JP2011198853A - Photoelectric conversion film-stacked solid-state imaging device without microlens, method of manufacturing the same, and imaging apparatus - Google Patents

Photoelectric conversion film-stacked solid-state imaging device without microlens, method of manufacturing the same, and imaging apparatus Download PDF

Info

Publication number
JP2011198853A
JP2011198853A JP2010061621A JP2010061621A JP2011198853A JP 2011198853 A JP2011198853 A JP 2011198853A JP 2010061621 A JP2010061621 A JP 2010061621A JP 2010061621 A JP2010061621 A JP 2010061621A JP 2011198853 A JP2011198853 A JP 2011198853A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
photoelectric conversion
semiconductor substrate
imaging device
state imaging
conversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2010061621A
Other languages
Japanese (ja)
Inventor
Hiroshi Inomata
Eiji Watanabe
英治 渡辺
浩 猪股
Original Assignee
Fujifilm Corp
Fujifilm Digital Techno Co Ltd
富士フイルムデジタルテクノ株式会社
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength, or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength, or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To provide a small and thin solid-state imaging device which does not require a gap beneath a transparent substrate bonded to a front surface of the imaging device, and selects transparent resin which does not depend on refractive index as adhesive.SOLUTION: The photoelectric conversion film-stacked solid-state imaging device is equipped with: a semiconductor substrate 121; a photoelectric conversion film 130 stacked on a light incidence side upper layer of the semiconductor substrate 121; a signal reading means (not shown in the figure) formed in a surface portion of the semiconductor substrate 121, for reading out to an external, as shot image signals, signals corresponding to signal charge amounts detected by the photoelectric conversion film 130 according to incident light quantities; the transparent substrate (not shown in the figure) bonded to a light incidence side upper layer of the photoelectric conversion film 130 with the transparent resin as the adhesive; and electric connection terminals 113 which are interconnected to the signal reading means and which penetrate through the semiconductor substrate 121 and are exposed from the opposite surface of the surface where the photoelectric conversion film 130 of the semiconductor substrate 121 is formed.

Description

本発明はデジタルカメラなどの撮像装置に搭載する固体撮像素子等に係り、特に、撮像装置に搭載するのに好適な構造を持つ光電変換膜積層型固体撮像素子及びその製造方法に関する。 The present invention relates to a solid-state imaging device or the like to be mounted on an imaging apparatus such as a digital camera, in particular, relates to a photoelectric conversion layer-stacked solid-state imaging device and a manufacturing method thereof having a structure suitable for mounting the imaging device.

固体撮像素子は、光の受光面に樹脂製等のマイクロレンズ(トップレンズ)やカラーフィルタ層を設ける関係で、表面が柔らかくなっている。 Solid-state imaging device, in relation to the light-receiving surface of the light providing a microlens (top lens) and a color filter layer of the resin or the like, the surface is softened. このため、固体撮像素子の受光面表面が傷付かない様に、また、塵埃などが付着しない様に、保護する必要がある。 Therefore, as the light receiving surface surface of the solid-state image pickup device being scratched Also, as dust does not adhere, it is necessary to protect. そこで、従来から、特許文献1,2に示されるように、受光面表面にガラス基板の様な透明基板を接着材で貼り付ける様になっている。 Therefore, conventionally, as shown in Patent Documents 1 and 2, the such transparent substrates of the glass substrates has become like paste with an adhesive on the light receiving surface surface.

しかし、この接着材の材質が問題となる。 However, the material of the adhesive material is a problem. 従来のCCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子は、入射光の利用効率を高めるために、各受光素子上方にマイクロレンズを設けており、このマイクロレンズの表面に屈折率がマイクロレンズの材質と同程度の接着材を塗ると、マイクロレンズ表面での光の屈折が起きずにマイクロレンズの機能が阻害され、入射光を集光できなくなってしまう。 Solid-state imaging device such as a conventional CCD image sensor or a CMOS image sensor, in order to enhance the utilization efficiency of the incident light, the respective light receiving elements upward and provided with a micro lens, a refractive index of the micro to the surface of the microlens When painting an adhesive comparable to the material of the lens, the function of the micro lens is inhibited without occur refraction of light at the microlens surface, making it impossible condensing the incident light.

このため、接着材の透明樹脂として、マイクロレンズの屈折率より低屈折率となる材料を選択する必要が生じる。 Therefore, as the transparent resin adhesive, it is necessary to select a material for the low refractive index than the refractive index of the microlens caused. また、接着材は、吸水率の低い材料でないと信頼性が低下するため、低屈折率でかつ吸水率の低い材料を選択する必要が生じ、材料の選択肢が少なくなり、コストが嵩んでしまうという問題がある。 Further, because the adhesive, because the reliability is not a low water absorption material decreases, it is necessary to select a low refractive index at and low water absorption materials, choice of the material is reduced, cost is piling up There's a problem.

マイクロレンズ表面全面と透明基板とを接着材で接着せずに、マイクロレンズと透明基板との間に空隙を設け、空気の屈折率を利用してマイクロレンズの集光効率を上げる技術も、特許文献3に記載されている。 A microlens over the entire surface and the transparent substrate without adhesive with an adhesive, a gap is provided between the micro lens and the transparent substrate, also techniques using the refractive index of the air increases the light collection efficiency of the microlens, patent It is described in the literature 3. しかし、空隙を設ける工程が複雑で製造コストを上げる要因になっている。 However, the step of providing an air gap is a factor to increase the complex production cost. また、空隙を設ける関係で、固体撮像素子の厚さを薄くできないという問題もある。 Further, there is the relationship providing the air gap, a problem that can not reduce the thickness of the solid-state imaging device.

特開2003―31782号公報 JP 2003-31782 JP 特開2008―92417号公報 JP 2008-92417 JP 特許第4271909号公報 Patent No. 4271909 Publication

本発明の目的は、マイクロレンズ非搭載の光電変換膜積層型固体撮像素子を用いることで、上記の空隙を必要とせず、また、接着材として屈折率に依存しない透明樹脂を選択できるようにした小型,薄型の固体撮像素子及びその製造方法並びにこの固体撮像素子を搭載した撮像装置を提供することにある。 An object of the present invention, by using the photoelectric conversion layer-stacked solid-state imaging device of the microlens not mounted, without requiring the above-mentioned gap, was also to be able to select a transparent resin which does not depend on the refractive index as the adhesive small, it is to provide an imaging apparatus equipped with a thin solid-state imaging device and a manufacturing method thereof, and the solid-state imaging device.

本発明のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段と、前記光電変換膜の光入射側上層に透明樹脂を接着材として貼り付けられた透明基板と、前記信号読出手段に配線接続され該半導体基板に貫通して設けられると共に該半導体基板の前記光電変換膜が設けられた面と反対側の面に露出して設けられた電気的接続端子とを備えることを特徴とする。 In the solid-state imaging device of the micro lenses not equipped according to the present invention includes a semiconductor substrate, the photoelectric conversion layer stacked on the light incident side upper layer of the semiconductor substrate, is formed on a surface portion of said semiconductor substrate said photoelectric a signal reading means for reading the external conversion film corresponding to the detected amount of signal charge according to the incident light quantity signal as a captured image signal, pasted a transparent resin as an adhesive on the light incident side layer of the photoelectric conversion layer a transparent substrate, said signal reading means hardwired electrical connection the photoelectric conversion layer of the semiconductor substrate is provided exposed on the surface opposite to the surface provided with provided through to the semiconductor substrate characterized in that it comprises a terminal.

本発明のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハの前記光入射側上層に該半導体ウェハと同等面積の透明基板を透明樹脂で貼り合わせ、該貼り合わせ後に該半導体基板及び該透明基板をダイシングして個片化することを特徴とする。 Manufacturing method of a photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped according to the present invention includes a semiconductor substrate, a photoelectric conversion layer stacked on the light incident side upper layer of the semiconductor substrate, forming a surface portion of said semiconductor substrate by the manufacturing method of the photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped with a signal reading means for the photoelectric conversion layer is read to the outside a signal corresponding to the detected signal charge amount according to the amount of incident light as a captured image signal a is, the signal reading means and the light entrance side layer of the semiconductor wafer wherein the semiconductor substrate in which the photoelectric conversion layer is formed becomes an aggregate of a plurality of the semiconductor substrate before being separated from the other of said semiconductor substrate the semiconductor wafer and bonding the transparent substrate of the same area in the transparent resin, characterized in that singulation by dicing the semiconductor substrate and the transparent substrate after mating Ri 該貼 to.

