JP2011195955A - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP2011195955A
JP2011195955A JP2011038260A JP2011038260A JP2011195955A JP 2011195955 A JP2011195955 A JP 2011195955A JP 2011038260 A JP2011038260 A JP 2011038260A JP 2011038260 A JP2011038260 A JP 2011038260A JP 2011195955 A JP2011195955 A JP 2011195955A
Authority
JP
Japan
Prior art keywords
raw material
furnace wall
vibration
blast furnace
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011038260A
Other languages
Japanese (ja)
Other versions
JP5617689B2 (en
Inventor
Masahiro Karasawa
正弘 唐澤
Masaya Kurimoto
将也 栗本
Yasuyuki Morikawa
泰之 森川
Nozomi Nishimura
望 西村
Shoichi Watanabe
正一 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011038260A priority Critical patent/JP5617689B2/en
Publication of JP2011195955A publication Critical patent/JP2011195955A/en
Application granted granted Critical
Publication of JP5617689B2 publication Critical patent/JP5617689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blast furnace operation method which can detect collision of a charged material with a furnace wall upon charging of a raw material near the furnace wall, and enables improvement of the deposition state of the raw material near the furnace wall while protecting a furnace body by charging the raw material directly from a rotating chute to the vicinity of the furnace wall on the basis of the detection.SOLUTION: When charging the raw material into the blast furnace 1 using the rotating chute 2, the vibration of the furnace wall is measured by a vibration pickup 4, and the frequency of vibration is analyzed. After deciding a specific frequency at which a difference occurs in vibration acceleration by collision of the raw material with the furnace wall, the peak value of vibration acceleration at the specific frequency is detected and the collision is detected. It is preferable to: previously detect the minimum value of a tilting angle θ of the rotating chute at which the raw material collides with the furnace wall; set the upper limit value of the angle θ of the rotating chute 2; and then adjust the falling position of the raw material. It is also preferable to use 200 to 2,000 Hz as the specific frequency.

Description

本発明は、高炉内の装入物落下位置検知に関し、これに基づく装入物の分布制御を行う高炉操業方法に関する。   The present invention relates to a charge fall position detection in a blast furnace, and relates to a blast furnace operating method for performing charge distribution control based thereon.

旋回シュートを有するベルレス装入装置を使用して、高炉の炉頂から原料を装入するに際し、炉壁に原料が衝突しないように、旋回シュートの傾動角はハード的、またはソフト的に上限値を設定する等の措置が採られている。炉壁に原料が衝突することによる、炉壁の磨耗を防止するためである。   When using a bell-less charging device with a swirl chute, when charging the raw material from the top of the blast furnace, the tilt angle of the swirl chute is hard or soft so that it does not collide with the furnace wall. Measures such as setting are taken. This is to prevent wear of the furnace wall due to the collision of the raw material with the furnace wall.

しかしながら、原料の配合比率、粒度、水分等の性状により、同じ傾動角で原料装入を行なっても飛距離は変化し、実際の原料落下地点は変化する。そのため、傾動角の上限は、実際に原料が炉壁に衝突する角度に対し、十分な余裕をみて設定されている。   However, depending on the properties of the raw material, such as the mixing ratio, particle size, and moisture, even if the raw material is charged at the same tilt angle, the flight distance changes and the actual raw material falling point changes. Therefore, the upper limit of the tilt angle is set with a sufficient margin with respect to the angle at which the raw material actually collides with the furnace wall.

これまで、旋回シュートを使用して装入を行なう場合の落下原料の挙動を把握する方法としては、高炉炉口部に複数のマイクロ波距離計を設置し、距離計の設置位置と検出距離に基づき、高炉内円周方向及び半径方向の原料落下位置を検出することを特徴とするベルレス装入装置からの原料落下位置の検出方法が知られている(例えば、特許文献1参照。)。   Until now, as a method of grasping the behavior of falling raw materials when charging using a swivel chute, multiple microwave rangefinders have been installed at the blast furnace furnace port, and the distance meter installation position and detection distance are Based on this, a method for detecting a material falling position from a bell-less charging device is known, which detects the material falling position in the circumferential direction and the radial direction in the blast furnace (see, for example, Patent Document 1).

