JP2011199375A - Semiconductor switch integrated circuit - Google Patents

Semiconductor switch integrated circuit Download PDF

Info

Publication number
JP2011199375A
JP2011199375A JP2010061039A JP2010061039A JP2011199375A JP 2011199375 A JP2011199375 A JP 2011199375A JP 2010061039 A JP2010061039 A JP 2010061039A JP 2010061039 A JP2010061039 A JP 2010061039A JP 2011199375 A JP2011199375 A JP 2011199375A
Authority
JP
Japan
Prior art keywords
terminal
control voltage
frequency signal
fet
signal input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010061039A
Other languages
Japanese (ja)
Other versions
JP5498825B2 (en
Inventor
Hiroyuki Tosaka
裕之 登坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2010061039A priority Critical patent/JP5498825B2/en
Publication of JP2011199375A publication Critical patent/JP2011199375A/en
Application granted granted Critical
Publication of JP5498825B2 publication Critical patent/JP5498825B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor switch integrated circuit which suppresses an increase in the size and cost of a chip and a package and can achieves a stable operation.SOLUTION: A resistive element is connected between a control voltage application terminal and a connection point between a FET of an on state and the FET of an off state. Further, the resistive element is connected between a source terminal and a drain terminal of the FET of an off state. As a result, voltage can stably be fed to the drain terminal and the source terminal of the FET constituting the semiconductor switch integrated circuit, and the potentials of the source terminal and the drain terminal of the FET of an off state can be set to a prescribed potential, even if DC voltage including GND potential other than control voltage is not added from an outside.

Description

本発明は、高周波信号を切り替える半導体スイッチ集積回路に関し、特に、制御電圧印加端子を増加させることなく安定的に切替動作を行うことができる半導体スイッチ集積回路に関する。   The present invention relates to a semiconductor switch integrated circuit that switches a high-frequency signal, and more particularly to a semiconductor switch integrated circuit that can perform a switching operation stably without increasing a control voltage application terminal.

高周波信号を扱う移動体通信用端末や小型の電子機器では、高周波信号の入出力経路の切り替えを行うために、GaAsなどの化合物半導体による電界効果トランジスタであるMESFET(Metal-Semiconductor Field Effect Transistor)やHJFET(Hetero Junction Field Effect Transistor)を用いた半導体スイッチ集積回路が数多く使用されている。このような移動体通信用端末や電子機器では、大幅な小型化や、同一の機器内に複数種類の無線装置を搭載するために、内蔵される部品である半導体スイッチ集積回路の小型化が強く要求されている。また、移動体通信用端末や小型の電子機器の価格低下に伴い、半導体スイッチ集積回路の低価格化が強く要求されている。   In mobile communication terminals and small electronic devices that handle high-frequency signals, MESFETs (Metal-Semiconductor Field Effect Transistors), which are field-effect transistors made of compound semiconductors such as GaAs, are used to switch the input / output paths of high-frequency signals. Many semiconductor switch integrated circuits using HJFETs (Hetero Junction Field Effect Transistors) are used. In such mobile communication terminals and electronic devices, the size of the semiconductor switch integrated circuit, which is a built-in component, is strongly reduced in order to significantly reduce the size and to mount a plurality of types of wireless devices in the same device. It is requested. In addition, with the price reduction of mobile communication terminals and small electronic devices, there is a strong demand for lower prices of semiconductor switch integrated circuits.

図7に、従来の半導体スイッチ集積回路の一例を示す。図7に示す半導体スイッチ集積回路は、高周波入力端子から二つの高周波出力端子に信号を切り替えるSPDT(Single
Pole Double Through)スイッチである。図7において、端子11〜13は高周波信号入出力端子、端子21、22は制御電圧印加端子、Q11、Q12はスイッチ動作を行う電界効果トランジスタ(以下、FETという)、R21、R22はFETQ11、Q12それぞれのドレイン端子とソース端子との間を接続する抵抗、R31、R32はFETQ11、Q12それぞれのゲート端子に接続するゲート抵抗である。
FIG. 7 shows an example of a conventional semiconductor switch integrated circuit. The semiconductor switch integrated circuit shown in FIG. 7 has a SPDT (Single
Pole Double Through) switch. 7, terminals 11 to 13 are high-frequency signal input / output terminals, terminals 21 and 22 are control voltage application terminals, Q11 and Q12 are field effect transistors (hereinafter referred to as FETs) that perform a switching operation, and R21 and R22 are FETs Q11 and Q12. Resistors connecting the respective drain terminals and source terminals, and R31 and R32 are gate resistors connected to the gate terminals of the FETs Q11 and Q12.

半導体スイッチ集積回路を動作させるには、半導体スイッチ集積回路を構成する各々のFETのゲート端子、ドレイン端子、ソース端子の電位を決めておき、FETを導通状態あるいは遮断状態にする必要がある。通常、FETを導通状態にするにはFETのドレイン電位およびソース電位よりもゲート電位を同じ、或いは高く設定すれば良い。一方、FETを遮断状態にするにはFETのドレイン電位およびソース電位に対してゲート電位をFETのピンチオフ電圧Vpよりも低い電位に設定すれば良い。   In order to operate the semiconductor switch integrated circuit, it is necessary to determine the potential of the gate terminal, the drain terminal, and the source terminal of each FET constituting the semiconductor switch integrated circuit, and to turn the FET into a conductive state or a cut-off state. Usually, to make the FET conductive, the gate potential may be set equal to or higher than the drain potential and source potential of the FET. On the other hand, in order to turn off the FET, the gate potential may be set lower than the pinch-off voltage Vp of the FET with respect to the drain potential and source potential of the FET.

例えば図7において、制御電圧印加端子21に高い電圧(以下、ハイレベルの制御電圧という) を、制御電圧印加端子22に低い電圧(以下、ローレベルの制御圧という)を印加する。このハイレベルの制御電圧とローレベルの制御電圧の差は、FETQ11、Q12のピンチオフ電圧の絶対値よりも十分に大きな値に設定される。   For example, in FIG. 7, a high voltage (hereinafter referred to as a high level control voltage) is applied to the control voltage application terminal 21 and a low voltage (hereinafter referred to as a low level control pressure) is applied to the control voltage application terminal 22. The difference between the high level control voltage and the low level control voltage is set to a value sufficiently larger than the absolute value of the pinch-off voltage of the FETs Q11 and Q12.

このように制御電圧を制御電圧印加端子21、22に加えると、制御電圧印加端子21からゲート抵抗R31、FETQ11、FETQ12、ゲート抵抗R32を経て制御電圧印加端子22に電流が流れる。このときの電流経路に着目した等価回路を図8に示す。図8に示すように、図7に示すFETQ11およびQ12のドレイン電位およびソース電位である高周波信号入出力端子11の電位は、以下の式で示される値になる。   When the control voltage is applied to the control voltage application terminals 21 and 22 as described above, a current flows from the control voltage application terminal 21 to the control voltage application terminal 22 through the gate resistance R31, FET Q11, FET Q12, and gate resistance R32. An equivalent circuit focusing on the current path at this time is shown in FIG. As shown in FIG. 8, the potential of the high-frequency signal input / output terminal 11 that is the drain potential and the source potential of the FETs Q11 and Q12 shown in FIG. 7 is a value represented by the following equation.

term=VCTL(H) − R31・ICTL − Vbi (式1)
term:高周波信号入出力端子11の電位、
CTL(H):制御電圧印加端子21に印加したハイレベルの制御電圧(V)
R31:ゲート抵抗R31の抵抗値(Ω)
CTL:制御電圧印加端子21から制御電圧印加端子22に流れる電流(A)
Vbi:FETQ11のゲート端子に存在するダイオードD11のビルトインポテンシャル(V)
V term = V CTL (H) −R31 · I CTL −Vbi (Formula 1)
V term : potential of the high-frequency signal input / output terminal 11;
V CTL (H): High level control voltage (V) applied to the control voltage application terminal 21
R31: resistance value of the gate resistor R31 (Ω)
I CTL : Current (A) flowing from the control voltage application terminal 21 to the control voltage application terminal 22
Vbi: Built-in potential (V) of the diode D11 existing at the gate terminal of the FET Q11

このときFETQ11のドレイン電位およびソース電位は、式1で示された値となり、ゲート電位は式1から求められるVtermよりもVbiだけ高い電位となる。即ち、FETQ11は導通状態になる。一方FETQ12についてみると、制御電圧印加端子22に加えるローレベルの制御電圧VCTL(L)が十分に低く、以下の関係を満たす場合には遮断状態となる。 At this time, the drain potential and the source potential of the FET Q11 are the values shown in Equation 1, and the gate potential is higher than V term obtained from Equation 1 by Vbi. That is, the FET Q11 becomes conductive. On the other hand, regarding the FET Q12, when the low level control voltage V CTL (L) applied to the control voltage application terminal 22 is sufficiently low and the following relationship is satisfied, the FET Q12 is cut off.

