JP2011076952A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2011076952A
JP2011076952A JP2009228938A JP2009228938A JP2011076952A JP 2011076952 A JP2011076952 A JP 2011076952A JP 2009228938 A JP2009228938 A JP 2009228938A JP 2009228938 A JP2009228938 A JP 2009228938A JP 2011076952 A JP2011076952 A JP 2011076952A
Authority
JP
Japan
Prior art keywords
battery
electrode group
electrode
negative electrode
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009228938A
Other languages
Japanese (ja)
Inventor
Masaki Shikoda
将貴 志子田
Tsutomu Matsui
勉 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009228938A priority Critical patent/JP2011076952A/en
Publication of JP2011076952A publication Critical patent/JP2011076952A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed battery with high safety in which damages of an electrode group in a battery and exhaust failure of an internal gas are prevented. <P>SOLUTION: The sealed battery includes an electrode group which is housed in an outer package can 1 and includes a positive electrode and a negative electrode, a battery seal 10 which is respectively electrically connected to the positive and the negative electrodes, covers the aperture of the outer package can, and has a positive electrode terminal and a negative electrode terminal, and spacers 41a, 41b which are arranged between the battery seal and the electrode group. The spacers fix the electrode group in the outer package can and have pressing plates 46a-46c with a gangway formed at a position facing the upper end face 2a of the electrode group, so that the spacers can prevent movement of the electrode group when vibration and shock are applied to the battery. Further, the electrolyte liquid filled from an electrolyte liquid injection port 20 is collected at the upper part 2a of the electrode group from the pressing plate gangway of the spacers, thereby the electrolyte liquid is uniformly impregnated from the upper end of the electrode group. Further, the gangway becomes a passage during gas exhaust and a safety valve is reliably opened. Thereby, the sealed battery with high reliability can be provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、密閉形電池に関し、特に電池外装缶内へ収納した電極群が移動することを防止
した構造であることに関する。
The present invention relates to a sealed battery, and more particularly, to a structure in which an electrode group housed in a battery outer can is prevented from moving.

近年、携帯電話やパーソナルコンピュータなどの電子機器や、ハイブリッド自動車や、電
気自動車、携帯電話基地局の無停電電源用などの電源として、ニッケル水素二次電池やリ
チウムイオン二次電池に代表される非水電解質二次電池などの密閉形電池が期待されてい
る。
In recent years, nickel-metal hydride secondary batteries and lithium-ion secondary batteries have been used as power sources for electronic devices such as mobile phones and personal computers, uninterruptible power supplies for hybrid vehicles, electric vehicles, and mobile phone base stations. A sealed battery such as a water electrolyte secondary battery is expected.

携帯用電子機器に使用される密閉形電池は、小型化、軽量化が求められている。一方、ハ
イブリッド自動車や、電気自動車、電動バイク、フォークリフトなどに代表される密閉形
電池は、大型化、大容量化の開発が行われ、特に、安全性、長期信頼性への取り組みが成
されている。
Sealed batteries used in portable electronic devices are required to be smaller and lighter. On the other hand, sealed batteries typified by hybrid cars, electric cars, electric motorcycles, forklifts, etc., have been developed with larger sizes and larger capacities, especially with regard to safety and long-term reliability. Yes.

密閉形電池の形状として、円筒形や角形などが一般的であるが、特に角形密閉形電池は、
機器に搭載するに際してスペース効率が優れている点で注目されている。
As the shape of the sealed battery, a cylindrical shape or a square shape is generally used.
It is attracting attention because of its excellent space efficiency when mounted on equipment.

これらの密閉形電池は、金属製の板体からなる筒形の外装缶内に、正極、負極、セパレー
タからなる電極群に電解液が含浸された発電要素が収納され、外装缶の開口部が電池封口
体で封口されており、電池封口体と外装缶開口部との間は、電解液やガスが漏出するのを
防止するよう封止されている。そして、電極群と外部端子との間は、導電タブにより接続
されている。導電タブは、電極の集電板より延出したものや、集電板へ導電タブを溶接に
より後付するなどにより形成されている。このため、携帯電子機器や電気自動車などに密
閉形電池を搭載した場合、機器の振動や、衝撃により電極群が電池内部で移動し、電極群
と外部端子とを接続している導電タブが切れたり、折れ曲がったりの不良が発生しやすい
These sealed batteries contain a power generation element in which an electrode group consisting of a positive electrode, a negative electrode, and a separator is impregnated with an electrolyte in a cylindrical outer can made of a metal plate, and an opening of the outer can It is sealed with a battery sealing body, and the space between the battery sealing body and the outer can opening is sealed so as to prevent leakage of electrolyte and gas. The electrode group and the external terminal are connected by a conductive tab. The conductive tab is formed by extending from the current collector plate of the electrode or by attaching the conductive tab to the current collector plate by welding. For this reason, when a sealed battery is mounted on a portable electronic device or an electric vehicle, the electrode group moves inside the battery due to the vibration or impact of the device, and the conductive tab connecting the electrode group and the external terminal is disconnected. Or bends easily.

そこで、ケース内の電極群が位置ずれするのを防止するために、電極群と封口板との間に
スペーサを配設することで、電池に振動や衝撃が加わった際においても電極群が移動する
ことを防止する技術が開示されている(特許文献1参照)。
Therefore, in order to prevent the electrode group in the case from being displaced, a spacer is provided between the electrode group and the sealing plate, so that the electrode group moves even when vibration or impact is applied to the battery. A technique for preventing this is disclosed (see Patent Document 1).

特開平8−329911号公報Japanese Patent Laid-Open No. 8-329911

通常、非水電解質二次電池などの密閉形電池は非水電解液を注液することにより初めて電
池として電気化学的機能を有するようになる。捲回された電極群中の正極層及び負極層全
てに非水電解液が行き渡るためには、電極群の高さ方向の上部及び下部から電極群の中央
部まで非水電解液が浸透する必要がある。そして、電解液が電極群へ十分に、そして均等
に含浸されることで、充放電特性やサイクル特性などの電池としての特性が発揮される。
Normally, a sealed battery such as a non-aqueous electrolyte secondary battery has an electrochemical function as a battery only when a non-aqueous electrolyte is injected. In order for the non-aqueous electrolyte to reach all of the positive electrode layer and the negative electrode layer in the wound electrode group, it is necessary for the non-aqueous electrolyte to penetrate from the upper and lower parts of the electrode group in the height direction to the center part of the electrode group. There is. And, as the electrolyte solution is sufficiently and evenly impregnated into the electrode group, battery characteristics such as charge / discharge characteristics and cycle characteristics are exhibited.

また、非水電解質二次電池を過充電状態や充電状態で高温保存をすると非水電解液中の非
水溶媒が分解されやすくなり、電池内部でガスが発生し電池内圧を上昇させる。このため
、一定の圧力以上に電池内部圧力が上昇した場合、発生したガスを電池外部へ排出するた
めの安全弁を備えている。内部ガスは、電極群の中で発生し電極群から安全弁へと流出し
、開放された安全弁から電池外部へ排出される。
In addition, when the nonaqueous electrolyte secondary battery is stored at a high temperature in an overcharged state or a charged state, the nonaqueous solvent in the nonaqueous electrolyte solution is easily decomposed, and gas is generated inside the battery to increase the internal pressure of the battery. For this reason, when the battery internal pressure rises above a certain pressure, a safety valve is provided for discharging the generated gas to the outside of the battery. The internal gas is generated in the electrode group, flows out from the electrode group to the safety valve, and is discharged from the opened safety valve to the outside of the battery.

しかしながら、電極群を固定するスペーサの電極群の渦巻き部分と接する部分が板状であ
ると、封口板に設置された注液口から注液された電解液は、スペーサの板状部により電極
群の渦巻き部分が押さえつけられ、電解液の電極群への含浸を妨げ、電解液が電極群へ均
等に含浸されないことや、電池が過充電状態などにより電池内部でガスが発生した際、ス
ペーサの板状部によりガスの流出が妨げられ、設定した圧力で安全弁が機能しないという
課題がある。
However, when the portion of the spacer that contacts the spiral portion of the electrode group that fixes the electrode group is plate-shaped, the electrolyte solution injected from the liquid injection port installed on the sealing plate is separated from the electrode group by the plate-shaped portion of the spacer. When the spiral part of the battery is pressed down to prevent the electrolyte group from being impregnated into the electrode group and the electrolyte solution is not uniformly impregnated into the electrode group, or when gas is generated inside the battery due to an overcharged state, the spacer plate There is a problem that the outflow of gas is hindered by the shaped part and the safety valve does not function at the set pressure.

