JP2011204410A - Manufacturing method of oxide superconducting thin film - Google Patents

Manufacturing method of oxide superconducting thin film Download PDF

Info

Publication number
JP2011204410A
JP2011204410A JP2010069136A JP2010069136A JP2011204410A JP 2011204410 A JP2011204410 A JP 2011204410A JP 2010069136 A JP2010069136 A JP 2010069136A JP 2010069136 A JP2010069136 A JP 2010069136A JP 2011204410 A JP2011204410 A JP 2011204410A
Authority
JP
Japan
Prior art keywords
film
thin film
oxide superconducting
superconducting thin
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010069136A
Other languages
Japanese (ja)
Inventor
Takeshi Nakanishi
毅 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010069136A priority Critical patent/JP2011204410A/en
Publication of JP2011204410A publication Critical patent/JP2011204410A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an oxide superconducting thin film capable of obtaining a temporarily baked film with generation of remains of foaming restrained in a temporarily baking treatment process, and capable of obtaining an oxide superconducting thin film having excellent superconductivity in a baking treatment process after the temporarily baking treatment process.SOLUTION: The manufacturing method of the oxide superconducting thin film, which is used for manufacturing superconducting wire rods, with a metal organic compound used as a raw material, and manufactured by the coating pyrolysis method, includes a coating film manufacturing process for manufacturing a coating film by applying solution of a metal organic compound on a substrate, a temporarily baking treatment process for manufacturing a temporarily baked film by pyrolizing and removing organic components contained in the metal organic compound of the coating film, and a baking treatment process for manufacturing the oxide superconducting thin film by crystallizing the temporarily baked film. The temporarily baked treatment process is carried out under an oxygen-free atmosphere or atmosphere with low oxygen concentration.

Description

本発明は、酸化物超電導薄膜の製造方法に関し、詳しくは、超電導線材の製造に用いられる超電導特性に優れた酸化物超電導薄膜の製造方法に関する。   The present invention relates to a method for manufacturing an oxide superconducting thin film, and more particularly, to a method for manufacturing an oxide superconducting thin film having excellent superconducting characteristics used for manufacturing a superconducting wire.

酸化物超電導薄膜を用いた超電導線材の一層の普及のため、臨界電流密度Jcや臨界電流値Icなどの超電導特性をより高めた酸化物超電導薄膜の製造の研究が行われている。   In order to further spread superconducting wires using oxide superconducting thin films, studies on the production of oxide superconducting thin films with higher superconducting properties such as critical current density Jc and critical current value Ic have been conducted.

このような酸化物超電導薄膜の製造方法の1つに、塗布熱分解法(Metal Organic Deposition、略称:MOD法)と言われる方法がある(特許文献1)。   One method of manufacturing such an oxide superconducting thin film is a method called a coating organic decomposition method (abbreviation: MOD method) (Patent Document 1).

この方法は、Re(希土類元素)、Ba(バリウム)、Cu(銅)の各金属有機化合物を溶媒に溶解して製造された原料溶液(以下、「MOD溶液」とも言う)を基板に塗布した後、金属有機化合物を例えば500℃付近で熱処理(仮焼)し、含有する有機成分を熱分解させて除去して、酸化物超電導薄膜の前駆体である仮焼膜を形成し、得られた仮焼膜をさらに高温(例えば、750〜800℃)で熱処理(本焼)することにより結晶化を行って酸化物超電導薄膜を製造するものであり、主に真空中で製造される気相法(スパッタ法、パルスレーザ蒸着法等)に比較して製造設備が簡単で済み、また大面積や複雑な形状への対応が容易である等の特徴を有しているため、広く用いられている。   In this method, a raw material solution (hereinafter, also referred to as “MOD solution”) produced by dissolving each metal organic compound of Re (rare earth element), Ba (barium), and Cu (copper) in a solvent is applied to a substrate. Thereafter, the metal organic compound was heat-treated (calcined) at, for example, around 500 ° C., and the organic components contained were thermally decomposed and removed to form a calcined film that is a precursor of the oxide superconducting thin film. A vapor phase method in which an oxide superconducting thin film is manufactured by crystallizing a calcined film by further heat treatment (main baking) at a higher temperature (for example, 750 to 800 ° C.), and mainly manufactured in a vacuum. Compared to (sputtering method, pulsed laser deposition method, etc.), manufacturing equipment is simple, and it is widely used because it has features such as easy handling of large areas and complex shapes. .

