高さからコンクリート面に何度か垂直落下させ、ガス排出弁が破壊(クラックの発生を含む)されるまでの繰り返し落下回数を調べた。
(Drop test)
The square sealed secondary battery produced above was subjected to a drop test to examine the degree of destruction of the gas discharge valve. Specifically, 10 square sealed secondary batteries of Examples 1 to 6 and Comparative Examples 1 to 5 were produced, respectively. Discharged until Next, with the positive electrode external terminal side of the battery facing downward, let it fall several times vertically onto the concrete surface from a height of 1.9 m, and repeat the number of drops until the gas discharge valve is destroyed (including cracks) Examined.

(加熱試験)
また、以上で作製した角形密閉二次電池について加熱試験を行った。具体的には、実施例1〜6及び比較例1〜5の角形密閉二次電池をそれぞれ10個作製し、これらの電池を25℃雰囲気中で、1050mA定電流で電圧が4.2Vとなるまで充電した後、25℃雰囲気中で1時間保管した。この後、電池を250℃に加熱した鉄板の上に10分間載置し、破裂に至った電池数を数えた。ガス排出弁からの発煙し、発火したものの電池破裂しなかったものは破裂なしとした。
(Heating test)
Moreover, the heating test was done about the square sealed secondary battery produced above. Specifically, 10 square sealed secondary batteries of Examples 1 to 6 and Comparative Examples 1 to 5 were produced, respectively, and these batteries had a voltage of 4.2 V at a constant current of 1050 mA in an atmosphere of 25 ° C. And then stored in an atmosphere at 25 ° C. for 1 hour. Thereafter, the battery was placed on an iron plate heated to 250 ° C. for 10 minutes, and the number of batteries that had ruptured was counted. Smoke from the gas discharge valve and ignition, but those that did not rupture the battery were considered as no rupture.

落下試験と加熱試験の結果を表1に示した。   Table 1 shows the results of the drop test and the heat test.

Figure 2011204469
Figure 2011204469

表1の「Ave.」は全数10個におけるガス排出弁が破壊するまでの平均回数であり、「Min.」はガス排出弁が破壊した最小落下回数、「Max.」はガス排出弁が破壊するに至った最大落下回数を意味する。また、総合判定においては、平均落下回数が44.4回(比較例4)を超え、発火が認められなかったものを「◎」、平均落下回数が44.4回を下回り、発火が認められなかったものを「○」、平均落下回数が44.4回以下で発火が認められたものを「×」とした。   “Ave.” in Table 1 is the average number of times until the gas discharge valve is destroyed in all 10 units, “Min.” Is the minimum number of drops that the gas discharge valve has broken, and “Max.” Is the gas discharge valve is broken. It means the maximum number of times it has fallen. In addition, in the comprehensive judgment, the average number of drops exceeded 44.4 times (Comparative Example 4), and the case where no ignition was observed was “◎”, the average number of drops was less than 44.4 times, and ignition was recognized. The case where there was no fire was designated as “◯”, and the case where the average number of drops was 44.4 times or less and ignition was recognized was designated as “x”.

(落下試験結果)
実施例1〜6については、ガス排出弁が損傷ないし破壊されるに至るまでの落下回数が大幅に増加した。この効果は、絶縁板またはスペーサに架橋部またはリブを設けたころによる効果であることは明らかである。
(Drop test result)
About Examples 1-6, the frequency | count of dropping until a gas exhaust valve was damaged thru | or destroyed increased significantly. It is clear that this effect is due to the roller provided with a bridging portion or a rib on the insulating plate or spacer.