CTL(L)+R32・ICTL + |Vp|<Vterm (式2)
CTL(L):制御電圧印加端子22に印加したローレベルの制御電圧(V)
VP:FETQ12のピンチオフ電圧(V)
R32:ゲート抵抗R32の抵抗値(Ω)
V CTL (L) + R32 · I CTL + | Vp | <V term (Formula 2)
V CTL (L): Low level control voltage (V) applied to the control voltage application terminal 22
VP: pinch-off voltage (V) of FETQ12
R32: resistance value of the gate resistance R32 (Ω)

このような状態で、高周波信号を高周波入力端子11に入力すると、入力した高周波信号は、導通状態のFETQ11を通過して高周波信号入出力端子12に出力される。一方、高周波信号入出力端子13には、遮断状態のFETQ12により高周波信号は遮断されるため出力されない。逆に制御電圧印加端子21にローレベルの制御電圧を、制御電圧印加端子22にハイレベルの制御電圧を印加した場合には、FETQ11とFETQ12の状態が前述の説明と入れ替わり、高周波信号を高周波信号入出力端子11に入力すると高周波信号は導通状態のFETQ12を通過して高周波信号入出力端子13に出力される。一方、高周波信号入出力端子12には、遮断状態のFETQ11により高周波信号は遮断されるため出力されないことになる。   When a high frequency signal is input to the high frequency input terminal 11 in such a state, the input high frequency signal passes through the conducting FET Q11 and is output to the high frequency signal input / output terminal 12. On the other hand, the high frequency signal is not output to the high frequency signal input / output terminal 13 because the high frequency signal is blocked by the FET Q12 in the cut-off state. Conversely, when a low-level control voltage is applied to the control voltage application terminal 21 and a high-level control voltage is applied to the control voltage application terminal 22, the states of the FET Q11 and the FET Q12 are switched from the above description, and the high-frequency signal is changed to the high-frequency signal. When input to the input / output terminal 11, the high frequency signal passes through the conducting FET Q12 and is output to the high frequency signal input / output terminal 13. On the other hand, the high-frequency signal is not output to the high-frequency signal input / output terminal 12 because the high-frequency signal is blocked by the FET Q11 in the cut-off state.

以上の動作原理により、半導体スイッチ集積回路は制御電圧印加端子に電圧を加えることにより、通過経路を切り替えている。即ち、半導体スイッチ集積回路では、回路を構成するFETのゲート端子、ドレイン端子、ソース端子それぞれに所望の電位を与え、スイッチの導通状態、遮断状態を決定して高周波信号の入出力を切り替えていることになる。   Based on the above operation principle, the semiconductor switch integrated circuit switches the passage path by applying a voltage to the control voltage application terminal. That is, in a semiconductor switch integrated circuit, a desired potential is applied to each of the gate terminal, drain terminal, and source terminal of the FET constituting the circuit, and the conduction state and cutoff state of the switch are determined to switch the input / output of the high-frequency signal. It will be.

ところで、制御電圧印加端子間に電流が流れることにより高周波信号入出力端子の電圧、即ち、スイッチ動作を行うFETのドレイン電位およびソース電位が決定されるため、FETのゲート逆方向リーク電流がほとんど流れない状態、例えばゲート逆方向リーク電流を極限まで低下させたFETを用いた場合や、低温動作の場合には、FETのドレイン電位およびソース電位が不安定になってしまう。これは、式1を満たすためには、制御電圧印加端子21、22間に電流が流れることが前提条件となっており、電流が流れない状態では導通状態になるべきFETのゲートフォワード電流が流れないと、ダイオードのアノード部とカソード部間はオープン状態になり、制御電圧印加端子に加わるハイレベルの制御電圧が高周波信号入出力端子に現れなくなってしまうからである。   By the way, since the current flows between the control voltage application terminals, the voltage of the high-frequency signal input / output terminal, that is, the drain potential and the source potential of the FET performing the switching operation is determined, so that the gate reverse leakage current of the FET almost flows. In the absence of the FET, for example, when the FET whose gate reverse leakage current is reduced to the limit is used or when the FET is operated at a low temperature, the drain potential and the source potential of the FET become unstable. This is based on the precondition that the current flows between the control voltage application terminals 21 and 22 in order to satisfy Equation 1, and when the current does not flow, the gate forward current of the FET that should be in a conductive state flows. Otherwise, the anode portion and the cathode portion of the diode are in an open state, and the high level control voltage applied to the control voltage application terminal does not appear at the high frequency signal input / output terminal.

このようになると半導体スイッチ集積回路を構成するFETのドレイン端子あるいはソース端子間の電位が決定できないため、FETの導通状態や遮断状態が不安定になり、所望の経路切替を行うことができなくなってしまう。実際には、ゲート逆方向リーク電流が全く無くなることはないので、微少な電流によってFETのドレイン端子およびソース端子の電圧が決定されるが、高速切替を行うような場合では、切替時間の遅延が生じ、高周波信号の立ち上がり時に、鈍りなどの信号劣化を引き起こすことになる。   If this happens, the potential between the drain terminal or source terminal of the FET constituting the semiconductor switch integrated circuit cannot be determined, so that the conduction state or cutoff state of the FET becomes unstable, making it impossible to perform desired path switching. End up. Actually, the gate reverse leakage current never disappears, so the voltage at the drain terminal and the source terminal of the FET is determined by a minute current. However, in the case of performing high-speed switching, the switching time is delayed. This causes signal degradation such as dullness at the rising edge of the high frequency signal.

このような不具合を防止するためには、FETのドレイン端子およびソース端子にあたる高周波信号入出力端子に外部から電圧を印加すれば良い。つまり外部から強制的に電圧を印加すれば、半導体スイッチ集積回路を構成するFETのリーク電流に依らずにゲート、ドレイン、ソースの電位を決定することができ、半導体スイッチ集積回路を安定に動作させることが可能となる。   In order to prevent such a problem, a voltage may be applied from the outside to the high-frequency signal input / output terminal corresponding to the drain terminal and the source terminal of the FET. In other words, if a voltage is forcibly applied from the outside, the potentials of the gate, drain, and source can be determined without depending on the leakage current of the FET constituting the semiconductor switch integrated circuit, and the semiconductor switch integrated circuit operates stably. It becomes possible.

図9は、このような対策を行った従来の半導体スイッチ集積回路を示す。図9に示す回路は、高周波信号入出力端子とGNDとの間に外付け抵抗R1を接続している。このように構成することで、遮断状態のFETのゲート逆方向リーク電流がない場合でも、ハイレベルの制御電圧を印加した制御電圧印加端子から外付け抵抗R1によってGNDへ電流を流すことにより、端子電圧が決定され、半導体スイッチ集積回路の安定動作が図られることになる。また、外付け抵抗の代わりに、高周波信号を阻止するインダクタを接続しても同様の効果が得られる。なお、図9では、1、2、3は半導体スイッチ集積回路30の高周波信号入出力端子11、12、13それぞれに外付けの容量C1、C2、C3を介して高周波信号が入出力される高周波信号入出力端子である。   FIG. 9 shows a conventional semiconductor switch integrated circuit in which such measures are taken. In the circuit shown in FIG. 9, an external resistor R1 is connected between the high-frequency signal input / output terminal and GND. With this configuration, even when there is no reverse gate leakage current of the FET in the cut-off state, a current is allowed to flow from the control voltage application terminal to which the high-level control voltage is applied to the GND by the external resistor R1. The voltage is determined and stable operation of the semiconductor switch integrated circuit is achieved. The same effect can be obtained by connecting an inductor that blocks high-frequency signals instead of an external resistor. In FIG. 9, reference numerals 1, 2, and 3 denote high-frequency signals that are input and output to the high-frequency signal input / output terminals 11, 12, and 13 of the semiconductor switch integrated circuit 30 through external capacitors C1, C2, and C3, respectively. Signal input / output terminal.

