JP2011198853A - Photoelectric conversion film-stacked solid-state imaging device without microlens, method of manufacturing the same, and imaging apparatus - Google Patents

Photoelectric conversion film-stacked solid-state imaging device without microlens, method of manufacturing the same, and imaging apparatus Download PDF

Info

Publication number
JP2011198853A
JP2011198853A JP2010061621A JP2010061621A JP2011198853A JP 2011198853 A JP2011198853 A JP 2011198853A JP 2010061621 A JP2010061621 A JP 2010061621A JP 2010061621 A JP2010061621 A JP 2010061621A JP 2011198853 A JP2011198853 A JP 2011198853A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion film
microlens
semiconductor substrate
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2010061621A
Other languages
Japanese (ja)
Inventor
Hiroshi Inomata
浩 猪股
Eiji Watanabe
英治 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Fujifilm Digital Techno Co Ltd
Original Assignee
Fujifilm Corp
Fujifilm Digital Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp, Fujifilm Digital Techno Co Ltd filed Critical Fujifilm Corp
Priority to JP2010061621A priority Critical patent/JP2011198853A/en
Priority to US13/049,837 priority patent/US8970749B2/en
Publication of JP2011198853A publication Critical patent/JP2011198853A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To provide a small and thin solid-state imaging device which does not require a gap beneath a transparent substrate bonded to a front surface of the imaging device, and selects transparent resin which does not depend on refractive index as adhesive.SOLUTION: The photoelectric conversion film-stacked solid-state imaging device is equipped with: a semiconductor substrate 121; a photoelectric conversion film 130 stacked on a light incidence side upper layer of the semiconductor substrate 121; a signal reading means (not shown in the figure) formed in a surface portion of the semiconductor substrate 121, for reading out to an external, as shot image signals, signals corresponding to signal charge amounts detected by the photoelectric conversion film 130 according to incident light quantities; the transparent substrate (not shown in the figure) bonded to a light incidence side upper layer of the photoelectric conversion film 130 with the transparent resin as the adhesive; and electric connection terminals 113 which are interconnected to the signal reading means and which penetrate through the semiconductor substrate 121 and are exposed from the opposite surface of the surface where the photoelectric conversion film 130 of the semiconductor substrate 121 is formed.

Description

本発明はデジタルカメラなどの撮像装置に搭載する固体撮像素子等に係り、特に、撮像装置に搭載するのに好適な構造を持つ光電変換膜積層型固体撮像素子及びその製造方法に関する。   The present invention relates to a solid-state imaging device or the like mounted on an imaging device such as a digital camera, and more particularly to a photoelectric conversion film stacked solid-state imaging device having a structure suitable for mounting on an imaging device and a manufacturing method thereof.

固体撮像素子は、光の受光面に樹脂製等のマイクロレンズ(トップレンズ)やカラーフィルタ層を設ける関係で、表面が柔らかくなっている。このため、固体撮像素子の受光面表面が傷付かない様に、また、塵埃などが付着しない様に、保護する必要がある。そこで、従来から、特許文献1,2に示されるように、受光面表面にガラス基板の様な透明基板を接着材で貼り付ける様になっている。   The solid-state imaging device has a soft surface because a light-receiving surface is provided with a resin-made microlens (top lens) or a color filter layer. For this reason, it is necessary to protect the light receiving surface of the solid-state imaging device so that the surface is not damaged, and dust is not attached. Therefore, conventionally, as shown in Patent Documents 1 and 2, a transparent substrate such as a glass substrate is attached to the surface of the light receiving surface with an adhesive.

しかし、この接着材の材質が問題となる。従来のCCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子は、入射光の利用効率を高めるために、各受光素子上方にマイクロレンズを設けており、このマイクロレンズの表面に屈折率がマイクロレンズの材質と同程度の接着材を塗ると、マイクロレンズ表面での光の屈折が起きずにマイクロレンズの機能が阻害され、入射光を集光できなくなってしまう。   However, the material of the adhesive is a problem. In a conventional solid-state imaging device such as a CCD image sensor or a CMOS image sensor, a microlens is provided above each light receiving device in order to increase the use efficiency of incident light, and the refractive index is microscopic on the surface of the microlens. If an adhesive of the same degree as the lens material is applied, the refraction of light on the surface of the microlens does not occur, the function of the microlens is hindered, and incident light cannot be condensed.

このため、接着材の透明樹脂として、マイクロレンズの屈折率より低屈折率となる材料を選択する必要が生じる。また、接着材は、吸水率の低い材料でないと信頼性が低下するため、低屈折率でかつ吸水率の低い材料を選択する必要が生じ、材料の選択肢が少なくなり、コストが嵩んでしまうという問題がある。   For this reason, it is necessary to select a material having a refractive index lower than that of the microlens as the transparent resin for the adhesive. In addition, since the reliability of the adhesive is low unless the material has a low water absorption rate, it is necessary to select a material having a low refractive index and a low water absorption rate, resulting in fewer choices of materials and increased costs. There's a problem.

マイクロレンズ表面全面と透明基板とを接着材で接着せずに、マイクロレンズと透明基板との間に空隙を設け、空気の屈折率を利用してマイクロレンズの集光効率を上げる技術も、特許文献3に記載されている。しかし、空隙を設ける工程が複雑で製造コストを上げる要因になっている。また、空隙を設ける関係で、固体撮像素子の厚さを薄くできないという問題もある。   A technology that increases the light condensing efficiency of the microlens by using the refractive index of air and providing a gap between the microlens and the transparent substrate without bonding the entire surface of the microlens and the transparent substrate with an adhesive. It is described in Document 3. However, the process of providing the gap is complicated, which increases the manufacturing cost. Another problem is that the thickness of the solid-state imaging device cannot be reduced due to the provision of the air gap.

特開2003―31782号公報Japanese Patent Laid-Open No. 2003-31782 特開2008―92417号公報JP 2008-92417 A 特許第4271909号公報Japanese Patent No. 4271909

本発明の目的は、マイクロレンズ非搭載の光電変換膜積層型固体撮像素子を用いることで、上記の空隙を必要とせず、また、接着材として屈折率に依存しない透明樹脂を選択できるようにした小型,薄型の固体撮像素子及びその製造方法並びにこの固体撮像素子を搭載した撮像装置を提供することにある。   An object of the present invention is to use a photoelectric conversion film laminated solid-state imaging device not mounted with a microlens, so that the above-described gap is not required and a transparent resin that does not depend on the refractive index can be selected as an adhesive. It is an object of the present invention to provide a small and thin solid-state imaging device, a method for manufacturing the same, and an imaging apparatus equipped with the solid-state imaging device.

本発明のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段と、前記光電変換膜の光入射側上層に透明樹脂を接着材として貼り付けられた透明基板と、前記信号読出手段に配線接続され該半導体基板に貫通して設けられると共に該半導体基板の前記光電変換膜が設けられた面と反対側の面に露出して設けられた電気的接続端子とを備えることを特徴とする。   A photoelectric conversion film stacked solid-state imaging device without a microlens of the present invention includes a semiconductor substrate, a photoelectric conversion film stacked on a light incident side upper layer of the semiconductor substrate, and a photoelectric conversion film formed on a surface portion of the semiconductor substrate. Signal reading means for reading out a signal corresponding to the amount of signal charge detected by the conversion film according to the amount of incident light to the outside as a captured image signal, and a transparent resin as an adhesive on the light incident side upper layer of the photoelectric conversion film A transparent substrate and an electrical connection provided by being connected to the signal reading means and penetrating through the semiconductor substrate and exposed on the surface of the semiconductor substrate opposite to the surface on which the photoelectric conversion film is provided And a terminal.

本発明のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハの前記光入射側上層に該半導体ウェハと同等面積の透明基板を透明樹脂で貼り合わせ、該貼り合わせ後に該半導体基板及び該透明基板をダイシングして個片化することを特徴とする。   A manufacturing method of a photoelectric conversion film stacked solid-state imaging device without a microlens of the present invention is formed on a semiconductor substrate, a photoelectric conversion film stacked on a light incident side upper layer of the semiconductor substrate, and a surface portion of the semiconductor substrate And a signal reading means for reading out a signal corresponding to the signal charge amount detected by the photoelectric conversion film according to the amount of incident light to the outside as a picked-up image signal. The light incident side upper layer of a semiconductor wafer comprising an assembly of a plurality of semiconductor substrates before the semiconductor substrate on which the signal reading means and the photoelectric conversion film are formed is separated from other semiconductor substrates A transparent substrate having the same area as the semiconductor wafer is bonded with a transparent resin, and after the bonding, the semiconductor substrate and the transparent substrate are diced into individual pieces.