また、本発明のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハのうち良品の前記半導体基板の前記光入射側上層に個片化された前記透明基板を透明樹脂で貼り付け、該貼り付け後にダイシングして前記半導体ウェハを個片化することを特徴とする。 Also, prior to manufacture a microlens not equipped for In the solid-state imaging device of the present invention, wherein the semiconductor substrate on which the signal reading means and the photoelectric conversion layer is formed is separated from the other of said semiconductor substrate paste in singulated by a transparent resin the transparent substrate on the light incident side layer of the semiconductor substrate of good among the plurality of semiconductor wafers comprising an aggregate of the semiconductor substrate, said dicing after attaching Ri 該貼wherein the singulating semiconductor wafers.

また、本発明のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハの前記光入射側上層に厚手の透明樹脂を積層して硬化させ、該硬化後にダイシングして前記半導体ウェハを個片化することを特徴とする。 Also, prior to manufacture a microlens not equipped for In the solid-state imaging device of the present invention, wherein the semiconductor substrate on which the signal reading means and the photoelectric conversion layer is formed is separated from the other of said semiconductor substrate cured by laminating a thick transparent resin on the light incident side layer of the plurality of semiconductor wafers comprising an aggregate of the semiconductor substrate, and wherein the singulating the semiconductor wafer is diced after curing .

また、本発明のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、複数の前記信号読出手段及び前記光電変換膜が形成された前記半導体基板を前記光入射側上層の側を1枚の透明基板に透明樹脂で貼り付け、該貼り付け後に該透明基板をダイシングして前記半導体基板を個片化することを特徴とする。 The manufacturing method of a photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped according to the present invention, the semiconductor substrate having a plurality of said signal reading means and the photoelectric conversion layer is formed to the side of the light incident side layer paste transparent resin on one transparent substrate, and wherein the singulating the semiconductor substrate by dicing the transparent substrate after attaching Ri 該貼.

また、本発明の撮像装置は、上記のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子又は上記のいずれかの製造方法で製造されたマイクロレンズ非搭載の光電変換膜積層型固体撮像素子を搭載することを特徴とする。 The imaging apparatus of the present invention, a photoelectric conversion layer-stacked solid-state imaging device of the microlenses non-mounting produced by the photoelectric conversion layer-stacked solid-state imaging device or any of the above method of manufacturing the microlens not mounted characterized in that it mounted.

本発明によれば、マイクロレンズが無いため透明基板と撮像素子チップとの間に空隙を設ける必要が無く、透明接着材として屈折率に依存せずに接着材を選択でき、小型,薄型で量産性が高く信頼性も高い素子構造を持つ固体撮像素子を得ることができ、これを搭載する撮像装置の小型化や信頼性向上も図ることが可能となる。 According to the present invention, it is not necessary to provide a gap between the transparent substrate and the image sensor chip for a micro lens is not, can choose the adhesive without depending on the refractive index as the transparent adhesive material, small, mass-produced thin sex high reliability can be obtained a solid-state imaging device with high device structure, it becomes possible to reduce the size and improving the reliability of the imaging device equipped with this.

本発明の一実施形態に係るデジタルカメラの機能ブロック図である。 It is a functional block diagram of a digital camera according to an embodiment of the present invention. 図1に示す固体撮像素子の縦断面模式図である。 It is a schematic longitudinal sectional view of a solid-state imaging device shown in FIG. 図2に示す固体撮像素子の製造工程説明図である。 It is a manufacturing process diagram of the solid-state imaging device shown in FIG. 図3のIV―IV線位置の断面模式図である。 It is a schematic cross-sectional view of line IV-IV position in FIG. 図2に示す固体撮像素子の製造工程説明図である。 It is a manufacturing process diagram of the solid-state imaging device shown in FIG. 図2に代わる実施形態の固体撮像素子の製造工程説明図である。 It is a manufacturing process diagram of the solid-state imaging device of the embodiment in place of FIG. 図6で製造された固体撮像素子の断面模式図である。 It is a schematic cross-sectional view of the manufactured solid state imaging device in FIG. 本発明の更に別実施形態に係る固体撮像素子の説明図である。 It is an explanatory view of the solid-state imaging device according to still another embodiment of the present invention. 本発明の更に別実施形態に係る固体撮像素子の説明図である。 It is an explanatory view of the solid-state imaging device according to still another embodiment of the present invention. 本発明の更に別実施形態に係る固体撮像素子の説明図である。 It is an explanatory view of the solid-state imaging device according to still another embodiment of the present invention.

以下、本発明の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係るデジタルカメラ(撮像装置)の構成図である。 Figure 1 is a block diagram of a digital camera (image pickup apparatus) according to an embodiment of the present invention. このデジタルカメラは20は、固体撮像素子100と、固体撮像素子100の前段に置かれた撮影レンズ21と、固体撮像素子100から出力されるアナログの画像データを自動利得調整(AGC)や相関二重サンプリング処理等のアナログ処理するアナログ信号処理部22と、アナログ信号処理部22から出力されるアナログ画像データをデジタル画像データに変換するアナログデジタル変換部(A/D)23と、後述のシステム制御部(CPU)29からの指示によって撮影レンズ21,A/D23,アナログ信号処理部22,固体撮像素子100の駆動制御を行う駆動制御部(タイミングジェネレータを含む)24と、CPU29からの指示によって発光するフラッシュ25とを備える。 The digital camera 20 includes a solid-state imaging device 100, an imaging lens 21 placed in front of the solid-state imaging device 100, an automatic gain control analog image data output from the solid-state imaging device 100 (AGC) and correlated- an analog signal processing unit 22 to analog processing such as heavy sampling process, an analog-digital converter (a / D) 23 which converts the analog image data output from the analog signal processing unit 22 into digital image data, the system control will be described later parts taken by an instruction from the (CPU) 29 lens 21, a / D23, the analog signal processing unit 22, a drive control unit for controlling the driving of the solid-state imaging device 100 (including a timing generator) 24, emitting an instruction from CPU29 and a flash 25.

本実施形態のデジタルカメラは更に、A/D23から出力されるデジタル画像データを取り込み補間処理やホワイトバランス補正,RGB/YC変換処理等を行うデジタル信号処理部26と、画像データをJPEG形式などの画像データに圧縮したり逆に伸長したりする圧縮/伸長処理部27と、メニューなどを表示したりスルー画像や撮像画像を表示する表示部28と、デジタルカメラ全体を統括制御するシステム制御部(CPU)29と、フレームメモリ等の内部メモリ30と、JPEG画像データ等を格納する記録メディア32との間のインタフェース処理を行うメディアインタフェース(I/F)部31と、これらを相互に接続するバス40とを備え、また、システム制御部29には、ユーザからの指示入力を行う操作部33が接続 The digital camera of this embodiment further, A / D23 digital image data output from the capture interpolation processing and white balance correction, a digital signal processing unit 26 that performs RGB / YC conversion processing, image data such as JPEG format a compression / decompression processing unit 27 or to extend in opposite or compressed into image data, a display unit 28 for displaying the through image and the captured image and displays a menu, the system control unit which controls the whole digital camera ( bus as CPU) 29, an internal memory 30 such as a frame memory, connecting a media interface (I / F) unit 31 that performs an interface process between the recording medium 32 for storing the JPEG image data and the like, these mutually and a 40, also, the system controller 29, an operation unit 33 for inputting instructions from the user is connected れている。 It has been.

図2は、図1に示す固体撮像素子100の縦断面模式図である。 Figure 2 is a schematic vertical cross-sectional view of the solid-state imaging device 100 shown in FIG. この固体撮像素子100は、撮像素子チップ101と、撮像素子チップ101の光入射側の前面全領域に透明樹脂102で貼り付けられた透明ガラス基板103とを備える。 The solid-state imaging device 100 includes an image pickup device chip 101, and a transparent glass substrate 103 pasted with transparent resin 102 in front the whole area of ​​the light incident side of the image pickup element chip 101.