本発明は、密閉形電池に電極群を固定するスペーサを配設し、スペーサと電極群とが接す
る面に網目状の貫通部を設けることで、電池内へ注液する電解液が捲回された電極群中の
正極層及び負極層全てに非水電解液が行き渡り、電極群の高さ方向の上部及び下部から電
極群の中央部まで非水電解液が電極群内部へ均一に含浸される。更に、過充電などにより
電池内部でガスが発生した場合、スペーサと電極群とが接する面に網目状の貫通部を設け
ることで電極群から安全弁へ流出するガスの流れを妨げることなく安全弁より電池外部へ
排出することができる。これにより、充放電特性やサイクル特性などに優れ、かつ安全性
、信頼性が高い密閉形電池を提供することができる。
According to the present invention, a spacer for fixing an electrode group is provided in a sealed battery, and a mesh-shaped through portion is provided on a surface where the spacer and the electrode group are in contact with each other, so that an electrolyte to be injected into the battery is wound. The non-aqueous electrolyte spreads over all of the positive electrode layer and the negative electrode layer in the electrode group, and the non-aqueous electrolyte solution is uniformly impregnated inside the electrode group from the top and bottom in the height direction of the electrode group to the center of the electrode group. . In addition, when gas is generated inside the battery due to overcharge, etc., the battery can be removed from the safety valve without obstructing the flow of gas flowing out from the electrode group to the safety valve by providing a mesh-like through portion on the surface where the spacer and the electrode group contact. It can be discharged to the outside. As a result, it is possible to provide a sealed battery that is excellent in charge / discharge characteristics, cycle characteristics, and the like, and that has high safety and reliability.

本発明における密閉形電池は、外装缶と、前記外装缶内に収納され、正極及び負極を含む
電極群と、前記外装缶の開口部に取り付けられる電池封口体と、前記電池封口体若しくは
前記外装缶に設けられた安全弁と前記電極群と接する位置に配置されたスペーサを具備す
る密閉形電池であって、
前記スペーサは、電極群と接する面に平面部を有し、その平面部が複数の貫通路を形成し
ていることを特徴とする密閉形電池。
The sealed battery according to the present invention includes an outer can, an electrode group that is housed in the outer can and includes a positive electrode and a negative electrode, a battery sealing body that is attached to an opening of the outer can, and the battery sealing body or the outer packaging. A sealed battery comprising a safety valve provided on a can and a spacer disposed at a position in contact with the electrode group,
The spacer has a flat portion on a surface in contact with the electrode group, and the flat portion forms a plurality of through passages.

本発明は、密閉形電池の内部にスペーサを配し、スペーサの電極群と接する面の平面部に
複数の貫通路を形成することで、電池内へ注液する電解液が捲回された電極群中の正極層
及び負極層全てに非水電解液が行き渡り、電極群の高さ方向の上部及び下部から電極群の
中央部まで非水電解液が電極群内部へ均一に含浸され、更に、過充電などにより電池内部
でガスが発生した場合、電極群から安全弁へ流出するガスの流れを妨げることなく安全弁
より電池外部へ排出することができる電池特性の優れた、安全性の高い密閉形電池を提供
することができる。
The present invention provides an electrode in which an electrolyte to be injected into the battery is wound by arranging a spacer inside the sealed battery and forming a plurality of through passages in a plane portion of a surface in contact with the electrode group of the spacer. The non-aqueous electrolyte is spread all over the positive electrode layer and the negative electrode layer in the group, and the non-aqueous electrolyte is uniformly impregnated into the electrode group from the upper and lower parts in the height direction of the electrode group to the center part of the electrode group. A highly safe sealed battery with excellent battery characteristics that can be discharged from the safety valve to the outside of the battery without obstructing the flow of gas flowing out from the electrode group to the safety valve when gas is generated inside the battery due to overcharging, etc. Can be provided.

実施形態の密閉形電池を示す展開図。The expanded view which shows the sealed battery of embodiment. 実施形態のスペーサを示す図。The figure which shows the spacer of embodiment.

以下、本発明の実施形態に係る密閉形電池について図面を参照して説明する。 Hereinafter, a sealed battery according to an embodiment of the present invention will be described with reference to the drawings.

図1に示す角形の密閉形電池は、有底矩形筒状をなす外装缶1を具備する。外装缶1は、
例えば、アルミニウム板もしくはアルミニウム合金板に深絞り加工を施すことにより成形
されたものである。電極群2は、例えば、シート状の正極と、シート状の負極とをセパレ
ータを間にして渦巻状に捲回した後、全体を電池缶の横断面形状に合致した断面四角形状
に押し潰し変形することにより作製される。
The square sealed battery shown in FIG. 1 includes an outer can 1 having a bottomed rectangular cylindrical shape. The outer can 1 is
For example, it is formed by subjecting an aluminum plate or an aluminum alloy plate to deep drawing. The electrode group 2 is formed by, for example, winding a sheet-like positive electrode and a sheet-like negative electrode in a spiral shape with a separator in between, and then crushing the whole into a square shape that matches the cross-sectional shape of the battery can It is produced by doing.

正極は、例えば、正極活物質を含むスラリーをアルミニウム箔もしくはアルミニウム合金
箔からなる集電体に塗着することにより作製される。正極活物質としては、リチウムを吸
蔵放出できる酸化物や硫化物、ポリマーなどが使用できる。好ましい活物質としては、高
い正極電位が得られるリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチ
ウムコバルト複合酸化物、リチウム燐酸鉄等が挙げられる。また、負極は、負極活物質を
含むスラリーをアルミニウム箔もしくはアルミニウム合金箔からなる集電体に塗着するこ
とにより作製される。負極活物質としては、リチウムを吸蔵放出できる金属酸化物、金属
硫化物、金属窒化物、合金等が使用でき、好ましくは、リチウムイオンの吸蔵放出電位が
金属リチウム電位に対して0.4V以上貴となる物質である。このようなリチウムイオン
吸蔵放出電位を有する負極活物質は、アルミニウムもしくはアルミニウム合金とリチウム
との合金反応を抑えられることから、負極集電体および負極関連構成部材へのアルミニウ
ムもしくはアルミニウム合金の使用を可能とする。たとえば、チタン酸化物、リチウムチ
タン酸化物、タングステン酸化物、アモルファススズ酸化物、スズ珪素酸化物、酸化珪素
などがあり、中でもリチウムチタン複合酸化物が好ましい。セパレータとしては、微多孔
性の膜、織布、不織布、これらのうち同一材または異種材の積層物等を用いることができ
る。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プ
ロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー等を挙げることができる。
The positive electrode is produced, for example, by applying a slurry containing a positive electrode active material to a current collector made of an aluminum foil or an aluminum alloy foil. As the positive electrode active material, oxides, sulfides, polymers, and the like that can occlude and release lithium can be used. Preferable active materials include lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium iron phosphate, and the like that can obtain a high positive electrode potential. The negative electrode is produced by applying a slurry containing a negative electrode active material to a current collector made of an aluminum foil or an aluminum alloy foil. As the negative electrode active material, metal oxides, metal sulfides, metal nitrides, alloys, and the like that can occlude and release lithium can be used. Preferably, the occlusion and release potential of lithium ions is 0.4 V or higher relative to the metal lithium potential. It is a substance. Since the negative electrode active material having such a lithium ion storage / release potential can suppress the alloy reaction between aluminum or an aluminum alloy and lithium, it is possible to use aluminum or an aluminum alloy for a negative electrode current collector and a negative electrode related component. And For example, there are titanium oxide, lithium titanium oxide, tungsten oxide, amorphous tin oxide, tin silicon oxide, silicon oxide, etc. Among them, lithium titanium composite oxide is preferable. As the separator, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer.