また、本発明のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハのうち良品の前記半導体基板の前記光入射側上層に個片化された前記透明基板を透明樹脂で貼り付け、該貼り付け後にダイシングして前記半導体ウェハを個片化することを特徴とする。   In the method for manufacturing a photoelectric conversion film stacked solid-state imaging device without a microlens according to the present invention, the signal readout means and the semiconductor substrate on which the photoelectric conversion film is formed are separated from the other semiconductor substrates. The transparent substrate separated into the upper layer on the light incident side of the non-defective semiconductor substrate among the semiconductor wafers composed of an assembly of the plurality of semiconductor substrates is pasted with a transparent resin, and the dicing is performed after the pasting. A semiconductor wafer is divided into individual pieces.

また、本発明のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハの前記光入射側上層に厚手の透明樹脂を積層して硬化させ、該硬化後にダイシングして前記半導体ウェハを個片化することを特徴とする。   In the method for manufacturing a photoelectric conversion film stacked solid-state imaging device without a microlens according to the present invention, the signal readout means and the semiconductor substrate on which the photoelectric conversion film is formed are separated from the other semiconductor substrates. A thick transparent resin is laminated and cured on the light incident side upper layer of the semiconductor wafer composed of an assembly of a plurality of semiconductor substrates, and the semiconductor wafer is diced after the curing. .

また、本発明のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、複数の前記信号読出手段及び前記光電変換膜が形成された前記半導体基板を前記光入射側上層の側を1枚の透明基板に透明樹脂で貼り付け、該貼り付け後に該透明基板をダイシングして前記半導体基板を個片化することを特徴とする。   In the method of manufacturing a photoelectric conversion film stacked solid-state imaging device without a microlens according to the present invention, a plurality of the signal reading means and the semiconductor substrate on which the photoelectric conversion film is formed are arranged on the light incident side upper layer side. The semiconductor substrate is bonded to a single transparent substrate with a transparent resin, and the semiconductor substrate is separated into pieces by dicing the transparent substrate after the bonding.

また、本発明の撮像装置は、上記のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子又は上記のいずれかの製造方法で製造されたマイクロレンズ非搭載の光電変換膜積層型固体撮像素子を搭載することを特徴とする。   In addition, an imaging apparatus according to the present invention includes the above-described photoelectric conversion film stacked solid-state image pickup device not mounted with a microlens or the photoelectric conversion film stacked solid-state image pickup device mounted with any one of the above manufacturing methods. It is mounted.

本発明によれば、マイクロレンズが無いため透明基板と撮像素子チップとの間に空隙を設ける必要が無く、透明接着材として屈折率に依存せずに接着材を選択でき、小型,薄型で量産性が高く信頼性も高い素子構造を持つ固体撮像素子を得ることができ、これを搭載する撮像装置の小型化や信頼性向上も図ることが可能となる。   According to the present invention, since there is no microlens, there is no need to provide a gap between the transparent substrate and the imaging element chip, and the adhesive can be selected as a transparent adhesive without depending on the refractive index. Thus, it is possible to obtain a solid-state imaging device having a highly reliable and highly reliable element structure, and it is possible to reduce the size and improve the reliability of an imaging apparatus equipped with the solid-state imaging device.

本発明の一実施形態に係るデジタルカメラの機能ブロック図である。It is a functional block diagram of the digital camera which concerns on one Embodiment of this invention. 図1に示す固体撮像素子の縦断面模式図である。It is a longitudinal cross-sectional schematic diagram of the solid-state image sensor shown in FIG. 図2に示す固体撮像素子の製造工程説明図である。It is manufacturing process explanatory drawing of the solid-state image sensor shown in FIG. 図3のIV―IV線位置の断面模式図である。FIG. 4 is a schematic cross-sectional view taken along the line IV-IV in FIG. 3. 図2に示す固体撮像素子の製造工程説明図である。It is manufacturing process explanatory drawing of the solid-state image sensor shown in FIG. 図2に代わる実施形態の固体撮像素子の製造工程説明図である。FIG. 6 is an explanatory diagram of a manufacturing process of the solid-state imaging device of the embodiment instead of FIG. 図6で製造された固体撮像素子の断面模式図である。It is a cross-sectional schematic diagram of the solid-state image sensor manufactured in FIG. 本発明の更に別実施形態に係る固体撮像素子の説明図である。It is explanatory drawing of the solid-state image sensor which concerns on another embodiment of this invention. 本発明の更に別実施形態に係る固体撮像素子の説明図である。It is explanatory drawing of the solid-state image sensor which concerns on another embodiment of this invention. 本発明の更に別実施形態に係る固体撮像素子の説明図である。It is explanatory drawing of the solid-state image sensor which concerns on another embodiment of this invention.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係るデジタルカメラ(撮像装置)の構成図である。このデジタルカメラは20は、固体撮像素子100と、固体撮像素子100の前段に置かれた撮影レンズ21と、固体撮像素子100から出力されるアナログの画像データを自動利得調整(AGC)や相関二重サンプリング処理等のアナログ処理するアナログ信号処理部22と、アナログ信号処理部22から出力されるアナログ画像データをデジタル画像データに変換するアナログデジタル変換部(A/D)23と、後述のシステム制御部(CPU)29からの指示によって撮影レンズ21,A/D23,アナログ信号処理部22,固体撮像素子100の駆動制御を行う駆動制御部(タイミングジェネレータを含む)24と、CPU29からの指示によって発光するフラッシュ25とを備える。   FIG. 1 is a configuration diagram of a digital camera (imaging device) according to an embodiment of the present invention. This digital camera 20 includes a solid-state image sensor 100, a photographing lens 21 placed in front of the solid-state image sensor 100, and analog image data output from the solid-state image sensor 100 with automatic gain adjustment (AGC) and correlation. An analog signal processing unit 22 that performs analog processing such as multiple sampling processing, an analog / digital conversion unit (A / D) 23 that converts analog image data output from the analog signal processing unit 22 into digital image data, and system control described later A driving control unit (including a timing generator) 24 that controls driving of the photographing lens 21, A / D 23, analog signal processing unit 22, solid-state imaging device 100 according to an instruction from the unit (CPU) 29, and light emission according to an instruction from the CPU 29 And a flash 25.

本実施形態のデジタルカメラは更に、A/D23から出力されるデジタル画像データを取り込み補間処理やホワイトバランス補正,RGB/YC変換処理等を行うデジタル信号処理部26と、画像データをJPEG形式などの画像データに圧縮したり逆に伸長したりする圧縮/伸長処理部27と、メニューなどを表示したりスルー画像や撮像画像を表示する表示部28と、デジタルカメラ全体を統括制御するシステム制御部(CPU)29と、フレームメモリ等の内部メモリ30と、JPEG画像データ等を格納する記録メディア32との間のインタフェース処理を行うメディアインタフェース(I/F)部31と、これらを相互に接続するバス40とを備え、また、システム制御部29には、ユーザからの指示入力を行う操作部33が接続されている。   The digital camera according to the present embodiment further includes a digital signal processing unit 26 that takes in digital image data output from the A / D 23 and performs interpolation processing, white balance correction, RGB / YC conversion processing, and the like. A compression / expansion processing unit 27 that compresses or reversely compresses image data, a display unit 28 that displays menus, displays through images and captured images, and a system control unit that controls the entire digital camera ( CPU) 29, an internal memory 30 such as a frame memory, and a media interface (I / F) unit 31 that performs interface processing between a recording medium 32 that stores JPEG image data and the like, and a bus that interconnects them 40, and an operation unit 33 for inputting an instruction from the user is connected to the system control unit 29. It has been.

図2は、図1に示す固体撮像素子100の縦断面模式図である。この固体撮像素子100は、撮像素子チップ101と、撮像素子チップ101の光入射側の前面全領域に透明樹脂102で貼り付けられた透明ガラス基板103とを備える。   FIG. 2 is a schematic vertical sectional view of the solid-state imaging device 100 shown in FIG. The solid-state imaging device 100 includes an imaging device chip 101 and a transparent glass substrate 103 attached to the entire front area on the light incident side of the imaging device chip 101 with a transparent resin 102.

本実施形態では、面積的に、撮像素子チップ101=透明ガラス基板102となっており、撮像素子チップ101の電気的接続端子113は、詳細は後述するように、撮像素子チップ101を構成する半導体基板の背面側にスルーホールを通して延びるように設けられており、この背面側の接続端子(接続パッド)113と図1のアナログ信号処理回路22とが接続される。   In the present embodiment, in terms of area, the imaging element chip 101 = the transparent glass substrate 102, and the electrical connection terminal 113 of the imaging element chip 101 is a semiconductor constituting the imaging element chip 101 as will be described in detail later. It is provided on the back side of the substrate so as to extend through the through hole, and the connection terminal (connection pad) 113 on the back side is connected to the analog signal processing circuit 22 in FIG.