またその他に、周波数を利用して炉内状況を推定する方法として、炉壁に複数箇所穴を開けて音響検出器を設置し、炉内の音響を検出して、その周波数分布及び音圧分布の経時変化より炉壁近傍の炉内のガス流れの状況及び炉壁内面への付着物の生成状況を検知する手法が知られている(例えば、特許文献2参照。)。   In addition, as a method of estimating the in-furnace situation using the frequency, an acoustic detector is installed by drilling holes in the furnace wall, the sound inside the furnace is detected, and the frequency distribution and sound pressure distribution. There is known a technique for detecting the state of gas flow in the furnace in the vicinity of the furnace wall and the generation state of deposits on the inner surface of the furnace wall based on the change with time (see, for example, Patent Document 2).

特開平3−111504号公報JP-A-3-111504 特開昭59−173212号公報JP 59-173212 A

しかし、特許文献1に記載のマイクロ波距離計を用いる方法では、炉壁近傍に原料を装入する際に装入原料と炉壁との衝突を検知することはできない。また特許文献2に記載の方法でも、装入原料と炉壁との衝突を検知することは困難である。したがって、上記のように旋回シュートの傾動角に十分な余裕を有する上限を設けて、原料の炉壁の衝突を防止する必要があることになる。   However, in the method using the microwave distance meter described in Patent Document 1, it is not possible to detect a collision between the charged raw material and the furnace wall when the raw material is charged in the vicinity of the furnace wall. Further, even with the method described in Patent Document 2, it is difficult to detect a collision between the charged raw material and the furnace wall. Therefore, as described above, it is necessary to provide an upper limit having a sufficient margin for the tilt angle of the turning chute to prevent the raw material furnace wall from colliding.

一方で、高炉の安定操業と省エネルギー化のためには、炉壁近傍のガス流速を維持して炉壁に付着物が成長することを抑制すると共に、炉中間部においては、ガス流速を鉄鉱石の還元に必要な最低限まで低下させ、ガス利用率を最大限に向上させることが重要である。   On the other hand, for stable operation and energy saving of the blast furnace, the gas flow rate in the vicinity of the furnace wall is maintained to prevent deposits from growing on the furnace wall, and in the middle part of the furnace, the gas flow rate is reduced to iron ore. It is important to reduce to the minimum necessary for the reduction of gas and maximize the gas utilization rate.

しかしながら、上記のように旋回シュートの傾動角の上限が設定されていることにより、原料を定常的に炉壁の近傍(例えば、炉壁から1m以内程度)に落下することができないため、炉壁側のガス流速を維持するために必要な、炉壁近傍の鉱石とコークスの質量比(以下、「O/C」と記載する。)を調整するためには、炉壁から離れた位置で原料を落下させることによって生じる堆積形状により間接的に行なわざるを得ない。   However, since the upper limit of the tilt angle of the turning chute is set as described above, the raw material cannot be constantly dropped to the vicinity of the furnace wall (for example, within about 1 m from the furnace wall). In order to adjust the mass ratio of ore and coke in the vicinity of the furnace wall (hereinafter referred to as “O / C”) necessary to maintain the gas flow rate on the side, the raw material is positioned away from the furnace wall. It must be done indirectly due to the shape of the deposit caused by dropping.

そのため、炉壁近傍だけではなく、炉中間部のO/Cにも影響を与えることとなり、結果として、炉壁近傍のO/Cを低下させた場合、炉中間部のガス利用率の悪化を伴い、還元材比が増加、CO2排出量の増加という問題を生じる場合がある。 Therefore, it affects not only the vicinity of the furnace wall but also the O / C in the middle part of the furnace. As a result, when the O / C in the vicinity of the furnace wall is reduced, the gas utilization rate in the middle part of the furnace is deteriorated. Along with this, there are cases where the reducing material ratio increases and the CO 2 emission increases.