そして、MOD法を用いて、厚膜で超電導特性に優れた酸化物超電導薄膜を製造する方法としては、MOD溶液の塗布と仮焼を繰り返し行って仮焼膜を積層、即ち多層化して厚膜の仮焼膜とした後、本焼する方法が一般的に採られている。   Then, as a method of manufacturing an oxide superconducting thin film having a thick film and excellent superconducting characteristics by using the MOD method, the MOD solution is repeatedly applied and calcined, and the calcined films are laminated, that is, multilayered to obtain a thick film. In general, a method of firing after the pre-fired film is employed.

特開2007−165153号公報JP 2007-165153 A

しかしながら、従来のMOD法を用いて製造された酸化物超電導薄膜には、図2に示されるような仮焼膜の表面に泡が破裂したような発泡跡(丸く現れている箇所)が生じていることがあった。特に、膜厚が厚い仮焼膜において、この現象が顕著に見られた。そして、このような発泡が生じた箇所では、膜の剥離が生じていた。   However, in the oxide superconducting thin film manufactured using the conventional MOD method, foam marks (portions appearing in a round shape) such as bubbles ruptured on the surface of the calcined film as shown in FIG. There was. This phenomenon was particularly noticeable in the calcined film having a large film thickness. And the film | membrane peeling has arisen in the location where such foaming produced.

膜の剥離が生じた仮焼膜は本焼を行ったとしても、この剥離部分で結晶成長が阻害されるため、基板表面から膜表面への十分な結晶成長を望むことができず、良好な超電導特性を有する酸化物超電導薄膜を得ることができない。   Even if the calcined film in which the film is peeled off is subjected to the main baking, the crystal growth is hindered at this peeled portion, so that sufficient crystal growth from the substrate surface to the film surface cannot be desired, which is favorable. An oxide superconducting thin film having superconducting properties cannot be obtained.

そこで、本発明は、仮焼熱処理工程において発泡跡の生成が抑制された仮焼膜を得ることができ、その後の本焼熱処理工程において優れた超電導特性を有する酸化物超電導薄膜を得ることができる酸化物超電導薄膜の製造方法を提供することを課題とする。   Therefore, the present invention can provide a calcined film in which the formation of foam marks is suppressed in the calcining heat treatment step, and can obtain an oxide superconducting thin film having excellent superconducting characteristics in the subsequent calcining heat treatment step. It is an object to provide a method for manufacturing an oxide superconducting thin film.

本発明者は、鋭意研究の結果、以下の各請求項に示す発明により、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of earnest research, the present inventor has found that the above problems can be solved by the inventions shown in the following claims, and has completed the present invention.

請求項1に記載の発明は、
超電導線材の製造に用いる酸化物超電導薄膜を、金属有機化合物を原料とし、塗布熱分解法により製造する酸化物超電導薄膜の製造方法であって、
基板上に前記金属有機化合物の溶液を塗布して塗膜を作製する塗膜作製工程と、
前記塗膜の前記金属有機化合物に含有される有機成分を熱分解、除去して、仮焼膜を作製する仮焼熱処理工程と、
前記仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程と
を備えており、
前記仮焼熱処理工程が、無酸素雰囲気または酸素濃度が低い雰囲気下で行う熱処理工程である
ことを特徴とする酸化物超電導薄膜の製造方法である。
The invention described in claim 1
An oxide superconducting thin film used for the production of a superconducting wire is a method for producing an oxide superconducting thin film produced from a metal organic compound as a raw material by a coating pyrolysis method,
A coating film production step of producing a coating film by applying a solution of the metal organic compound on the substrate;
A calcining heat treatment step for producing a calcined film by thermally decomposing and removing an organic component contained in the metal organic compound of the coating film;
A calcination heat treatment step of crystallizing the calcined film to produce an oxide superconducting thin film,
The method of manufacturing an oxide superconducting thin film, wherein the calcining heat treatment step is a heat treatment step performed in an oxygen-free atmosphere or an atmosphere having a low oxygen concentration.