このように、固体撮像素子100は、透明ガラス基板103に撮像素子チップ101を貼り合わせただけの構成となるため、小型となり、かつ薄型になっている。更に、本実施形態の固体撮像素子100は、完全な矩形体に成形され、個々の固体撮像素子100の取り扱いや工場出荷前の多数個の収納,輸送が容易となる。   As described above, the solid-state imaging device 100 has a configuration in which the imaging device chip 101 is simply bonded to the transparent glass substrate 103, and thus is small and thin. Furthermore, the solid-state imaging device 100 of the present embodiment is formed into a perfect rectangular body, and it becomes easy to handle each solid-state imaging device 100, and to store and transport a large number before shipment from the factory.

なお、透明ガラス基板103や透明樹脂102,撮像素子チップ101の側面には、光学的に黒色の塗料等を塗布しておくのが良い。以下の実施形態でも同様であるが、黒色塗料を塗ることで、迷光が撮像素子チップ101内に入り込むことが阻止され、ノイズの少ない被写体画像を撮像することができる。   Note that an optically black paint or the like is preferably applied to the side surfaces of the transparent glass substrate 103, the transparent resin 102, and the imaging element chip 101. The same applies to the following embodiments, but by applying black paint, stray light is prevented from entering the image sensor chip 101, and a subject image with less noise can be captured.

斯かる構成の固体撮像素子100を、図1のデジタルカメラ20に組み付ける場合、撮影レンズ21の結像面を、撮像素子チップ101の受光面に精度良く位置合わせする必要がある。   When the solid-state imaging device 100 having such a configuration is assembled to the digital camera 20 of FIG. 1, it is necessary to accurately align the imaging surface of the photographing lens 21 with the light-receiving surface of the imaging device chip 101.

本実施形態の固体撮像素子100は、光電変換膜積層型であり、マイクロレンズ非搭載であるため、従来のCCD型やCMOS型のイメージセンサに比較してこの位置合わせが厳しく、位置合わせの精度が出ないと、精細感の乏しい被写体画像しか撮影できなくなってしまう。この位置合わせは、透明ガラス基板103の表面を、撮影レンズ21側の図示省略の組立体基準面に当接する様に組み付けることで可能となる。   Since the solid-state imaging device 100 of this embodiment is a photoelectric conversion film laminated type and does not include a microlens, this alignment is stricter than conventional CCD or CMOS type image sensors, and the alignment accuracy is high. If this does not occur, only subject images with poor definition can be taken. This alignment can be performed by assembling the surface of the transparent glass substrate 103 so as to contact an assembly reference surface (not shown) on the photographing lens 21 side.

図3は、撮像素子チップ101の製造説明図である。半導体ウェハ110に多数の撮像素子チップ101が、半導体装置製造技術や製膜技術を用いて形成され、後述するようにして個々の撮像素子チップ101がダイシングされることで、個片化される。   FIG. 3 is a manufacturing explanatory diagram of the image sensor chip 101. A large number of image sensor chips 101 are formed on the semiconductor wafer 110 by using a semiconductor device manufacturing technique or a film forming technique, and the individual image sensor chips 101 are diced as described later to be singulated.

個々の撮像素子チップ101は、上面視で矩形に形成され、中央部に矩形の撮像領域112が形成され、周辺部に、接続パッド113が形成される。撮像素子チップ101の前面全領域上に、透明ガラス基板103が貼り付けられる。接続パッド113は、撮像素子チップ101内に設けられ、この接続パッド113から、撮像素子チップ101の背面側にスルーホールを通して金属線が延びるように形成される。   Each image pickup device chip 101 is formed in a rectangular shape in a top view, a rectangular image pickup region 112 is formed in the central portion, and a connection pad 113 is formed in the peripheral portion. A transparent glass substrate 103 is pasted on the entire front surface area of the imaging element chip 101. The connection pad 113 is provided in the imaging element chip 101, and is formed so that a metal line extends from the connection pad 113 to the back side of the imaging element chip 101 through a through hole.

図4は、図3のIV―IV線位置の断面模式図である。撮像素子チップ101は、半導体基板121に形成される。半導体基板121には、各画素対応の信号電荷蓄積部122が形成され、更に、CMOS型イメージセンサと同様に、個々の画素対応に図示省略のMOSトランジスタ回路でなる信号読出回路が形成されている。各信号読出回路は、対応する信号電荷蓄積部122の蓄積電荷に応じた信号を撮像画像信号として該当の接続パッド113を介して外部に読み出す。   4 is a schematic cross-sectional view taken along the line IV-IV in FIG. The imaging element chip 101 is formed on the semiconductor substrate 121. In the semiconductor substrate 121, a signal charge accumulating unit 122 corresponding to each pixel is formed, and further, a signal readout circuit including a MOS transistor circuit (not shown) corresponding to each pixel is formed in the same manner as in the CMOS image sensor. . Each signal readout circuit reads out a signal corresponding to the accumulated charge in the corresponding signal charge accumulation unit 122 as a captured image signal to the outside through the corresponding connection pad 113.

半導体基板121の上面には絶縁膜124が積層されており、その上に、個々の画素対応の画素電極膜125が撮像領域内に二次元アレイ状に配列形成されている。画素電極膜125は、導電性材料たとえばアルミニウムや酸化インジウム錫(ITO)で形成される。   An insulating film 124 is laminated on the upper surface of the semiconductor substrate 121, and pixel electrode films 125 corresponding to individual pixels are arranged and formed in a two-dimensional array in the imaging region. The pixel electrode film 125 is formed of a conductive material such as aluminum or indium tin oxide (ITO).

各画素電極膜125と、画素対応の信号電荷蓄積部122とは、絶縁膜124内に立設されたビアプラグ126によって電気的に接続される。各ビアプラグ126の途中には、個々に分離された金属膜127が絶縁層124内に埋設されており、金属膜127が信号電荷蓄積部122の遮光を図る様になっている。   Each pixel electrode film 125 and the signal charge storage unit 122 corresponding to the pixel are electrically connected by a via plug 126 erected in the insulating film 124. In the middle of each via plug 126, individually separated metal films 127 are embedded in the insulating layer 124, and the metal film 127 is intended to shield the signal charge storage portion 122.

各画素電極膜125の上には、撮像領域全体に渡って一枚構成の光電変換膜130が積層される。光電変換膜130としては、本実施形態では入射光量に応じた電荷を発生させる有機膜が用いられる。有機膜の材料として、例えば、メタロシアニン,フタロシアニン,4Hピランが用いられる。有機膜130の厚さは、約1.0μmで形成される。   On each pixel electrode film 125, a single photoelectric conversion film 130 is laminated over the entire imaging region. As the photoelectric conversion film 130, an organic film that generates charges according to the amount of incident light is used in this embodiment. As a material for the organic film, for example, metarocyanine, phthalocyanine, and 4H pyran are used. The organic film 130 is formed with a thickness of about 1.0 μm.

従って、図1の撮影レンズ21の結像面が、この約1.0μmの膜厚の有機膜130に合うように、図2で説明した位置合わせを行うと、高精細な被写体画像を撮影することが可能となる。   Accordingly, when the alignment described with reference to FIG. 2 is performed so that the imaging surface of the photographing lens 21 in FIG. 1 matches the organic film 130 having a thickness of about 1.0 μm, a high-definition subject image is photographed. It becomes possible.

有機膜130の上には、一枚構成のITO等の透明な対向電極膜131を積層し、その上を透明な保護膜132で覆う。カラー画像を撮像する固体撮像素子の場合には、保護膜(あるいは平坦化層)132の上に、例えばベイヤ配列したRGBの3原色のカラーフィルタ層を積層し、その上を更に透明な保護膜で覆う。   On the organic film 130, a transparent counter electrode film 131 such as a single-layer ITO is laminated, and the transparent protective film 132 is covered thereon. In the case of a solid-state imaging device that captures a color image, for example, a RGB color filter layer in a Bayer array is laminated on a protective film (or planarization layer) 132, and a transparent protective film is further formed thereon. Cover with.