本実施形態では、面積的に、撮像素子チップ101=透明ガラス基板102となっており、撮像素子チップ101の電気的接続端子113は、詳細は後述するように、撮像素子チップ101を構成する半導体基板の背面側にスルーホールを通して延びるように設けられており、この背面側の接続端子(接続パッド)113と図1のアナログ信号処理回路22とが接続される。 In this embodiment, areal has become an image pickup device chip 101 = transparent glass substrate 102, electrically connecting terminal 113 of the image pickup element chip 101 is as will be described later in detail, constituting the imaging element chip 101 semiconductor It is provided so as to extend through the through-hole on the back side of the substrate, and the analog signal processing circuit 22 of the back side of the connection terminal (connection pads) 113 and FIG. 1 is connected.

このように、固体撮像素子100は、透明ガラス基板103に撮像素子チップ101を貼り合わせただけの構成となるため、小型となり、かつ薄型になっている。 Thus, the solid-state imaging device 100 becomes a structure of only bonding the image pickup device chip 101 to the transparent glass substrate 103, it becomes small, and have become thinner. 更に、本実施形態の固体撮像素子100は、完全な矩形体に成形され、個々の固体撮像素子100の取り扱いや工場出荷前の多数個の収納,輸送が容易となる。 Furthermore, the solid-state imaging device 100 of the present embodiment is molded into a complete rectangular body, a large number of storage prior to handling and shipment of individual solid-state imaging device 100, the transport is facilitated.

なお、透明ガラス基板103や透明樹脂102,撮像素子チップ101の側面には、光学的に黒色の塗料等を塗布しておくのが良い。 The transparent glass substrate 103 and the transparent resin 102, the side surface of the image sensor chip 101, a good idea to apply the paint or the like of the optically black. 以下の実施形態でも同様であるが、黒色塗料を塗ることで、迷光が撮像素子チップ101内に入り込むことが阻止され、ノイズの少ない被写体画像を撮像することができる。 Is similar in the following embodiments, by painting the black paint, stray light is prevented that enters the image pickup element chip 101, it is possible to capture the small object image noise.

斯かる構成の固体撮像素子100を、図1のデジタルカメラ20に組み付ける場合、撮影レンズ21の結像面を、撮像素子チップ101の受光面に精度良く位置合わせする必要がある。 The solid-state imaging device 100 thus configured, when assembled to the digital camera 20 of FIG. 1, the imaging plane of the photographing lens 21, it is necessary to align accurately positioned on the light-receiving surface of the image sensor chip 101.

本実施形態の固体撮像素子100は、光電変換膜積層型であり、マイクロレンズ非搭載であるため、従来のCCD型やCMOS型のイメージセンサに比較してこの位置合わせが厳しく、位置合わせの精度が出ないと、精細感の乏しい被写体画像しか撮影できなくなってしまう。 The solid-state imaging device 100 of the present embodiment is a photoelectric conversion layer stacked, since a micro lens not mounted, is strictly the alignment compared to the image sensor of a conventional CCD or CMOS, the accuracy of positioning If does not appear, no longer it can only be taken poor subject image of fineness. この位置合わせは、透明ガラス基板103の表面を、撮影レンズ21側の図示省略の組立体基準面に当接する様に組み付けることで可能となる。 This alignment, the surface of the transparent glass substrate 103, made possible by assembling so as to abut the assembly reference surface (not shown) of the photographing lens 21 side.

図3は、撮像素子チップ101の製造説明図である。 Figure 3 is a manufacturing explanatory view of an image pickup device chip 101. 半導体ウェハ110に多数の撮像素子チップ101が、半導体装置製造技術や製膜技術を用いて形成され、後述するようにして個々の撮像素子チップ101がダイシングされることで、個片化される。 Number of the image pickup device chip 101 to the semiconductor wafer 110 is formed using a semiconductor device fabrication technology and film technologies, each of the image pickup device chip 101 as described later is by being diced, and singulated.

個々の撮像素子チップ101は、上面視で矩形に形成され、中央部に矩形の撮像領域112が形成され、周辺部に、接続パッド113が形成される。 Individual imaging device chip 101 is formed in a rectangular in a top view, a rectangular imaging region 112 is formed in the center portion, the peripheral portion, the connection pad 113 is formed. 撮像素子チップ101の前面全領域上に、透明ガラス基板103が貼り付けられる。 On the front face the entire region of the image sensor chip 101, a transparent glass substrate 103 is bonded. 接続パッド113は、撮像素子チップ101内に設けられ、この接続パッド113から、撮像素子チップ101の背面側にスルーホールを通して金属線が延びるように形成される。 Connection pads 113 are provided in the imaging element chip 101, from the connection pad 113 are formed such that the metal wires extend through the through-hole on the back side of the imaging element chip 101.

図4は、図3のIV―IV線位置の断面模式図である。 Figure 4 is a cross-sectional schematic view of a IV-IV line position of FIG. 撮像素子チップ101は、半導体基板121に形成される。 Imaging device chip 101 is formed on the semiconductor substrate 121. 半導体基板121には、各画素対応の信号電荷蓄積部122が形成され、更に、CMOS型イメージセンサと同様に、個々の画素対応に図示省略のMOSトランジスタ回路でなる信号読出回路が形成されている。 The semiconductor substrate 121, corresponding to each pixel of the signal charge storage portion 122 is formed, further, similar to the CMOS image sensor, the signal reading circuit comprising a MOS transistor circuit (not shown) to each pixel corresponding are formed . 各信号読出回路は、対応する信号電荷蓄積部122の蓄積電荷に応じた信号を撮像画像信号として該当の接続パッド113を介して外部に読み出す。 Each signal reading circuit reads the external signal corresponding to the accumulated charges of the corresponding signal charge storage portion 122 via the connection pad 113 of the appropriate as a captured image signal.

半導体基板121の上面には絶縁膜124が積層されており、その上に、個々の画素対応の画素電極膜125が撮像領域内に二次元アレイ状に配列形成されている。 The upper surface of the semiconductor substrate 121 is laminated insulating film 124, thereon, the pixel electrode layer 125 of each pixel corresponding is arranged and formed in a two-dimensional array in the imaging area. 画素電極膜125は、導電性材料たとえばアルミニウムや酸化インジウム錫(ITO)で形成される。 The pixel electrode layer 125 is formed of a conductive material such as aluminum or indium tin oxide (ITO).

各画素電極膜125と、画素対応の信号電荷蓄積部122とは、絶縁膜124内に立設されたビアプラグ126によって電気的に接続される。 Each pixel electrode film 125, the pixel-corresponding signal charge storage section 122 are electrically connected by a via plug 126 provided upright on the insulating film 124. 各ビアプラグ126の途中には、個々に分離された金属膜127が絶縁層124内に埋設されており、金属膜127が信号電荷蓄積部122の遮光を図る様になっている。 In the middle of each via plug 126, a metal film 127 which is individually separated is embedded in the insulating layer 124, the metal film 127 is given as achieve shielding of the signal charge storage portion 122.

各画素電極膜125の上には、撮像領域全体に渡って一枚構成の光電変換膜130が積層される。 On each pixel electrode film 125, the photoelectric conversion layer 130 of one configuration over the entire imaging region are stacked. 光電変換膜130としては、本実施形態では入射光量に応じた電荷を発生させる有機膜が用いられる。 The photoelectric conversion film 130, an organic layer that generates charges according to the amount of incident light is used in this embodiment. 有機膜の材料として、例えば、メタロシアニン,フタロシアニン,4Hピランが用いられる。 As the material of the organic film, for example, metallo cyanine, phthalocyanine and 4H-pyran is used. 有機膜130の厚さは、約1.0μmで形成される。 The thickness of the organic film 130 is formed at approximately 1.0 .mu.m.

従って、図1の撮影レンズ21の結像面が、この約1.0μmの膜厚の有機膜130に合うように、図2で説明した位置合わせを行うと、高精細な被写体画像を撮影することが可能となる。 Thus, the imaging plane of the photographing lens 21 of FIG. 1, to fit the organic film 130 having a film thickness of about 1.0 .mu.m, when performing alignment as described in FIG. 2, taking a high resolution subject image it becomes possible.