本発明者は、従来の仮焼熱処理工程において前記のような発泡跡が生じる原因を突き止めるべく、仮焼熱処理中における金属有機化合物の熱分解挙動と塗膜表面の状況との関係につき、種々の実験と検討を行った。   In order to ascertain the cause of the occurrence of foaming marks as described above in the conventional calcination heat treatment step, the present inventor has variously investigated the relationship between the thermal decomposition behavior of the metal organic compound and the state of the coating film surface during the calcination heat treatment. Experiments and studies were conducted.

具体的には、従来の製造方法を用いて製造されたReBCO薄膜の仮焼熱処理工程における雰囲気と同じ雰囲気で、塗布膜を加熱してTG−DTA測定(示差熱−熱重量同時測定)を行い、仮焼熱処理中における金属有機化合物の熱分解挙動を分析した。その一方で、仮焼熱処理中の塗膜表面の状況を観察し、発泡が生じる温度を確認した。   Specifically, the TG-DTA measurement (differential thermal-thermogravimetric measurement) is performed by heating the coating film in the same atmosphere as that in the calcination heat treatment process of the ReBCO thin film manufactured using the conventional manufacturing method. The thermal decomposition behavior of the metal organic compound during the calcining heat treatment was analyzed. On the other hand, the condition of the coating film surface during the calcination heat treatment was observed, and the temperature at which foaming occurred was confirmed.

TG−DTA測定の結果の一例を図3に示す。図3において、横軸は温度を示している。そして、右の縦軸はDTA(Differential Thermal Analysis:示差熱分析)であり、データは実線で示されている。また、左の縦軸はTG(Thermogravimetry:熱重量測定)であり、データは破線で示されている。   An example of the result of the TG-DTA measurement is shown in FIG. In FIG. 3, the horizontal axis indicates temperature. The right vertical axis is DTA (Differential Thermal Analysis), and the data is shown by a solid line. Further, the left vertical axis is TG (Thermogravimetry), and the data is indicated by a broken line.

図3より、250℃付近のCu有機化合物が分解する温度、および430℃付近のRe有機化合物やBa有機化合物が分解する温度で大きく発熱していることが分かる。   FIG. 3 shows that heat is greatly generated at a temperature at which the Cu organic compound at about 250 ° C. is decomposed and at a temperature at which the Re organic compound or Ba organic compound is decomposed at about 430 ° C.

一方、仮焼熱処理中の塗膜表面の状況観察によれば、上記した250℃付近および430℃付近において、金属有機化合物から分解した有機成分が燃焼反応を起こして急激なガス発生を引き起こし、膜表面に発泡跡を生じさせていることが分かった。   On the other hand, according to the observation of the state of the coating film surface during the calcining heat treatment, the organic component decomposed from the metal organic compound causes a combustion reaction at about 250 ° C. and about 430 ° C. It was found that foam marks were generated on the surface.

このように、TG−DTA測定において大きな発熱が確認された温度と、塗膜表面の状況観察において発泡跡の発生が確認された温度とは一致しており、従来の製造方法の仮焼熱処理工程においては、金属有機化合物から分解した有機成分が、大気中の酸素と急激な発熱反応(燃焼反応)を起こして大量の分解ガスを発生させ、膜表面に発泡跡を生じさせていることが分かった。   Thus, the temperature at which a large exotherm was confirmed in the TG-DTA measurement and the temperature at which the occurrence of foaming marks was confirmed in the observation of the coating surface condition were the same, and the calcining heat treatment step of the conventional manufacturing method , It was found that organic components decomposed from metal organic compounds cause a rapid exothermic reaction (combustion reaction) with oxygen in the atmosphere to generate a large amount of decomposition gas and produce foaming marks on the film surface. It was.

そこで、本発明者は、このような急激な発熱反応の発生を制御することを目的として、ReBCO薄膜の仮焼熱処理工程における雰囲気を、従来の大気雰囲気からヘリウム雰囲気へと変更して、同様の実験を行った。   Therefore, the present inventor changed the atmosphere in the calcination heat treatment process of the ReBCO thin film from a conventional air atmosphere to a helium atmosphere for the purpose of controlling the occurrence of such a rapid exothermic reaction. The experiment was conducted.