対向電極膜131は、ビアプラグ133で半導体基板121の高濃度不純物層134に接続され、高濃度不純物層134及び図示省略の配線層及び該当の接続パッド113を介して外部から所要電圧が対向電極膜131に印加される。   The counter electrode film 131 is connected to the high concentration impurity layer 134 of the semiconductor substrate 121 by a via plug 133, and a required voltage is applied from the outside via the high concentration impurity layer 134, a wiring layer (not shown) and the corresponding connection pad 113. 131 is applied.

接続パッド113は、金属膜127と同一製造工程で絶縁層124内に形成されるパッド部113aと、該パット部113aから半導体基板121を貫通し背面側に延びる金属配線層113bとで構成され、例えば信号読出回路の出力線が該当する接続パッド113に図示省略の配線層によって接続される。   The connection pad 113 includes a pad portion 113a formed in the insulating layer 124 in the same manufacturing process as the metal film 127, and a metal wiring layer 113b extending from the pad portion 113a through the semiconductor substrate 121 to the back side. For example, the output line of the signal readout circuit is connected to the corresponding connection pad 113 by a wiring layer (not shown).

この金属配線層113bは、半導体基板121を貫通しパッド部113aに到達するスルーホールを開け、このスルーホール内を金属で埋めることで形成される。このように、接続パッド113が基板背面側に設けられることで、撮像素子チップ101の前面全領域を、透明ガラス基板103で覆うことが可能となる。   The metal wiring layer 113b is formed by opening a through hole penetrating the semiconductor substrate 121 and reaching the pad portion 113a, and filling the through hole with metal. Thus, by providing the connection pad 113 on the back side of the substrate, it is possible to cover the entire front surface area of the imaging element chip 101 with the transparent glass substrate 103.

斯かる構成の光電変換膜積層型固体撮像素子チップでは、入射光が保護膜132,対向電極膜131を通して有機膜130に入射すると、有機膜130内で入射光量に応じた正孔・電子対が発生する。正孔は、対向電極膜131に流れ、電子が各画素電極膜125を通して信号電荷蓄積部122に流れ、信号電荷蓄積部122の蓄積電荷量に応じた撮像画像信号が、信号読出回路によって外部に読み出される。   In the photoelectric conversion film stacked solid-state imaging device chip having such a configuration, when incident light is incident on the organic film 130 through the protective film 132 and the counter electrode film 131, a hole / electron pair corresponding to the amount of incident light is generated in the organic film 130. appear. Holes flow to the counter electrode film 131, electrons flow to the signal charge storage unit 122 through each pixel electrode film 125, and a captured image signal corresponding to the amount of charge stored in the signal charge storage unit 122 is externally output by the signal readout circuit. Read out.

この光電変換膜積層型固体撮像素子チップ101では、信号読出回路が下層の半導体基板121に設けられるため、上層の受光面の全面で入射光を受光でき、従来のイメージセンサの様にマイクロレンズで個々のフォトダイオードに集光する必要が無い。このため、保護膜132の上、又はカラーフィルタを設けた場合にはその上の保護膜の上に、図2に示す透明ガラス基板102を貼り付けるときに使用する透明な接着材は、その屈折率を考慮する必要が無く、他の要因たとえば吸水率等を優先して透明樹脂材を選択し、素子の信頼性アップを図ったり、低コストの透明樹脂材を選択することが可能となる。   In this photoelectric conversion film laminated solid-state imaging device chip 101, since the signal readout circuit is provided on the lower semiconductor substrate 121, incident light can be received on the entire upper surface of the light receiving surface, and a microlens can be used like a conventional image sensor. There is no need to focus on individual photodiodes. For this reason, the transparent adhesive used when the transparent glass substrate 102 shown in FIG. 2 is pasted on the protective film 132 or, if a color filter is provided, on the protective film thereon, is refracted. It is not necessary to consider the rate, and the transparent resin material can be selected by giving priority to other factors such as the water absorption rate, so that the reliability of the element can be improved, or a low-cost transparent resin material can be selected.

次に、上述した固体撮像素子100の製造方法について説明する。図3下段に示す様に、半導体ウェハ110の上に多数の撮像素子チップを製造した後、図5の上段に示す様に、この半導体ウェハ110の上面全面に、半導体ウェハ110と同等面積の円板状の透明ガラス基板115を、透明樹脂102を接着材として貼り合わせる。   Next, a method for manufacturing the above-described solid-state imaging device 100 will be described. As shown in the lower part of FIG. 3, after a large number of image sensor chips are manufactured on the semiconductor wafer 110, a circle having the same area as the semiconductor wafer 110 is formed on the entire upper surface of the semiconductor wafer 110 as shown in the upper part of FIG. 5. A plate-like transparent glass substrate 115 is bonded together using the transparent resin 102 as an adhesive.

そして、図5の下段に示す様に、個々の撮像素子チップ101をダイシングして個片化することで、図2の固体撮像素子100が得られる。なお、図5では、半導体ウェハ110を個片化したものが撮像素子チップ101となり、透明ガラス基板115を個片化したものが透明ガラス基板103となっている。   Then, as shown in the lower part of FIG. 5, the individual image pickup device chip 101 is diced into individual pieces, thereby obtaining the solid-state image pickup device 100 of FIG. In FIG. 5, the semiconductor wafer 110 is separated into the image pickup device chip 101, and the transparent glass substrate 115 is separated into the transparent glass substrate 103.

図6は、本発明の別実施形態に係る固体撮像素子200の製造方法を説明する図である。なお、図2と同様の部材には同一符号を付してその説明は省略する。   FIG. 6 is a diagram illustrating a method for manufacturing the solid-state imaging device 200 according to another embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the member similar to FIG. 2, and the description is abbreviate | omitted.

本実施形態では、図3下段に示す様に、半導体ウェハ110の上に多数の撮像素子チップを製造した後、図6(a)に示す様に、半導体ウェハ110の良品の撮像素子チップの上に、個片化した透明ガラス基板103を透明樹脂102で貼り付ける。この透明ガラス基板103は、図6(b)に示す様に、不良品(NG素子)の上には貼り付けないため、製造中では良品を示すマーキングの意味もある。   In this embodiment, as shown in the lower part of FIG. 3, after a large number of image sensor chips are manufactured on the semiconductor wafer 110, as shown in FIG. The transparent glass substrate 103 separated into pieces is pasted with the transparent resin 102. As shown in FIG. 6B, the transparent glass substrate 103 is not attached on a defective product (NG element), and therefore, it also has a meaning of marking indicating a non-defective product during manufacture.

次に、図6(c)に示す様に、ダイシングし、個々の固体撮像素子100に個片化する。なお、ダイシングの方法は、ダイシングブレードを用いたり、レーザ光を用いたりすることができる。   Next, as shown in FIG. 6C, the wafer is diced and separated into individual solid-state imaging devices 100. As a dicing method, a dicing blade or laser light can be used.

個片化した固体撮像素子200の断面を図7に示す。図2に示す固体撮像素子100は、透明ガラス基板103と撮像素子チップ101とが同面積であったが、本実施形態の固体撮像素子200は、個片化した透明ガラス基板103を良品チップ上に貼り付ける関係で、撮像素子チップ101の面積に対して、透明ガラス基板103の面積が若干小面積となっている。   FIG. 7 shows a cross section of the solid-state imaging device 200 that has been singulated. In the solid-state imaging device 100 shown in FIG. 2, the transparent glass substrate 103 and the imaging device chip 101 have the same area. However, the solid-state imaging device 200 according to the present embodiment has the transparent glass substrate 103 separated into pieces on a non-defective chip. Therefore, the area of the transparent glass substrate 103 is slightly smaller than the area of the image pickup device chip 101.

この構成でも、図2の固体撮像素子100と同様に、小型かつ薄型となり、撮像装置の小型化,薄型化を図ることが可能となる。しかも、透明樹脂102の材質選択肢が広いため、信頼性の高い透明樹脂を選んだり、安価な透明樹脂を選ぶことが容易となる。   Even with this configuration, similarly to the solid-state imaging device 100 of FIG. 2, the size and thickness of the imaging device can be reduced, and the imaging device can be reduced in size and thickness. Moreover, since there are a wide range of material choices for the transparent resin 102, it becomes easy to select a transparent resin with high reliability or an inexpensive transparent resin.

図8(a)(b)は、本発明の更に別実施形態に係る固体撮像素子300の製造方法を示す図であり、図8(c)は、固体撮像素子300の断面模式図である。本実施形態では、図2の固体撮像素子100と比較して、透明ガラス基板103を用いずに、透明樹脂102を厚手に塗って透明ガラス基板103の代わりとした点が異なる。   FIGS. 8A and 8B are views showing a method for manufacturing a solid-state image sensor 300 according to still another embodiment of the present invention, and FIG. 8C is a schematic cross-sectional view of the solid-state image sensor 300. The present embodiment is different from the solid-state imaging device 100 of FIG. 2 in that the transparent glass substrate 103 is not used but the transparent resin 102 is thickly applied to replace the transparent glass substrate 103.