非水電解液(図示しない)は外装缶1内に収容されており、電極群2に含浸されている。 A non-aqueous electrolyte (not shown) is accommodated in the outer can 1 and impregnated in the electrode group 2.

非水電解液は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより調製さ
れる。非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネ
ート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエ
チルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクト
ン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジ
メトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテト
ラヒドロフラン等を挙げることができる。非水溶媒は、単独で使用しても、2種以上混合
して使用してもよい。電解質としては、例えば、過塩素酸リチウム(LiClO4)、六
フッ過リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化
砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO
3)等のリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合し
て使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L〜3mol/
Lとすることが望ましい。
The non-aqueous electrolyte is prepared by dissolving an electrolyte (for example, a lithium salt) in a non-aqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ -BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. Nonaqueous solvents may be used alone or in combination of two or more. Examples of the electrolyte include lithium perchlorate (LiClO4), lithium hexafluorophosphate (LiPF6), lithium tetrafluoroborate (LiBF4), lithium hexafluoroarsenide (LiAsF6), and lithium trifluoromethanesulfonate (LiCF3SO).
3) etc. can be mentioned. The electrolyte may be used alone or in combination of two or more. The amount of electrolyte dissolved in the non-aqueous solvent is 0.2 mol / L to 3 mol /.
L is desirable.

図1に示すように、複数の正極導電タブ3は、正極の複数個所と電気的に接続されており
、それぞれが電極群2の上側の端面から上向きに導出されている。一方、複数の負極導電
タブ4は、負極の複数個所と電気的に接続されており、それぞれが電極群2の上側の端面
から上向きに導出されている。正極導電タブ3には、例えば、正極の集電体を部分的に延
出させたものを使用することができるが、正極と別体であっても良い。また、負極導電タ
ブ4には、例えば、負極の集電体を部分的に延出させたものを使用することができるが、
負極と別体であっても良い。
As shown in FIG. 1, the plurality of positive electrode conductive tabs 3 are electrically connected to a plurality of locations of the positive electrode, and each is led upward from the upper end face of the electrode group 2. On the other hand, the plurality of negative electrode conductive tabs 4 are electrically connected to a plurality of portions of the negative electrode, and each is led upward from the upper end face of the electrode group 2. As the positive electrode conductive tab 3, for example, a positive electrode current collector partially extended can be used, but may be separate from the positive electrode. Moreover, for the negative electrode conductive tab 4, for example, a negative electrode current collector partially extended can be used.
It may be a separate body from the negative electrode.

正極導電タブ3は、少なくとも先端部が重ね合わされた後、重ね合わされた部分の両方の
最外層がU字状もしくは二つに折り曲げられた正極保護リード5で被覆されている。この
正極保護リード5は正極導電タブ3に溶接によって固定されている。一方、負極導電タブ
4は、少なくとも先端部が重ね合わされた後、重ね合わされた部分の両方の最外層がU字
状もしくは二つに折り曲げられた負極保護リード6で被覆されている。この負極保護リー
ド6は、負極導電タブ4に溶接によって固定されている。なお、導電タブと保護リードと
の溶接方法には、レーザ溶接、超音波溶接、抵抗溶接等の方法が用いられるが、超音波溶
接が好ましい。正極保護リード5の材質は、例えば、アルミニウムもしくはアルミニウム
合金にすることができる。負極保護リード6の材質は、例えば、アルミニウムもしくはア
ルミニウム合金にすることができる。また、正極保護リード5の材質は、正極導電タブ3
と同一の材質であることが好ましく、負極保護リード6の材質は、負極導電タブ4と同一
の材質であることが好ましい。
The positive electrode conductive tab 3 is covered with a positive electrode protection lead 5 in which the outermost layers of both of the overlapped portions are U-shaped or folded in two after at least the tip portions are overlapped. The positive electrode protection lead 5 is fixed to the positive electrode conductive tab 3 by welding. On the other hand, the negative electrode conductive tab 4 is covered with a negative electrode protective lead 6 in which at least the front end portions are overlapped, and the outermost layers of both of the overlapped portions are U-shaped or folded in two. The negative electrode protection lead 6 is fixed to the negative electrode conductive tab 4 by welding. In addition, although methods, such as laser welding, ultrasonic welding, resistance welding, are used for the welding method of a conductive tab and a protection lead, ultrasonic welding is preferable. The material of the positive electrode protection lead 5 can be, for example, aluminum or an aluminum alloy. The material of the negative electrode protection lead 6 can be aluminum or an aluminum alloy, for example. The material of the positive electrode protection lead 5 is the positive electrode conductive tab 3.
The negative electrode protection lead 6 is preferably the same material as the negative electrode conductive tab 4.

正極保護リード5の外側の一方の面には、四角形板状の正極中間リード7が溶接されてい
る。正極中間リード7は、大きさを正極保護リード5との対向面積よりも大きくすること
が望ましく、また、厚さについては正極リード15の厚さとの差が小さいことが望ましい
。また、負極保護リード6の外側の一方の面には、四角形板状の負極中間リード8が溶接
されている。負極中間リード8は、大きさを負極保護リード6との対向面積よりも大きく
することが望ましく、また、厚さについては負極リード14の厚さとの差が小さいことが
望ましい。なお、溶接方法には、レーザー溶接、超音波溶接、抵抗溶接等の方法が用いら
れるが、超音波溶接が好ましい。正極中間リード7の材質は、例えば、アルミニウムもし
くはアルミニウム合金にすることができる。負極中間リード8の材質は、例えば、アルミ
ニウムもしくはアルミニウム合金にすることができる。また、正極中間リード7の材質は
、正極導電タブ3と同一の材質であることが好ましく、負極中間リード8の材質は、負極
導電タブ4と同一の材質であることが好ましい。
A square plate-like positive electrode intermediate lead 7 is welded to one surface outside the positive electrode protection lead 5. The positive intermediate lead 7 is desirably larger in size than the area facing the positive electrode protection lead 5, and the thickness is desirably small from the thickness of the positive electrode lead 15. A rectangular plate-like negative electrode intermediate lead 8 is welded to one surface outside the negative electrode protection lead 6. The negative electrode intermediate lead 8 is desirably larger in size than the area facing the negative electrode protection lead 6, and the thickness is desirably small with respect to the thickness of the negative electrode lead 14. As a welding method, laser welding, ultrasonic welding, resistance welding, or the like is used, but ultrasonic welding is preferable. The material of the positive electrode intermediate lead 7 can be, for example, aluminum or an aluminum alloy. The material of the negative electrode intermediate lead 8 can be, for example, aluminum or an aluminum alloy. The material of the positive electrode intermediate lead 7 is preferably the same material as that of the positive electrode conductive tab 3, and the material of the negative electrode intermediate lead 8 is preferably the same material as that of the negative electrode conductive tab 4.

外装缶1の開口部は封口部材9によって封止されている。封口部材9は、図1に示すよう
に、外装缶1の開口部を塞ぐ電池封口体10と、電池封口体10の外面(上面)にガスケ
ット11を介して取り付けられた出力端子(リベット)12と、電池封口体10の内面(
下面)に絶縁体13を介して取り付けられた負極リード14及び正極リード15とを備え
る。ガスケット11の材質としては、ポリプロピレン(PP)、熱可塑性フッ素樹脂等を
挙げることができる。熱可塑性フッ素樹脂としては、例えば、テトラフルオロエチレン−
パーフルオロアルコキシエチレン共重合体(PFA)、テトラフルオロエチレン−ヘキサ
フルオロプロピレン共重合体(FEP)等を挙げることができる。
The opening of the outer can 1 is sealed with a sealing member 9. As shown in FIG. 1, the sealing member 9 includes a battery sealing body 10 that closes the opening of the outer can 1, and an output terminal (rivet) 12 that is attached to the outer surface (upper surface) of the battery sealing body 10 via a gasket 11. And the inner surface of the battery sealing body 10 (
A negative electrode lead 14 and a positive electrode lead 15 attached to the lower surface via an insulator 13. Examples of the material of the gasket 11 include polypropylene (PP) and thermoplastic fluororesin. Examples of the thermoplastic fluororesin include tetrafluoroethylene-
Examples thereof include perfluoroalkoxyethylene copolymer (PFA) and tetrafluoroethylene-hexafluoropropylene copolymer (FEP).