上記の実験により得られたTG−DTA測定の結果を図1に示す。図1に示す通り、酸素がない場合には、DTA曲線より、加熱による温度上昇に際して急激な発熱反応が発生していないことが分かった。一方、TG曲線より、加熱による温度上昇に従って重量が減少していることが分かり、仮焼膜の形成に必要な有機成分の分解が十分に行われていることが確認できた。   The result of TG-DTA measurement obtained by the above experiment is shown in FIG. As shown in FIG. 1, in the absence of oxygen, it was found from the DTA curve that no rapid exothermic reaction occurred as the temperature increased due to heating. On the other hand, it was found from the TG curve that the weight decreased as the temperature increased due to heating, and it was confirmed that the organic components necessary for forming the calcined film were sufficiently decomposed.

そして、仮焼熱処理中の塗膜表面の状況観察によれば、加熱の間、急激なガスの発生がなく、膜表面に発泡跡が生じていないことが分かった。   Then, according to the observation of the state of the coating film surface during the calcining heat treatment, it was found that there was no sudden gas generation during heating and no foaming marks were formed on the film surface.

以上より、酸素濃度が低い雰囲気とすることにより、金属有機化合物から有機成分の分解が十分に行われているにも拘わらず、従来のように、急激な発熱反応が発生せず、膜表面に発泡跡を生じさせないことが分かった。   As described above, by setting the atmosphere to have a low oxygen concentration, the organic component is sufficiently decomposed from the metal organic compound, but a rapid exothermic reaction does not occur as in the conventional case, and the film surface is exposed. It was found that no foam marks were generated.

本請求項の発明は、これらの知見に基づく発明であり、仮焼熱処理工程を無酸素雰囲気または酸素濃度が低い雰囲気下で行い、分解した有機成分の燃焼を抑制しているため、急激な発熱を伴うことなく、金属有機化合物の熱分解が進行する。この結果、発泡跡の生成を抑制することができ、膜厚の厚い仮焼膜であっても剥離が生じることがない。   The invention of this claim is an invention based on these findings, and since the calcining heat treatment step is performed in an oxygen-free atmosphere or an atmosphere having a low oxygen concentration and the combustion of decomposed organic components is suppressed, rapid heat generation The thermal decomposition of the metal organic compound proceeds without accompanying. As a result, the generation of foam marks can be suppressed, and peeling does not occur even with a thick calcined film.

そして、発泡跡の生成が抑制された仮焼膜は、厚膜とした場合であっても、剥離を生じる恐れがないため、本焼熱処理工程において、基板界面から膜表面へと結晶を十分にエピタキシャル成長させることが可能となり、優れた超電導特性を有する酸化物超電導薄膜を提供することができる。   And even if the calcined film in which the generation of foaming marks is suppressed is a thick film, there is no risk of peeling off, so that in the main annealing process, crystals are sufficiently formed from the substrate interface to the film surface. Epitaxial growth can be achieved, and an oxide superconducting thin film having excellent superconducting properties can be provided.

本請求項における「酸素濃度が低い雰囲気」とは、前記の趣旨、即ち、発泡跡を生じさせないように有機成分の発熱反応を抑制できる程度に酸素濃度が低い雰囲気を指す。具体的には、例えば、ヘリウム、ネオン、アルゴンや窒素などの不活性ガス雰囲気を挙げることができる。   The term “atmosphere having a low oxygen concentration” in the present claims refers to the above-mentioned meaning, that is, an atmosphere having a low oxygen concentration to the extent that an exothermic reaction of an organic component can be suppressed so as not to cause foaming marks. Specifically, for example, an inert gas atmosphere such as helium, neon, argon or nitrogen can be used.

「無酸素雰囲気」や「酸素濃度が低い雰囲気」は、特に加圧雰囲気とする必要はないが、加圧雰囲気としてもよく、その圧力についても特に限定されることはない。   The “oxygen-free atmosphere” and the “atmosphere with low oxygen concentration” do not need to be a pressurized atmosphere, but may be a pressurized atmosphere, and the pressure is not particularly limited.