有機膜130の上には、一枚構成のITO等の透明な対向電極膜131を積層し、その上を透明な保護膜132で覆う。 On the organic layer 130 by laminating a transparent counter electrode film 131 of ITO or the like of the single structure, overlying a transparent protective layer 132. カラー画像を撮像する固体撮像素子の場合には、保護膜(あるいは平坦化層)132の上に、例えばベイヤ配列したRGBの3原色のカラーフィルタ層を積層し、その上を更に透明な保護膜で覆う。 In the case of the solid-state imaging device for capturing a color image, the protective film (or a planarization layer) on top of the 132, for example, by laminating a Bayer color filter layers of three primary colors of RGB arrayed, further a transparent protective layer thereon covered with.

対向電極膜131は、ビアプラグ133で半導体基板121の高濃度不純物層134に接続され、高濃度不純物層134及び図示省略の配線層及び該当の接続パッド113を介して外部から所要電圧が対向電極膜131に印加される。 Counter electrode layer 131 is connected to the high concentration impurity layer 134 of the semiconductor substrate 121 with the via plug 133, the required voltage counter electrode layer from the outside through the high concentration impurity layer 134 and the wiring layer (not shown) and the corresponding connection pads 113 131 is applied to.

接続パッド113は、金属膜127と同一製造工程で絶縁層124内に形成されるパッド部113aと、該パット部113aから半導体基板121を貫通し背面側に延びる金属配線層113bとで構成され、例えば信号読出回路の出力線が該当する接続パッド113に図示省略の配線層によって接続される。 Connection pads 113 are formed of a metal films 127 in the same manufacturing process as the pad portion 113a formed in the insulating layer 124, a metal wiring layer 113b extending to the rear side through the semiconductor substrate 121 from the pad portions 113a, for example, the output line of the signal reading circuit is connected by a wiring layer (not shown) to the connection pad 113 corresponding.

この金属配線層113bは、半導体基板121を貫通しパッド部113aに到達するスルーホールを開け、このスルーホール内を金属で埋めることで形成される。 The metal wiring layer 113b is opened a through hole reaching the through the semiconductor substrate 121 pad portion 113a, the inside of the through hole is formed by filling a metal. このように、接続パッド113が基板背面側に設けられることで、撮像素子チップ101の前面全領域を、透明ガラス基板103で覆うことが可能となる。 Thus, the connection pads 113 that are provided on the substrate back side, the front side whole area of ​​the image sensor chip 101, can be covered with a transparent glass substrate 103.

斯かる構成の光電変換膜積層型固体撮像素子チップでは、入射光が保護膜132,対向電極膜131を通して有機膜130に入射すると、有機膜130内で入射光量に応じた正孔・電子対が発生する。 In such a structure of the photoelectric conversion layer-stacked solid-state imaging element chip, the protection incident light film 132 and is incident on the organic film 130 through the counter electrode layer 131, a hole-electron pairs with the amount of incident light in the organic film within 130 Occur. 正孔は、対向電極膜131に流れ、電子が各画素電極膜125を通して信号電荷蓄積部122に流れ、信号電荷蓄積部122の蓄積電荷量に応じた撮像画像信号が、信号読出回路によって外部に読み出される。 Holes flow to the counter electrode layer 131, electrons flow to the signal charge storage portion 122 through the pixel electrode film 125, the captured image signal corresponding to the accumulated charge amount of the signal charge storage portion 122, to the outside by signal reading circuit It is read.

この光電変換膜積層型固体撮像素子チップ101では、信号読出回路が下層の半導体基板121に設けられるため、上層の受光面の全面で入射光を受光でき、従来のイメージセンサの様にマイクロレンズで個々のフォトダイオードに集光する必要が無い。 In the In the solid-state imaging device chip 101, in order to signal reading circuit is provided in the lower layer of the semiconductor substrate 121, can receive incident light in the entire surface of the upper layer of the light-receiving surface, micro lenses as the conventional image sensor there is no need to be focused on the individual photodiodes. このため、保護膜132の上、又はカラーフィルタを設けた場合にはその上の保護膜の上に、図2に示す透明ガラス基板102を貼り付けるときに使用する透明な接着材は、その屈折率を考慮する必要が無く、他の要因たとえば吸水率等を優先して透明樹脂材を選択し、素子の信頼性アップを図ったり、低コストの透明樹脂材を選択することが可能となる。 Therefore, on the protective film 132, or on the protective film thereon in case of providing the color filter, a transparent adhesive material to use when pasting a transparent glass substrate 102 shown in FIG. 2, the refractive no need to consider the rate, in favor of other factors eg water absorption, etc. select transparent resin material, or attempt to reliability up element, it is possible to select the transparent resin material of low cost.

次に、上述した固体撮像素子100の製造方法について説明する。 Next, a method for manufacturing the solid-state imaging device 100 described above. 図3下段に示す様に、半導体ウェハ110の上に多数の撮像素子チップを製造した後、図5の上段に示す様に、この半導体ウェハ110の上面全面に、半導体ウェハ110と同等面積の円板状の透明ガラス基板115を、透明樹脂102を接着材として貼り合わせる。 As shown in FIG. 3 the lower part, after the production of a large number of image sensor chips on a semiconductor wafer 110, as shown in the upper part of FIG. 5, the entire upper surface of the semiconductor wafer 110, a circle equivalent area and the semiconductor wafer 110 a plate-shaped transparent glass substrate 115, bonding the transparent resin 102 as an adhesive.

そして、図5の下段に示す様に、個々の撮像素子チップ101をダイシングして個片化することで、図2の固体撮像素子100が得られる。 Then, as shown in the lower part of FIG. 5, by individual pieces by dicing the individual image sensor chip 101, the solid-state imaging device 100 of FIG. 2 is obtained. なお、図5では、半導体ウェハ110を個片化したものが撮像素子チップ101となり、透明ガラス基板115を個片化したものが透明ガラス基板103となっている。 In FIG. 5, next to the image pickup device chip 101 is that the semiconductor wafer 110 pieces were singulated, the transparent glass substrate 115 obtained by singulated has a transparent glass substrate 103.

図6は、本発明の別実施形態に係る固体撮像素子200の製造方法を説明する図である。 Figure 6 is a diagram for explaining a manufacturing method of the solid-state imaging device 200 according to another embodiment of the present invention. なお、図2と同様の部材には同一符号を付してその説明は省略する。 Incidentally, the description the same reference numerals are given to the same members as in FIG. 2 will be omitted.

本実施形態では、図3下段に示す様に、半導体ウェハ110の上に多数の撮像素子チップを製造した後、図6(a)に示す様に、半導体ウェハ110の良品の撮像素子チップの上に、個片化した透明ガラス基板103を透明樹脂102で貼り付ける。 In the present embodiment, as shown in the lower part of FIG. 3, after manufacturing a large number of image sensor chips on a semiconductor wafer 110, as shown in FIG. 6 (a), on the image pickup device chip non-defective semiconductor wafer 110 to paste the transparent glass substrate 103 having singulated transparent resin 102. この透明ガラス基板103は、図6(b)に示す様に、不良品(NG素子)の上には貼り付けないため、製造中では良品を示すマーキングの意味もある。 The transparent glass substrate 103, as shown in FIG. 6 (b), since no pasted on defective (NG element), there is also a means of marking indicating a good product in the production.

次に、図6(c)に示す様に、ダイシングし、個々の固体撮像素子100に個片化する。 Next, as shown in FIG. 6 (c), diced and 100 two pieces of individual solid-state imaging device. なお、ダイシングの方法は、ダイシングブレードを用いたり、レーザ光を用いたりすることができる。 A method of dicing, or can using a dicing blade, or using a laser beam.

個片化した固体撮像素子200の断面を図7に示す。 The cross-section of the individual pieces solid state imaging device 200 shown in FIG. 図2に示す固体撮像素子100は、透明ガラス基板103と撮像素子チップ101とが同面積であったが、本実施形態の固体撮像素子200は、個片化した透明ガラス基板103を良品チップ上に貼り付ける関係で、撮像素子チップ101の面積に対して、透明ガラス基板103の面積が若干小面積となっている。 The solid-state imaging device shown in FIG. 2 100 is a transparent glass substrate 103 and the imaging element chip 101 was the same area, the solid-state imaging device 200 of this embodiment, individual pieces were transparent glass substrate 103 on the good chips in paste relationship, the area of ​​the image sensor chip 101, the area of ​​the transparent glass substrate 103 has a slightly smaller area.