さらにまた図10に示すように、半導体スイッチ集積回路30内部に抵抗素子を備える構成としても同様に効果が得られる。図10に示す回路では、高周波信号入出力端子11、FETQ11およびFETQ12の接続点に、抵抗R41の一端が接続され、他端は外部接続端子23として外部に接続される構成となっている。この外部接続端子23に定電圧源あるいはGNDを接続することで、安定的に動作させることが可能となっている。なお、特許文献1及び特許文献2には、図10に示す回路に類似する回路が記載されている。   Furthermore, as shown in FIG. 10, the same effect can be obtained with a configuration in which a resistance element is provided in the semiconductor switch integrated circuit 30. In the circuit shown in FIG. 10, one end of the resistor R41 is connected to the connection point of the high-frequency signal input / output terminal 11, the FET Q11, and the FET Q12, and the other end is connected to the outside as the external connection terminal 23. By connecting a constant voltage source or GND to the external connection terminal 23, it is possible to operate stably. Note that Patent Literature 1 and Patent Literature 2 describe a circuit similar to the circuit shown in FIG.

特開2002−135095号公報JP 2002-135095 A 特開平9−023101号公報Japanese Patent Laid-Open No. 9-023101

半導体スイッチ集積回路の動作を安定させるため、図9に示した半導体スイッチ集積回路では、外部に抵抗あるいは抵抗の代わりとして高周波信号を阻止するインダクタが必要であり外部素子の増加を招くという問題があった。また図10に示したように、半導体スイッチ集積回路内に抵抗を形成することも可能であるが、この抵抗素子に接続するパッドを集積回路に設ける必要があり、チップサイズおよびコストの増加を招くという問題があった。さらに外部接続端子が、図7、図9に示す例では5端子で済んでいたものが、6端子必要となり、端子数の増加により1ランク大きなパッケージを選択しなければならなくなってしまうという問題も発生する。一般的に端子数が増加するとパッケージコストが上がるため、パッケージコストの増加を招いてしまうという問題があった。   In order to stabilize the operation of the semiconductor switch integrated circuit, the semiconductor switch integrated circuit shown in FIG. 9 requires a resistor or an inductor for blocking a high-frequency signal instead of the resistor, resulting in an increase in the number of external elements. It was. Further, as shown in FIG. 10, it is possible to form a resistor in the semiconductor switch integrated circuit, but it is necessary to provide a pad connected to the resistor element in the integrated circuit, resulting in an increase in chip size and cost. There was a problem. In addition, the external connection terminals used in the examples shown in FIGS. 7 and 9 are 5 terminals. However, 6 terminals are required, and the number of terminals is increased, so that a package having a rank larger than that must be selected. appear. In general, when the number of terminals is increased, the package cost is increased, resulting in an increase in the package cost.

本発明は、上記問題点を解消し、チップやパッケージのサイズやコストの増加を抑えるとともに、安定動作が実現できる半導体スイッチ集積回路を提供することを目的とする。   An object of the present invention is to provide a semiconductor switch integrated circuit that solves the above problems, suppresses an increase in the size and cost of a chip and a package, and can realize a stable operation.

上記目的を達成するために本願請求項1に係る発明は、少なくとも2つの高周波信号入出力端子の間に、電界効果トランジスタが接続され、該電界効果トランジスタのゲート端子に、制御電圧を印加することで、前記2つの高周波信号入出力端子間に高周波信号を通過させ、あるいは遮断させる半導体スイッチ集積回路において、第1の高周波信号入出力端子にドレイン端子あるいはソース端子を、第2の高周波信号入出力端子にソース端子あるいはドレイン端子を接続した第1の電界効果トランジスタと、前記第1の高周波信号入出力端子にソース端子あるいはドレイン端子を、第3の高周波信号入出力端子にドレイン端子あるいはソース端子を接続した第2の電界効果トランジスタと、前記第1の電界効果トランジスタのゲート端子に制御電圧を印加する第1の制御端子と、前記第2の電界効果トランジスタのゲート端子に制御電圧を印加する第2の制御電圧印加端子と、前記第1の制御電圧印加端子に一端を接続し、他端を前記第1の電界効果トランジスタのドレイン端子あるいはソース端子に接続した第1の抵抗素子と、前記第2の制御電圧印加端子に一端を接続し、他端を前記第2の電界効果トランジスタのソース端子あるいはドレイン端子に接続した第2の抵抗素子と、前記第1および第2の抵抗素子を介して、前記第1の制御電圧印加端子および前記第2の制御電圧印加端子とを接続したことを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, a field effect transistor is connected between at least two high-frequency signal input / output terminals, and a control voltage is applied to the gate terminal of the field effect transistor. In the semiconductor switch integrated circuit in which a high-frequency signal is allowed to pass between or cut off between the two high-frequency signal input / output terminals, a drain terminal or a source terminal is connected to the first high-frequency signal input / output terminal, and a second high-frequency signal input / output terminal is connected. A first field effect transistor having a source terminal or drain terminal connected to the terminal; a source terminal or drain terminal connected to the first high frequency signal input / output terminal; and a drain terminal or source terminal connected to the third high frequency signal input / output terminal. The connected second field effect transistor and the gate terminal of the first field effect transistor are controlled. A first control terminal for applying a voltage; a second control voltage application terminal for applying a control voltage to the gate terminal of the second field effect transistor; and one end connected to the first control voltage application terminal; A first resistance element having the other end connected to the drain terminal or the source terminal of the first field effect transistor, one end connected to the second control voltage application terminal, and the other end to the second field effect transistor The second resistance element connected to the source terminal or the drain terminal of the first and second control elements are connected to the first control voltage application terminal and the second control voltage application terminal via the first and second resistance elements. It is characterized by that.

本願請求項2に係る発明は、請求項1記載の半導体スイッチ集積回路において、前記第1の電界効果トランジスタおよび前記第2の電界効果トランジスタのドレイン端子とソース端子を接続する第3の抵抗素子とを備え、前記第1乃至第3の抵抗素子を介して、前記第1の制御電圧印加端子と前記第2の制御電圧印加端子とを接続したことを特徴とする。   According to a second aspect of the present invention, in the semiconductor switch integrated circuit according to the first aspect, a third resistance element that connects a drain terminal and a source terminal of the first field effect transistor and the second field effect transistor; The first control voltage application terminal and the second control voltage application terminal are connected via the first to third resistance elements.

本発明によれば、制御電圧以外に外部からGND電位を含めたDC電圧を加えなくとも、半導体スイッチ集積回路を構成するFETのドレイン端子、ソース端子に安定に電圧を供給することができ、回路の小型化を実現しながら、安定な動作を実現できるという利点がある。   According to the present invention, a voltage can be stably supplied to the drain terminal and the source terminal of the FET constituting the semiconductor switch integrated circuit without applying a DC voltage including the GND potential from the outside in addition to the control voltage. There is an advantage that stable operation can be realized while downsizing.

また抵抗値を調整や、経路毎にパワーハンドリング、挿入損失を調整することが可能となり、半導体スイッチ集積回路の用途に合わせた回路設計が可能となるという利点がある。   Further, it is possible to adjust the resistance value, adjust the power handling and insertion loss for each path, and there is an advantage that the circuit design according to the application of the semiconductor switch integrated circuit is possible.