請求項2に記載の発明は、
前記仮焼熱処理工程が、酸素濃度10vol%以下の雰囲気下で行う熱処理工程である
ことを特徴とする請求項1に記載の酸化物超電導薄膜の製造方法である。
The invention described in claim 2
The method for producing an oxide superconducting thin film according to claim 1, wherein the calcining heat treatment step is a heat treatment step performed in an atmosphere having an oxygen concentration of 10 vol% or less.

仮焼熱処理工程を酸素濃度が10vol%以下の雰囲気下で行うことにより、より確実に金属有機化合物の有機成分の燃焼を抑制することができる。   By performing the calcination heat treatment step in an atmosphere having an oxygen concentration of 10 vol% or less, combustion of the organic component of the metal organic compound can be more reliably suppressed.

本発明によれば、仮焼熱処理工程において発泡跡の生成が抑制された仮焼膜を得ることができ、その後の本焼熱処理工程において優れた超電導特性を有する酸化物超電導薄膜を得ることができる酸化物超電導薄膜の製造方法を提供することができる。   According to the present invention, it is possible to obtain a calcined film in which the formation of foam marks is suppressed in the calcining heat treatment step, and it is possible to obtain an oxide superconducting thin film having excellent superconducting characteristics in the subsequent calcining heat treatment step. A method for manufacturing an oxide superconducting thin film can be provided.

本発明に係る酸化物超電導薄膜の製造方法における仮焼熱処理工程と同じ雰囲気下で塗膜のTG−DTA測定を行ったときの測定結果を示す図である。It is a figure which shows a measurement result when the TG-DTA measurement of a coating film is performed in the same atmosphere as the calcination heat treatment process in the manufacturing method of the oxide superconducting thin film which concerns on this invention. 従来の酸化物超電導薄膜の製造方法における仮焼熱処理工程における塗膜の表面状態を示すSEM写真である。It is a SEM photograph which shows the surface state of the coating film in the calcination heat treatment process in the manufacturing method of the conventional oxide superconducting thin film. 従来の酸化物超電導薄膜の製造方法における仮焼熱処理工程と同じ雰囲気下で塗膜のTG−DTA測定を行ったときの測定結果を示す図である。It is a figure which shows a measurement result when the TG-DTA measurement of a coating film is performed in the same atmosphere as the calcination heat treatment process in the manufacturing method of the conventional oxide superconducting thin film.

以下、本発明を実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments.

[1]実施例
本実施例は、MOD法によりYBCO(YBaCu7−δ)からなる超電導薄膜を作製した例である。
[1] Example This example is an example in which a superconducting thin film made of YBCO (YBa 2 Cu 3 O 7-δ ) was produced by the MOD method.

1.仮焼膜の作製
(1)MOD溶液の作製
Y、Ba、Cuの各々のアセチルアセトナート塩から出発してY:Ba:Cu=1:2:3の比率で合成し、アルコールを溶媒としたMOD溶液を準備した。なお、MOD溶液のY3+、Ba2+、Cu2+を合わせた総カチオン濃度を1mol/Lとした。
1. Preparation of calcined film (1) Preparation of MOD solution Starting from acetylacetonate salts of Y, Ba, and Cu, synthesis was performed at a ratio of Y: Ba: Cu = 1: 2: 3, and alcohol was used as a solvent. A MOD solution was prepared. The total cation concentration of Y 3+ , Ba 2+ and Cu 2+ in the MOD solution was 1 mol / L.

(2)塗布
次に、2cm角のYSZ単結晶の上にCeOをエピタキシャルに成長させた基板を準備し、前記MOD溶液をスピンコート法で基板上に塗布して、厚さ10μmの塗膜を形成した。
(2) Application Next, a substrate in which CeO 2 was epitaxially grown on a 2 cm square YSZ single crystal was prepared, and the MOD solution was applied on the substrate by a spin coating method to form a coating film having a thickness of 10 μm. Formed.

(3)仮焼熱処理
次に、雰囲気炉を用いて、以下に示す手順により、形成した塗膜の仮焼熱処理を行い、実施例の仮焼膜を作製した。なお、この仮焼熱処理は、1気圧のヘリウムガス(酸素濃度0.1vol%)雰囲気で行った。
(3) Calcination Heat Treatment Next, using the atmosphere furnace, the formed coating film was subjected to calcination heat treatment according to the following procedure to prepare the calcination film of the example. The calcination heat treatment was performed in an atmosphere of 1 atm helium gas (oxygen concentration: 0.1 vol%).