この構成でも、図2の固体撮像素子100と同様に、小型かつ薄型となり、撮像装置の小型化,薄型化を図ることが可能となる。 In this configuration, similarly to the solid-state imaging device 100 of FIG. 2, it is small and thin, miniaturization of the imaging apparatus can be thinned. しかも、透明樹脂102の材質選択肢が広いため、信頼性の高い透明樹脂を選んだり、安価な透明樹脂を選ぶことが容易となる。 Moreover, because the material choice of the transparent resin 102 is wide, or choose a highly reliable transparent resin, it becomes easy to select an inexpensive transparent resin.

図8(a)(b)は、本発明の更に別実施形態に係る固体撮像素子300の製造方法を示す図であり、図8(c)は、固体撮像素子300の断面模式図である。 Figure 8 (a) (b) are views showing a manufacturing method of a solid-state imaging device 300 according to yet another embodiment of the present invention, FIG. 8 (c) is a schematic sectional view of a solid-state imaging device 300. 本実施形態では、図2の固体撮像素子100と比較して、透明ガラス基板103を用いずに、透明樹脂102を厚手に塗って透明ガラス基板103の代わりとした点が異なる。 In the present embodiment, as compared with the solid-state imaging device 100 of FIG. 2, without using the transparent glass substrate 103, the point where the transparent resin 102 as a substitute for thick to paint a transparent glass substrate 103 differ.

即ち、図8(a)に示す様に、多数の撮像素子チップが形成された半導体ウェア110の上に厚手に透明樹脂102を塗り、この透明樹脂が硬化した後、図8(b)に示す様に、個々の撮像素子チップ101をダイシングすることで、図8(c)の固体撮像素子300が製造される。 That is, as shown in FIG. 8 (a), thick in coating a transparent resin 102 on the semiconductor ware 110 a large number of image sensor chips are formed, after the transparent resin is cured, shown in FIG. 8 (b) as, by dicing the individual image sensor chip 101, the solid-state imaging device 300 shown in FIG. 8 (c) it is produced.

本実施形態では、透明ガラス基板の代わりに厚手の透明樹脂102を用いるため、透明樹脂102としては、硬化したときガラス質程度の硬度となり表面が傷付き難い樹脂を選択するのが好ましい。 In the present embodiment, since the use of thick transparent resin 102 in place of the transparent glass substrate, the transparent resin 102, preferably the surface becomes hardness of about glassy selecting hard resin scratched when cured.

図9(a)(b)は、本発明の更に別実施形態に係る固体撮像素子400の製造方法を示す図であり、図9(c)は、固体撮像素子400の断面模式図である。 Figure 9 (a) (b) are views showing a manufacturing method of a solid-state imaging device 400 according to still another embodiment of the present invention, FIG. 9 (c) is a schematic sectional view of a solid-state imaging device 400. 本実施形態では、半導体ウェハ上に形成した複数の撮像素子チップ101をダイシングして個片化し、更に、良品のみを選択して、図9(a)に示す様に、円板状の透明ガラス基板115上に透明樹脂102で貼り付ける。 In this embodiment, the individual pieces by dicing the plurality of image sensor chips 101 formed on a semiconductor wafer, further, by selecting only non-defective, as shown in FIG. 9 (a), a disk-shaped transparent glass paste transparent resin 102 on the substrate 115.

そして、図9(b)に示す様に、隣接する撮像素子チップ101間の透明ガラス基板115をダイシングして個片化した透明ガラス基板103とし、図9(c)に示す固体撮像素子400とする。 Then, as shown in FIG. 9 (b), and the imaging element by dicing the transparent glass substrate 115 individual pieces were transparent glass substrate 103 between the tip 101 adjacent a solid-state imaging device 400 shown in FIG. 9 (c) to.

この構成によっても、図2の固体撮像素子100と同様に、小型,薄型の信頼性が高い固体撮像素子を得ることができる。 With this configuration, similarly to the solid-state imaging device 100 of FIG. 2, a small, can the reliability of the thin to obtain a high solid-state imaging device.

図10(a)(b)は、本発明の更に別実施形態に係る固体撮像素子500の製造方法を示す図であり、図10(c)は、固体撮像素子500の断面模式図である。 Figure 10 (a) (b) is a diagram showing a method for manufacturing the solid-state imaging device 500 according to yet another embodiment of the present invention, FIG. 10 (c) is a schematic sectional view of a solid-state imaging device 500.

本実施形態は、基本的に、図9に示す固体撮像素子400と同じであるが、異なるのは、円板状の透明ガラス基板115上に良品の撮像素子チップ101を貼り付けたとき、図10(a)に示す様に、撮像素子チップ101間に隙間104ができるが、この隙間104を、図10(b)に示す様に、樹脂105で埋めてしまう。 This embodiment is basically time is the same as the solid-state imaging device 400 shown in FIG. 9 differs from the pasted image pickup device chip 101 of the non-defective on the disk-shaped transparent glass substrate 115, FIG. as shown in 10 (a), although a gap 104 between the image pickup device chip 101, the gap 104, as shown in FIG. 10 (b), thus filled with resin 105. 樹脂としては、光学的に黒色の樹脂を用いるのが好ましい。 The resin is preferred to use optically black resin. 黒色とすることで、迷光が撮像素子チップ101に入らないようにすることができる。 By black, it can stray from entering the image pickup element chip 101.

そして、図10(c)に示す様に、樹脂105の部分をダイシングして固体撮像素子500を個片化する。 Then, as shown in FIG. 10 (c), by dicing the portions of the resin 105 to the singulation solid-state imaging device 500. これにより、固体撮像素子500は、完全な矩形体となり、取り扱いが容易になると共に、透明ガラス基板103の端部の損傷を防止することが可能となる。 Thus, the solid-state image pickup device 500 becomes a perfect square body, handle with is facilitated, it is possible to prevent damage to the ends of the transparent glass substrate 103. 黒色樹脂とすることで、迷光の入射防止も図れる。 With black resin, thereby also incident prevention of stray light.

なお、図7の実施形態においても、透明ガラス基板103と撮像素子チップ101との段差部分を黒色の樹脂で覆って(埋めて)完全な矩形体とし、撮像素子チップ101の欠け防止及び迷光入射の防止を図っても良いことはいうまでもない。 Also in the embodiment of FIG. 7, the step portion of the transparent glass substrate 103 and the image pickup element chip 101 is covered with a black resin (fill in) a full rectangular body, preventing chipping and stray incident of the image pickup element chip 101 it may attempt to prevent it goes without saying.

以上述べた様に、上述した各実施形態に係る固体撮像素子100,200,300,400,500は、基本的に、透明ガラス基板103(又は厚手の透明樹脂)と撮像素子チップ101だけで撮像素子モジュールが形成されるため、従来のCCD型やCMOS型等のイメージセンサと比較して全体として厚さが薄くなる。 Above mentioned as solid-state imaging device 100,200,300,400,500 according to each embodiment described above, basically, the transparent glass substrate 103 (or thick transparent resin) and captured only by the image pickup device chip 101 since element module is formed, the thickness is reduced as a whole as compared with the image sensor such as a conventional CCD or CMOS. このため、内視鏡の先端部や携帯電話機等の小型の電子機器に搭載するのに好適となる。 Therefore, the suitable for mounting to a small electronic device such as a tip or a mobile phone of the endoscope.