本発明の第1の実施例の半導体スイッチ集積回路を説明する図である。1 is a diagram for explaining a semiconductor switch integrated circuit according to a first embodiment of the present invention; FIG. 図1に示す半導体スイッチ集積回路の線形性特性図である。FIG. 2 is a linearity characteristic diagram of the semiconductor switch integrated circuit shown in FIG. 1. 本発明の第2の実施例の半導体スイッチ集積回路を説明する図である。It is a figure explaining the semiconductor switch integrated circuit of the 2nd Example of this invention. 本発明の第3の実施例の半導体スイッチ集積回路を説明する図である。It is a figure explaining the semiconductor switch integrated circuit of the 3rd Example of this invention. 本発明の第4の実施例の半導体スイッチ集積回路を説明する図である。It is a figure explaining the semiconductor switch integrated circuit of the 4th Example of this invention. 本発明の第5の実施例の半導体スイッチ集積回路を説明する図である。It is a figure explaining the semiconductor switch integrated circuit of the 5th Example of this invention. 従来の半導体スイッチ集積回路の一例を示す図である。It is a figure which shows an example of the conventional semiconductor switch integrated circuit. 図7に示す半導体スイッチ集積回路の等価回路図である。FIG. 8 is an equivalent circuit diagram of the semiconductor switch integrated circuit shown in FIG. 7. 従来の半導体スイッチ集積回路の別の例を示す図である。It is a figure which shows another example of the conventional semiconductor switch integrated circuit. 従来の半導体スイッチ集積回路の更に別の例を示す図である。It is a figure which shows another example of the conventional semiconductor switch integrated circuit.

本発明の実施形態について、図面を参照しつつ説明する。なお、以下に説明する部材、配置等は、本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができる。   Embodiments of the present invention will be described with reference to the drawings. The members, arrangements, and the like described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.

図1は、本発明の第1の実施例の説明図で、SPDTスイッチを構成した例である。図1において、11は高周波信号入出力端子(第1の高周波信号入出力端子に相当)、12は高周波信号入出力端子(第2の高周波信号入出力端子に相当)、13は高周波信号入出力端子(第3の高周波信号入出力端子に相当)、21は制御電圧印加端子(第1の制御電圧印加端子に相当)、22は制御電圧印加端子(第2の制御電圧印加端子に相当)、Q11はFET(第1のFETに相当)、Q12はFET(第2のFETに相当)、R11は本発明により追加された抵抗素子(第1の抵抗素子に相当)、R12は本発明により追加された別の抵抗素子(第2の抵抗素子に相当)、R31、R32はそれぞれFETQ11、Q12のゲート端子に接続するゲート抵抗で、通常は数kΩから数百kΩ程度の大きな抵抗値が選択される抵抗素子である。   FIG. 1 is an explanatory diagram of a first embodiment of the present invention, and shows an example in which an SPDT switch is configured. In FIG. 1, 11 is a high frequency signal input / output terminal (corresponding to a first high frequency signal input / output terminal), 12 is a high frequency signal input / output terminal (corresponding to a second high frequency signal input / output terminal), and 13 is a high frequency signal input / output terminal. Terminal (corresponding to the third high-frequency signal input / output terminal), 21 is a control voltage application terminal (corresponding to the first control voltage application terminal), 22 is a control voltage application terminal (corresponding to the second control voltage application terminal), Q11 is an FET (corresponding to the first FET), Q12 is an FET (corresponding to the second FET), R11 is a resistance element (corresponding to the first resistance element) added according to the present invention, and R12 is added according to the present invention. The other resistance elements (corresponding to the second resistance element), R31 and R32, are gate resistors connected to the gate terminals of the FETs Q11 and Q12, respectively, and usually have a large resistance value of several kΩ to several hundred kΩ. Resistance element A.

図1に示す半導体スイッチ集積回路は、制御電圧印加端子21、制御電圧印加端子22に印加される電圧により、FETQ11およびFETQ12の導通状態を変化させて半導体スイッチ集積回路の経路切替動作が行われる。図1ではシングルゲートFETを用いているが、パワーハンドリングを増加させるため、複数のFETを直列に接続するスタック構造のFETや、マルチゲートFETを用いることもできる。   In the semiconductor switch integrated circuit shown in FIG. 1, the path switching operation of the semiconductor switch integrated circuit is performed by changing the conduction state of the FET Q11 and the FET Q12 by the voltages applied to the control voltage application terminal 21 and the control voltage application terminal 22. Although a single gate FET is used in FIG. 1, in order to increase power handling, a stacked FET or a multi-gate FET in which a plurality of FETs are connected in series can be used.

次に、半導体スイッチ集積回路の動作について説明する。図1に示すSPDTスイッチでは、制御電圧印加端子21にハイレベルの制御電圧を、制御電圧印加端子22にローレベルの制御電圧を印加すると、電流は制御電圧印加端子21から抵抗素子R31、FETQ11のゲート電極を介して流れる電流経路と、抵抗素子R11を通って流れる電流経路の2つの経路によって半導体スイッチ集積回路30を構成するFETのドレイン端子あるいはソース端子である高周波信号入出力端子11へ電流が流れる。その後、電位の低い制御電圧印加端子22に向かって電流が流れていくが、この電流経路もFETQ12のドレイン端子あるいはソース端子とゲート端子間、抵抗素子R32を通る経路と、抵抗素子R12を通る経路の2つの経路が存在する。この2つの経路のうち、FETQ12のドレイン端子あるいはソース端子とゲート端子間を流れる電流は前述のダイオードの逆方向印加リーク電流であり、極めて少なく、これが半導体スイッチ集積回路の動作不安定を招いていた。   Next, the operation of the semiconductor switch integrated circuit will be described. In the SPDT switch shown in FIG. 1, when a high level control voltage is applied to the control voltage application terminal 21 and a low level control voltage is applied to the control voltage application terminal 22, the current flows from the control voltage application terminal 21 to the resistance elements R 31 and FET Q 11. A current is supplied to the high-frequency signal input / output terminal 11 which is the drain terminal or the source terminal of the FET constituting the semiconductor switch integrated circuit 30 by two paths, a current path flowing through the gate electrode and a current path flowing through the resistance element R11. Flowing. Thereafter, a current flows toward the control voltage application terminal 22 having a low potential, and this current path also includes a path between the drain terminal or the source terminal and the gate terminal of the FET Q12, a path passing through the resistance element R32, and a path passing through the resistance element R12. There are two paths. Of these two paths, the current flowing between the drain terminal or the source terminal of the FET Q12 and the gate terminal is a leakage current applied in the reverse direction of the diode described above, which is extremely small, which has caused unstable operation of the semiconductor switch integrated circuit. .

本発明では抵抗素子R12を備えることで、FETQ12のゲート部の逆方向リーク電流が0になったとしてもハイレベルの制御電圧を印加した制御電圧印加端子21からローレベルの制御電圧を印加した制御電圧印加端子22へ電流が流れ、抵抗素子R11と抵抗素子R12の接続点でもあり、かつFETQ11、Q12のドレイン端子あるいはソース端子である高周波信号入出力端子11の電位は所定の値に決定される。その結果、FETQ11は導通状態に、FETQ12は遮断状態となり、半導体スイッチ集積回路としての動作を確実に行うことができることになる。   In the present invention, by providing the resistance element R12, even when the reverse leakage current of the gate portion of the FET Q12 becomes zero, the control applied with the low level control voltage from the control voltage application terminal 21 to which the high level control voltage is applied. A current flows to the voltage application terminal 22, the potential of the high-frequency signal input / output terminal 11 which is also a connection point between the resistance element R11 and the resistance element R12 and which is the drain terminal or the source terminal of the FETs Q11 and Q12 is determined to be a predetermined value. . As a result, the FET Q11 is turned on and the FET Q12 is turned off, so that the operation as a semiconductor switch integrated circuit can be performed reliably.