上記落下試験においては、落下衝撃力により絶縁板と電極体との間の空間体積を圧縮する。ここで、比較例3では、ガス排出弁直下の絶縁板部分に貫通穴がない絶縁板800を使用している。このため、落下衝撃力による空間体積の圧縮により瞬間的に高まった圧力が速やかに逃げられない。このため、比較例3の平均落下回数(衝撃耐性)が顕著に小さくなったものと考えられる。   In the drop test, the space volume between the insulating plate and the electrode body is compressed by a drop impact force. Here, in the comparative example 3, the insulating plate 800 which does not have a through-hole in the insulating plate part directly under a gas exhaust valve is used. For this reason, the pressure which increased instantaneously by compression of the space volume by the drop impact force cannot be escaped promptly. For this reason, it is considered that the average number of drops (impact resistance) of Comparative Example 3 was significantly reduced.

比較例4は、絶縁板900が使用されており、絶縁板900は、ガス排出弁直下の絶縁板部分に貫通穴があるものの、当該部分が周縁壁部のない平坦面となっている。この構造の場合には、落下衝撃力により発生するガス圧は速やかに上方に逃げることができるので、比較例3よりも平均落下回数が大きくなった(衝撃耐性が向上した)ものと考えられるが、実施例品に比較すると、周縁壁部がない分、衝撃力を吸収する緩和作用が小さくなるため十分な衝撃耐性が得られなかったと考えられる。   In the comparative example 4, the insulating plate 900 is used, and the insulating plate 900 has a through hole in the insulating plate portion directly under the gas discharge valve, but the portion has a flat surface without a peripheral wall portion. In the case of this structure, the gas pressure generated by the drop impact force can quickly escape upward, so it is considered that the average number of drops was larger than that of Comparative Example 3 (impact resistance was improved). Compared to the product of the example, it is considered that sufficient impact resistance could not be obtained because the relaxation effect of absorbing the impact force is reduced by the amount of the peripheral wall portion.

また、比較例5では、ガス排出弁直下の絶縁板部分及びその下のスペーサの該当部分が共に周縁壁部を有しない絶縁板900’とスペーサ1000を用いているため、落下衝撃力に対する衝撃耐性が悪く、かつ落下衝撃力により発生するガス排出弁近傍の圧力を逃がすことができないため、平均落下回数(耐衝撃性)が顕著に小さくなったものと考えられる。   Further, in Comparative Example 5, since the insulating plate portion immediately below the gas discharge valve and the corresponding portion of the spacer below the insulating plate 900 ′ and the spacer 1000 which do not have the peripheral wall portion, the impact resistance against the drop impact force is used. It is considered that the average number of times of dropping (impact resistance) is remarkably reduced because the pressure in the vicinity of the gas discharge valve generated by the drop impact force cannot be released.

これらに対し、架橋部またはリブが設けられ、かつガス排出弁の下側に貫通穴やスペーサを備えた絶縁板または/およびスペーサを用いた実施例1〜6では、架橋部またはリブが衝撃力による空間体積の圧縮を緩和し、瞬間的なガス圧の上昇が抑制されるため平均落下回数(耐衝撃性)が顕著に大きくなったものと考えられる。   On the other hand, in Examples 1 to 6 in which a bridging portion or a rib is provided and an insulating plate or / and a spacer provided with a through hole or a spacer on the lower side of the gas discharge valve, the bridging portion or the rib has an impact force. It is considered that the average number of drops (impact resistance) is remarkably increased because the compression of the space volume due to the above is relaxed and the instantaneous increase in gas pressure is suppressed.

(加熱試験結果)
実施例1〜6は、破裂電池数がゼロであり、熱に対する安全性が高いことが確認された。これに対し、比較例3〜5、特に比較例3においては、電池の破裂が認められた。
(Heating test result)
In Examples 1 to 6, the number of ruptured batteries was zero, and it was confirmed that the safety against heat was high. On the other hand, in Comparative Examples 3 to 5, particularly Comparative Example 3, battery rupture was observed.