したがって本発明の目的は、このような従来技術の課題を解決し、炉壁近傍に原料を装入する際に装入原料と炉壁との衝突を検知可能とし、これにより炉壁近傍へ旋回シュートから直接原料の装入を行なうことで、炉体を保護しつつ炉壁近傍の原料堆積状況の改善を可能とする高炉操業方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art, and to detect a collision between the charged raw material and the furnace wall when charging the raw material in the vicinity of the furnace wall. An object of the present invention is to provide a method for operating a blast furnace capable of improving the raw material deposition state in the vicinity of the furnace wall while protecting the furnace body by directly charging the raw material from the chute.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)旋回シュートを用いて高炉への原料装入を行なう際に、高炉炉壁の振動を測定し、該振動の周波数解析を行ない、前記原料の前記高炉炉壁への衝突の有無により前記振動の振動加速度に差が生じる周波数である特定周波数を決定した後、該特定周波数での振動加速度のピーク値を検出することで炉壁への装入原料の衝突を検知することを特徴とする高炉の操業方法。
(2)予め装入原料が炉壁に衝突する旋回シュートの傾動角の最小値を検出し、前記旋回シュートの傾動角の上限値を設定して、前記装入原料の落下位置を調整することを特徴とする(1)に記載の高炉の操業方法。
(3)200〜2000Hzの範囲の一部または全部の周波数帯域を特定周波数として振動加速度の時間変化を求めることにより、衝突の有無を検知することを特徴とする(1)または(2)に記載の高炉の操業方法。
The features of the present invention for solving such problems are as follows.
(1) When the raw material is charged into the blast furnace using the swivel chute, vibration of the blast furnace wall is measured, frequency analysis of the vibration is performed, and the presence or absence of collision of the raw material with the blast furnace wall After determining a specific frequency, which is a frequency at which a difference in vibration acceleration of vibration occurs, detecting a peak value of the vibration acceleration at the specific frequency to detect a collision of the charged material to the furnace wall How to operate the blast furnace.
(2) detecting the minimum value of the tilt angle of the swivel chute where the charged material collides with the furnace wall in advance, and setting the upper limit value of the tilt angle of the swirl chute to adjust the fall position of the charged material. A method for operating a blast furnace as described in (1) above.
(3) Described in (1) or (2), wherein the presence or absence of a collision is detected by obtaining a temporal change in vibration acceleration with a specific frequency in a part or all of the frequency band of 200 to 2000 Hz. Blast furnace operation method.

本発明によれば、装入原料と炉壁との衝突を従来よりも高精度に検知可能であり、炉壁への原料衝突による損耗を防止しつつ、従来よりもより炉壁近傍に旋回シュートから原料を装入することが可能となる。これにより高炉内の原料の堆積状況が改善されて、ガス利用率が向上し、還元材比低減やCO2排出量の削減が達成できる。 According to the present invention, the collision between the charged raw material and the furnace wall can be detected with higher accuracy than before, and the swirl chute closer to the furnace wall than before can be prevented while preventing the wear due to the raw material collision to the furnace wall. It becomes possible to charge the raw material. Thereby, the deposition state of the raw material in the blast furnace is improved, the gas utilization rate is improved, and the reduction of the reducing material ratio and the reduction of CO 2 emission can be achieved.

本発明の一実施形態を示す概略図。Schematic which shows one Embodiment of this invention. 振動加速度の時間変化(装入原料の衝突無)。Change of vibration acceleration with time (no charge material collision). 振動加速度の時間変化(装入原料の衝突有)。Changes in vibration acceleration over time (with charging material collision). 周波数解析の結果を示すグラフ。The graph which shows the result of frequency analysis. 炉壁周辺におけるコークス層を示す模式図。The schematic diagram which shows the coke layer around a furnace wall. 200〜700Hzの周波数帯域(特定周波数)のみの振動加速度の時間変化(装入原料の衝突無)。Time change of vibration acceleration only in a frequency band (specific frequency) of 200 to 700 Hz (no collision of charged raw materials). 200〜700Hzの周波数帯域(特定周波数)のみの振動加速度の時間変化(装入原料の衝突有)。Time change of vibration acceleration only in a frequency band (specific frequency) of 200 to 700 Hz (with charging material collision). 炉壁の振動の測定位置を示す高炉上部の概略図。The schematic of the upper part of a blast furnace which shows the measurement position of the vibration of a furnace wall.

本発明では、高炉の炉壁の振動を測定することで、装入原料と炉壁との衝突を検知する。炉壁の振動は、振動計を用いて測定することができる。振動計を用いて得られた振動の信号(一般的には振動の加速度)を解析した結果、炉壁の振動で得られた振動成分のうち装入原料の炉壁への衝突によるものと、装入原料が原料堆積面に落下した際に炉壁に伝わる振動等の他の要因による振動とを、振動周波数の違いにより識別することができる。そして、旋回シュートから炉内に装入された原料が炉壁に衝突したことを精度良く直接的に検出することができる。   In the present invention, the collision between the charged raw material and the furnace wall is detected by measuring the vibration of the furnace wall of the blast furnace. The vibration of the furnace wall can be measured using a vibrometer. As a result of analyzing the vibration signal (generally acceleration of vibration) obtained using a vibrometer, the vibration component obtained by the vibration of the furnace wall is due to the impact of the charged raw material on the furnace wall, Vibration caused by other factors such as vibration transmitted to the furnace wall when the charged raw material falls on the raw material deposition surface can be identified by the difference in vibration frequency. And it can detect accurately and accurately that the raw material with which the furnace was charged from the turning chute collided with the furnace wall.