以上述べた様に、本実施形態によるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段と、前記光電変換膜の光入射側上層に透明樹脂を接着材として貼り付けられた透明基板と、前記信号読出手段に配線接続され前記半導体基板に貫通して設けられると共に該半導体基板の前記光電変換膜が設けられた面と反対側の面に露出して設けられた電気的接続端子とを備えることを特徴とする。 As mentioned above, In the solid-state imaging device of the microlens not mounted according to the present embodiment includes a semiconductor substrate, a photoelectric conversion layer stacked on the light incident side layer of said semiconductor substrate, said semiconductor substrate a signal reading means for reading the photoelectric conversion layer formed on the surface portion corresponding to the signal charge amount detected in accordance with the amount of incident light signal to the outside as a captured image signal, a transparent resin on the light incident side layer of the photoelectric conversion layer a transparent substrate which is adhered as the adhesive material, is wired to the signal reading means exposed on a surface thereof opposite to the photoelectric conversion layer is provided face of the semiconductor substrate with provided through the semiconductor substrate characterized in that it comprises an electrical connection terminals provided Te.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、前記電気的接続端子が露出した前記反対側の面と前記透明基板の表面との距離が全体の厚さとなることを特徴とする。 Further, In the solid-state imaging device of the micro lenses not equipped embodiments, that the distance between the electrical connection terminals are exposed above the surface opposite the surface of the transparent substrate is the thickness of the entire and features.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、前記透明基板と前記半導体基板とが同面積であることを特徴とする。 Further, In the solid-state imaging device of the micro lenses not equipped embodiment is characterized in that the transparent substrate and the semiconductor substrate is a same area.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、前記透明基板の代わりに前記透明樹脂を厚手に形成したことを特徴とする。 Further, In the solid-state imaging device of the micro lenses not equipped embodiment is characterized in that the formation of the transparent resin in thick instead of the transparent substrate.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、前記透明基板が前記半導体基板より小面積であることを特徴とする。 Further, In the solid-state imaging device of the micro lenses not equipped embodiment is characterized in that said transparent substrate is a smaller area than the semiconductor substrate.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、前記透明基板が前記半導体基板より大面積であることを特徴とする。 Further, In the solid-state imaging device of the micro lenses not equipped embodiment is characterized in that said transparent substrate is greater area than the semiconductor substrate.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、前記透明基板と前記半導体基板との面積の違いによる段差部分を樹脂で埋めて全体を完全な矩形体としたことを特徴とする。 Further, In the solid-state imaging device of the micro lenses not equipped embodiments, that the difference due to the step portion of the area between the semiconductor substrate and the transparent substrate and the entire filled with resin a complete rectangular body and features.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、側面が黒色に塗られていることを特徴とする。 Further, In the solid-state imaging device of the micro lenses not equipped embodiment is characterized in that the side surface is painted black.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハの前記光入射側上層に該半導体ウェハと同等面積の透明基板を透明樹脂で貼り合わせ、該貼り合わせ後に該半導体基板及び該透明基板をダイシングして個片化することを特徴とす A method of manufacturing a microlens not equipped for In the solid-state imaging device of the embodiment includes a semiconductor substrate, a photoelectric conversion layer stacked on the light incident side upper layer of the semiconductor substrate, the surface portion of said semiconductor substrate the photoelectric conversion layer is formed of the micro lens not equipped for in the solid-state imaging device and a signal reading means for reading the external signal corresponding to the detected signal charge amount as the captured image signal according to the amount of incident light on the a manufacturing method, the light entrance of a semiconductor wafer on which the semiconductor substrate on which the signal reading means and the photoelectric conversion layer is formed is composed of a set of a plurality of the semiconductor substrate before being separated from the other of said semiconductor substrate the side layer bonded to the transparent substrate of the same area as the semiconductor wafer with a transparent resin, to characterized in that singulation by dicing the semiconductor substrate and the transparent substrate after mating Ri 該貼 .

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハのうち良品の前記半導体基板の前記光入射側上層に個片化された前記透明基板を透明樹脂で貼り付け、該貼り付け後にダイシングして前記半導体ウェハを個片化することを特徴と A method of manufacturing a microlens not equipped for In the solid-state imaging device of the embodiment includes a semiconductor substrate, a photoelectric conversion layer stacked on the light incident side upper layer of the semiconductor substrate, the surface portion of said semiconductor substrate the photoelectric conversion layer is formed of the micro lens not equipped for in the solid-state imaging device and a signal reading means for reading the external signal corresponding to the detected signal charge amount as the captured image signal according to the amount of incident light on the a manufacturing method of non-defective of the semiconductor wafer on which the semiconductor substrate on which the signal reading means and the photoelectric conversion layer is formed is composed of a set of a plurality of the semiconductor substrate before being separated from the other of said semiconductor substrate and wherein the light incident side upper layer of the semiconductor paste in singulated by a transparent resin the transparent substrate, singulating the semiconductor wafer is diced after attaching Ri 該貼 る。 That.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハの前記光入射側上層に厚手の透明樹脂を積層して硬化させ、該硬化後にダイシングして前記半導体ウェハを個片化することを特徴とする。 A method of manufacturing a microlens not equipped for In the solid-state imaging device of the embodiment includes a semiconductor substrate, a photoelectric conversion layer stacked on the light incident side upper layer of the semiconductor substrate, the surface portion of said semiconductor substrate the photoelectric conversion layer is formed of the micro lens not equipped for in the solid-state imaging device and a signal reading means for reading the external signal corresponding to the detected signal charge amount as the captured image signal according to the amount of incident light on the a manufacturing method, the light entrance of a semiconductor wafer on which the semiconductor substrate on which the signal reading means and the photoelectric conversion layer is formed is composed of a set of a plurality of the semiconductor substrate before being separated from the other of said semiconductor substrate cured by laminating a thick transparent resin on the side upper layer, and wherein the singulating the semiconductor wafer is diced after curing.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、複数の前記信号読出手段及び前記光電変換膜が形成された前記半導体基板を前記光入射側上層の側を1枚の透明基板に透明樹脂で貼り付け、該貼り付け後に該透明基板をダイシングして前記半導体基板を個片化することを特徴とする。 A method of manufacturing a microlens not equipped for In the solid-state imaging device of the embodiment includes a semiconductor substrate, a photoelectric conversion layer stacked on the light incident side upper layer of the semiconductor substrate, the surface portion of said semiconductor substrate the photoelectric conversion layer is formed of the micro lens not equipped for in the solid-state imaging device and a signal reading means for reading the external signal corresponding to the detected signal charge amount as the captured image signal according to the amount of incident light on the a manufacturing method, paste a plurality of said signal reading means and the transparent resin the said semiconductor substrate in which the photoelectric conversion layer is formed to the side of the light incident side layer on one transparent substrate, the after attaching Ri 該貼by dicing the transparent substrate, wherein the singulating the semiconductor substrate.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、前記1枚の透明基板に複数の前記半導体基板を貼り付けた後に隣接する該半導体基板間の隙間を樹脂で充填し、該樹脂が硬化した後、該樹脂及び前記透明基板をダイシングして前記半導体基板を個片化することを特徴とする。 A method of manufacturing a microlens not equipped for In the solid-state imaging device of the embodiment, resin a gap between said semiconductor substrate adjacent after laminating the plurality of the semiconductor substrate to the one transparent substrate in filling, after the resin is cured, and wherein the singulating the semiconductor substrate by dicing the said resin and said transparent substrate.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、前記樹脂が光学的に黒色の樹脂であることを特徴とする。 A method of manufacturing a microlens not equipped for In the solid-state imaging device of the embodiment is characterized in that said resin is a resin of the optically black.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、上記のいずれかに記載の製造方法で製造したことを特徴とする。 Further, In the solid-state imaging device of the micro lenses not equipped embodiment is characterized in that produced by the production method according to any of the above.

また、実施形態の撮像装置は、上記のいずれかに記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子を搭載したことを特徴とする。 Also, the imaging apparatus of the embodiment is characterized by mounting the photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped according to any of the above.

本実施形態によれば、小型,薄型で量産性の高い素子構造を持つ固体撮像素子の製造ができ、中空構造がなく信頼性の高い固体撮像素子を得ることができ、撮像素子チップ上に塵埃等が浸入しない構造のため信頼性がより高い固体撮像素子を得ることが可能となる。 According to this embodiment, compact, can be manufactured of a solid-state imaging device having high element structure mass productivity thin, it is possible to obtain a high solid-state imaging device reliability without hollow structure, dust on the image sensor chip reliability becomes possible to obtain higher solid-state imaging device for a structure like that does not enter.

本発明に係るマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、小型,薄型でしかも量産性,信頼性が高くなるため、デジタルスチルカメラ,デジタルビデオカメラ,カメラ付携帯電話機,カメラ付電子装置,監視カメラ,内視鏡,車載カメラ等に搭載すると有用である。 In the solid-state imaging device of the microlens not mounted according to the present invention, a small, mass productivity only thin, because the reliability is high, a digital still camera, digital video camera, a mobile phone with a camera, an electronic camera with apparatus, a monitoring camera, an endoscope is useful when mounted on-vehicle camera or the like.