この結果は、次のように考えられる。比較例3は、ガス排出弁の下側に貫通穴がない絶縁板800を使用しているため、電極体側で発生したガスがガス排出弁から円滑に排出されなかったためと考えられる。比較例4ではガス排出弁直下が周縁壁部のない平坦面であり、当該平坦面に貫通穴が形成された絶縁板900を用いられ、比較例5ではガス排出弁直下の絶縁板部分及びその下のスペーサの該当部分が共に周縁壁部を有しない平坦面である絶縁板900’とスペーサ1000とが用いられているが、これらはガス排出弁直下にガス圧の上昇に対する緩衝空間が存在しない構造であり、そのためにガス排出能力が不足しているために電池が破裂したものと考えられる。  This result is considered as follows. In Comparative Example 3, it is considered that the gas generated on the electrode body side was not smoothly discharged from the gas discharge valve because the insulating plate 800 having no through hole was used on the lower side of the gas discharge valve. In Comparative Example 4, an insulating plate 900 having a flat surface without a peripheral wall portion directly under the gas discharge valve is used, and an insulating plate 900 having a through hole formed in the flat surface is used. The insulating plate 900 ′ and the spacer 1000, which are flat surfaces in which the corresponding portions of the lower spacer do not have any peripheral wall portions, are used, but these do not have a buffer space against the increase in gas pressure directly under the gas discharge valve. It is considered that the battery has ruptured due to its structure and lack of gas discharge capacity.

他方、比較例1及び2において、電池破裂が認められなかったのは、比較例1及び2では、周縁壁部およびガス通過道としての貫通穴及びスリットを有する絶縁板及びスペーサが使用されているからである。なお、周縁壁部の内側は窪みになっており、この窪みが瞬間的なガス圧の上昇を低減するガス貯め空間として機能する。それゆえ、周縁壁部があると、衝撃力に起因するガス排出弁の損傷や加熱による電池破裂が低減されるものと考えられる。   On the other hand, in Comparative Examples 1 and 2, no battery rupture was observed. In Comparative Examples 1 and 2, an insulating plate and a spacer having through holes and slits as peripheral wall portions and gas passages are used. Because. In addition, the inner side of the peripheral wall portion is a depression, and this depression functions as a gas storage space that reduces an instantaneous increase in gas pressure. Therefore, it is considered that the presence of the peripheral wall portion reduces damage to the gas discharge valve due to impact force and battery rupture due to heating.

本発明によると、簡単な構造の付加により、ガス排出弁の感度を適正に保ちつつ振動力や落下衝撃力などの外力に対する電池の衝撃耐性を高めることができる。よって、低コストでもって電池内圧や電解液漏れに対する安全性、信頼性を一層高めた角形密閉二次電池を提供することができ、その産業上の利用可能性は高い。   According to the present invention, by adding a simple structure, it is possible to improve the impact resistance of the battery against external forces such as vibration force and drop impact force while keeping the sensitivity of the gas discharge valve appropriate. Therefore, it is possible to provide a rectangular sealed secondary battery with further improved safety and reliability against battery internal pressure and electrolyte leakage at low cost, and its industrial applicability is high.

101 電池缶
102 封口板
103 ガス排出弁
104 電極外部端子
104’ 電極外部端子の取付穴
105 注液口
106 負極板
107 正極板
108 電極体

200 絶縁板
201 絶縁板周縁壁部
202 絶縁板架橋部
203 貫通穴
204 締結穴
205 凸部

300・400・600・1000 スペーサ
301 スペーサ周縁壁部
302 スペーサ架橋部
303・305・306 スリット
304 凹部
402 スペーサリブ
603 スリット
1001 スペーサ周縁壁部
1002 スペーサ平坦面
1003 スリット


500・700・800・900 絶縁板
502 絶縁板リブ
901 絶縁板周縁壁部
902 絶縁板平坦面
903 貫通穴
101 Battery Can 102 Sealing Plate 103 Gas Discharge Valve 104 Electrode External Terminal 104 ′ Electrode External Terminal Mounting Hole 105 Pouring Port 106 Negative Electrode Plate 107 Positive Electrode Plate 108 Electrode Body

200 Insulating plate 201 Insulating plate peripheral wall portion 202 Insulating plate bridge portion 203 Through hole 204 Fastening hole 205 Convex portion