ここで抵抗素子R11と抵抗素子R12を等しい値にすれば、制御電圧印加端子21にローレベルの制御電圧を、制御電圧印加端子22にハイレベルの制御電圧を加え、FETQ11とFETQ12の状態を入れ替えて経路を切り替えた際にも高周波信号入出力端子11の電位は、経路切替前と同一の値となり、経路による特性差は出ない。一方、抵抗素子R11と抵抗素子R22の値を調整することで経路切替の際のRF端子電圧を変化させることができ、通過経路によって特性差を設定することも可能となる。   If the resistance elements R11 and R12 are equal to each other, a low-level control voltage is applied to the control voltage application terminal 21, a high-level control voltage is applied to the control voltage application terminal 22, and the states of the FET Q11 and the FET Q12 are switched. Even when the path is switched, the potential of the high-frequency signal input / output terminal 11 becomes the same value as before the path switching, and there is no difference in characteristics depending on the path. On the other hand, the RF terminal voltage at the time of path switching can be changed by adjusting the values of the resistance element R11 and the resistance element R22, and the characteristic difference can be set according to the passage path.

たとえば、図1において抵抗素子R11よりも抵抗素子R12を大きくした場合の半導体スイッチ集積回路の挿入損失の入力電力依存性を示すグラフを図2に示す。なお、抵抗素子R11の抵抗値は100kΩ、抵抗素子R12の抵抗値は900kΩとし、ハイレベルの切替電圧とローレベルの切替電圧は、線路切替前後で同一の値とする。   For example, FIG. 2 shows a graph showing the input power dependence of the insertion loss of the semiconductor switch integrated circuit when the resistance element R12 is made larger than the resistance element R11 in FIG. The resistance value of the resistance element R11 is 100 kΩ, the resistance value of the resistance element R12 is 900 kΩ, and the high level switching voltage and the low level switching voltage are the same before and after the line switching.

図1に示す半導体スイッチ回路において、抵抗素子R11と抵抗素子の抵抗値の関係(R11の抵抗値<<R21の抵抗値)から、制御電圧印加端子21にハイレベルの制御電圧を、制御電圧印加端子22にローレベルの制御電圧を印加すると、FETQ11を通過状態に、FETQ12を遮断状態にした方が、制御電圧印加端子21にローレベルの切替電圧を、制御電圧印加端子22にハイレベルの切替電圧を印加し、FETQ11を遮断状態に、FETQ12を通過状態にした場合に比べて高周波信号入出力端子11の電位が高くなる。高周波信号入出力端子の電位が高い方が、遮断状態のFETのゲート端子に加わる逆方向電圧が大きくなるために、パワーハンドリングが上昇する。即ち、高周波信号入出力端子11と高周波信号入出力端子12間を通過状態にした場合には高い電力まで通過させることが可能となる。   In the semiconductor switch circuit shown in FIG. 1, a high-level control voltage is applied to the control voltage application terminal 21 from the relationship between the resistance value of the resistance element R11 and the resistance value of the resistance element (resistance value of R11 << resistance value of R21). When a low level control voltage is applied to the terminal 22, switching the FET Q11 to the passing state and switching the FET Q12 to the cutoff state causes the control voltage application terminal 21 to switch the low level switching voltage and the control voltage application terminal 22 to switch the high level. The potential of the high-frequency signal input / output terminal 11 becomes higher than when a voltage is applied to turn off the FET Q11 and pass the FET Q12. When the potential of the high-frequency signal input / output terminal is higher, the reverse voltage applied to the gate terminal of the FET in the cut-off state increases, so that power handling increases. That is, when the high-frequency signal input / output terminal 11 and the high-frequency signal input / output terminal 12 are in a passing state, it is possible to pass high power.

一方、制御電圧印加端子21にローレベルの制御電圧を、制御電圧印加端子22にハイレベルの制御電圧を印加すると、高周波信号入出力端子11と高周波信号入出力端子13間を通過状態にすると高周波信号入出力端子11の電位は経路切替前に比べると下がる。このため、パワーハンドリングは下がるが、通過状態のFETのゲート端子に加わる順方向電圧が大きくなるために、FETのオン抵抗が下がる。即ち、高周波信号入出力端子11と高周波信号入出力端子13間を通過状態にした場合には通過損失が改善される。   On the other hand, when a low-level control voltage is applied to the control voltage application terminal 21 and a high-level control voltage is applied to the control voltage application terminal 22, the high-frequency signal input / output terminal 11 and the high-frequency signal input / output terminal 13 are placed in a passing state. The potential of the signal input / output terminal 11 is lower than before switching the path. For this reason, although power handling is reduced, the forward voltage applied to the gate terminal of the passing FET is increased, so that the on-resistance of the FET is reduced. That is, the passage loss is improved when the high-frequency signal input / output terminal 11 and the high-frequency signal input / output terminal 13 are in a passing state.

図2に示す例では、高周波信号入出力端子12と高周波信号入出力端子11間が導通時には挿入損失が0.4dBであり、線形性を表す指標である1dB圧縮時入力電力は28.4dBmとなっている。一方、通過経路を切り替えて高周波信号入出力端子13と高周波信号入出力端子11間を導通状態にすると挿入損失が0.34dB、1dB圧縮時入力電力が22.8dBmと通過経路による特徴付けがなされていることが確認できる。   In the example shown in FIG. 2, the insertion loss is 0.4 dB when the high-frequency signal input / output terminal 12 and the high-frequency signal input / output terminal 11 are conductive, and the input power at 1 dB compression, which is an index indicating linearity, is 28.4 dBm. It has become. On the other hand, when the passage path is switched to bring the high-frequency signal input / output terminal 13 and the high-frequency signal input / output terminal 11 into a conductive state, the insertion loss is 0.34 dB, and the input power at the time of 1 dB compression is 22.8 dBm. Can be confirmed.

このように抵抗素子の抵抗値を変更すると、本来の目的である半導体スイッチ集積回路の安定動作に加えて、経路毎の特徴付けも可能となる。   When the resistance value of the resistance element is changed in this way, in addition to the stable operation of the semiconductor switch integrated circuit which is the original purpose, characterization for each path is also possible.

図3は、本発明の第2の実施例を説明する図で、SP3T(Single Pole 3 Through)スイッチを構成した例である。図3において、11は高周波信号入出力端子(第1の高周波信号入出力端子に相当)、12は高周波信号入出力端子(第2の高周波信号入出力端子に相当)、13は高周波信号入出力端子(第3の高周波信号入出力端子に相当)、14は高周波信号入出力端子、21は制御電圧印加端子(第1の制御電圧印加端子に相当)、22は制御電圧印加端子(第2の制御電圧印加端子に相当)、23は制御電圧印加端子、Q11はFET(第1のFETに相当)、Q12はFET(第2のFETに相当)、Q13はFET、R11は抵抗素子(第1の抵抗素子に相当)、R12は別の抵抗素子(第2の抵抗素子に相当)、R13は別の抵抗素子、R31、R32、R33はそれぞれFETQ11、Q12、Q13のゲート端子に接続するゲート抵抗である。   FIG. 3 is a diagram for explaining a second embodiment of the present invention, which is an example in which an SP3T (Single Pole 3 Through) switch is configured. In FIG. 3, 11 is a high frequency signal input / output terminal (corresponding to a first high frequency signal input / output terminal), 12 is a high frequency signal input / output terminal (corresponding to a second high frequency signal input / output terminal), and 13 is a high frequency signal input / output. Terminal (corresponding to a third high-frequency signal input / output terminal), 14 is a high-frequency signal input / output terminal, 21 is a control voltage application terminal (corresponding to a first control voltage application terminal), 22 is a control voltage application terminal (second Control voltage application terminal), 23 is a control voltage application terminal, Q11 is an FET (corresponding to the first FET), Q12 is an FET (corresponding to the second FET), Q13 is an FET, R11 is a resistance element (first element) R12 is another resistance element (corresponding to the second resistance element), R13 is another resistance element, R31, R32, and R33 are gate resistors connected to the gate terminals of the FETs Q11, Q12, and Q13, respectively. so That.