電池封口体10は、アルミニウムまたはアルミニウム合金板材を素材にしたプレス成形品
からなり、板面上にガスケット11の取付け用に貫通孔16が形成され、該貫通孔16の
上面側の開口周縁には、ガスケット11用の受け座17が凹み形成されている。受け座1
7は、廻り止めのために円形以外の形状、例えば図1では四角形をしている。一方極端子
としての正極端子18は、電池封口体10の上面側に凸状に張り出している。正極端子1
8の先端面は、廻り止めのために円形以外の形状、例えば図1では四角形をしている。ま
た、圧力開放弁は、電池封口体10の上面における受け座17と正極端子18との間に位
置する凹部内の底面に設けられたX字状の溝19を備え、ケース内圧が一定圧力を越える
と溝19が破断して内圧を開放する役割を持つ。電解液注液口20は、電解液の注液後、
封止栓21で閉止される。この封止栓21は、電池封口体10に溶接される。
The battery sealing body 10 is made of a press-molded product made of aluminum or an aluminum alloy plate material. A through hole 16 is formed on the plate surface for mounting the gasket 11. A receiving seat 17 for the gasket 11 is formed in a recess. Receiving seat 1
Reference numeral 7 denotes a shape other than a circle for stopping rotation, for example, a quadrangle in FIG. On the other hand, the positive electrode terminal 18 as the electrode terminal protrudes in a convex shape on the upper surface side of the battery sealing body 10. Positive terminal 1
The front end face 8 has a shape other than a circle for preventing rotation, for example, a quadrangle in FIG. The pressure release valve includes an X-shaped groove 19 provided on the bottom surface in the recess located between the receiving seat 17 and the positive electrode terminal 18 on the upper surface of the battery sealing body 10, and the case internal pressure is constant. If it exceeds, the groove 19 breaks to release the internal pressure. The electrolyte solution injection port 20 is formed after the electrolyte solution is injected.
It is closed with a sealing plug 21. The sealing plug 21 is welded to the battery sealing body 10.

負極リード14は、絶縁体13の軸用貫通孔30と連通するように設けられ、少なくとも
一部が円形以外の形状を持つ軸用貫通孔14cを有する第1のプレート部14aと、第1
のプレート部14aから電極群2側に延出された第2のプレート部14bとを備え、L字
型の断面形状を有するものである。第1のプレート部及び第2のプレート部は導電材料か
ら形成されている。軸用貫通孔14cは、円形穴からなる。軸用貫通孔14cには、出力
端子12の軸先端部24が挿入される。負極リード14の厚さは0.5〜1.5mmが望
ましい。また、負極リード14の材質は、活物質の材質に合わせて変更される。負極活物
質がチタン酸リチウムの場合、アルミニウムもしくはアルミニウム合金を使用することが
できる。
The negative electrode lead 14 is provided so as to communicate with the shaft through hole 30 of the insulator 13, and at least a part of the first plate portion 14 a having a shaft through hole 14 c having a shape other than a circular shape,
And a second plate portion 14b extending from the plate portion 14a to the electrode group 2 side, and has an L-shaped cross-sectional shape. The first plate portion and the second plate portion are made of a conductive material. The shaft through hole 14c is a circular hole. The shaft tip 24 of the output terminal 12 is inserted into the shaft through hole 14c. The thickness of the negative electrode lead 14 is desirably 0.5 to 1.5 mm. The material of the negative electrode lead 14 is changed according to the material of the active material. When the negative electrode active material is lithium titanate, aluminum or an aluminum alloy can be used.

正極リード15は、四角形の板からなる第1のプレート部15aと、第1のプレート部1
5aから電極群2側に延出された第2のプレート部15bとを備える。第1のプレート部
及び第2のプレート部は導電材料から形成されている。第1のプレート部15aと電池封
口体10の下面と接触して正極端子18の周囲にレーザ溶接される。正極リード15の材
質は、正極活物質の種類により変更されるものではあるが、例えば、アルミニウム、アル
ミニウム合金を使用することができる。
The positive electrode lead 15 includes a first plate portion 15 a made of a rectangular plate and a first plate portion 1.
A second plate portion 15b extending from 5a to the electrode group 2 side. The first plate portion and the second plate portion are made of a conductive material. Laser welding is performed around the positive electrode terminal 18 in contact with the first plate portion 15 a and the lower surface of the battery sealing body 10. Although the material of the positive electrode lead 15 is changed depending on the type of the positive electrode active material, for example, aluminum or an aluminum alloy can be used.

封口部材9の負極リード14の第2のプレート部14bに、図1及び図2に示すように、
負極中間リード8がレーザ溶接され、かつ封口部材9の正極リード15の第2のプレート
部15bに正極中間リード7がレーザ溶接される。正負極中間リード7,8を設けること
によって、封口部材9と、電極群2の正負極導電タブ3,4との電気的接続が容易になる
。すなわち、正負極導電タブ3,4を正負極保護リード5,6と中間リード7,8とで挟
み、これらを超音波溶接により一体化した後、中間リード7,8を正負極リード14,1
5にレーザ溶接することによって、溶接の際に封口部材9に振動が加わらないため、封口
部材9に設けられた圧力開放弁の溝19の破断を防止することができる。なお、保護リー
ドを厚くすることができ、保護リードが溶接された導電タブをリード部材にレーザ溶接す
ることが可能な場合、中間リードは用いなくても良い。
On the second plate portion 14b of the negative electrode lead 14 of the sealing member 9, as shown in FIGS.
The negative intermediate lead 8 is laser welded, and the positive intermediate lead 7 is laser welded to the second plate portion 15 b of the positive lead 15 of the sealing member 9. Providing the positive and negative intermediate leads 7 and 8 facilitates electrical connection between the sealing member 9 and the positive and negative electrode conductive tabs 3 and 4 of the electrode group 2. That is, the positive and negative electrode conductive tabs 3 and 4 are sandwiched between the positive and negative electrode protective leads 5 and 6 and the intermediate leads 7 and 8, and these are integrated by ultrasonic welding, and then the intermediate leads 7 and 8 are connected to the positive and negative electrode leads 14 and 1 respectively.
By performing laser welding on the sealing member 5, vibration is not applied to the sealing member 9 during welding, so that the breakage of the groove 19 of the pressure release valve provided in the sealing member 9 can be prevented. When the protective lead can be thickened and the conductive tab to which the protective lead is welded can be laser-welded to the lead member, the intermediate lead may not be used.

封口部材と電極群との電気的接続を行った後、封口部材と電極群とを接続する各種正極リ
ードと各種負極リードとをスペーサ41a,41bにより挟み込むように配置し、電池缶
1内における電極群2の上端面2aと蓋10の下面との間に設けられた空間内に配置され
る。そして、電池封口体10を外装缶1に内嵌したうえで、電池封口体10と外装缶1と
の嵌合面が溶接により封止される。最後に、電池封口体10の電解液注液口20から電解
液を外装缶1内へ注液した後、注液口20に封止栓21を内嵌して溶接し、注液口20を
封止することによって図1に示す電池が得られる。
After the electrical connection between the sealing member and the electrode group, the various positive electrode leads and the various negative electrode leads connecting the sealing member and the electrode group are arranged so as to be sandwiched between the spacers 41a and 41b, and the electrode in the battery can 1 They are arranged in a space provided between the upper end surface 2 a of the group 2 and the lower surface of the lid 10. And after fitting the battery sealing body 10 in the exterior can 1, the fitting surface of the battery sealing body 10 and the exterior can 1 is sealed by welding. Finally, after injecting the electrolyte into the outer can 1 from the electrolyte inlet 20 of the battery sealing body 10, a sealing plug 21 is fitted into the inlet 20 and welded. The battery shown in FIG. 1 is obtained by sealing.