300, 400, 600, 1000 Spacer 301 Spacer peripheral wall portion 302 Spacer bridging portion 303, 305, 306 Slit 304 Recess 402 Spacer rib 603 Slit 1001 Spacer peripheral wall portion 1002 Spacer flat surface 1003 Slit


500, 700, 800, 900 Insulating plate 502 Insulating plate rib 901 Insulating plate peripheral wall 902 Insulating plate flat surface 903 Through hole

Claims (10)

正極タブを備えた正極板と負極タブを備えた負極板とがセパレータを介して、巻回され扁平状に加工されてなる電極体と、
前記電極体を収容する有底角形の電池缶と、
前記電池缶の開口を封口する、ガス排出弁を備えた封口板と、
前記電池缶内に収容された前記電極体の上方に配置された絶縁性のスペーサと、
前記スペーサと前記封口板との間に配置された絶縁板と、
を備え、
前記スペーサと前記絶縁板が前記電極体の前記封口板側を覆うように配置された角形密閉二次電池において、
前記絶縁板は、ガスが通過可能な貫通穴を備えた略長方形状であり、当該絶縁板の外周縁を構成する絶縁板周縁壁部の高さが、その内側よりも高く、かつ前記絶縁板周縁壁部の直線部には、対向する側にまで延びる絶縁板架橋部が形成されている、
ことを特徴とする角形密閉二次電池。
A positive electrode plate having a positive electrode tab and a negative electrode plate having a negative electrode tab are wound through a separator and processed into a flat shape, and
A bottomed prismatic battery can containing the electrode body;
A sealing plate provided with a gas discharge valve for sealing the opening of the battery can;
An insulating spacer disposed above the electrode body housed in the battery can;
An insulating plate disposed between the spacer and the sealing plate;
With
In the rectangular sealed secondary battery in which the spacer and the insulating plate are arranged so as to cover the sealing plate side of the electrode body,
The insulating plate has a substantially rectangular shape with a through-hole through which gas can pass, and the insulating plate peripheral wall portion constituting the outer peripheral edge of the insulating plate has a height higher than its inner side, and the insulating plate In the straight part of the peripheral wall part, an insulating plate bridging part extending to the opposite side is formed,
A rectangular sealed secondary battery characterized by that.
請求項1に記載の角形密閉二次電池において、
前記絶縁板に代えて、ガスが通過可能な貫通穴を備えた略長方形状であり、当該絶縁板外周縁を構成する絶縁板周縁壁部の高さが、その内側よりも高くなっており、前記絶縁板周縁壁部の対向する直線部であって中間に前記貫通穴が存在する部分に、一対の絶縁板周縁壁部のそれぞれから当該貫通穴の手前にまで延びるリブがそれぞれ形成された絶縁板を用いた、
ことを特徴とする角形密閉二次電池。
The square sealed secondary battery according to claim 1,
Instead of the insulating plate, it is a substantially rectangular shape with a through hole through which gas can pass, and the height of the insulating plate peripheral wall constituting the outer peripheral edge of the insulating plate is higher than the inside thereof, Insulation in which ribs extending from each of the pair of insulating plate peripheral wall portions to the front of the through hole are formed in the opposing straight portions of the insulating plate peripheral wall portion and in the portion where the through hole exists in the middle. Using a plate
A rectangular sealed secondary battery characterized by that.
正極タブを備えた正極板と負極タブを備えた負極板とがセパレータを介して巻回され扁平状に加工されてなる電極体と、
前記電極体を収容する有底角形の電池缶と、
前記電池缶の開口を封口する、ガス排出弁を備えた封口板と、
前記電池缶内に収容された前記電極体の上方に配置された絶縁性のスペーサと、
前記スペーサと前記封口板との間に配置された絶縁板と、
を備え、
前記スペーサと前記絶縁板が前記電極体の前記封口板側を覆うように配置された角形密閉二次電池において、
前記スペーサは、ガス及び負極タブを通すことが可能なスリットを備えた略長方形状であり、当該スペーサの外周縁を構成するスペーサ周縁壁部の高さが、その内側よりも高く、かつ前記スペーサ周縁壁部の直線部には、対向する側にまで延びる架橋部が形成されている、
ことを特徴とする角形密閉二次電池。