即ち、図8(a)に示す様に、多数の撮像素子チップが形成された半導体ウェア110の上に厚手に透明樹脂102を塗り、この透明樹脂が硬化した後、図8(b)に示す様に、個々の撮像素子チップ101をダイシングすることで、図8(c)の固体撮像素子300が製造される。   That is, as shown in FIG. 8A, a thick transparent resin 102 is applied on the semiconductor wear 110 on which a large number of image sensor chips are formed, and after the transparent resin is cured, the transparent resin 102 is shown in FIG. Similarly, the solid-state imaging device 300 of FIG. 8C is manufactured by dicing each imaging device chip 101.

本実施形態では、透明ガラス基板の代わりに厚手の透明樹脂102を用いるため、透明樹脂102としては、硬化したときガラス質程度の硬度となり表面が傷付き難い樹脂を選択するのが好ましい。   In the present embodiment, since the thick transparent resin 102 is used instead of the transparent glass substrate, it is preferable to select a resin that has a glassy hardness when cured and has a surface that is hardly damaged.

図9(a)(b)は、本発明の更に別実施形態に係る固体撮像素子400の製造方法を示す図であり、図9(c)は、固体撮像素子400の断面模式図である。本実施形態では、半導体ウェハ上に形成した複数の撮像素子チップ101をダイシングして個片化し、更に、良品のみを選択して、図9(a)に示す様に、円板状の透明ガラス基板115上に透明樹脂102で貼り付ける。   FIGS. 9A and 9B are views showing a method for manufacturing a solid-state imaging device 400 according to still another embodiment of the present invention, and FIG. 9C is a schematic cross-sectional view of the solid-state imaging device 400. FIG. In the present embodiment, a plurality of image pickup device chips 101 formed on a semiconductor wafer are diced into individual pieces, and only non-defective products are selected. As shown in FIG. A transparent resin 102 is attached to the substrate 115.

そして、図9(b)に示す様に、隣接する撮像素子チップ101間の透明ガラス基板115をダイシングして個片化した透明ガラス基板103とし、図9(c)に示す固体撮像素子400とする。   Then, as shown in FIG. 9B, a transparent glass substrate 103 between adjacent imaging element chips 101 is diced into a transparent glass substrate 103, and the solid-state imaging element 400 shown in FIG. To do.

この構成によっても、図2の固体撮像素子100と同様に、小型,薄型の信頼性が高い固体撮像素子を得ることができる。   Also with this configuration, a small and thin solid-state image sensor with high reliability can be obtained, as with the solid-state image sensor 100 of FIG.

図10(a)(b)は、本発明の更に別実施形態に係る固体撮像素子500の製造方法を示す図であり、図10(c)は、固体撮像素子500の断面模式図である。   10A and 10B are views showing a method for manufacturing a solid-state imaging device 500 according to still another embodiment of the present invention, and FIG. 10C is a schematic cross-sectional view of the solid-state imaging device 500.

本実施形態は、基本的に、図9に示す固体撮像素子400と同じであるが、異なるのは、円板状の透明ガラス基板115上に良品の撮像素子チップ101を貼り付けたとき、図10(a)に示す様に、撮像素子チップ101間に隙間104ができるが、この隙間104を、図10(b)に示す様に、樹脂105で埋めてしまう。樹脂としては、光学的に黒色の樹脂を用いるのが好ましい。黒色とすることで、迷光が撮像素子チップ101に入らないようにすることができる。   This embodiment is basically the same as the solid-state imaging device 400 shown in FIG. 9 except that a non-defective imaging device chip 101 is pasted on a disc-shaped transparent glass substrate 115. As shown in FIG. 10A, a gap 104 is formed between the imaging element chips 101. However, the gap 104 is filled with the resin 105 as shown in FIG. As the resin, it is preferable to use an optically black resin. By setting it to black, stray light can be prevented from entering the image sensor chip 101.

そして、図10(c)に示す様に、樹脂105の部分をダイシングして固体撮像素子500を個片化する。これにより、固体撮像素子500は、完全な矩形体となり、取り扱いが容易になると共に、透明ガラス基板103の端部の損傷を防止することが可能となる。黒色樹脂とすることで、迷光の入射防止も図れる。   Then, as shown in FIG. 10C, the portion of the resin 105 is diced to separate the solid-state imaging device 500 into individual pieces. As a result, the solid-state imaging device 500 becomes a complete rectangular body, which can be easily handled and can prevent damage to the end of the transparent glass substrate 103. By using black resin, stray light can be prevented from entering.

なお、図7の実施形態においても、透明ガラス基板103と撮像素子チップ101との段差部分を黒色の樹脂で覆って(埋めて)完全な矩形体とし、撮像素子チップ101の欠け防止及び迷光入射の防止を図っても良いことはいうまでもない。   In the embodiment of FIG. 7 as well, a stepped portion between the transparent glass substrate 103 and the image pickup device chip 101 is covered (filled) with a black resin to form a complete rectangular body, thereby preventing the image pickup device chip 101 from being chipped and stray light incident. Needless to say, it may be possible to prevent this.

以上述べた様に、上述した各実施形態に係る固体撮像素子100,200,300,400,500は、基本的に、透明ガラス基板103(又は厚手の透明樹脂)と撮像素子チップ101だけで撮像素子モジュールが形成されるため、従来のCCD型やCMOS型等のイメージセンサと比較して全体として厚さが薄くなる。このため、内視鏡の先端部や携帯電話機等の小型の電子機器に搭載するのに好適となる。   As described above, the solid-state imaging devices 100, 200, 300, 400, and 500 according to the above-described embodiments are basically imaged only by the transparent glass substrate 103 (or thick transparent resin) and the imaging device chip 101. Since the element module is formed, the thickness is reduced as a whole as compared with a conventional CCD type or CMOS type image sensor. Therefore, it is suitable for mounting on a small electronic device such as a distal end portion of an endoscope or a mobile phone.

以上述べた様に、本実施形態によるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段と、前記光電変換膜の光入射側上層に透明樹脂を接着材として貼り付けられた透明基板と、前記信号読出手段に配線接続され前記半導体基板に貫通して設けられると共に該半導体基板の前記光電変換膜が設けられた面と反対側の面に露出して設けられた電気的接続端子とを備えることを特徴とする。   As described above, the photoelectric conversion film stacked solid-state imaging device without the microlens according to the present embodiment includes the semiconductor substrate, the photoelectric conversion film stacked on the light incident side upper layer of the semiconductor substrate, and the semiconductor substrate. A signal reading unit that is formed on the surface and reads out a signal corresponding to the amount of signal charge detected by the photoelectric conversion film according to the amount of incident light as an imaged image signal; and a transparent resin on the light incident side upper layer of the photoelectric conversion film A transparent substrate pasted as an adhesive, and a wiring connected to the signal reading means and provided through the semiconductor substrate and exposed on the surface of the semiconductor substrate opposite to the surface on which the photoelectric conversion film is provided. And an electrical connection terminal provided.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、前記電気的接続端子が露出した前記反対側の面と前記透明基板の表面との距離が全体の厚さとなることを特徴とする。   Further, in the photoelectric conversion film laminated solid-state imaging device not mounted with the microlens of the embodiment, the distance between the opposite surface where the electrical connection terminal is exposed and the surface of the transparent substrate is the total thickness. Features.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、前記透明基板と前記半導体基板とが同面積であることを特徴とする。   Moreover, the photoelectric conversion film laminated solid-state imaging device without the microlens according to the embodiment is characterized in that the transparent substrate and the semiconductor substrate have the same area.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、前記透明基板の代わりに前記透明樹脂を厚手に形成したことを特徴とする。   In addition, the photoelectric conversion film laminated solid-state imaging device not mounted with the microlens according to the embodiment is characterized in that the transparent resin is thickly formed instead of the transparent substrate.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、前記透明基板が前記半導体基板より小面積であることを特徴とする。   Moreover, the photoelectric conversion film laminated solid-state imaging device not mounted with the microlens according to the embodiment is characterized in that the transparent substrate has a smaller area than the semiconductor substrate.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、前記透明基板が前記半導体基板より大面積であることを特徴とする。   Moreover, the photoelectric conversion film laminated solid-state imaging device not mounted with the microlens according to the embodiment is characterized in that the transparent substrate has a larger area than the semiconductor substrate.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、前記透明基板と前記半導体基板との面積の違いによる段差部分を樹脂で埋めて全体を完全な矩形体としたことを特徴とする。   Further, in the photoelectric conversion film laminated solid-state imaging device not mounted with the microlens of the embodiment, the stepped portion due to the difference in area between the transparent substrate and the semiconductor substrate is filled with resin to form a complete rectangular body as a whole. Features.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、側面が黒色に塗られていることを特徴とする。   In addition, the photoelectric conversion film laminated solid-state imaging device without the microlens according to the embodiment is characterized in that the side surface is painted black.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハの前記光入射側上層に該半導体ウェハと同等面積の透明基板を透明樹脂で貼り合わせ、該貼り合わせ後に該半導体基板及び該透明基板をダイシングして個片化することを特徴とする。   In addition, a method for manufacturing a photoelectric conversion film stacked solid-state imaging device not mounted with a microlens according to an embodiment includes a semiconductor substrate, a photoelectric conversion film stacked on a light incident side upper layer of the semiconductor substrate, and a surface portion of the semiconductor substrate. A photoelectric conversion film stack type solid-state imaging device not equipped with a microlens, comprising: a signal reading unit that is externally formed and read out as a captured image signal a signal corresponding to the amount of signal charge detected by the photoelectric conversion film according to the amount of incident light. The light incidence of a semiconductor wafer comprising a plurality of semiconductor substrate assemblies before the semiconductor substrate on which the signal reading means and the photoelectric conversion film are formed is separated from other semiconductor substrates. A transparent substrate having the same area as the semiconductor wafer is bonded to the upper side layer with a transparent resin, and after the bonding, the semiconductor substrate and the transparent substrate are diced into individual pieces. .

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハのうち良品の前記半導体基板の前記光入射側上層に個片化された前記透明基板を透明樹脂で貼り付け、該貼り付け後にダイシングして前記半導体ウェハを個片化することを特徴とする。   In addition, a method for manufacturing a photoelectric conversion film stacked solid-state imaging device not mounted with a microlens according to an embodiment includes a semiconductor substrate, a photoelectric conversion film stacked on a light incident side upper layer of the semiconductor substrate, and a surface portion of the semiconductor substrate. A photoelectric conversion film stack type solid-state imaging device not equipped with a microlens, comprising: a signal reading unit that is externally formed and read out as a captured image signal a signal corresponding to the amount of signal charge detected by the photoelectric conversion film according to the amount of incident light. A manufacturing method, wherein the semiconductor substrate on which the signal reading means and the photoelectric conversion film are formed is a non-defective product out of a plurality of semiconductor wafers before being separated from other semiconductor substrates. The transparent substrate separated into the upper layer on the light incident side of the semiconductor substrate is pasted with a transparent resin, and the semiconductor wafer is separated into pieces by dicing after the pasting. That.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハの前記光入射側上層に厚手の透明樹脂を積層して硬化させ、該硬化後にダイシングして前記半導体ウェハを個片化することを特徴とする。   In addition, a method for manufacturing a photoelectric conversion film stacked solid-state imaging device not mounted with a microlens according to an embodiment includes a semiconductor substrate, a photoelectric conversion film stacked on a light incident side upper layer of the semiconductor substrate, and a surface portion of the semiconductor substrate. A photoelectric conversion film stack type solid-state imaging device not equipped with a microlens, comprising: a signal reading unit that is externally formed and read out as a captured image signal a signal corresponding to the amount of signal charge detected by the photoelectric conversion film according to the amount of incident light. The light incidence of a semiconductor wafer comprising a plurality of semiconductor substrate assemblies before the semiconductor substrate on which the signal reading means and the photoelectric conversion film are formed is separated from other semiconductor substrates. A thick transparent resin is laminated on the side upper layer and cured, and after the curing, the semiconductor wafer is separated into individual pieces.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、複数の前記信号読出手段及び前記光電変換膜が形成された前記半導体基板を前記光入射側上層の側を1枚の透明基板に透明樹脂で貼り付け、該貼り付け後に該透明基板をダイシングして前記半導体基板を個片化することを特徴とする。   In addition, a method for manufacturing a photoelectric conversion film stacked solid-state imaging device not mounted with a microlens according to an embodiment includes a semiconductor substrate, a photoelectric conversion film stacked on a light incident side upper layer of the semiconductor substrate, and a surface portion of the semiconductor substrate. A photoelectric conversion film stack type solid-state imaging device not equipped with a microlens, comprising: a signal reading unit that is externally formed and read out as a captured image signal a signal corresponding to the amount of signal charge detected by the photoelectric conversion film according to the amount of incident light. In the manufacturing method, a plurality of the signal reading means and the semiconductor substrate on which the photoelectric conversion film is formed are attached to one transparent substrate with a transparent resin on the light incident side upper layer side, and after the attachment, The transparent substrate is diced to separate the semiconductor substrate.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、前記1枚の透明基板に複数の前記半導体基板を貼り付けた後に隣接する該半導体基板間の隙間を樹脂で充填し、該樹脂が硬化した後、該樹脂及び前記透明基板をダイシングして前記半導体基板を個片化することを特徴とする。   Further, in the method for manufacturing a photoelectric conversion film laminated solid-state imaging device not mounted with a microlens according to the embodiment, a gap between adjacent semiconductor substrates is resinized after a plurality of the semiconductor substrates are attached to the single transparent substrate. After the resin is cured and cured, the resin and the transparent substrate are diced to separate the semiconductor substrate.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法は、前記樹脂が光学的に黒色の樹脂であることを特徴とする。   In addition, the method for manufacturing a photoelectric conversion film laminated solid-state imaging device not mounted with a microlens according to the embodiment is characterized in that the resin is an optically black resin.

また、実施形態のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、上記のいずれかに記載の製造方法で製造したことを特徴とする。   In addition, the photoelectric conversion layer stacked solid-state imaging device without the microlens according to the embodiment is manufactured by any one of the manufacturing methods described above.

また、実施形態の撮像装置は、上記のいずれかに記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子を搭載したことを特徴とする。   In addition, the imaging apparatus according to the embodiment is characterized in that the photoelectric conversion film laminated solid-state imaging element not mounted with any of the above-described microlenses is mounted.

本実施形態によれば、小型,薄型で量産性の高い素子構造を持つ固体撮像素子の製造ができ、中空構造がなく信頼性の高い固体撮像素子を得ることができ、撮像素子チップ上に塵埃等が浸入しない構造のため信頼性がより高い固体撮像素子を得ることが可能となる。   According to the present embodiment, it is possible to manufacture a solid-state imaging device having a small, thin, and highly productive device structure, and to obtain a solid-state imaging device having no hollow structure and having high reliability, and dust on the imaging device chip. Therefore, it is possible to obtain a solid-state imaging device with higher reliability due to a structure that does not enter the surface.

本発明に係るマイクロレンズ非搭載の光電変換膜積層型固体撮像素子は、小型,薄型でしかも量産性,信頼性が高くなるため、デジタルスチルカメラ,デジタルビデオカメラ,カメラ付携帯電話機,カメラ付電子装置,監視カメラ,内視鏡,車載カメラ等に搭載すると有用である。   Since the photoelectric conversion film laminated solid-state imaging device without a microlens according to the present invention is small and thin, and has high mass productivity and reliability, a digital still camera, a digital video camera, a mobile phone with a camera, an electronic with a camera It is useful to install in devices, surveillance cameras, endoscopes, in-vehicle cameras, etc.

20 撮像装置(デジタルカメラ)
21 撮影レンズ
26 デジタル信号処理部
29 システム制御部
100 光電変換膜積層型固体撮像素子
101 撮像素子チップ
102 透明樹脂(接着材)
103 透明ガラス基板
104 隙間
105 黒色の樹脂
110 半導体ウェハ
112 撮像領域
113 接続パッド
115 円板状の透明ガラス基板
121 半導体基板
125 画素電極膜
130 光電変換膜
131 対向電極膜
132 保護膜
20 Imaging device (digital camera)
21 photographing lens 26 digital signal processing unit 29 system control unit 100 photoelectric conversion film laminated solid-state imaging device 101 imaging device chip 102 transparent resin (adhesive)
103 transparent glass substrate 104 gap 105 black resin 110 semiconductor wafer 112 imaging region 113 connection pad 115 disk-shaped transparent glass substrate 121 semiconductor substrate 125 pixel electrode film 130 photoelectric conversion film 131 counter electrode film 132 protective film

Claims (16)

半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段と、前記光電変換膜の光入射側上層に透明樹脂を接着材として貼り付けられた透明基板と、前記信号読出手段に配線接続され前記半導体基板に貫通して設けられると共に該半導体基板の前記光電変換膜が設けられた面と反対側の面に露出して設けられた電気的接続端子とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。   A semiconductor substrate, a photoelectric conversion film laminated on a light incident side upper layer of the semiconductor substrate, and a signal according to a signal charge amount formed on the surface portion of the semiconductor substrate and detected by the photoelectric conversion film according to an incident light amount Signal reading means for reading out as a captured image signal, a transparent substrate having a transparent resin attached to the upper layer on the light incident side of the photoelectric conversion film, and a wiring connected to the signal reading means and penetrating through the semiconductor substrate And a photoelectric conversion film stacked solid-state imaging device without a microlens provided with an electrical connection terminal exposed on a surface opposite to the surface on which the photoelectric conversion film of the semiconductor substrate is provided. 請求項1に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子であって、前記電気的接続端子が露出した前記反対側の面と前記透明基板の表面との距離が全体の厚さとなるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。   2. The photoelectric conversion layer stacked solid-state image pickup device having no microlens mounted thereon according to claim 1, wherein the distance between the opposite surface where the electrical connection terminal is exposed and the surface of the transparent substrate is the total thickness. A photoelectric conversion film laminated solid-state imaging device without a microlens. 請求項1又は請求項2に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子であって、前記透明基板と前記半導体基板とが同面積であるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。   3. The photoelectric conversion film laminated solid-state image pickup device without mounting the microlens according to claim 1, wherein the transparent substrate and the semiconductor substrate have the same area, and the photoelectric conversion film stacking type without mounting the microlens. Solid-state image sensor. 請求項3に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子であって、前記透明基板の代わりに前記透明樹脂を厚手に形成したマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。   4. A photoelectric conversion film laminated solid-state image pickup device without a microlens according to claim 3, wherein the transparent resin is thickly formed in place of the transparent substrate, and the photoelectric conversion film laminate solid-state image pickup device without a microlens is mounted. . 請求項1又は請求項2に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子であって、前記透明基板が前記半導体基板より小面積であるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。   3. The photoelectric conversion film stacked solid-state imaging device not mounted with a microlens according to claim 1, wherein the transparent substrate has a smaller area than the semiconductor substrate and the photoelectric conversion film stacked solid without the microlens is mounted. Image sensor. 請求項1又は請求項2に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子であって、前記透明基板が前記半導体基板より大面積であるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。   3. The photoelectric conversion film stacked solid-state image pickup device without a microlens according to claim 1, wherein the transparent substrate has a larger area than the semiconductor substrate, and the photoelectric conversion film stack with the microlens is not mounted. Image sensor. 請求項5又は請求項6に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子であって、前記透明基板と前記半導体基板との面積の違いによる段差部分を樹脂で埋めて全体を完全な矩形体としたマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。   7. The photoelectric conversion film laminated solid-state image pickup device having no microlens mounted thereon according to claim 5 or 6, wherein a step portion due to a difference in area between the transparent substrate and the semiconductor substrate is filled with a resin, and the whole is completely formed. A photoelectric conversion film laminated solid-state imaging device without a microlens, which is a simple rectangular body. 請求項1乃至請求項6のいずれかに記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子であって、側面が黒色に塗られているマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。   7. A photoelectric conversion film laminated solid-state imaging device not mounted with a microlens according to any one of claims 1 to 6, wherein the photoelectric conversion film stacked solid-state imaging without a microlens whose side surface is painted black. element. 半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハの前記光入射側上層に該半導体ウェハと同等面積の透明基板を透明樹脂で貼り合わせ、該貼り合わせ後に該半導体基板及び該透明基板をダイシングして個片化するマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法。   A semiconductor substrate, a photoelectric conversion film laminated on a light incident side upper layer of the semiconductor substrate, and a signal according to a signal charge amount formed on the surface portion of the semiconductor substrate and detected by the photoelectric conversion film according to an incident light amount A method for manufacturing a photoelectric conversion film stacked solid-state imaging device not equipped with a microlens, comprising: a signal reading unit that reads out to the outside as a captured image signal, wherein the semiconductor substrate on which the signal reading unit and the photoelectric conversion film are formed includes: A transparent substrate having the same area as that of the semiconductor wafer is bonded to the light incident side upper layer of the semiconductor wafer, which is an assembly of a plurality of the semiconductor substrates before being separated from the other semiconductor substrates, and after the bonding A manufacturing method of a photoelectric conversion film laminated solid-state imaging device without a microlens, wherein the semiconductor substrate and the transparent substrate are diced into individual pieces. 半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハのうち良品の前記半導体基板の前記光入射側上層に個片化された前記透明基板を透明樹脂で貼り付け、該貼り付け後にダイシングして前記半導体ウェハを個片化するマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法。   A semiconductor substrate, a photoelectric conversion film laminated on a light incident side upper layer of the semiconductor substrate, and a signal according to a signal charge amount formed on the surface portion of the semiconductor substrate and detected by the photoelectric conversion film according to an incident light amount A method for manufacturing a photoelectric conversion film stacked solid-state imaging device not equipped with a microlens, comprising: a signal reading unit that reads out to the outside as a captured image signal, wherein the semiconductor substrate on which the signal reading unit and the photoelectric conversion film are formed includes: The transparent substrate separated into the upper layer on the light incident side of the non-defective semiconductor substrate is bonded with a transparent resin among the semiconductor wafers composed of an assembly of the plurality of semiconductor substrates before being separated from the other semiconductor substrates. A manufacturing method of a photoelectric conversion film laminated solid-state imaging device not mounted with a microlens, wherein the semiconductor wafer is diced after bonding and dicing. 半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記信号読出手段及び前記光電変換膜が形成された前記半導体基板が他の前記半導体基板と分離される前の複数の該半導体基板の集合体でなる半導体ウェハの前記光入射側上層に厚手の透明樹脂を積層して硬化させ、該硬化後にダイシングして前記半導体ウェハを個片化するマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法。   A semiconductor substrate, a photoelectric conversion film laminated on a light incident side upper layer of the semiconductor substrate, and a signal according to a signal charge amount formed on the surface portion of the semiconductor substrate and detected by the photoelectric conversion film according to an incident light amount A method for manufacturing a photoelectric conversion film stacked solid-state imaging device not equipped with a microlens, comprising: a signal reading unit that reads out to the outside as a captured image signal, wherein the semiconductor substrate on which the signal reading unit and the photoelectric conversion film are formed includes: A thick transparent resin is laminated and cured on the upper layer on the light incident side of the semiconductor wafer formed of an assembly of a plurality of semiconductor substrates before being separated from other semiconductor substrates, and the semiconductor wafer is diced after the curing. Manufacturing method of photoelectric conversion film lamination type solid-state image sensing device which does not mount microlens which singulates. 半導体基板と、該半導体基板の光入射側上層に積層された光電変換膜と、前記半導体基板の表面部に形成され前記光電変換膜が入射光量に応じて検出した信号電荷量に応じた信号を撮像画像信号として外部に読み出す信号読出手段とを備えるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、複数の前記信号読出手段及び前記光電変換膜が形成された前記半導体基板を前記光入射側上層の側を1枚の透明基板に透明樹脂で貼り付け、該貼り付け後に該透明基板をダイシングして前記半導体基板を個片化するマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法。   A semiconductor substrate, a photoelectric conversion film laminated on a light incident side upper layer of the semiconductor substrate, and a signal according to a signal charge amount formed on the surface portion of the semiconductor substrate and detected by the photoelectric conversion film according to an incident light amount A method for manufacturing a photoelectric conversion film stacked solid-state imaging device not equipped with a microlens, the signal reading means reading out to the outside as a picked-up image signal, wherein the semiconductor on which the plurality of signal reading means and the photoelectric conversion film are formed A substrate on which the upper layer of the light incident side is bonded to a transparent substrate with a transparent resin, and after the bonding, the transparent substrate is diced to separate the semiconductor substrate. Type solid-state imaging device manufacturing method. 請求項12に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記1枚の透明基板に複数の前記半導体基板を貼り付けた後に隣接する該半導体基板間の隙間を樹脂で充填し、該樹脂が硬化した後、該樹脂及び前記透明基板をダイシングして前記半導体基板を個片化するマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法。   13. The method for manufacturing a photoelectric conversion film laminated solid-state imaging device having no microlens according to claim 12, wherein a plurality of the semiconductor substrates are attached to the one transparent substrate, and the semiconductor substrates are adjacent to each other. A method of manufacturing a photoelectric conversion film stacked solid-state imaging device without a microlens, wherein a gap is filled with a resin and the resin and the transparent substrate are diced to separate the semiconductor substrate after the resin is cured. 請求項13に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法であって、前記樹脂は光学的に黒色の樹脂であるマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法。   14. The method of manufacturing a photoelectric conversion film laminated solid-state image pickup device without mounting a microlens according to claim 13, wherein the resin is an optically black resin. Manufacturing method. 請求項9乃至請求項14のいずれかに記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子の製造方法で製造したマイクロレンズ非搭載の光電変換膜積層型固体撮像素子。   A photoelectric conversion film laminated solid-state image pickup device without a microlens manufactured by the method for manufacturing a photoelectric conversion film laminated solid-state image pickup device without a microlens according to any one of claims 9 to 14. 請求項1乃至請求項8のいずれか、又は、請求項15に記載のマイクロレンズ非搭載の光電変換膜積層型固体撮像素子を搭載した撮像装置。   The imaging device which mounts the photoelectric conversion film | membrane laminated | stacked solid-state image sensor of any one of Claims 1 thru | or 8, or the microlens non-mounting of Claim 15.
JP2010061621A 2010-03-17 2010-03-17 Photoelectric conversion film-stacked solid-state imaging device without microlens, method of manufacturing the same, and imaging apparatus Abandoned JP2011198853A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010061621A JP2011198853A (en) 2010-03-17 2010-03-17 Photoelectric conversion film-stacked solid-state imaging device without microlens, method of manufacturing the same, and imaging apparatus
US13/049,837 US8970749B2 (en) 2010-03-17 2011-03-16 Photoelectric conversion film-stacked solid-state imaging device without microlenses, its manufacturing method, and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010061621A JP2011198853A (en) 2010-03-17 2010-03-17 Photoelectric conversion film-stacked solid-state imaging device without microlens, method of manufacturing the same, and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2011198853A true JP2011198853A (en) 2011-10-06