スペーサについて図1及び図2により示す。スペーサ41a,41bは、電池缶1内にお
ける電極群2の上端面2aと電池封口体10の下面との間に設けられた空間内に配置され
る。スペーサ41aは、四角形のプレートの両方の短辺と、長辺方向の中間地点とに、仕
切り板42a〜42cが設けられたものである。仕切り板42a〜42cの端面には、凹
部43が設けられている。仕切り板42a〜42cに接続される形で、電極群2の上端面
2aと向き合う位置に46a〜46cの貫通路を形成した押さえ板が設けられている。一
方、スペーサ41bは、四角形のプレートの両方の短辺と、長辺方向の中間地点とに、仕
切り板44a〜44cが設けられたものである。仕切り板44a〜44cの端面には、ス
ペーサ41aの凹部43へ嵌め込む為の突起45が設けられている。仕切り板44a〜4
4cに接続される形で、電極群2の上端面2aと向き合う位置に貫通路を形成した押さえ
板(図示せず)が設けられている。スペーサ41bの仕切り板44a〜44cの突起45
を、スペーサ41aの仕切り板42a〜42cの凹部43に嵌め込むと、スペーサ41a
の仕切り板42a,42bとスペーサ41bの仕切り板44a,44bとで囲まれた空間
内に正極導電タブ3及び正極リード15が位置し、スペーサ41aの仕切り板42b,4
2cとスペーサ41bの仕切り板44b,44cとで囲まれた空間内に負極導電タブ4及
び負極リード14が位置する。これにより、正極導電タブ3と負極導電タブ4との絶縁、
正極リード15と負極リード14との絶縁、これら部材と電池缶1との絶縁が達成される
。スペーサ41a,41bの4隅には、電池缶1と電極群2の空隙に電解液をより含浸さ
せるために穴を設けることもできる。
The spacer is shown in FIG. 1 and FIG. The spacers 41 a and 41 b are arranged in a space provided between the upper end surface 2 a of the electrode group 2 and the lower surface of the battery sealing body 10 in the battery can 1. The spacer 41a is provided with partition plates 42a to 42c at both short sides of the rectangular plate and an intermediate point in the long side direction. Concave portions 43 are provided on the end surfaces of the partition plates 42a to 42c. A pressing plate in which through passages 46a to 46c are formed at positions facing the upper end surface 2a of the electrode group 2 in a form connected to the partition plates 42a to 42c. On the other hand, the spacer 41b is provided with partition plates 44a to 44c at both short sides of the rectangular plate and an intermediate point in the long side direction. On the end faces of the partition plates 44a to 44c, projections 45 for fitting into the recesses 43 of the spacer 41a are provided. Partition plates 44a-4
A pressing plate (not shown) in which a through path is formed at a position facing the upper end surface 2a of the electrode group 2 in a form connected to 4c. Projection 45 of partition plates 44a-44c of spacer 41b
Is inserted into the recess 43 of the partition plates 42a to 42c of the spacer 41a, the spacer 41a
The positive electrode conductive tab 3 and the positive electrode lead 15 are located in a space surrounded by the partition plates 42a and 42b and the partition plates 44a and 44b of the spacer 41b, and the partition plates 42b and 4 of the spacer 41a.
The negative electrode conductive tab 4 and the negative electrode lead 14 are located in a space surrounded by 2c and the partition plates 44b and 44c of the spacer 41b. Thereby, the insulation between the positive electrode conductive tab 3 and the negative electrode conductive tab 4,
Insulation between the positive electrode lead 15 and the negative electrode lead 14 and insulation between these members and the battery can 1 are achieved. Holes can be provided in the four corners of the spacers 41a and 41b in order to more impregnate the gap between the battery can 1 and the electrode group 2 with the electrolytic solution.

また、スペーサ41a,41bは、電池に振動や衝撃が加わった際の電極群2の移動を防
止することができる。さらに、電解液注液口20から注入された電解液が電極群2の上部
に溜まるため、電極群2の上端面から電解液が含浸し易くなり、電極群2に電解液を均一
に含浸させることができる。スペーサ41a,41bの材質としては、ポリプロピレン(
PP)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS
)やテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(PFA)などが挙げ
られる。
The spacers 41a and 41b can prevent the electrode group 2 from moving when vibrations or impacts are applied to the battery. Furthermore, since the electrolyte injected from the electrolyte injection port 20 accumulates in the upper part of the electrode group 2, the electrolyte is easily impregnated from the upper end surface of the electrode group 2, and the electrode group 2 is uniformly impregnated with the electrolyte. be able to. As a material of the spacers 41a and 41b, polypropylene (
PP), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS)
) And tetrafluoroethylene-hexafluoropropylene copolymer (PFA).

(実施例1)
外装缶1にはアルミニウム板を絞り成形した縦20mm、横100mm、高さ110mm
、缶壁厚さ0.5mmの角形の外装缶を用いた。次に、正極としてLiCoO2を主活物
質とし帯状の集電体へ塗布し作成した正極板と負極としてLi4+xTi5O12(xは−1≦
x≦3)で表されるスピネル構造を有するチタン酸リチウムを主活物質とし帯状の集電体
へ塗布し作成した負極板とをセパレータを介し捲回状とした電極群2を作成し、電極群2
から延出する正極タブ3と正極端子18とを正極保護リード5、正極中間リード7と正極
リード15を介して溶接し、同様に、一方の負極タブ4と負極端子12とを負極保護リー
ド6、負極中間リード8と負極リード14を介して溶接した後、スペーサ41aの仕切り
板42a,42bとスペーサ41bの仕切り板44a,44bとで囲まれた空間内に正極
導電タブ3及び正極リード15が位置し、スペーサ41aの仕切り板42b,42cとス
ペーサ41bの仕切り板44b,44cとで囲まれた空間内に負極導電タブ4及び負極リ
ード14が位置する。これにより、正極導電タブ3と負極導電タブ4との絶縁、正極リー
ド15と負極リード14との絶縁、これら部材と電池缶1との絶縁が達成される。そして
、電極群2を外装缶1内に挿入し、該外装缶開口部に電池封口体10を嵌合し、嵌合部を
レーザ溶接して一体化した。
Example 1
The outer can 1 is formed by drawing an aluminum plate 20 mm long, 100 mm wide, and 110 mm high.
A rectangular outer can having a can wall thickness of 0.5 mm was used. Next, a positive electrode plate prepared by applying LiCoO2 as a main active material to a strip-shaped current collector as a positive electrode and Li4 + xTi5O12 (x is -1≤)
An electrode group 2 is formed in which a negative electrode plate formed by applying lithium titanate having a spinel structure represented by x ≦ 3) to a strip-shaped current collector as a main active material is wound with a separator interposed therebetween. Group 2
The positive electrode tab 3 and the positive electrode terminal 18 extending from each other are welded via the positive electrode protection lead 5, the positive electrode intermediate lead 7 and the positive electrode lead 15. Similarly, one negative electrode tab 4 and the negative electrode terminal 12 are connected to the negative electrode protection lead 6. After welding through the negative electrode intermediate lead 8 and the negative electrode lead 14, the positive electrode conductive tab 3 and the positive electrode lead 15 are placed in a space surrounded by the partition plates 42a and 42b of the spacer 41a and the partition plates 44a and 44b of the spacer 41b. The negative electrode conductive tab 4 and the negative electrode lead 14 are positioned in a space surrounded by the partition plates 42b and 42c of the spacer 41a and the partition plates 44b and 44c of the spacer 41b. Thereby, the insulation between the positive electrode conductive tab 3 and the negative electrode conductive tab 4, the insulation between the positive electrode lead 15 and the negative electrode lead 14, and the insulation between these members and the battery can 1 are achieved. Then, the electrode group 2 was inserted into the outer can 1, the battery sealing body 10 was fitted into the outer can opening, and the fitting portion was integrated by laser welding.

非水電解液として、エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)が体
積比(EC:GBL)で1:2の割合で混合された有機溶媒に、リチウム塩のLiBF4
を1.5mol/L溶解させ、液状の非水電解質(非水電解液)を調製し、上述により得
られた電池半製品を減圧下に置き、この非水電解液を電解液注液口20より注液した後、
該注液口を封止栓21で閉止した後、封止栓21の周囲をレーザ溶接して電池封口体10
に溶接することにより、縦20mm、横100mm、高さ110mmで、容量6000m
Ahの密閉型の角型リチウムイオン二次電池を1000個作製した。
As a non-aqueous electrolyte, lithium salt LiBF4 is mixed with an organic solvent in which ethylene carbonate (EC) and γ-butyrolactone (GBL) are mixed at a volume ratio (EC: GBL) of 1: 2.
Is dissolved at 1.5 mol / L to prepare a liquid non-aqueous electrolyte (non-aqueous electrolyte), the battery semi-product obtained as described above is placed under reduced pressure, and this non-aqueous electrolyte is added to the electrolyte injection port 20. After more liquid injection
After closing the liquid injection port with the sealing plug 21, the battery sealing body 10 is laser welded around the sealing plug 21.
Is welded to 20mm in length, 100mm in width, 110mm in height, and a capacity of 6000m.
1000 Ah sealed rectangular lithium ion secondary batteries were produced.

このときのスペーサは、図2に示すように、スペーサ41a,41bが縦11mm、横6
0mm、高さ10mmで、押さえ板46a〜46cに一辺が0.5mmの貫通路を複数設
けた。
As shown in FIG. 2, spacers 41a and 41b are 11 mm long and 6 mm wide as shown in FIG.
A plurality of through-passages having a length of 0 mm and a height of 10 mm and a side of 0.5 mm were provided in the pressing plates 46a to 46c.

(実施例2)
スペーサ41a,41bが縦11mm、横60mm、高さ10mmで、押さえ板46a〜
46cに一辺が1mmの貫通路を複数設けたこと以外は実施例1と同様な構成の密閉形電
池を1000個作製した。
(Example 2)
The spacers 41a and 41b are 11 mm in length, 60 mm in width, and 10 mm in height.
1000 sealed batteries having the same configuration as in Example 1 were prepared except that a plurality of through passages each having a side of 1 mm were provided on 46c.

(実施例3)
スペーサ41a,41bが縦11mm、横60mm、高さ10mmで、押さえ板46a〜
46cに一辺が4mmの貫通路を複数設けたこと以外は実施例1と同様な構成の密閉形電
池を1000個作製した。
(Example 3)
The spacers 41a and 41b are 11 mm in length, 60 mm in width, and 10 mm in height.
One thousand sealed batteries having the same configuration as in Example 1 were prepared except that a plurality of through passages each having a side of 4 mm were provided in 46c.

(比較例1)
スペーサ41a,41bが縦11mm、横60mm、高さ10mmで、押さえ板46a〜
46cに貫通路を設けていないこと以外は実施例1と同様な構成の密閉形電池を1000
個作製した。
(Comparative Example 1)
The spacers 41a and 41b are 11 mm in length, 60 mm in width, and 10 mm in height.
A sealed battery having the same configuration as in Example 1 except that no through passage is provided in 46c is 1000.
Individually produced.

上記実施例及び比較例において作製した密閉形電池を国連の危険物輸送に関する規制勧告
(UN No.3090)に準じた振動試験および衝撃試験を実施した。振動試験は、国
連の危険物輸送に関する規制勧告(UN No.3090)に準じた試験で振動数7Hz
から200Hzまで、さらに連続して200Hzから7Hzまで合計15分で掃引を1セ
ットとして電池の高さ方向、幅方向、厚さ方向の3方向に12回行うものである。衝撃試
験は、ピーク加速度150G、パルス持続時間6ミリ秒の正弦半波(half-sine)衝撃を
電池の高さ方向、幅方向、厚さ方向の3方向のそれぞれ両方向、つまり電池の6面それぞ
れに対し3回衝撃を与え、電池1個に対し合計18回の衝撃を与える試験である。
The sealed batteries produced in the above Examples and Comparative Examples were subjected to vibration tests and impact tests in accordance with the UN Recommendations on the Transport of Dangerous Goods (UN No. 3090). The vibration test is a test in accordance with the UN Recommendation on Regulations on the Transport of Dangerous Goods (UN No. 3090).
From 200 Hz to 200 Hz, and continuously from 200 Hz to 7 Hz in a total of 15 minutes, the sweep is performed as one set 12 times in three directions of the battery height direction, width direction, and thickness direction. In the impact test, a half-sine impact with a peak acceleration of 150G and a pulse duration of 6 milliseconds was applied to each of the three directions of the battery in the height direction, width direction, and thickness direction, that is, each of the six surfaces of the battery. Is a test in which three impacts are given to a battery and a total of 18 impacts are given to one battery.

振動試験と衝撃試験を実施し、試験後、電池を分解し電極群の損傷具合を確認した。電極
群の損傷具合は、電池内で電極群が動くことで、スペーサの押さえ板と電極群の上面部と
外装缶底部と電極群の下面部とが激しく接触し、電極群の電極が波状に折れ曲がり、更に
は電極端部に切れが発生する。また、電極群のタブや電極群と電池封口体との導電接続部
分での切れ、外れなども観察し確認した。
A vibration test and an impact test were performed, and after the test, the battery was disassembled to confirm the damage condition of the electrode group. The damage to the electrode group is due to the movement of the electrode group within the battery. Bending occurs, and further, the end of the electrode is cut. Moreover, the cutting | disconnection, disconnection, etc. in the conductive connection part of the tab of an electrode group or an electrode group and a battery sealing body were observed and confirmed.

更に、10C−12Vの条件で過充電試験を行い電池の安全性について試験を行った。過
充電試験は、電池を1時間で満充電できる電流値を1Cとしたとき、その10倍の10Cの
電流を電池に流し、その際の電源電圧の最大値が12Vとなるように設定し試験する。
Furthermore, an overcharge test was performed under the condition of 10C-12V to test the safety of the battery. In the overcharge test, when the current value that can fully charge the battery in 1 hour is 1C, 10C current that is 10 times that current is passed through the battery, and the maximum value of the power supply voltage is set to 12V. To do.

また、電極群への電解液の含浸性を評価するため、組み立て後の電池を分解し、電極への
電解液の含浸状態、さらにサイクル試験により電池特性を評価し、電解液の電極群への含
浸性を確認した。電極への電解液の含浸状態は、電池組み立て後電池を分解し電極への電
解液の含浸状態を確認した。含浸状態は、電極の表面に塗布された活物質層が電解液によ
る濡れの有無により確認し、全面が濡れているものを◎、電極の端部のみが濡れ中央部は
濡れていないもの(電極面積の50%以下の範囲で濡れていない部分がある)を△とし評
価した。それぞれの試験内容に対し100個の電池を用いて試験を行った。これら評価の
結果を表1に示す。

Figure 2011076952
In addition, in order to evaluate the impregnation property of the electrolyte solution into the electrode group, the assembled battery is disassembled, the impregnation state of the electrolyte solution into the electrode, and further the battery characteristics are evaluated by a cycle test. The impregnation property was confirmed. Regarding the state of impregnation of the electrolyte into the electrode, the battery was disassembled after the battery was assembled, and the state of impregnation of the electrolyte into the electrode was confirmed. The impregnation state is confirmed by checking whether the active material layer applied on the surface of the electrode is wetted by the electrolytic solution, and the surface is wet ◎, only the edge of the electrode is wet and the center is not wet (electrode The evaluation was evaluated as Δ, where there was a portion that was not wet within a range of 50% or less of the area. The test was conducted using 100 batteries for each test content. The results of these evaluations are shown in Table 1.
Figure 2011076952


表1から明らかなように、国連の危険物輸送に関する規制勧告(UN No.3090)
に準じた振動試験とピーク加速度150G、パルス持続時間6ミリ秒の正弦半波(half-s
ine)衝撃を与える衝撃試験の結果、実施例の電池では、電池内に配置したスペーサの電極
群と接する面に平面部を有し、その平面部が複数の貫通路を形成していることで、振動試
験や衝撃試験を行った際、振動や衝撃により電池内で移動しようとする電極群を、柔軟性
を持って押さえることで、電極群のタブや電極群と電池封口体との導電接続部分での切れ
、外れなどの損傷がない。これは、スペーサの押さえ板に貫通路を形成することで押さえ
板部が柔軟性を持ち、電極群への振動や衝撃を和らげているからである。これに対し、比
較例では、スペーサの押さえ板に貫通路がないため、振動や衝撃により電池内の電極群が
スペーサの押さえ板により直接影響を受け、電極群の損傷を起こしている。

As is clear from Table 1, the UN Recommendation on Regulations on the Transport of Dangerous Goods (UN No. 3090)
Vibration test and peak acceleration 150G, pulse duration 6ms sine half wave (half-s
ine) As a result of the impact test that gives an impact, the battery of the example has a flat portion on the surface in contact with the electrode group of the spacer disposed in the battery, and the flat portion forms a plurality of through passages. When conducting a vibration test or impact test, the electrode group that is about to move in the battery due to vibration or impact is flexibly pressed down, so that the conductive connection between the electrode group tab or electrode group and the battery sealant There is no damage such as cuts and disconnections. This is because the presser plate portion has flexibility by forming a through-passage in the presser plate of the spacer, and the vibration and impact to the electrode group are reduced. On the other hand, in the comparative example, since there is no through path in the spacer pressing plate, the electrode group in the battery is directly affected by the spacer pressing plate due to vibration or impact, and the electrode group is damaged.

次に、組み立てた電池に過充電試験を行った。電池が過充電状態となると非水電解液中の
非水溶媒が分解され、電池内部でガスが発生し電池内圧を上昇させ、それと同時に電池温
度も上昇していく。このため、一定の圧力以上に電池内部圧力が上昇した場合、発生した
ガスを電池外部へ排出する安全弁を作動させ電池外部へガスを排出するとともに、電池温
度の上昇を抑え電池の安全性を確保する。実施例の電池では、過充電試験を行ったところ
、しばらくして安全弁よりガスの排出が観察された。また、試験中の電池の温度を測定し
てところ最大で117℃までの上昇であった。安全弁よりガスの排出が行われてからは電
池温度も徐々に下がり始め、安全性が確保されていることを確認することができた。これ
は、ガスの流出経路が十分確保されることによる。つまり、電池内でのスペーサの押さえ
板に貫通路を形成しているため電極群内で発生したガスが、電極群からスペーサの貫通路
を通り、電池封口体に配置された安全弁へ効率よくガスが流れ、安全弁よりガスが排出さ
れたためである。
Next, an overcharge test was performed on the assembled battery. When the battery is overcharged, the non-aqueous solvent in the non-aqueous electrolyte is decomposed, gas is generated inside the battery, the battery internal pressure is increased, and at the same time, the battery temperature is increased. Therefore, when the internal pressure of the battery rises above a certain level, the safety valve that discharges the generated gas to the outside of the battery is activated to discharge the gas to the outside of the battery, and the battery temperature is prevented from rising to ensure the safety of the battery. To do. In the battery of the example, when an overcharge test was performed, gas discharge from the safety valve was observed after a while. Moreover, when the temperature of the battery under test was measured, it was increased to 117 ° C. at the maximum. After gas was discharged from the safety valve, the battery temperature began to gradually drop, confirming that safety was ensured. This is because a sufficient gas outflow path is secured. In other words, since a through passage is formed in the holding plate of the spacer in the battery, the gas generated in the electrode group passes through the through passage of the spacer from the electrode group and efficiently passes to the safety valve arranged in the battery sealing body. This is because gas was discharged from the safety valve.

これに対し、比較例では、電極群にて発生したガスは、スペーサに設けられた押さえ板に
より電極群の上端面を押さえられていることにより、スペーサに設けられた電極群と電池
封口体とを接続する導電部材を収納する切り欠き部から安全弁へ流れていくため、ガスの
流出経路が限定され、電極群で発生したガスを効率よく安全弁へ導くことができない。こ
のため、過充電試験の開始から安全弁よりガスが排出されるまでの時間が実施例と比較し
ても長い時間を要している。更に、試験中の電池温度を測定したところ、最大で243℃
まで上昇していることが確認できた。
On the other hand, in the comparative example, the gas generated in the electrode group is pressed on the upper end surface of the electrode group by a pressing plate provided in the spacer, so that the electrode group provided in the spacer and the battery sealing body Since the gas flows from the notch that houses the conductive member connecting to the safety valve, the gas outflow path is limited, and the gas generated in the electrode group cannot be efficiently guided to the safety valve. For this reason, it takes a long time from the start of the overcharge test until the gas is discharged from the safety valve as compared with the embodiment. Furthermore, when the battery temperature during the test was measured, the maximum was 243 ° C.
It was confirmed that it was rising.

次に、電解液の電極群への含浸性に関する評価を行った。電池内への電解液の注液は、注
液された電解液が捲回された電極群中の正極層及び負極層全てに非水電解液が行き渡り、
電極群の高さ方向の上部及び下部から電極群の中央部まで非水電解液が電極群内部へ均一
に含浸されることが望ましい。そこで、実施例と比較例の電池を組み立て後、電池を分解
し電極への電解液の含浸状態を確認した。含浸状態は、電極の表面に塗布された活物質層
が電解液による濡れの有無により確認できる。また、組み立てた電池をサイクル試験1C
−2.8VのCCCV充電、1C−1.8VのCC放電を行いそのサイクル数により評価
した。
Next, evaluation on the impregnation property of the electrolytic solution into the electrode group was performed. Injecting the electrolyte into the battery, the nonaqueous electrolyte is spread over all of the positive electrode layer and the negative electrode layer in the electrode group in which the injected electrolyte solution is wound,
It is desirable that the non-aqueous electrolyte is uniformly impregnated into the electrode group from the upper and lower portions in the height direction of the electrode group to the center of the electrode group. Therefore, after assembling the batteries of the examples and comparative examples, the batteries were disassembled and the state of impregnation of the electrolyte into the electrodes was confirmed. The impregnation state can be confirmed by whether or not the active material layer applied to the surface of the electrode is wetted by the electrolytic solution. In addition, the assembled battery is cycle tested 1C.
-2.8V CCCV charge and 1C-1.8V CC discharge were performed, and the number of cycles was evaluated.

実施例の電池は、電池を分解し電極表面を観察したところ、全面が電解液により濡れてい
ることが確認できた。比較例の電池は、電極の端部は濡れていることが確認できたが、電
極の中央部においては電解液の濡れがなく、電解液が含浸したことが確認できなかった。
When the battery of the example was disassembled and the surface of the electrode was observed, it was confirmed that the entire surface was wet with the electrolyte. In the battery of the comparative example, it was confirmed that the end portion of the electrode was wet, but the electrolyte solution was not wet in the center portion of the electrode, and it was not possible to confirm that the electrolyte solution was impregnated.

次に、サイクル試験を行ったところ、実施例の電池は、全ての電池で8000サイクル以
上であったのに対し、比較例の電池は最大で5469サイクルであった。実施例の電池は
、電極群を固定するスペーサを配設し、スペーサと電極群とが接する面に網目状の貫通部
を設けることで、電池内へ注液する電解液が捲回された電極群中の正極層及び負極層全て
に非水電解液が行き渡り、電極群の高さ方向の上部及び下部から電極群の中央部まで非水
電解液が電極群内部へ均一に含浸されている。
Next, when a cycle test was performed, the batteries of the examples had 8000 cycles or more for all the batteries, whereas the batteries of the comparative example had a maximum of 5469 cycles. In the battery of the embodiment, a spacer for fixing the electrode group is provided, and a mesh-shaped through portion is provided on a surface where the spacer and the electrode group are in contact with each other, so that an electrolyte solution to be injected into the battery is wound. The non-aqueous electrolyte is spread all over the positive electrode layer and the negative electrode layer in the group, and the non-aqueous electrolyte is uniformly impregnated inside the electrode group from the upper and lower parts in the height direction of the electrode group to the central part of the electrode group.