20 撮像装置(デジタルカメラ) 20 imaging device (digital camera)
21 撮影レンズ26 デジタル信号処理部29 システム制御部100 光電変換膜積層型固体撮像素子101 撮像素子チップ102 透明樹脂(接着材) 21 taking lens 26 digital signal processing unit 29 the system control unit 100 In the solid-state imaging device 101 imaging device chip 102 transparent resin (adhesive)
103 透明ガラス基板104 隙間105 黒色の樹脂110 半導体ウェハ112 撮像領域113 接続パッド115 円板状の透明ガラス基板121 半導体基板125 画素電極膜130 光電変換膜131 対向電極膜132 保護膜 103 transparent glass substrate 104 gap 105 black resin 110 semiconductor wafer 112 imaging region 113 connecting pads 115 disk-shaped transparent glass substrate 121 the semiconductor substrate 125 pixel electrode layer 130 photoelectric conversion film 131 counter electrode film 132 protective film

Claims (16)

  1. 半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段と、前記光電変換膜の光入射側上層に透明樹脂を接着材として貼り付けられた透明基板と、前記信号読出手段に配線接続され前記半導体基板に貫通して設けられると共に該半導体基板の前記光電変換膜が設けられた面と反対側の面に露出して設けられた電気的接続端子とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。 A semiconductor substrate, a photoelectric conversion layer stacked on the light incident side upper layer of the semiconductor substrate, the signal in which the photoelectric conversion layer is formed in a surface portion of the semiconductor substrate corresponding to the detected signal charge amount according to the amount of incident light a signal reading means for reading to the outside as a captured image signal, wherein the affixed transparent substrate as an adhesive to the light incident side layer to a transparent resin of the photoelectric conversion film, is wired to the signal reading means through said semiconductor substrate in the solid-state imaging device of the micro lenses not equipped with an electrical connection terminal provided exposed on the surface opposite to the photoelectric conversion layer is provided face of the semiconductor substrate with provided Te.
  2. 請求項1に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子であって、前記電気的接続端子が露出した前記反対側の面と前記透明基板の表面との距離が全体の厚さとなるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。 The photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped according to claim 1, the distance between the electrical connection terminals are exposed above the surface opposite the surface of the transparent substrate and the total thickness the photoelectric microlenses not mounted conversion layer-stacked solid-state imaging device comprising.
  3. 請求項1又は請求項2に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子であって、前記透明基板と前記半導体基板とが同面積であるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。 The photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped according to claim 1 or claim 2, the photoelectric conversion layer stack type microlens not equipped with the transparent substrate and the semiconductor substrate is a same area the solid-state imaging device.
  4. 請求項3に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子であって、前記透明基板の代わりに前記透明樹脂を厚手に形成したマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。 The photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped according to claim 3, wherein the photoelectric transparent substrate microlenses non-mounting of the formation of the transparent resin in thick instead of the conversion layer-stacked solid-state imaging device .
  5. 請求項1又は請求項2に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子であって、前記透明基板が前記半導体基板より小面積であるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。 The photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped according to claim 1 or claim 2, wherein the transparent substrate is a micro lens not mounted is smaller in area than the semiconductor substrate photoelectric conversion layer-stacked solid-state the image pickup device.
  6. 請求項1又は請求項2に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子であって、前記透明基板が前記半導体基板より大面積であるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。 The photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped according to claim 1 or claim 2, wherein the transparent substrate is a micro lens not mounted a larger area than the semiconductor substrate photoelectric conversion layer-stacked solid-state the image pickup device.
  7. 請求項5又は請求項6に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子であって、前記透明基板と前記半導体基板との面積の違いによる段差部分を樹脂で埋めて全体を完全な矩形体としたマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。 The photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped according to claim 5 or claim 6, completely across the differences due to the step portion of the area between the semiconductor substrate and the transparent substrate is filled with resin in the solid-state imaging device of the micro lenses not equipped with a such rectangles.
  8. 請求項1乃至請求項6のいずれかに記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子であって、側面が黒色に塗られているマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。 The photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped according to any one of claims 1 to 6, In the solid-state imaging microlenses non-mounting side surface is painted black element.
  9. 半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハの前記光入射側上層に該半導体ウェハと同等面積の透明基板を透明樹脂で貼り合わせ、該貼り合わせ後に該半導体基板及び該透明基板をダイシングして個片化するマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法。 A semiconductor substrate, a photoelectric conversion layer stacked on the light incident side upper layer of the semiconductor substrate, the signal in which the photoelectric conversion layer is formed in a surface portion of the semiconductor substrate corresponding to the detected signal charge amount according to the amount of incident light a manufacturing method of a photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped with a signal reading means for reading to the outside as a captured image signal, wherein the semiconductor substrate is of said signal reading means and the photoelectric conversion layer is formed bonding the other of the transparent resin transparent substrate of the semiconductor wafer and the equivalent area to the light incident side layer of the front of a plurality of semiconductor wafer to be an aggregate of the semiconductor substrate which is a semiconductor substrate and separated after mating Ri 該貼manufacturing method of a photoelectric conversion layer-stacked solid-state imaging device of the microlens not mounted into pieces by dicing the semiconductor substrate and the transparent substrate.
  10. 半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハのうち良品の前記半導体基板の前記光入射側上層に個片化された前記透明基板を透明樹脂で貼り付け、該貼り付け後にダイシングして前記半導体ウェハを個片化するマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法。 A semiconductor substrate, a photoelectric conversion layer stacked on the light incident side upper layer of the semiconductor substrate, the signal in which the photoelectric conversion layer is formed in a surface portion of the semiconductor substrate corresponding to the detected signal charge amount according to the amount of incident light a manufacturing method of a photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped with a signal reading means for reading to the outside as a captured image signal, wherein the semiconductor substrate is of said signal reading means and the photoelectric conversion layer is formed paste the transparent substrate that is singulated to the light incident side layer of the semiconductor substrate of good of the semiconductor wafer to be an aggregate of a plurality of the semiconductor substrate before being separated from the other of said semiconductor substrate with a transparent resin give, method of manufacturing the photoelectric conversion layer-stacked solid-state imaging device of the microlens not mounted singulating the semiconductor wafer is diced after attaching Ri 該貼.
  11. 半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハの前記光入射側上層に厚手の透明樹脂を積層して硬化させ、該硬化後にダイシングして前記半導体ウェハを個片化するマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法。 A semiconductor substrate, a photoelectric conversion layer stacked on the light incident side upper layer of the semiconductor substrate, the signal in which the photoelectric conversion layer is formed in a surface portion of the semiconductor substrate corresponding to the detected signal charge amount according to the amount of incident light a manufacturing method of a photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped with a signal reading means for reading to the outside as a captured image signal, wherein the semiconductor substrate is of said signal reading means and the photoelectric conversion layer is formed cured by laminating a thick transparent resin on the light incident side layer of the front of a plurality of semiconductor wafer to be an aggregate of the semiconductor substrate is separated from the other of said semiconductor substrate, said semiconductor wafer is diced after curing method of manufacturing a microlens not equipped for in the solid-state imaging device into pieces.
  12. 半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、複数の前記信号読出手段及び前記光電変換膜が形成された前記半導体基板を前記光入射側上層の側を1枚の透明基板に透明樹脂で貼り付け、該貼り付け後に該透明基板をダイシングして前記半導体基板を個片化するマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法。 A semiconductor substrate, a photoelectric conversion layer stacked on the light incident side upper layer of the semiconductor substrate, the signal in which the photoelectric conversion layer is formed in a surface portion of the semiconductor substrate corresponding to the detected signal charge amount according to the amount of incident light a manufacturing method of a photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped with a signal reading means for reading to the outside as a captured image signal, the semiconductor plurality of said signal reading means and the photoelectric conversion layer is formed paste the substrate with a transparent resin to the side of the light incident side layer on one transparent substrate, a photoelectric conversion layer stack of the micro lens not mounted singulating the semiconductor substrate by dicing the transparent substrate after attaching Ri 該貼method for producing a type solid-state imaging device.
  13. 請求項12に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記1枚の透明基板に複数の前記半導体基板を貼り付けた後に隣接する該半導体基板間の隙間を樹脂で充填し、該樹脂が硬化した後、該樹脂及び前記透明基板をダイシングして前記半導体基板を個片化するマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法。 A manufacturing method of a photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped according to claim 12, between the semiconductor substrate adjacent after laminating the plurality of the semiconductor substrate to the one transparent substrate the gap is filled with resin, after the resin has cured, the resin and the manufacturing method of the microlens not equipped for in the solid-state imaging device singulating the semiconductor substrate by dicing the transparent substrate.
  14. 請求項13に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記樹脂は光学的に黒色の樹脂であるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法。 A manufacturing method of a photoelectric conversion layer-stacked solid-state imaging device of the micro lenses not equipped according to claim 13, wherein the resin is a photoelectric conversion of the microlens non-mounting a resin optically black film stack type solid-state imaging device the method of production.
  15. 請求項9乃至請求項14のいずれかに記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法で製造したマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。 Microlens not mounted in In the solid-state imaging device of the microlenses non-mounting produced by the production method of the photoelectric conversion layer-stacked solid-state imaging device according to any one of claims 9 to 14.
  16. 請求項1乃至請求項8のいずれか、又は、請求項15に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子を搭載した撮像装置。 Any of claims 1 to 8, or, equipped with the imaging device In the solid-state imaging device of the micro lenses not equipped according to claim 15.
JP2010061621A 2010-03-17 2010-03-17 Photoelectric conversion film-stacked solid-state imaging device without microlens, method of manufacturing the same, and imaging apparatus Abandoned JP2011198853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010061621A JP2011198853A (en) 2010-03-17 2010-03-17 Photoelectric conversion film-stacked solid-state imaging device without microlens, method of manufacturing the same, and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010061621A JP2011198853A (en) 2010-03-17 2010-03-17 Photoelectric conversion film-stacked solid-state imaging device without microlens, method of manufacturing the same, and imaging apparatus
US13049837 US8970749B2 (en) 2010-03-17 2011-03-16 Photoelectric conversion film-stacked solid-state imaging device without microlenses, its manufacturing method, and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2011198853A true true JP2011198853A (en) 2011-10-06