従来のマイクロ波距離計や音響計測の技術では原料の衝突を精度良く直接的に検知することは困難であったが、以下の実施例で説明するように、本発明者らが振動計により炉壁の振動加速度を測定し、周波数解析を行なったところ、装入原料の炉壁への衝突により、ある特定の周波数での振動加速度に顕著な差が現れることを見い出すことができ、これにより本発明を完成した。原料の高炉炉壁への衝突の有無により振動加速度に差が生じる特定の範囲の周波数を、以下「特定周波数」と記載する。特定周波数における振動加速度の差は大きいほど好ましいが、検出精度の点では、衝突有時の振動加速度/衝突無時の振動加速度の比が2以上の差があれば十分であり、衝突有時の振動加速度/衝突無時の振動加速度の比が3以上の差がある周波数を特定周波数として用いることが好ましい。   Although it has been difficult to detect the collision of raw materials accurately and directly with conventional microwave rangefinders and acoustic measurement techniques, the present inventors use a vibrometer as described in the following examples. When wall vibration acceleration was measured and frequency analysis was performed, it was found that a significant difference appears in vibration acceleration at a specific frequency due to the collision of the charged material with the furnace wall. Completed the invention. The frequency in a specific range in which a difference in vibration acceleration occurs depending on whether or not the raw material collides with the blast furnace wall is hereinafter referred to as “specific frequency”. The larger the difference in vibration acceleration at a specific frequency, the better. However, in terms of detection accuracy, it is sufficient that the ratio of vibration acceleration with collision / vibration acceleration without collision is 2 or more. It is preferable to use, as the specific frequency, a frequency at which the ratio of vibration acceleration / vibration acceleration without collision is 3 or more.

具体的には高炉の鉄皮外面に振動計の測定部である振動ピックアップ(振動を検出して電気信号に変換するセンサ)を設置して、装入原料を最も炉内の壁側に装入している最中の振動の時間変化を計測する。装入原料が炉壁に直接衝突した場合には装入原料が炉壁に直接衝突しない場合と比較して特定周波数の振動加速度が大きくなる。特定周波数の振動加速度ピークが基準値より大きくなった場合に装入原料が炉壁に直接衝突したと判断することができる。基準値は、装入原料が炉壁に直接衝突しない場合の特定周波数の振動加速度ピーク強度より大きい値で衝突の判断有無が検出できる様に、適宜定めればよい。   Specifically, a vibration pickup (sensor that detects vibration and converts it into an electrical signal) is installed on the outer surface of the blast furnace's iron shell, and the charged material is charged most into the furnace wall. Measure the time change of the vibration during the operation. When the charged raw material directly collides with the furnace wall, the vibration acceleration at a specific frequency becomes larger than when the charged raw material does not directly collide with the furnace wall. When the vibration acceleration peak at a specific frequency is greater than the reference value, it can be determined that the charged raw material has directly collided with the furnace wall. The reference value may be determined as appropriate so that the presence / absence of collision can be detected with a value larger than the vibration acceleration peak intensity at a specific frequency when the charged raw material does not directly collide with the furnace wall.

装入原料が高頻度で炉壁に直接衝突することは設備保護の観点から避けるべきであり、衝突しない最大の傾動角を設定することが好ましい。   It is preferable to avoid the collision of the charged raw material with the furnace wall at a high frequency from the viewpoint of equipment protection, and it is preferable to set the maximum tilt angle that does not collide.

したがって、装入原料が炉壁に直接衝突した際の傾動角よりも小さい値を旋回シュートの傾動角の最大値に設定する。   Therefore, a value smaller than the tilt angle when the charged raw material directly collides with the furnace wall is set as the maximum value of the tilt angle of the turning chute.