An electrode body in which a positive electrode plate having a positive electrode tab and a negative electrode plate having a negative electrode tab are wound through a separator and processed into a flat shape,
A bottomed prismatic battery can containing the electrode body;
A sealing plate provided with a gas discharge valve for sealing the opening of the battery can;
An insulating spacer disposed above the electrode body housed in the battery can;
An insulating plate disposed between the spacer and the sealing plate;
With
In the rectangular sealed secondary battery in which the spacer and the insulating plate are arranged so as to cover the sealing plate side of the electrode body,
The spacer has a substantially rectangular shape with a slit through which gas and a negative electrode tab can pass, and the spacer peripheral wall portion constituting the outer peripheral edge of the spacer has a height higher than the inside thereof, and the spacer In the linear part of the peripheral wall part, a bridging part extending to the opposite side is formed,
A rectangular sealed secondary battery characterized by that.
請求項3に記載の角形密閉二次電池において、
前記スペーサに代えて、ガス及び負極タブを通すことが可能なスリットを備え備えた略長方形状であり、当該スペーサの外周縁を構成するスペーサ周縁壁部の高さが、その内側よりも高くなっており、前記スペーサ周縁壁部の直線部であって対向するスペーサ周縁壁部の間にスリットが位置する部分に、一対のスペーサ周縁壁部のそれぞれから当該スリットの手前にまで延びるリブがそれぞれ形成されていたスペーサを用いた、
ことを特徴とする角形密閉二次電池。
The square sealed secondary battery according to claim 3,
Instead of the spacer, it has a substantially rectangular shape provided with a slit through which gas and a negative electrode tab can pass, and the height of the spacer peripheral wall portion constituting the outer peripheral edge of the spacer is higher than the inside thereof. Ribs extending from each of the pair of spacer peripheral wall portions to the front of the slit are formed in the straight portion of the spacer peripheral wall portion where the slit is located between the opposing spacer peripheral wall portions. Using the spacer that was made,
A rectangular sealed secondary battery characterized by that.
請求項1に記載の角形密閉二次電池において、
前記スペーサは、ガス及び負極タブを通すことが可能なスリットを備えた略長方形状であり、当該スペーサの外周縁を構成するスペーサ周縁壁部の高さが、その内側よりも高く、かつ前記スペーサ周縁壁部の直線部には、対向する側にまで延びる架橋部が形成されている、
ことを特徴とする角形密閉二次電池。
The square sealed secondary battery according to claim 1,
The spacer has a substantially rectangular shape with a slit through which gas and a negative electrode tab can pass, and the spacer peripheral wall portion constituting the outer peripheral edge of the spacer has a height higher than the inside thereof, and the spacer In the linear part of the peripheral wall part, a bridging part extending to the opposite side is formed,
A rectangular sealed secondary battery characterized by that.
請求項1に記載の角形密閉二次電池において、
前記スペーサは、ガス及び負極タブを通すことが可能なスリットを備えた略長方形状であり、当該スペーサの外周縁を構成するスペーサ周縁壁部の高さが、その内側よりも高くなっており、
前記スペーサ周縁壁部の直線部であって対向するスペーサ周縁壁部の間にスリットが位置する部分に、一対のスペーサ周縁壁部のそれぞれから当該スリットの手前にまで延びるリブがそれぞれ形成されている、
ことを特徴とする角形密閉二次電池。
The square sealed secondary battery according to claim 1,
The spacer has a substantially rectangular shape with a slit through which gas and a negative electrode tab can pass, and the height of the spacer peripheral wall portion constituting the outer peripheral edge of the spacer is higher than the inside thereof.