図3に示す回路構成としても、いずれの制御電圧印加端子間も抵抗素子R11、R12R13を介して接続されており、その接続点は共通の高周波信号入出力端子11に接続されている。このように構成したSP3Tスイッチを動作させる場合は、導通状態にしたい1つのFETのゲート端子に接続されている制御電圧印加端子にハイレベルを、遮断状態にしたい2つのFETのゲート端子にローレベルを印加する。いずれの状態においてもハイレベルを印加した制御電圧印加端子からローレベルを印加した制御電圧印加端子に電流が流れ、高周波信号入出力端子11の電位は遮断状態のFETのゲート逆方向リーク電流によらずに決定される。図3に示す半導体スイッチ集積回路では、全てのFETが高周波信号入出力端子11に接続されているために、高周波信号入出力端子11の電位が決定されれば、全てのFETのドレイン電圧が決定され、全てのFETの状態が決定される。その結果、スイッチ動作を安定に行うことが可能となる。   Also in the circuit configuration shown in FIG. 3, both control voltage application terminals are connected via resistance elements R <b> 11 and R <b> 12 </ b> R <b> 13, and the connection point is connected to a common high-frequency signal input / output terminal 11. When operating the SP3T switch configured as described above, a high level is applied to the control voltage application terminal connected to the gate terminal of one FET that is to be turned on, and a low level is applied to the gate terminals of two FETs that are to be turned off. Apply. In any state, a current flows from a control voltage application terminal to which a high level is applied to a control voltage application terminal to which a low level is applied, and the potential of the high-frequency signal input / output terminal 11 depends on the gate reverse leakage current of the FET in the cutoff state. Without being decided. In the semiconductor switch integrated circuit shown in FIG. 3, since all FETs are connected to the high frequency signal input / output terminal 11, if the potential of the high frequency signal input / output terminal 11 is determined, the drain voltage of all FETs is determined. And the state of all FETs is determined. As a result, the switch operation can be performed stably.

なお、3つの抵抗素子R11、R12、R13の抵抗値を異なった値にすることで通過経路毎の特徴付けを行うことができることは、第1の実施例で説明した通りである。   As described in the first embodiment, the three resistance elements R11, R12, and R13 can be characterized by different resistance values by making the resistance values different from each other.

以上の説明では、制御電圧印加端子から抵抗を介して接続される点は同一の接続点であったが、回路構成やレイアウト次第では各制御電圧印加端子から抵抗を介して接続される点を異なる点にした方が良い場合、あるいは異なる点にせざるを得ない場合が生じる。その様な場合における実施例として第3の実施例を示す。   In the above description, the point connected from the control voltage application terminal via the resistor is the same connection point, but the point connected from each control voltage application terminal via the resistor differs depending on the circuit configuration and layout. There are cases where it is better to make a point, or a different point. A third embodiment is shown as an embodiment in such a case.

図4は本発明の第3の実施例の説明図である。上述の第1の実施例と異なり、第1の制御電圧印加端子21に接続した抵抗素子R11は高周波信号入出力端子12に、第2の制御電圧印加端子22に接続した抵抗素子R12は高周波信号入出力端子13にそれぞれ接続されている。また、抵抗素子13(第3の抵抗素子に相当)を追加し、FETQ11のドレイン端子あるいはソース端子とFETQ12のソース端子あるいはドレイン端子との間、即ち、第1の制御電圧印加端子21に抵抗素子R11を介して接続している高周波信号入出力端子12と、第2の制御電圧印加端子22に抵抗素子R12を介して接続している高周波信号入出力端子13間を接続する構成となっている。   FIG. 4 is an explanatory diagram of the third embodiment of the present invention. Unlike the first embodiment described above, the resistor element R11 connected to the first control voltage application terminal 21 is connected to the high frequency signal input / output terminal 12, and the resistor element R12 connected to the second control voltage application terminal 22 is connected to the high frequency signal. Each is connected to the input / output terminal 13. Further, a resistance element 13 (corresponding to a third resistance element) is added, and a resistance element is connected between the drain terminal or source terminal of the FET Q11 and the source terminal or drain terminal of the FET Q12, that is, the first control voltage application terminal 21. The high-frequency signal input / output terminal 12 connected via R11 and the high-frequency signal input / output terminal 13 connected to the second control voltage application terminal 22 via the resistor element R12 are connected. .

このように構成することで、制御電圧印加端子21と制御電圧印加端子22は抵抗素子R11、R13、R12の3つの抵抗素子によって接続され、抵抗素子R11と抵抗素子R13の接続点が高周波信号入出力端子12に、抵抗素子R13と抵抗素子R12の接続点が高周波信号入出力端子13に接続される。   With this configuration, the control voltage application terminal 21 and the control voltage application terminal 22 are connected by three resistance elements R11, R13, and R12, and the connection point between the resistance element R11 and the resistance element R13 is a high-frequency signal input. A connection point between the resistance element R13 and the resistance element R12 is connected to the output terminal 12 to the high-frequency signal input / output terminal 13.

ここで、制御電圧印加端子21、22それぞれにハイレベルおよびローレベルの電圧を印加すると、抵抗素子を介して制御電圧端子間に電流が流れ、FETのゲート逆方向電流が0であっても高周波信号入出力端子12および高周波信号入出力端子13の電位、即ち、抵抗素子R11、R12、R13の接続点の電位は抵抗素子の抵抗値およびハイレベルの電圧を印加したFETのゲートフォワード電流により決定されることになる。   Here, when a high level voltage and a low level voltage are applied to the control voltage application terminals 21 and 22, current flows between the control voltage terminals via the resistance elements, and even if the gate reverse current of the FET is 0, the high frequency The potential of the signal input / output terminal 12 and the high-frequency signal input / output terminal 13, that is, the potential of the connection point of the resistance elements R11, R12, and R13 is determined by the resistance value of the resistance element and the gate forward current of the FET to which a high level voltage is applied. Will be.

その結果、高周波信号入出力端子12に接続されているFETQ11ならびに高周波信号入出力端子13に接続されているFETQ12のドレインあるいはソースの電位が決定されるので安定な動作が可能となる。   As a result, the potential of the drain or source of the FET Q11 connected to the high-frequency signal input / output terminal 12 and the FET Q12 connected to the high-frequency signal input / output terminal 13 is determined, so that stable operation is possible.

なお、3つの抵抗素子R11、R12、R13の抵抗値を異なった値にすることで通過経路毎の特徴付けを行うことができることは、第1の実施例で説明した通りである。   As described in the first embodiment, the three resistance elements R11, R12, and R13 can be characterized by different resistance values by making the resistance values different from each other.

次に、第4の実施例について説明する。図5は本発明の第4の実施例の説明図である。上述の第3の実施例と異なり、抵抗素子13(第3の抵抗素子に相当)が、FETQ11のドレイン端子とソース端子間、即ち、第1の制御電圧印加端子21に抵抗R11を介して接続している高周波信号入出力端子12と高周波信号入出力端子11間を接続する構成となっている。さらに本実施例では、抵抗素子R14(第3の抵抗素子に相当)を備え、FETQ12のドレイン端子とソース端子間、即ち、第2の制御電圧印加端子22と抵抗素子R21を介して接続している高周波信号入出力端子13と高周波信号入出力端子11間を接続する構成となっている。   Next, a fourth embodiment will be described. FIG. 5 is an explanatory diagram of the fourth embodiment of the present invention. Unlike the above-described third embodiment, the resistance element 13 (corresponding to the third resistance element) is connected between the drain terminal and the source terminal of the FET Q11, that is, to the first control voltage application terminal 21 via the resistance R11. The high-frequency signal input / output terminal 12 and the high-frequency signal input / output terminal 11 are connected to each other. Further, in this embodiment, a resistance element R14 (corresponding to a third resistance element) is provided, and is connected between the drain terminal and the source terminal of the FET Q12, that is, via the second control voltage application terminal 22 and the resistance element R21. The high-frequency signal input / output terminal 13 and the high-frequency signal input / output terminal 11 are connected.