特定周波数は操業を行なう高炉によって変化するので、予め試験を行って求めておくことが望ましい。通常用いられる大型高炉では、特定周波数は200〜2000Hzの範囲にある。この範囲の一部または全部の周波数帯域を特定周波数と決定して特定周波数のみに限定した振動加速度の時間変化を求め、ピーク値を検出することにより、衝突の有無を明確に検知できる。   Since the specific frequency varies depending on the blast furnace in which the operation is performed, it is desirable to obtain it by conducting a test in advance. In a normally used large blast furnace, the specific frequency is in the range of 200 to 2000 Hz. The presence or absence of a collision can be clearly detected by determining the time change of vibration acceleration limited to only a specific frequency by determining a part or all of the frequency band of this range as a specific frequency and detecting the peak value.

高炉に装入された原料の最上部(原料堆積面)は、装入原料の荷下がりにより下降し、装入原料の新規装入により上昇する。実操業では、高炉に原料が装入されるタイミング(降下距離)を逐次調整して原料堆積面がほぼ一定の高さレベルになるように調整しており、その基準面をストックラインと称している。ストックラインは高炉の設計段階で定められており、操業中において不変である。   The uppermost part (raw material deposition surface) of the raw material charged into the blast furnace descends when the charged raw material is unloaded, and rises when the charged raw material is newly charged. In actual operation, the timing (descent distance) at which the raw material is charged into the blast furnace is adjusted in order to adjust the raw material deposition surface to an almost constant height level. The reference surface is called the stock line. Yes. The stock line is established at the blast furnace design stage and remains unchanged during operation.

振動計の測定部である振動ピックアップは高炉の原料装入基準レベル(ストックライン)付近の鉄皮外面に設置することが好ましく、冷却用のステーブの無い、剛性の高い部位に設置することが好ましい。また、円周方向に等間隔で、4〜16ヶ所設置することが好ましい。   The vibration pickup, which is the measurement unit of the vibrometer, is preferably installed on the outer surface of the iron skin near the raw material charging reference level (stock line) of the blast furnace, and is preferably installed in a highly rigid part without a cooling stave. . Moreover, it is preferable to install 4-16 places at equal intervals in the circumferential direction.

例えば、図8においてストックラインは10で示す位置である。下記の実施例で示すように、振動計でストックラインの上方0.8mから、下方2.3mの範囲に振動ピックアップを設置することで炉壁への原料衝突の検出が可能であったが、振動ピックアップの設置位置はストックラインの上方1.5m〜下方3.0mの範囲とすることが好ましく、さらに、11a、11bで示すような原料堆積面の上下動を勘案して、複数の高さ位置に設置することがより好ましい。   For example, the stock line is a position indicated by 10 in FIG. As shown in the examples below, it was possible to detect a material collision on the furnace wall by installing a vibration pickup in the range of 0.8 m above the stock line and 2.3 m below the vibrometer, The installation position of the vibration pickup is preferably in the range of 1.5 m above the stock line to 3.0 m below the stock line. Further, considering the vertical movement of the material deposition surface as shown by 11a and 11b, a plurality of heights are taken into consideration. More preferably, it is installed at the position.

上記の方法で炉壁への装入原料の衝突が検知できるが、特定周波数は装入原料の種類(例えば、コークス、塊鉱石、焼結鉱、ペレットなど)により、最適な範囲が異なり、また、装入原料の種類により旋回シュートからの落下軌跡が異なるので、予め、装入原料の種類毎に振動計で計測しながら旋回シュートの傾動角を装入原料が炉壁に衝突するまで(振動計で測定される振動加速度が増大するまで)徐々に増加させ、原料が炉壁に衝突する最小の傾動角を求めて、操業時の傾動角を調整することが好ましい。また、操業中に傾動角の最大時における振動加速度が増大した場合は、装入原料が炉壁に衝突していることを示すものであるから、操業時の傾動角を小さい側に調整することが好ましい。また、定期的に、振動計で測定しながら旋回シュートの傾動角を装入原料が炉壁に衝突するまで増加させ、原料が炉壁に衝突する最小の傾動角を求めて操業時の傾動角を調整することが好ましい。   Although the above method can detect the impact of the charged raw material on the furnace wall, the specific frequency varies depending on the type of charged raw material (for example, coke, lump ore, sintered ore, pellets, etc.) Since the fall trajectory from the swivel chute differs depending on the type of charging material, the tilt angle of the swirling chute is measured in advance with a vibrometer for each type of charging material until the charging material collides with the furnace wall (vibration). It is preferable that the tilt angle at the time of operation is adjusted by gradually increasing the vibration acceleration (measured by the meter) until the minimum tilt angle at which the raw material collides with the furnace wall is obtained. In addition, if the vibration acceleration at the maximum tilt angle during operation increases, this indicates that the charged material has collided with the furnace wall, so the tilt angle during operation should be adjusted to the smaller side. Is preferred. In addition, the tilt angle of the swivel chute is periodically increased while measuring with a vibrometer until the charged material collides with the furnace wall, and the minimum tilt angle at which the raw material collides with the furnace wall is obtained to determine the tilt angle during operation. Is preferably adjusted.