以上のように本発明では、密閉形電池に電極群を固定するスペーサを配設し、スペーサと
電極群とが接する面に網目状の貫通部を設けることで、振動や衝撃により電池内で移動し
ようとする電極群を、柔軟性を持って押さえることができ、電極群のタブや電極群と電池
封口体との導電接続部分での切れ、外れなどの損傷がない。また、電池封口体の注液口か
ら注液されて電解液が電極群へ注液される際、スペーサの貫通路より電極群の上面に均等
に注液され、電解液が捲回された電極群中の正極層及び負極層全てに非水電解液が行き渡
り、電極群の高さ方向の上部及び下部から電極群の中央部まで非水電解液が電極群内部へ
均一に含浸される。更に、過充電などにより電池内部でガスが発生した場合、スペーサと
電極群とが接する面に網目状の貫通部を設けることで電極群から安全弁へ流出するガスの
流れを妨げることなく安全弁より電池外部へ排出することができる。これにより、充放電
特性やサイクル特性などに優れ、かつ安全性、信頼性が確保することができる。
As described above, in the present invention, a spacer for fixing an electrode group is provided in a sealed battery, and a mesh-like through portion is provided on a surface where the spacer and the electrode group are in contact with each other. The electrode group to be worked can be pressed with flexibility, and there is no damage such as disconnection or disconnection at the tab of the electrode group or at the conductive connection portion between the electrode group and the battery sealing member. In addition, when the electrolyte is injected from the injection port of the battery sealing body and injected into the electrode group, the electrode is uniformly injected from the through-hole of the spacer onto the upper surface of the electrode group, and the electrolyte is wound. The non-aqueous electrolyte spreads over all of the positive electrode layer and the negative electrode layer in the group, and the non-aqueous electrolyte is uniformly impregnated into the inside of the electrode group from the top and bottom in the height direction of the electrode group to the center of the electrode group. In addition, when gas is generated inside the battery due to overcharge, etc., the battery can be removed from the safety valve without obstructing the flow of gas flowing out from the electrode group to the safety valve by providing a mesh-like through portion on the surface where the spacer and the electrode group contact. It can be discharged to the outside. Thereby, it is excellent in charging / discharging characteristics, cycle characteristics, etc., and safety and reliability can be secured.

つまり、本発明による密閉形電池は、電極群を固定するスペーサを配設し、スペーサと電
極群とが接する面に網目状の貫通部を設けることで、安全性、信頼性が高く、充放電特性
やサイクル特性などの優れた密閉型の電池を提供でき、特にハイブリッド車や電気自動車
に搭載する車載用二次電池、電力平準化に使用される電力貯蔵用二次電池として好適なも
のとなる。
In other words, the sealed battery according to the present invention is provided with a spacer for fixing the electrode group, and a mesh-shaped through portion is provided on the surface where the spacer and the electrode group are in contact with each other. Can provide a sealed battery with excellent characteristics and cycle characteristics, and is particularly suitable as an in-vehicle secondary battery mounted on a hybrid vehicle or an electric vehicle, or a secondary battery for power storage used for power leveling. .

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨
を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されて
いる複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施
形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施
形態にわたる構成要素を適宜組み合わせてもよい。
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

1…外装缶、2…電極群、3…正極導電タブ、4…負極導電タブ、5…正極保護リード、
6…負極保護リード、7…正極中間リード、8…負極中間リード、9…封口部材、10…
電池封口体、11…ガスケット、12…出力端子、13…絶縁体、14…負極リード、1
5…正極リード、16…貫通孔、17…受け座、18…正極端子、19…圧力開放弁、2
0…電解液注液口、41a,41b…スペーサ、46a,46b1,46b2,46c…
押さえ板
DESCRIPTION OF SYMBOLS 1 ... Exterior can, 2 ... Electrode group, 3 ... Positive electrode conductive tab, 4 ... Negative electrode conductive tab, 5 ... Positive electrode protection lead,
6 ... Negative electrode protective lead, 7 ... Positive electrode intermediate lead, 8 ... Negative electrode intermediate lead, 9 ... Sealing member, 10 ...
Battery sealing body, 11 ... gasket, 12 ... output terminal, 13 ... insulator, 14 ... negative electrode lead, 1
5 ... Positive electrode lead, 16 ... Through hole, 17 ... Receiving seat, 18 ... Positive electrode terminal, 19 ... Pressure release valve, 2
0 ... Electrolyte injection port, 41a, 41b ... Spacer, 46a, 46b1, 46b2, 46c ...
Holding plate

Claims (2)

外装缶と、前記外装缶内に収納され、正極及び負極を含む電極群と、前記外装缶の開口部
に取り付けられる電池封口体と、前記電池封口体若しくは前記外装缶に設けられた安全弁
と前記電極群と接する位置に配置されたスペーサを具備する密閉形電池であって、
前記スペーサは、電極群と接する面に平面部を有し、その平面部が複数の貫通路を形成し
ていることを特徴とする密閉形電池。
An outer can, an electrode group housed in the outer can and including a positive electrode and a negative electrode, a battery sealing body attached to an opening of the outer can, a safety valve provided on the battery sealing body or the outer can, and the A sealed battery comprising a spacer disposed at a position in contact with an electrode group,
The spacer has a flat portion on a surface in contact with the electrode group, and the flat portion forms a plurality of through passages.
前記スペーサの電極群と接する面に形成された平面部の貫通路の一辺が0.5mm〜4m
mであることを特徴とする請求項1記載の密閉形電池。
One side of the through-passage of the flat portion formed on the surface in contact with the electrode group of the spacer is 0.5 mm to 4 m.
The sealed battery according to claim 1, wherein m is m.
JP2009228938A 2009-09-30 2009-09-30 Sealed battery Pending JP2011076952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009228938A JP2011076952A (en) 2009-09-30 2009-09-30 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009228938A JP2011076952A (en) 2009-09-30 2009-09-30 Sealed battery

Publications (1)

Publication Number Publication Date
JP2011076952A true JP2011076952A (en) 2011-04-14

Family

ID=44020724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009228938A Pending JP2011076952A (en) 2009-09-30 2009-09-30 Sealed battery

Country Status (1)

Country Link
JP (1) JP2011076952A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103944A1 (en) * 2014-12-26 2016-06-30 日立オートモティブシステムズ株式会社 Rectangular secondary battery
US10230091B2 (en) 2014-11-18 2019-03-12 Samsung Sdi Co., Ltd. Battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10230091B2 (en) 2014-11-18 2019-03-12 Samsung Sdi Co., Ltd. Battery
WO2016103944A1 (en) * 2014-12-26 2016-06-30 日立オートモティブシステムズ株式会社 Rectangular secondary battery

Similar Documents

Publication Publication Date Title
JP5992551B2 (en) Lithium ion secondary battery
US8043743B2 (en) Pouch type secondary battery with improved safety
JP4926534B2 (en) Winding electrode assembly and lithium secondary battery including the same
JP5537094B2 (en) battery
KR101623110B1 (en) Electrode lead and secondary battery including the same
EP2254176B1 (en) Rechargeable battery
JP2011070918A (en) Battery
EP2854201B1 (en) Rechargeable battery
KR100914108B1 (en) Electrode assembly and rechargeable battery with the same
KR20040022716A (en) Cylindrical type lithium secondary battery and the fabrication method of the same
KR101776897B1 (en) Pouch type secondary battery and method for manufacturing the same
KR101273472B1 (en) Manufacturing method for pouch-type secondary battery and pouch-type secondary battery made by the same
KR101233535B1 (en) Secondary battery
JP2011086382A (en) Sealed battery
CN110679012B (en) Secondary battery
KR20080009462A (en) Cap assembly and rechargeable battery using the same
CN106784435A (en) Secondary cell and its manufacture method
JP2008192414A (en) Sealed battery
KR20140032701A (en) Pouch type secondary battery
JP2016095930A (en) Sealed type lithium ion secondary battery
KR101121205B1 (en) Secondary battery
KR101453783B1 (en) Cap assembly and secondary battery using the same
JP2011210690A (en) Sealed battery
JP2013062199A (en) Sealed battery
JP2011076952A (en) Sealed battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205