このように構成すると、制御電圧印加端子21、22それぞれにハイレベルおよびローレベルの電圧を印加すると、抵抗素子を介して制御電圧端子間に電流が流れ、FETのゲート逆方向電流が0であっても高周波信号入出力端子12および高周波信号入出力端子13の電位、即ち、抵抗素子R11とR13の接続点の電位、R12とR14の接続点の電位は、抵抗素子の抵抗値およびハイレベルの電圧を印加したFETのゲートフォワード電流により決定されることになる。   With this configuration, when a high-level voltage and a low-level voltage are applied to the control voltage application terminals 21 and 22, current flows between the control voltage terminals via the resistance elements, and the gate reverse current of the FET is zero. However, the potentials of the high-frequency signal input / output terminal 12 and the high-frequency signal input / output terminal 13, that is, the potential at the connection point of the resistance elements R11 and R13, and the potential at the connection point of R12 and R14 are the resistance value of the resistance element and the high level. It is determined by the gate forward current of the FET to which the voltage is applied.

その結果、高周波信号入出力端子12に接続されているFETQ11ならびに高周波信号入出力端子13に接続されているFETQ12のドレインあるいはソースの電位が決定されるので安定な動作が可能となる。   As a result, the potential of the drain or source of the FET Q11 connected to the high-frequency signal input / output terminal 12 and the FET Q12 connected to the high-frequency signal input / output terminal 13 is determined, so that stable operation is possible.

なお、3つの抵抗素子R11、R12、R13、R14の抵抗値を異なった値にすることで通過経路毎の特徴付けを行うことができることは、第1の実施例で説明した通りである。   As described in the first embodiment, the three resistance elements R11, R12, R13, and R14 can be characterized by different resistance values by making the resistance values different from each other.

次に第5の実施例について説明する。本発明は、SPDTスイッチおよびSP3Tスイッチに限らず、さらに複雑な構成のDPDT(Dual Pole Double Through)スイッチに適用することもできる。図6は本発明の第5の実施例の説明図である。   Next, a fifth embodiment will be described. The present invention is not limited to SPDT switches and SP3T switches, and can also be applied to DPDT (Dual Pole Double Through) switches having a more complicated configuration. FIG. 6 is an explanatory diagram of the fifth embodiment of the present invention.

図6において、11は高周波信号入出力端子(第1の高周波信号入出力端子に相当)、12は高周波信号入出力端子(第2の高周波信号入出力端子に相当)、13は高周波信号入出力端子(第3の高周波信号入出力端子に相当)、14は高周波信号入出力端子、21は制御電圧印加端子(第1の制御電圧印加端子に相当)、22は制御電圧印加端子(第2の制御電圧印加端子に相当)、Q11はFET(第1のFETに相当)、Q12はFET(第2のFETに相当)、Q13はFET、Q14はFET、R11は抵抗素子(第1の抵抗素子に相当)、R12は別の抵抗素子(第2の抵抗素子に相当)、R21はFETQ11のドレイン端子とソース端子の両端を接続する抵抗素子(第3の抵抗素子に相当)、R22はFETQ12のソース端子とドレイン端子の両端を接続する抵抗素子(第3の抵抗素子に相当)、R23はFETQ13のソース端子とドレイン端子の両端を接続する抵抗素子(第3の抵抗素子に相当)、R24はFETQ14のソース端子とドレイン端子の両端を接続する抵抗素子(第3の抵抗素子に相当)、R31、R32、R33、R34はそれぞれFETQ11、Q12、Q13、Q14のゲート端子に接続するゲート抵抗である。   In FIG. 6, 11 is a high frequency signal input / output terminal (corresponding to a first high frequency signal input / output terminal), 12 is a high frequency signal input / output terminal (corresponding to a second high frequency signal input / output terminal), and 13 is a high frequency signal input / output. Terminal (corresponding to a third high-frequency signal input / output terminal), 14 is a high-frequency signal input / output terminal, 21 is a control voltage application terminal (corresponding to a first control voltage application terminal), 22 is a control voltage application terminal (second Q11 is an FET (corresponding to the first FET), Q12 is an FET (corresponding to the second FET), Q13 is an FET, Q14 is an FET, and R11 is a resistance element (first resistance element). R12 is another resistance element (corresponding to the second resistance element), R21 is a resistance element (corresponding to the third resistance element) connecting the drain terminal and the source terminal of the FET Q11, and R22 is the resistance of the FET Q12. Source A resistor element (corresponding to the third resistor element) connecting both ends of the child and drain terminals, R23 is a resistor element (corresponding to the third resistor element) connecting both ends of the source terminal and drain terminal of the FET Q13, and R24 is FET Q14 , R31, R32, R33, R34 are gate resistors connected to the gate terminals of the FETs Q11, Q12, Q13, Q14, respectively.

ここで制御電圧印加端子21にハイレベルの切替電圧を、制御電圧印加端子22にローレベルの切替電圧を印加した場合、制御電圧印加端子21と制御電圧印加端子22の間には抵抗素子R11、R21、R24、R12あるいはR11、R22、R23、R12が接続されており、FETのゲート逆方向リーク電流が0になっても電流が流れる。   Here, when a high level switching voltage is applied to the control voltage application terminal 21 and a low level switching voltage is applied to the control voltage application terminal 22, the resistance element R 11, between the control voltage application terminal 21 and the control voltage application terminal 22, R21, R24, R12 or R11, R22, R23, R12 are connected, and the current flows even if the gate reverse leakage current of the FET becomes zero.

その結果、各々の抵抗の接続点である高周波信号入出力端子11、高周波信号入出力端子12、高周波信号入出力端子13、および高周波信号入出力端子14の電位が決定され、それらの端子に接続されているFETQ11、FETQ12、FETQ13、FETQ14のドレインおよびソース電位が抵抗素子それぞれの抵抗値とハイレベルの切替電圧が印加されるFETのゲート順方向電流により決定される。   As a result, the potentials of the high-frequency signal input / output terminal 11, the high-frequency signal input / output terminal 12, the high-frequency signal input / output terminal 13, and the high-frequency signal input / output terminal 14 that are connection points of the resistors are determined and connected to these terminals. The drain and source potentials of the FETQ11, FETQ12, FETQ13, and FETQ14 are determined by the resistance value of each resistance element and the gate forward current of the FET to which a high level switching voltage is applied.

図6に示す半導体スイッチ集積回路では、構成する全てのFETのドレイン端子およびソース端子の電位が決定するために、全てのFETの導通状態あるいは遮断状態が明確に決定され、安定なスイッチング動作が可能となる。   In the semiconductor switch integrated circuit shown in FIG. 6, since the potentials of the drain terminals and source terminals of all the FETs constituting the FET are determined, the conduction state or the cutoff state of all the FETs is clearly determined, and a stable switching operation is possible. It becomes.

なお、高周波入出力端子の電位を決定する抵抗素子R11、R12およびR21、R22、R23、R24の抵抗値を調整することで通過経路毎の特徴付けを行うことができることは、第1の実施例で説明した通りである。   In addition, it is possible to characterize each passing path by adjusting the resistance values of the resistance elements R11, R12 and R21, R22, R23, R24 that determine the potential of the high frequency input / output terminal. As explained in.

また、動作原理上は例えば制御電圧印加端子21に接続された抵抗素子R11を高周波信号入出力端子11に接続した場合に、制御電圧印加端子22に接続されたR12は高周波信号入出力端子14ではなく高周波信号入出力端子12若しくは高周波信号入出力端子13に接続しても同様の効果を奏することが可能である。   In terms of operation principle, for example, when the resistor element R11 connected to the control voltage application terminal 21 is connected to the high frequency signal input / output terminal 11, R12 connected to the control voltage application terminal 22 is not connected to the high frequency signal input / output terminal 14. Even if it is connected to the high-frequency signal input / output terminal 12 or the high-frequency signal input / output terminal 13, the same effect can be obtained.