イ.昇温
まず、形成した塗膜を、室温(20℃)から550℃まで約20℃/分の昇温スピードで昇温した。
I. First, the formed coating film was heated from room temperature (20 ° C.) to 550 ° C. at a heating rate of about 20 ° C./min.

ロ.保持−降温
次に、そのまま550℃で120分間保持した。その後、室温まで約2℃/分の降温スピードで降温し、実施例の仮焼膜(厚さ0.2μm)を作製した。得られた仮焼膜の表面には、発泡跡が見られなかった。
B. Holding-Cooling Next, the temperature was kept at 550 ° C. for 120 minutes. Thereafter, the temperature was lowered to room temperature at a temperature lowering speed of about 2 ° C./min, and a calcined film (thickness 0.2 μm) of the example was produced. Foaming marks were not observed on the surface of the obtained calcined film.

2.YBCO超電導薄膜の作製
(1)本焼熱処理
実施例で得られた仮焼膜を、酸素濃度100ppmのアルゴン/酸素混合ガス雰囲気下で770℃まで10℃/分の昇温スピードで昇温後、そのまま60分間保持して本焼熱処理を実施した。本焼熱処理終了後、520℃まで約3時間で降温した時点でガス雰囲気を酸素濃度100%ガスに切り替えて、さらに約5時間かけて室温まで炉冷し、YBCO薄膜超電導材を作製した。
2. Preparation of YBCO superconducting thin film (1) Main baking heat treatment The calcined film obtained in the example was heated to 770 ° C. at a heating rate of 10 ° C./min in an argon / oxygen mixed gas atmosphere having an oxygen concentration of 100 ppm, The heat treatment was performed for 60 minutes while maintaining the temperature. When the temperature was lowered to 520 ° C. in about 3 hours after completion of the main heat treatment, the gas atmosphere was switched to a 100% oxygen concentration gas, and the furnace was cooled to room temperature over about 5 hours to prepare a YBCO thin film superconducting material.

(2)超電導特性の測定
作製したYBCO超電導線材の超電導特性の一例として臨界電流密度Jcを、77K、自己磁場下において測定したところ、5.5MA/cmであった。
(2) the critical current density Jc as an example of the measurement fabricated superconducting properties of YBCO superconducting wires of the superconducting properties were measured 77K, under the self-magnetic field was 5.5 mA / cm 2.

[2]比較例
1.仮焼膜の作製
仮焼熱処理を、大気フロー(酸素濃度20vol%)の雰囲気下で行ったこと以外は、実施例と同様にして比較例の仮焼膜を作製した。得られた仮焼膜の表面には平均80個/100μm×100μmの発泡跡が確認された。
[2] Comparative Example 1. Preparation of calcination film A calcination film of a comparative example was prepared in the same manner as in the example except that the calcination heat treatment was performed in an atmosphere of an atmospheric flow (oxygen concentration 20 vol%). On the surface of the obtained calcined film, foam marks of an average of 80 pieces / 100 μm × 100 μm were confirmed.

2.超電導特性の測定
実施例と同じ方法本焼熱処理を行ってYBCO薄膜を作製し、同様にJcを測定した測定したところ、0.5MA/cmであった。
2. The YBCO films were prepared by performing the same process firing heat treatment and measurement example of the superconducting properties, as well was measured was measured Jc, it was 0.5 MA / cm 2.

このように、本実施例においては、比較例と異なり、発泡跡が抑制された仮焼膜が形成されるため、本焼熱処理工程において、YBCOの結晶が成長が阻害されることなく充分に成長する。そして、この結果、優れた超電導特性を有する超電導薄膜を作製することができる。   Thus, in this example, unlike the comparative example, a calcined film in which foaming marks are suppressed is formed, so that the YBCO crystals grow sufficiently without being hindered in the main annealing process. To do. As a result, a superconducting thin film having excellent superconducting properties can be produced.

以上、本発明の実施の形態について説明したが、本発明は、上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.

Claims (2)

超電導線材の製造に用いる酸化物超電導薄膜を、金属有機化合物を原料とし、塗布熱分解法により製造する酸化物超電導薄膜の製造方法であって、
基板上に前記金属有機化合物の溶液を塗布して塗膜を作製する塗膜作製工程と、
前記塗膜の前記金属有機化合物に含有される有機成分を熱分解、除去して、仮焼膜を作製する仮焼熱処理工程と、
前記仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程と
を備えており、
前記仮焼熱処理工程が、無酸素雰囲気または酸素濃度が低い雰囲気下で行う熱処理工程である
ことを特徴とする酸化物超電導薄膜の製造方法。
An oxide superconducting thin film used for the production of a superconducting wire is a method for producing an oxide superconducting thin film produced from a metal organic compound as a raw material by a coating pyrolysis method,
A coating film production step of producing a coating film by applying a solution of the metal organic compound on the substrate;
A calcining heat treatment step for producing a calcined film by thermally decomposing and removing an organic component contained in the metal organic compound of the coating film;
A calcination heat treatment step of crystallizing the calcined film to produce an oxide superconducting thin film,
The method for producing an oxide superconducting thin film, wherein the calcining heat treatment step is a heat treatment step performed in an oxygen-free atmosphere or an atmosphere having a low oxygen concentration.
前記仮焼熱処理工程が、酸素濃度10vol%以下の雰囲気下で行う熱処理工程である
ことを特徴とする請求項1に記載の酸化物超電導薄膜の製造方法。
The method for producing an oxide superconducting thin film according to claim 1, wherein the calcining heat treatment step is a heat treatment step performed in an atmosphere having an oxygen concentration of 10 vol% or less.
JP2010069136A 2010-03-25 2010-03-25 Manufacturing method of oxide superconducting thin film Pending JP2011204410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010069136A JP2011204410A (en) 2010-03-25 2010-03-25 Manufacturing method of oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069136A JP2011204410A (en) 2010-03-25 2010-03-25 Manufacturing method of oxide superconducting thin film

Publications (1)

Publication Number Publication Date
JP2011204410A true JP2011204410A (en) 2011-10-13

Family

ID=44880871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069136A Pending JP2011204410A (en) 2010-03-25 2010-03-25 Manufacturing method of oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JP2011204410A (en)

Similar Documents

Publication Publication Date Title
US20090270263A1 (en) PROCESS FOR PRODUCING TAPE-SHAPED Re-TYPE (123) SUPERCONDUCTOR
JP5838596B2 (en) Superconducting thin film material and manufacturing method thereof
JP5421561B2 (en) Method for manufacturing oxide superconducting thin film
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP2011204410A (en) Manufacturing method of oxide superconducting thin film
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP5556410B2 (en) Method for manufacturing oxide superconducting thin film
JP2011230946A (en) Method for producing oxide superconductive thin film
JP2011253766A (en) Method of manufacturing oxide superconductor thin film
JP2011141984A (en) Manufacturing method of oxide superconducting thin film
JP5505867B2 (en) Method for manufacturing oxide superconducting thin film
JP2012009295A (en) Method of producing oxide superconducting thin film
JP2012221922A (en) Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material
JP5591900B2 (en) Method for manufacturing thick film tape-shaped RE (123) superconductor
WO2013153651A1 (en) Oxide superconductor thin-film wiring material, and production method therefor
JP2012049086A (en) Oxide superconductive thin film wire rod, metal substrate for oxide superconductive thin film wire rod, and method of manufacturing the same
JP2012003962A (en) Manufacturing method of oxide superconducting thin film
JP2012123998A (en) Oxide superconducting thin film wire rod and manufacturing method thereof
JP2012064394A (en) Method for manufacturing oxide superconductive thin film
JP2011159453A (en) Method of manufacturing oxide superconducting thin film
JP2012113860A (en) Superconducting oxide thin film wire rod, and method for manufacturing the same
JP2011198521A (en) Method of manufacturing oxide superconducting thin film
JP2012234649A (en) Oxide superconductive film, and method for manufacturing the same
JP5739630B2 (en) Y-based superconducting wire manufacturing method and Y-based superconducting wire
JP2011054531A (en) Manufacturing method for oxide superconductive thin film, and superconductive wire