Ribs extending from each of the pair of spacer peripheral wall portions to the front of the slit are formed in the straight portion of the spacer peripheral wall portion where the slit is located between the opposing spacer peripheral wall portions. ,
A rectangular sealed secondary battery characterized by that.
請求項2に記載の角形密閉二次電池において、
前記スペーサは、ガス及び負極タブを通すことが可能なスリットを備えた略長方形状であり、当該スペーサの外周縁を構成するスペーサ周縁壁部の高さが、その内側よりも高く、かつ前記スペーサ周縁壁部の直線部には、対向する側にまで延びる架橋部が形成されている、
ことを特徴とする角形密閉二次電池。
The square sealed secondary battery according to claim 2,
The spacer has a substantially rectangular shape with a slit through which gas and a negative electrode tab can pass, and the spacer peripheral wall portion constituting the outer peripheral edge of the spacer has a height higher than the inside thereof, and the spacer In the linear part of the peripheral wall part, a bridging part extending to the opposite side is formed,
A rectangular sealed secondary battery characterized by that.
請求項2に記載の角形密閉二次電池において、
前記スペーサは、ガス及び負極タブを通すことが可能なスリットを備えた略長方形状であり、当該スペーサの外周縁を構成するスペーサ周縁壁部の高さが、その内側よりも高くなっており、
前記スペーサ周縁壁部の直線部であって対向するスペーサ周縁壁部の間にスリットが位置する部分に、一対のスペーサ周縁壁部のそれぞれから当該スリットの手前にまで延びるリブがそれぞれ形成されている、
ことを特徴とする角形密閉二次電池。
The square sealed secondary battery according to claim 2,
The spacer has a substantially rectangular shape with a slit through which gas and a negative electrode tab can pass, and the height of the spacer peripheral wall portion constituting the outer peripheral edge of the spacer is higher than the inside thereof.
Ribs extending from each of the pair of spacer peripheral wall portions to the front of the slit are formed in the straight portion of the spacer peripheral wall portion where the slit is located between the opposing spacer peripheral wall portions. ,
A rectangular sealed secondary battery characterized by that.
請求項1ないし8の何れかに記載の角形密閉二次電池において、
前記絶縁板架橋部およびスペーサ架橋部は、前記封口板のガス排出弁を電池缶軸方向へ投影したとき、当該投影面内ではなく、投影面の近傍に位置する、
ことを特徴とする角形密閉二次電池。
The square sealed secondary battery according to any one of claims 1 to 8,
The insulating plate bridging portion and the spacer bridging portion are located not in the projection plane but in the vicinity of the projection plane when the gas discharge valve of the sealing plate is projected in the battery can axis direction.
A rectangular sealed secondary battery characterized by that.
請求項2ないし8の何れかに記載の角形密閉二次電池において、
前記絶縁板リブおよびスペーサリブは、前記封口板のガス排出弁を電池缶軸方向へ投影したとき、当該投影面内またはその近傍に位置する、
ことを特徴とする角形密閉二次電池。
The square sealed secondary battery according to any one of claims 2 to 8,
The insulating plate rib and the spacer rib are located in or near the projection surface when the gas discharge valve of the sealing plate is projected in the battery can axial direction.
A rectangular sealed secondary battery characterized by that.
JP2010070669A 2010-03-25 2010-03-25 Square sealed secondary battery Pending JP2011204469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070669A JP2011204469A (en) 2010-03-25 2010-03-25 Square sealed secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070669A JP2011204469A (en) 2010-03-25 2010-03-25 Square sealed secondary battery

Publications (1)

Publication Number Publication Date
JP2011204469A true JP2011204469A (en) 2011-10-13

Family

ID=44880924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070669A Pending JP2011204469A (en) 2010-03-25 2010-03-25 Square sealed secondary battery

Country Status (1)

Country Link
JP (1) JP2011204469A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523691A (en) * 2013-01-18 2015-08-13 エルジー・ケム・リミテッド Secondary battery structure
KR20160042244A (en) * 2014-10-07 2016-04-19 삼성에스디아이 주식회사 Rechargeable battery
CN105609693A (en) * 2014-11-19 2016-05-25 三星Sdi株式会社 Electrode assembly and battery pack having the same
KR20160117431A (en) 2014-02-05 2016-10-10 스미토모덴키고교가부시키가이샤 Power storage device
KR20160144994A (en) 2014-04-11 2016-12-19 스미토모덴키고교가부시키가이샤 Electricity storage device
CN106972119A (en) * 2016-01-13 2017-07-21 比亚迪股份有限公司 A kind of cover plate assembly, the battery containing the cover plate assembly and battery pack
JP2018198163A (en) * 2017-05-24 2018-12-13 トヨタ自動車株式会社 Secondary battery
WO2023137976A1 (en) * 2022-01-24 2023-07-27 宁德时代新能源科技股份有限公司 Battery cell, battery and electric device
WO2024066107A1 (en) * 2022-09-27 2024-04-04 厦门海辰储能科技股份有限公司 Lower plastic, battery, battery module and electric device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9590214B2 (en) 2013-01-18 2017-03-07 Lg Chem, Ltd. Secondary battery structure
JP2015523691A (en) * 2013-01-18 2015-08-13 エルジー・ケム・リミテッド Secondary battery structure
KR20160117431A (en) 2014-02-05 2016-10-10 스미토모덴키고교가부시키가이샤 Power storage device
KR20160144994A (en) 2014-04-11 2016-12-19 스미토모덴키고교가부시키가이샤 Electricity storage device
KR20160042244A (en) * 2014-10-07 2016-04-19 삼성에스디아이 주식회사 Rechargeable battery
KR102273643B1 (en) * 2014-10-07 2021-07-07 삼성에스디아이 주식회사 Rechargeable battery
CN105609693B (en) * 2014-11-19 2020-08-11 三星Sdi株式会社 Electrode assembly and battery pack having the same
CN105609693A (en) * 2014-11-19 2016-05-25 三星Sdi株式会社 Electrode assembly and battery pack having the same
CN106972119A (en) * 2016-01-13 2017-07-21 比亚迪股份有限公司 A kind of cover plate assembly, the battery containing the cover plate assembly and battery pack
CN106972119B (en) * 2016-01-13 2020-10-23 比亚迪股份有限公司 Cover plate assembly, battery containing cover plate assembly and battery pack
JP2018198163A (en) * 2017-05-24 2018-12-13 トヨタ自動車株式会社 Secondary battery
WO2023137976A1 (en) * 2022-01-24 2023-07-27 宁德时代新能源科技股份有限公司 Battery cell, battery and electric device
WO2024066107A1 (en) * 2022-09-27 2024-04-04 厦门海辰储能科技股份有限公司 Lower plastic, battery, battery module and electric device

Similar Documents

Publication Publication Date Title
US20220102805A1 (en) Cylindrical sealed battery and battery pack
JP2011204469A (en) Square sealed secondary battery
JP6250567B2 (en) Sealed battery
JP6538650B2 (en) Cylindrical sealed battery
KR102245620B1 (en) Rechargeable battery
JP6254102B2 (en) Sealed battery
WO2014045569A1 (en) Sealed secondary battery
EP2854201B1 (en) Rechargeable battery
KR20120095158A (en) Rechargeable battery
EP3051611B1 (en) Battery cell comprising means for protecting short circuit
US9601735B2 (en) Cylindrical battery
KR100914115B1 (en) Secondary battery
KR102165332B1 (en) Secondary battery
EP2477257A1 (en) Secondary battery
KR102449106B1 (en) Secondary battery capable of internal and external pressure balancing
JP2011210690A (en) Sealed battery
JP6304981B2 (en) Nonaqueous electrolyte secondary battery
JP2011159389A (en) Sealed flat type secondary battery
JP5550892B2 (en) Sealed flat secondary battery
JP2011076952A (en) Sealed battery
KR100591429B1 (en) Secondary battery
KR101084919B1 (en) Secondary battery
KR20060085443A (en) Secondary battery
JP2012209024A (en) Sealed battery
KR20130054310A (en) Rechargeable battery