11、12、13:高周波信号入出力端子、21、22:制御電圧印加端子、30:半導体スイッチ集積回路チップ、Q11、Q12、Q13、Q14:電界効果トランジスタ、R11、R12、R13:抵抗、R21、R22、R23、R24:ドレイン端子、ソース端子間抵抗、R31、R32、R33、R34:ゲート抵抗 11, 12, 13: High-frequency signal input / output terminals, 21, 22: Control voltage application terminals, 30: Semiconductor switch integrated circuit chips, Q11, Q12, Q13, Q14: Field effect transistors, R11, R12, R13: Resistors, R21 , R22, R23, R24: drain terminal, resistance between source terminals, R31, R32, R33, R34: gate resistance

Claims (2)

少なくとも2つの高周波信号入出力端子の間に、電界効果トランジスタが接続され、該電界効果トランジスタのゲート端子に、制御電圧を印加することで、前記2つの高周波信号入出力端子間に高周波信号を通過させ、あるいは遮断させる半導体スイッチ集積回路において、
第1の高周波信号入出力端子にドレイン端子あるいはソース端子を、第2の高周波信号入出力端子にソース端子あるいはドレイン端子を接続した第1の電界効果トランジスタと、
前記第1の高周波信号入出力端子にソース端子あるいはドレイン端子を、第3の高周波信号入出力端子にドレイン端子あるいはソース端子を接続した第2の電界効果トランジスタと、
前記第1の電界効果トランジスタのゲート端子に制御電圧を印加する第1の制御端子と、前記第2の電界効果トランジスタのゲート端子に制御電圧を印加する第2の制御電圧印加端子と、
前記第1の制御電圧印加端子に一端を接続し、他端を前記第1の電界効果トランジスタのドレイン端子あるいはソース端子に接続した第1の抵抗素子と、
前記第2の制御電圧印加端子に一端を接続し、他端を前記第2の電界効果トランジスタのソース端子あるいはドレイン端子に接続した第2の抵抗素子と、
前記第1および第2の抵抗素子を介して、前記第1の制御電圧印加端子および前記第2の制御電圧印加端子とを接続したことを特徴とする半導体スイッチ集積回路。
A field effect transistor is connected between at least two high frequency signal input / output terminals, and a high frequency signal is passed between the two high frequency signal input / output terminals by applying a control voltage to the gate terminal of the field effect transistor. In a semiconductor switch integrated circuit that allows or shuts off,
A first field effect transistor having a drain terminal or a source terminal connected to the first high-frequency signal input / output terminal, and a source terminal or a drain terminal connected to the second high-frequency signal input / output terminal;
A second field effect transistor having a source terminal or drain terminal connected to the first high-frequency signal input / output terminal, and a drain terminal or source terminal connected to the third high-frequency signal input / output terminal;
A first control terminal that applies a control voltage to the gate terminal of the first field effect transistor; a second control voltage application terminal that applies a control voltage to the gate terminal of the second field effect transistor;
A first resistance element having one end connected to the first control voltage application terminal and the other end connected to a drain terminal or a source terminal of the first field effect transistor;
A second resistance element having one end connected to the second control voltage application terminal and the other end connected to a source terminal or a drain terminal of the second field effect transistor;
A semiconductor switch integrated circuit, wherein the first control voltage application terminal and the second control voltage application terminal are connected via the first and second resistance elements.
請求項1記載の半導体スイッチ集積回路において、
前記第1の電界効果トランジスタおよび前記第2の電界効果トランジスタのドレイン端子とソース端子を接続する第3の抵抗素子とを備え、
前記第1乃至第3の抵抗素子を介して、前記第1の制御電圧印加端子と前記第2の制御電圧印加端子とを接続したことを特徴とする半導体スイッチ集積回路。
The semiconductor switch integrated circuit according to claim 1,
A third resistance element connecting a drain terminal and a source terminal of the first field effect transistor and the second field effect transistor;
A semiconductor switch integrated circuit, wherein the first control voltage application terminal and the second control voltage application terminal are connected via the first to third resistance elements.
JP2010061039A 2010-03-17 2010-03-17 Semiconductor switch integrated circuit Expired - Fee Related JP5498825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010061039A JP5498825B2 (en) 2010-03-17 2010-03-17 Semiconductor switch integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010061039A JP5498825B2 (en) 2010-03-17 2010-03-17 Semiconductor switch integrated circuit

Publications (2)

Publication Number Publication Date
JP2011199375A true JP2011199375A (en) 2011-10-06
JP5498825B2 JP5498825B2 (en) 2014-05-21

Family

ID=44877085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010061039A Expired - Fee Related JP5498825B2 (en) 2010-03-17 2010-03-17 Semiconductor switch integrated circuit

Country Status (1)

Country Link
JP (1) JP5498825B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733810A (en) * 2013-12-24 2015-06-24 株式会社村田制作所 Switching circuit and high-frequency module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002232278A (en) * 2001-02-01 2002-08-16 Nec Corp High frequency switch circuit
JP2003188695A (en) * 2001-12-20 2003-07-04 Matsushita Electric Ind Co Ltd Field effect transistor switch circuit
JP2005006072A (en) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd High frequency switch apparatus and semiconductor device
JP2005033597A (en) * 2003-07-08 2005-02-03 Nec Kansai Ltd High frequency switch
JP2006238058A (en) * 2005-02-25 2006-09-07 Matsushita Electric Ind Co Ltd Switching circuit for high freqeuncy
JP2007006180A (en) * 2005-06-24 2007-01-11 Toshiba Corp Antenna switch circuit device
WO2009022654A1 (en) * 2007-08-16 2009-02-19 Nec Corporation Switch circuit and semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002232278A (en) * 2001-02-01 2002-08-16 Nec Corp High frequency switch circuit
JP2003188695A (en) * 2001-12-20 2003-07-04 Matsushita Electric Ind Co Ltd Field effect transistor switch circuit
JP2005006072A (en) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd High frequency switch apparatus and semiconductor device
JP2005033597A (en) * 2003-07-08 2005-02-03 Nec Kansai Ltd High frequency switch
JP2006238058A (en) * 2005-02-25 2006-09-07 Matsushita Electric Ind Co Ltd Switching circuit for high freqeuncy
JP2007006180A (en) * 2005-06-24 2007-01-11 Toshiba Corp Antenna switch circuit device
WO2009022654A1 (en) * 2007-08-16 2009-02-19 Nec Corporation Switch circuit and semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733810A (en) * 2013-12-24 2015-06-24 株式会社村田制作所 Switching circuit and high-frequency module
JP2015122627A (en) * 2013-12-24 2015-07-02 株式会社村田製作所 Switching circuit and high-frequency module
CN104733810B (en) * 2013-12-24 2019-06-21 株式会社村田制作所 Switching circuit and high-frequency model
US10756727B2 (en) 2013-12-24 2020-08-25 Murata Manufacturing Co., Ltd. Switching circuit and high-frequency module

Also Published As

Publication number Publication date
JP5498825B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
US8288895B2 (en) High-power tunable capacitor
US7893749B2 (en) High frequency switch circuit having reduced input power distortion
JP2005006072A (en) High frequency switch apparatus and semiconductor device
US9461643B2 (en) High freuency semiconductor switch and wireless device
JP2008017416A (en) High-frequency switch device
JP2010220200A (en) Conduction switching circuit, conduction switching circuit block, and operation method for conduction switching circuit
JP2007096609A (en) Semiconductor switch circuit device
KR101952857B1 (en) Switching circuit and high frequency switch including the same
JP5366911B2 (en) High frequency switch circuit
JP2007243410A (en) High frequency switch circuit, and semiconductor device using same
JP2007166596A (en) High-frequency switch
JP5498825B2 (en) Semiconductor switch integrated circuit
US8497727B2 (en) Double pole double throw switch device
JP2006238058A (en) Switching circuit for high freqeuncy
JP3989916B2 (en) Switch matrix
JP4538016B2 (en) High frequency switch device and semiconductor device
JP4868275B2 (en) High frequency switch circuit
JP2011259236A (en) Semiconductor switch circuit
JP2007258766A (en) Semiconductor switch circuit
JP2007214825A (en) Semiconductor switch integrated circuit
JP6373543B2 (en) High frequency switch
JP2007299948A (en) High frequency semiconductor switch
US20220045679A1 (en) Spdt switch for improving power transfer capability
JP2007019590A (en) Semiconductor signal switching circuit
Fu SPDT switch using both nMOS and pMOS transistors for improving power handling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5498825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees