JP2011196613A - Boiler feedwater purification device - Google Patents

Boiler feedwater purification device Download PDF

Info

Publication number
JP2011196613A
JP2011196613A JP2010064146A JP2010064146A JP2011196613A JP 2011196613 A JP2011196613 A JP 2011196613A JP 2010064146 A JP2010064146 A JP 2010064146A JP 2010064146 A JP2010064146 A JP 2010064146A JP 2011196613 A JP2011196613 A JP 2011196613A
Authority
JP
Japan
Prior art keywords
water
boiler
pure water
exchange resin
polisher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010064146A
Other languages
Japanese (ja)
Inventor
Toshiya Nakajima
俊也 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010064146A priority Critical patent/JP2011196613A/en
Publication of JP2011196613A publication Critical patent/JP2011196613A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce usage of fuel in a boiler by reducing an amount of blow discharged from the boiler.SOLUTION: This boiler feedwater purification device purifies boiler feedwater fed to the boiler 6, and includes a water purifying device 1 for purifying the treated water to obtain the pure water, and a polisher device 2 through which the treated water purified by passing through the water purifying device 1 to be the pure water, passes. In the polisher device 2, an anion exchange resin 21 and a cation exchange resin 22 are arranged in series.

Description

本発明は、ボイラに供給するボイラ供給水を精製(改質)するボイラ供給水精製装置に関する。   The present invention relates to a boiler feed water purifier for purifying (reforming) boiler feed water supplied to a boiler.

ボイラ水のブローを抑制するために、例えば特許文献1に記載のように、ボイラに供給する水の調製を行っている。上記従来技術では、補給水を、ナトリウム型陽イオン交換樹脂を収納した硬水軟化装置、及びクロスフロー型ろ過装置で処理することで軟水化にして、ボイラでのブローの量を抑制することが開示されている。   In order to suppress the blow of boiler water, for example, as described in Patent Document 1, water supplied to the boiler is prepared. In the above-mentioned conventional technology, it is disclosed that the make-up water is softened by treating it with a water softening device containing a sodium-type cation exchange resin and a cross-flow type filtration device, thereby suppressing the amount of blow in the boiler. Has been.

特開2008-180492号公報JP 2008-180492 A

本発明者らが、ボイラに供給する供給水中のイオン成分を減少させることを目的として、下記のような純水装置に補給水である原水を通すことで製造された純水を、ボイラの供給水としてみた。
ここで、上記純水装置は、不純物を含んだイオン成分をH塔とOH塔のイオン交換樹脂に吸着させ、それと入れ替わりにH+とOH-を抽出して純水を作り出す装置である。
For the purpose of reducing the ionic components in the feed water supplied to the boiler by the inventors, pure water produced by passing raw water as make-up water through the following pure water device is supplied to the boiler. I saw it as water.
Here, the pure water apparatus is an apparatus for producing pure water by adsorbing ion components containing impurities to the ion exchange resins of the H tower and the OH tower, and extracting H + and OH instead.

しかし、上記純水が供給されたボイラにおいて、純水装置で除去し切れなかったNaやシリカがボイラに供給されていた。これらの不純物がボイラのドラム内で濃縮されることによって、ボイラ水のpH濃度が過剰になりアルカリ腐食によるボイラチューブの腐食やスケールの付着による熱効率の低下を引き起こした。
これに対し、薬注量を変更したり、ボイラの濃縮倍率を下げるために連続的なブローの量を増やすことで不純物を系外へ排出して、上記アルカリ腐食やスケール付着の問題を解決できる。
However, in the boiler supplied with the pure water, Na and silica that could not be removed by the pure water apparatus were supplied to the boiler. When these impurities are concentrated in the boiler drum, the pH concentration of the boiler water becomes excessive, which causes corrosion of the boiler tube due to alkali corrosion and a decrease in thermal efficiency due to scale adhesion.
On the other hand, impurities can be discharged out of the system by changing the amount of chemical injection or increasing the amount of continuous blow in order to reduce the concentration rate of the boiler, thereby solving the problems of alkali corrosion and scale adhesion. .

しかし、連続ブローの量を増やすことは、ボイラの保有している熱量を捨てていることになるため、ボイラで使用する燃焼ガス(Bガス、Cガス)が増えてしまうといった問題があった。
本発明は、上記のような点に着目してなされたもので、ボイラから排出するブローの量を削減することで、ボイラでの燃料の使用量を低減すること目的としている。
However, increasing the amount of continuous blow has a problem that the amount of combustion gas (B gas, C gas) used in the boiler increases because the amount of heat held by the boiler is discarded.
The present invention has been made paying attention to the above points, and aims to reduce the amount of fuel used in the boiler by reducing the amount of blow discharged from the boiler.

上記課題を解決するために、本発明のうち請求項1に記載した発明は、ボイラに供給するボイラ供給水を精製するボイラ供給水精製装置であって、
処理水を純水に精製する純水装置と、純水装置を通過して純水になった処理水を通過させるポリシャー装置とを備え、上記ポリシャー装置には、陰イオン交換樹脂と陽イオン交換樹脂とが直列に配置されていることを特徴とするものである。
In order to solve the above problems, the invention described in claim 1 of the present invention is a boiler feed water purifier for purifying boiler feed water to be supplied to a boiler,
It comprises a pure water device for purifying treated water into pure water, and a polisher device for passing treated water that has passed through the pure water device to become pure water. The polisher device includes an anion exchange resin and a cation exchange. The resin is arranged in series.

次に、請求項2に記載した発明は、請求項1に記載した構成に対し、上記純水装置は、陽イオン交換樹脂を収容したH塔と、陰イオン交換樹脂を収容したOH塔とが直列に接続されて構成されることを特徴とするものである。
次に、請求項3に記載した発明は、請求項1又は請求項2に記載した構成に対し、 上記ポリシャー装置を通過後の処理水の電気伝導率が0.56μS/cm以下であることを特徴とするものである。
Next, in the invention described in claim 2, in the configuration described in claim 1, the pure water device includes an H tower containing a cation exchange resin and an OH tower containing an anion exchange resin. It is characterized by being connected in series.
Next, the invention described in claim 3 is that the electrical conductivity of the treated water after passing through the polisher device is 0.56 μS / cm or less with respect to the configuration described in claim 1 or claim 2. It is a feature.

本発明によれば、純水装置によって純水にした供給水を、さらにポリシャー装置に通すことで、大幅に水質を良くすることが出来る。この結果、ボイラの連続的なブローの量を大幅に削減して、当該ボイラにおける燃料の使用量を低減することが可能となる。   According to the present invention, the quality of water can be greatly improved by passing the supply water made pure water by the pure water device through the polisher device. As a result, the amount of continuous blow of the boiler can be greatly reduced, and the amount of fuel used in the boiler can be reduced.

本発明に基づく実施形態に係るボイラ供給水精製装置を説明する概要構成図である。It is a schematic block diagram explaining the boiler feed water refiner | purifier which concerns on embodiment based on this invention. 純水装置で処理した後の処理水におけるNaイオン濃度と電気伝導率との関係を示す図である。It is a figure which shows the relationship between Na ion concentration and electric conductivity in the treated water after processing with a pure water apparatus.

次に、本発明の実施形態について図面を参照しながら説明する。
図1は、本実施形態に係るボイラ供給水精製装置を説明する模式図である。
Next, embodiments of the present invention will be described with reference to the drawings.
Drawing 1 is a mimetic diagram explaining the boiler feed water refining device concerning this embodiment.

(構成)
本実施形態のボイラ供給水精製装置は、図1に示すように、上流側から純水装置1、及びポリシャー装置2が配置されて構成されている。符号9はろ過装置を示す。
本実施形態の純水装置1は、2床3塔型の純水装置1であって、上流側からH塔3、脱炭酸塔4、OH塔5の順番に配置されている。
(Constitution)
As shown in FIG. 1, the boiler feed water purifier according to the present embodiment is configured by arranging a pure water device 1 and a polisher device 2 from the upstream side. Reference numeral 9 denotes a filtration device.
The pure water apparatus 1 of the present embodiment is a two-bed, three-column type pure water apparatus 1, and is arranged in the order of the H tower 3, the decarbonation tower 4, and the OH tower 5 from the upstream side.

H塔3内には強酸性陽イオン交換樹脂は充填されている。そのH塔3は、再生剤として塩酸のような鉱酸を用いて上記強酸性陽イオン交換樹脂を再生しながら、供給された水を酸性の処理水に精製する。   The H tower 3 is filled with a strongly acidic cation exchange resin. The H tower 3 purifies the supplied water into acidic treated water while regenerating the strongly acidic cation exchange resin using a mineral acid such as hydrochloric acid as a regenerant.

脱炭酸塔4は、H塔3の処理水中の遊離炭酸を除去した後の処理水をOH塔5に送る。これによって、OH塔5の負担を軽減する。
OH塔5にはOH型陰イオン交換樹脂が充填されている。そのOH塔5は、脱炭酸塔4を介して供給された、H塔3での処理水である鉱酸酸性の処理水を中和して純水に精製する。
The decarboxylation tower 4 sends the treated water after removing the free carbonic acid in the treated water of the H tower 3 to the OH tower 5. This reduces the burden on the OH tower 5.
The OH column 5 is filled with OH type anion exchange resin. The OH tower 5 neutralizes the mineral acid acidic treated water, which is the treated water in the H tower 3, supplied via the decarboxylation tower 4, and purifies it into pure water.

また、ポリシャー装置2には、陰イオン交換樹脂21と陽イオン交換樹脂22が直列に充填されている。ポリシャー装置2は、純水装置1で精製された処理水である純水を超純水に精製し、その超純水となった処理水をボイラ供給水として、直接若しくは貯蔵タンク(不図示)を介してボイラ6に供給可能となっている。   The polisher device 2 is filled with an anion exchange resin 21 and a cation exchange resin 22 in series. The polisher device 2 purifies pure water, which is treated water purified by the pure water device 1, into ultrapure water, and uses the treated water that has become the ultrapure water directly or as a storage tank (not shown). The boiler 6 can be supplied via

図1では、純水装置1とポリシャー装置2との間の接続路に第1の電導度計7を介装している。また、ポリシャー装置2の出側に第2の電導度計8を介装している。第1の電導度計7の計測値に基づき、純水装置1による処理水の電気伝導率を測定する。また、第2の電導度計8の計測値に基づき、ポリシャー装置2による処理水の電気伝導率を測定する。そして、測定した電気伝導率によってイオン交換樹脂に交換などの保守期間を決定する。   In FIG. 1, a first conductivity meter 7 is interposed in a connection path between the pure water device 1 and the polisher device 2. Further, a second conductivity meter 8 is interposed on the exit side of the polisher device 2. Based on the measurement value of the first conductivity meter 7, the electrical conductivity of the treated water by the pure water device 1 is measured. Moreover, based on the measured value of the 2nd conductivity meter 8, the electrical conductivity of the treated water by the polisher apparatus 2 is measured. Then, a maintenance period such as replacement with an ion exchange resin is determined by the measured electrical conductivity.

(動作や作用効果など)
ボイラ供給水精製装置に供給された原水は、ろ過装置9でろ過された後に純水装置1に供給され、処理によって純水となった処理水が、ポリシャー装置2に供給される。ここで、原水としては、水道水、工業用水、地下水などが例示できる。
(Operation and effect)
The raw water supplied to the boiler feed water purifier is supplied to the pure water device 1 after being filtered by the filtration device 9, and the treated water that has been purified by the processing is supplied to the polisher device 2. Here, examples of the raw water include tap water, industrial water, and groundwater.

ポリシャー装置2では、供給された純水である処理水を、陰イオン交換樹脂21及び陽イオン交換樹脂22に通すことで、超純水からなる処理水を精製し、その精製した処理水をボイラ供給水としてボイラ6に供給する。
ここで、上記純水装置1で精製された純水の電気伝導率は、3μS/cm前後の値となっている。図2に、処理水中の電気伝導率とNa濃度との関係を参考までに記載する。
In the polisher apparatus 2, the treated water which is the supplied pure water is passed through the anion exchange resin 21 and the cation exchange resin 22, thereby purifying the treated water made of ultrapure water, and the purified treated water is used as the boiler. Supply to boiler 6 as supply water.
Here, the electrical conductivity of the pure water purified by the pure water apparatus 1 has a value of around 3 μS / cm. FIG. 2 shows the relationship between the electrical conductivity in the treated water and the Na concentration for reference.

そして、上記ポリシャー装置2で処理された超純水からなる処理水の電気伝導率は、充填する陰イオン交換樹脂21及び陽イオン交換樹脂22にもよるが、0.3μS/cm以下の値まで小さくできることを確認している。
ここで、本明細書における超純水は、電気伝導率が0.56μS/cm以下の水と規定する。
And the electrical conductivity of the treated water made of ultrapure water treated by the polisher device 2 depends on the anion exchange resin 21 and the cation exchange resin 22 to be filled, but is up to a value of 0.3 μS / cm or less. It is confirmed that it can be made smaller.
Here, the ultrapure water in this specification is defined as water having an electric conductivity of 0.56 μS / cm or less.

以上のように、純水装置1で純水に精製した後に、ポリシャー装置2によって更に水質を向上させて、ボイラ6の供給する水の電気伝導率を大幅に小さくする。
これにより、純水中に含まれる不純物を低減できるため、ボイラ6内の水質に悪影響を及ぼすNaやシリカ濃度を下げることができる。Naやシリカ濃度の下げ幅の比率に応じてボイラ6の濃縮倍率を上げるので、上記Naやシリカ濃度を下げることによって、不純物を系外へ排出するための連続的なブローの量が削減して、使用する熱量を回収することが可能となる。この結果、燃焼ガスの使用量の低減を図ることが出来る。
As described above, after purification to pure water by the pure water device 1, the water quality is further improved by the polisher device 2, and the electrical conductivity of the water supplied from the boiler 6 is greatly reduced.
Thereby, since impurities contained in pure water can be reduced, the concentration of Na and silica that adversely affects the water quality in the boiler 6 can be reduced. Since the concentration ratio of the boiler 6 is increased according to the ratio of the Na or silica concentration reduction width, the amount of continuous blow for discharging impurities out of the system is reduced by reducing the Na or silica concentration. The amount of heat to be used can be recovered. As a result, the amount of combustion gas used can be reduced.

上記実施形態のボイラ供給水精製装置を使用し、ポリシャー装置2の能力を決めるための試験を行った。ポリシャー装置2に充填する陰イオン交換樹脂21と陽イオン交換樹脂22として、H塔3及びOH塔5にそれぞれ充填している陰イオン交換樹脂21と陽イオン交換樹脂22と同じイオン交換樹脂を採用した。
そして、採水初期と採水末期における、上記OH塔5の出側のサンプルと、ポリシャー装置2を通過した後のサンプルとをそれぞれ取得して、各サンプルのNa濃度を測定した。その結果を表1に示す。
The test for determining the capability of the polisher apparatus 2 was done using the boiler feed water purification apparatus of the said embodiment. As the anion exchange resin 21 and the cation exchange resin 22 filled in the polisher apparatus 2, the same ion exchange resin as the anion exchange resin 21 and the cation exchange resin 22 filled in the H tower 3 and the OH tower 5, respectively, is adopted. did.
Then, the sample on the outlet side of the OH tower 5 and the sample after passing through the polisher device 2 in the initial sampling period and the final sampling period were obtained, and the Na concentration of each sample was measured. The results are shown in Table 1.

Figure 2011196613
Figure 2011196613

この表1から分かるように、ポリシャー装置2を設けることで、ポリシャー装置2を設けない場合と比較して、Na濃度を1/10以下に低減できることが確認できた。
このことは、ボイラ6内に供給される不純物が1/10以下と大幅に低減できることと同義であることから、ボイラ6からの連続ブローの量も1/10以下にすることが可能になると考えられる。なお、上記採水末期のポリシャー装置2出側におけるサンプルのNa濃度は、図2を参照すると、電気伝導率が0.3μS/cmであることが分かる。すなわち、ポリシャー装置2に通して、電気伝導率が、0.3μS/cm以下とすることで、ボイラ6からの連続ブローの量を1/10以下と大幅に減らせることが分かる。
As can be seen from Table 1, it was confirmed that by providing the polisher device 2, the Na concentration can be reduced to 1/10 or less as compared with the case where the polisher device 2 is not provided.
This is synonymous with the fact that the impurities supplied into the boiler 6 can be greatly reduced to 1/10 or less, so that the amount of continuous blow from the boiler 6 can be reduced to 1/10 or less. It is done. In addition, the Na concentration of the sample on the exit side of the polisher apparatus 2 at the end of the sampling period can be understood that the electrical conductivity is 0.3 μS / cm with reference to FIG. That is, it can be seen that the amount of continuous blow from the boiler 6 can be greatly reduced to 1/10 or less by passing through the polisher apparatus 2 and setting the electric conductivity to 0.3 μS / cm or less.

また、図示していないが、電気伝導率を0.56μS/cm以下となるように、ポリシャー装置2を調整することで、ボイラ6内に供給される不純物が1/5以下に低減できることを確認した。
以上のことから、ポリシャー装置2を通過後の電気伝導率を0.56μS/cm以下に、好ましくは0.3μS/cm以下に設定することが好ましいことが分かる。
Although not shown, it is confirmed that the impurities supplied into the boiler 6 can be reduced to 1/5 or less by adjusting the polisher device 2 so that the electric conductivity is 0.56 μS / cm or less. did.
From the above, it can be seen that the electrical conductivity after passing through the polisher device 2 is preferably set to 0.56 μS / cm or less, preferably 0.3 μS / cm or less.

1 純水装置
2 ポリシャー装置
3 H塔
4 脱炭酸塔
5 OH塔
6 ボイラ
9 ろ過装置
21 陰イオン交換樹脂
22 陽イオン交換樹脂
DESCRIPTION OF SYMBOLS 1 Pure water apparatus 2 Polisher apparatus 3 H tower 4 Decarbonation tower 5 OH tower 6 Boiler 9 Filtration apparatus 21 Anion exchange resin 22 Cation exchange resin

Claims (3)

ボイラに供給するボイラ供給水を精製するボイラ供給水精製装置であって、
処理水を純水に精製する純水装置と、純水装置を通過して純水になった処理水を通過させるポリシャー装置とを備え、上記ポリシャー装置には、陰イオン交換樹脂と陽イオン交換樹脂とが直列に配置されていることを特徴とするボイラ供給水精製装置。
A boiler feed water purifier for purifying boiler feed water to be supplied to a boiler,
It comprises a pure water device for purifying treated water into pure water, and a polisher device for passing treated water that has passed through the pure water device to become pure water. The polisher device includes an anion exchange resin and a cation exchange. A boiler feed water refining device, wherein a resin is arranged in series.
上記純水装置は、陽イオン交換樹脂を収容したH塔と、陰イオン交換樹脂を収容したOH塔とが直列に接続されて構成されることを特徴とする請求項1に記載したボイラ供給水精製装置。   2. The boiler feed water according to claim 1, wherein the pure water device is configured by connecting an H tower containing a cation exchange resin and an OH tower containing an anion exchange resin connected in series. Purification equipment. 上記ポリシャー装置を通過後の処理水の電気伝導率が0.56μS/cm以下であることを特徴とする請求項1又は請求項2に記載したボイラ供給水精製装置。   The boiler feed water purifier according to claim 1 or 2, wherein the electrical conductivity of the treated water after passing through the polisher is 0.56 µS / cm or less.
JP2010064146A 2010-03-19 2010-03-19 Boiler feedwater purification device Pending JP2011196613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010064146A JP2011196613A (en) 2010-03-19 2010-03-19 Boiler feedwater purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010064146A JP2011196613A (en) 2010-03-19 2010-03-19 Boiler feedwater purification device

Publications (1)

Publication Number Publication Date
JP2011196613A true JP2011196613A (en) 2011-10-06

Family

ID=44875068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010064146A Pending JP2011196613A (en) 2010-03-19 2010-03-19 Boiler feedwater purification device

Country Status (1)

Country Link
JP (1) JP2011196613A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422395A (en) * 1987-07-16 1989-01-25 Organo Kk Two-bed type polisher device
JPH09294974A (en) * 1996-05-02 1997-11-18 Japan Organo Co Ltd Water treatment apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422395A (en) * 1987-07-16 1989-01-25 Organo Kk Two-bed type polisher device
JPH09294974A (en) * 1996-05-02 1997-11-18 Japan Organo Co Ltd Water treatment apparatus

Similar Documents

Publication Publication Date Title
TWI541200B (en) Water treatment using a bipolar membrane
RU2501738C2 (en) Method of reducing corrosion, formed of sediments and reducing of water consumption in cooling tower systems
CN102942276A (en) Boiler feedwater treatment method and treatment system related to reuse of reclaimed water
JP5617231B2 (en) Method and apparatus for purifying ion exchange resin
JP5768959B2 (en) Water treatment equipment
US20100288308A1 (en) Method and system for producing ultrapure water, and method and system for washing electronic component members
CN103496806A (en) System and method for manufacturing demineralized water
JP2012196619A (en) Water treatment equipment
JP4467488B2 (en) Condensate demineralization method and condensate demineralization apparatus
TW201529166A (en) Anion exchanger, mixture of anion exchanger and cation exchanger, mixed bed of anion exchanger and cation exchanger, method of manufacturing same, and method of refining hydrogen peroxide water
CN103613219A (en) Device and method for purifying, deoxidizing and decarbonizing internal generator cooling water
JP2011098267A (en) Pure water production system and method
JP2011196613A (en) Boiler feedwater purification device
CN216472550U (en) Device for removing silicon element in reactor coolant
Duan et al. Pilot-scale study on seeded precipitation assisted nanofiltration for flue-gas desulfurization wastewater softening
JP7192519B2 (en) Ultra-pure boron-removed ultra-pure water production apparatus and ultra-pure boron-removed ultra-pure water production method
CN113636674A (en) Device for removing silicon element in reactor coolant and treatment method thereof
JPH02303593A (en) Two-stage type reverse osmosis membrane device
CN203558929U (en) Desalted water production system
JP3614548B2 (en) Hydrogen peroxide purification method
JP2011139980A (en) Electric deionized water producing apparatus and method of producing deionized water
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method
CN205133323U (en) Aquatic product process systems of purification
CN206156903U (en) Boiler water feeding system
JP2007090299A (en) Electric deionization apparatus and secondary system line water treating apparatus of pressurized water type nuclear power plant using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422