Family

ID=44646962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010061621A Abandoned JP2011198853A (en) 2010-03-17 2010-03-17 Photoelectric conversion film-stacked solid-state imaging device without microlens, method of manufacturing the same, and imaging apparatus

Country Status (2)

Country Link
US (1) US8970749B2 (en)
JP (1) JP2011198853A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160025320A (en) * 2014-08-27 2016-03-08 삼성전자주식회사 Staked image sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100766A (en) * 2004-08-31 2006-04-13 Fuji Photo Film Co Ltd Photoelectric conversion element and image pickup element, and method of applying electric field to those
JP2007134735A (en) * 2000-07-11 2007-05-31 Seiko Epson Corp Optical device and production method thereof as well as electronics
JP2007227657A (en) * 2006-02-23 2007-09-06 Fujifilm Corp Solid-state imaging device and method for manufacturing the same
JP2008085195A (en) * 2006-09-28 2008-04-10 Fujifilm Corp Method of manufacturing solid-state imaging device and solid-state imaging device
JP2008263178A (en) * 2007-03-16 2008-10-30 Fujifilm Corp Solid-state imaging element
JP2009064839A (en) * 2007-09-04 2009-03-26 Panasonic Corp Optical device and method for fabricating the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4021928C2 (en) 1990-07-10 1992-06-04 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
JP2002094082A (en) * 2000-07-11 2002-03-29 Seiko Epson Corp Optical element and its manufacturing method and electronic equipment
JP3778817B2 (en) 2001-07-11 2006-05-24 富士フイルムマイクロデバイス株式会社 A solid-state imaging device and manufacturing method thereof
US20030189215A1 (en) * 2002-04-09 2003-10-09 Jong-Lam Lee Method of fabricating vertical structure leds
EP1357606A1 (en) * 2002-04-22 2003-10-29 Scientek Corporation Image sensor semiconductor package
JP4271909B2 (en) 2002-07-29 2009-06-03 富士フイルム株式会社 A solid-state imaging device and manufacturing method thereof
US6995462B2 (en) * 2003-09-17 2006-02-07 Micron Technology, Inc. Image sensor packages
JP4905762B2 (en) * 2005-08-23 2012-03-28 富士フイルム株式会社 Photoelectric conversion devices, imaging devices, and a manufacturing method of the photoelectric conversion element
KR100790994B1 (en) * 2006-08-01 2008-01-03 삼성전자주식회사 Semiconductor image sensor package, method for manufacturing the same and semiconductor image sensor module comprising the same
JP2008092417A (en) 2006-10-04 2008-04-17 Matsushita Electric Ind Co Ltd Semiconductor imaging element, its manufacturing method, semiconductor imaging apparatus, and semiconductor imaging module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134735A (en) * 2000-07-11 2007-05-31 Seiko Epson Corp Optical device and production method thereof as well as electronics
JP2006100766A (en) * 2004-08-31 2006-04-13 Fuji Photo Film Co Ltd Photoelectric conversion element and image pickup element, and method of applying electric field to those
JP2007227657A (en) * 2006-02-23 2007-09-06 Fujifilm Corp Solid-state imaging device and method for manufacturing the same
JP2008085195A (en) * 2006-09-28 2008-04-10 Fujifilm Corp Method of manufacturing solid-state imaging device and solid-state imaging device
JP2008263178A (en) * 2007-03-16 2008-10-30 Fujifilm Corp Solid-state imaging element
JP2009064839A (en) * 2007-09-04 2009-03-26 Panasonic Corp Optical device and method for fabricating the same

Also Published As

Publication number Publication date Type
US20110228151A1 (en) 2011-09-22 application
US8970749B2 (en) 2015-03-03 grant

Similar Documents

Publication Publication Date Title
US20060014313A1 (en) Microelectronic imaging units and methods of manufacturing microelectronic imaging units
US20040212719A1 (en) Camera module and manufacturing method thereof
US6879340B1 (en) CMOS imager with integrated non-volatile memory
US20120086094A1 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic equipment
US20060011813A1 (en) Image sensor having a passivation layer exposing at least a main pixel array region and methods of fabricating the same
US20060046332A1 (en) Microelectronic Imaging units and methods of manufacturing microelectronic imaging units
US20050116138A1 (en) Method of manufacturing a solid state image sensing device
US8092734B2 (en) Covers for microelectronic imagers and methods for wafer-level packaging of microelectronics imagers
US20110042770A1 (en) Wafer level processing for backside illuminated image sensors
US20050184219A1 (en) Packaged microelectronic imagers and methods of packaging microelectronic imagers
US20050285016A1 (en) Image sensor module structure comprising wire bonding package and method of manufacturing the image sensor module structure
US20100244175A1 (en) Image sensor and method of fabricating the same
US20080303107A1 (en) Optical device and method for fabricating the same, camera module using optical device, and electronic equipment mounting camera module
EP1376705A2 (en) Solid-state imaging device and method of manufacturing the same
US20070019101A1 (en) Optical device, optical device apparatus, camera module, and optical device manufacturing method
US20090256225A1 (en) Solid-state image capturing device, manufacturing method of the solid-state image capturing device, and electronic information device
US20060035402A1 (en) Microelectronic imaging units and methods of manufacturing microelectronic imaging units
US20060243889A1 (en) Microelectronic imagers with optical devices and methods of manufacturing such microelectronic imagers
US20100117176A1 (en) Camera module and manufacturing method thereof
US20080265296A1 (en) Imaging element and imaging device
US7948555B2 (en) Camera module and electronic apparatus having the same
US20060027825A1 (en) Solid-state imaging device and manufacturing method of solid-state imaging device
US20110298074A1 (en) Solid-state imaging element and electronic information device
US7767485B2 (en) Solid-state imaging device and method for manufacturing same
JP2004296453A (en) Solid-state imaging device, semiconductor wafer, optical device module, method of manufacturing the solid-state imaging device, and method of manufacturing the optical device module

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20131011