Family

ID=44646962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010061621A Abandoned JP2011198853A (en) 2010-03-17 2010-03-17 Photoelectric conversion film-stacked solid-state imaging device without microlens, method of manufacturing the same, and imaging apparatus

Country Status (2)

Country Link
US (1) US8970749B2 (en)
JP (1) JP2011198853A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160025320A (en) * 2014-08-27 2016-03-08 삼성전자주식회사 Staked image sensor
JP2021063990A (en) * 2015-12-29 2021-04-22 ビアビ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. Metal mirror-based multispectral filter array
US11450698B2 (en) 2015-12-29 2022-09-20 Viavi Solutions Inc. Dielectric mirror based multispectral filter array

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100766A (en) * 2004-08-31 2006-04-13 Fuji Photo Film Co Ltd Photoelectric conversion element and image pickup element, and method of applying electric field to those
JP2007134735A (en) * 2000-07-11 2007-05-31 Seiko Epson Corp Optical device and production method thereof as well as electronics
JP2007227657A (en) * 2006-02-23 2007-09-06 Fujifilm Corp Solid-state imaging device and method for manufacturing the same
JP2008085195A (en) * 2006-09-28 2008-04-10 Fujifilm Corp Method of manufacturing solid-state imaging device and solid-state imaging device
JP2008263178A (en) * 2007-03-16 2008-10-30 Fujifilm Corp Solid-state imaging element
JP2009064839A (en) * 2007-09-04 2009-03-26 Panasonic Corp Optical device and method for fabricating the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4021928A1 (en) 1990-07-10 1992-01-16 Daimler Benz Ag ELASTIC HANDLEBAR BEARING FOR WHEEL SUSPENSIONS OF MOTOR VEHICLES
JP2002094082A (en) * 2000-07-11 2002-03-29 Seiko Epson Corp Optical element and its manufacturing method and electronic equipment
JP3778817B2 (en) 2001-07-11 2006-05-24 富士フイルムマイクロデバイス株式会社 Solid-state imaging device and manufacturing method thereof
US20030189215A1 (en) * 2002-04-09 2003-10-09 Jong-Lam Lee Method of fabricating vertical structure leds
EP1357606A1 (en) * 2002-04-22 2003-10-29 Scientek Corporation Image sensor semiconductor package
JP4271909B2 (en) 2002-07-29 2009-06-03 富士フイルム株式会社 Solid-state imaging device and manufacturing method thereof
US6995462B2 (en) * 2003-09-17 2006-02-07 Micron Technology, Inc. Image sensor packages
JP4905762B2 (en) * 2005-08-23 2012-03-28 富士フイルム株式会社 Photoelectric conversion element, imaging element, and method for manufacturing the photoelectric conversion element
KR100790994B1 (en) * 2006-08-01 2008-01-03 삼성전자주식회사 Semiconductor image sensor package, method for manufacturing the same and semiconductor image sensor module comprising the same
JP2008092417A (en) 2006-10-04 2008-04-17 Matsushita Electric Ind Co Ltd Semiconductor imaging element, its manufacturing method, semiconductor imaging apparatus, and semiconductor imaging module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134735A (en) * 2000-07-11 2007-05-31 Seiko Epson Corp Optical device and production method thereof as well as electronics
JP2006100766A (en) * 2004-08-31 2006-04-13 Fuji Photo Film Co Ltd Photoelectric conversion element and image pickup element, and method of applying electric field to those
JP2007227657A (en) * 2006-02-23 2007-09-06 Fujifilm Corp Solid-state imaging device and method for manufacturing the same
JP2008085195A (en) * 2006-09-28 2008-04-10 Fujifilm Corp Method of manufacturing solid-state imaging device and solid-state imaging device
JP2008263178A (en) * 2007-03-16 2008-10-30 Fujifilm Corp Solid-state imaging element
JP2009064839A (en) * 2007-09-04 2009-03-26 Panasonic Corp Optical device and method for fabricating the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160025320A (en) * 2014-08-27 2016-03-08 삼성전자주식회사 Staked image sensor
KR102296736B1 (en) * 2014-08-27 2021-08-31 삼성전자주식회사 Staked image sensor
JP2021063990A (en) * 2015-12-29 2021-04-22 ビアビ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. Metal mirror-based multispectral filter array
US11450698B2 (en) 2015-12-29 2022-09-20 Viavi Solutions Inc. Dielectric mirror based multispectral filter array
US11670658B2 (en) 2015-12-29 2023-06-06 Viavi Solutions Inc. Metal mirror based multispectral filter array
JP7336428B2 (en) 2015-12-29 2023-08-31 ビアビ・ソリューションズ・インコーポレイテッド device

Also Published As

Publication number Publication date
US8970749B2 (en) 2015-03-03
US20110228151A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
US9305958B2 (en) Solid-state image sensing apparatus and electronic apparatus to improve quality of an image
US11043436B2 (en) Semiconductor device, manufacturing method, imaging device, and electronic apparatus for enabling component mounting with high flatness
KR101939413B1 (en) Optical sensor, lens module, and camera module
KR102528610B1 (en) Semiconductor device and electronic equipment
US20100315546A1 (en) Imaging Device and Manufacturing method therefor
US20070019102A1 (en) Micro camera module and method of manufacturing the same
US20110298074A1 (en) Solid-state imaging element and electronic information device
US10714526B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
JP2005072364A (en) Solid state imaging element and its manufacturing method
JP2005142575A (en) Imaging element and its manufacturing method
JP5392458B2 (en) Semiconductor image sensor
JP2004055674A (en) Semiconductor device and method of manufacturing the same
JP2012009547A (en) Solid imaging device and electronic apparatus
CN115914865A (en) Image sensor, manufacturing method and electronic device
US20090283809A1 (en) Image sensor structure and integrated lens module thereof
US9111826B2 (en) Image pickup device, image pickup module, and camera
JP5520646B2 (en) Photoelectric conversion film laminated solid-state imaging device and imaging apparatus not equipped with a microlens
JP2011198853A (en) Photoelectric conversion film-stacked solid-state imaging device without microlens, method of manufacturing the same, and imaging apparatus
JP2009049290A (en) Imaging device and its manufacturing method
JP2011100903A (en) Electronic element module and method of manufacturing the same, electronic element wafer module and method of manufacturing the same, and electronic information apparatus
JP4503452B2 (en) Method for manufacturing solid-state imaging device
JP5348405B2 (en) Manufacturing method of semiconductor image sensor
KR100945445B1 (en) Wafer level camera module and method of manufacturing the same
JP4344759B2 (en) Solid-state imaging device and manufacturing method thereof, solid-state imaging device, electronic information device
JP4714540B2 (en) Image sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20131011