以上の本発明方法を用いることで、原料、特に粒径が大きいコークスを炉壁の近傍に装入する際に、炉壁から1m以内にまで直接装入することが可能となるので、コークス層厚をより正確に制御して、炉壁近傍のガス流速を狭い範囲でシャープに高めることができ、ガス利用率を炉壁部分で低下させ、局所的に炉内側にガスを廻して中心方向のガス利用率を上昇させる。これにより製銑工程における還元材比低減、CO2排出量の削減が可能となる。 By using the above-described method of the present invention, when a raw material, particularly coke having a large particle size, is charged in the vicinity of the furnace wall, it can be directly charged within 1 m from the furnace wall. By controlling the thickness more precisely, the gas flow rate near the furnace wall can be sharply increased in a narrow range, the gas utilization rate is lowered at the furnace wall part, and the gas is locally routed inside the furnace so that Increase gas utilization. This makes it possible to reduce the reducing material ratio and CO 2 emissions in the ironmaking process.

図1を用いて本発明の一実施形態を説明する。図1は高炉上部の縦断面の概略図であり、高炉1の上部に設置されたベルレス装入装置の旋回シュート2は傾動角θで回転しながら原料3を高炉内に装入する。高炉1の鉄皮外面に設置した振動ピックアップ4により高炉炉壁の振動を検出し、検知部5により周波数解析を行ない、原料の炉壁への衝突を検知する。6は傾動角設定器であり、検知部5での解析結果を受けて、傾動角θの最大値を原料が炉壁に衝突しない最大の値として、旋回シュート2の傾動角θの制御を行なう。   An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram of a longitudinal section of the upper part of the blast furnace. A swirl chute 2 of a bell-less charging device installed at the upper part of the blast furnace 1 charges the raw material 3 into the blast furnace while rotating at a tilt angle θ. Vibration of the blast furnace wall is detected by a vibration pickup 4 installed on the outer surface of the iron skin of the blast furnace 1, and frequency analysis is performed by the detection unit 5 to detect a collision of the raw material with the furnace wall. Reference numeral 6 denotes a tilt angle setting device, which controls the tilt angle θ of the swivel chute 2 with the maximum value of the tilt angle θ as the maximum value at which the raw material does not collide with the furnace wall in response to the analysis result of the detection unit 5. .

図1に示すものと同様の設備を有する出銑比2.3t/m3/日の高炉(溶鉱炉)において、旋回シュートの傾動角を変化させて原料(コークス)の装入を行ない、その際の高炉炉壁の振動測定を行なった。 In a blast furnace (blast furnace) with a tapping ratio of 2.3 t / m 3 / day having the same equipment as shown in FIG. 1, the raw material (coke) is charged by changing the tilt angle of the turning chute. The vibration of the blast furnace wall was measured.

振動計は、図8に示すようにストックライン10を基準として4つの高さ位置、ストックライン上方0.8m(SL+0.8m)、ストックライン上方0.3m(SL+0.3m)、ストックライン下方1.4m(SL−1.4m)、ストックライン下方2.3m(SL−2.3m)に、円周方向に4点ずつ(90度毎)、合計16個設置した。ストックライン上方0.8m、ストックライン下方2.3mは、予備試験において、最も振動計の感応性が良好であった高さ位置である。   As shown in FIG. 8, the vibration meter has four height positions with reference to the stock line 10, 0.8 m above the stock line (SL + 0.8 m), 0.3 m above the stock line (SL + 0.3 m), and 1 below the stock line. A total of 16 pieces were installed in a circumferential direction of 4 points (every 90 degrees) at 2.4 m (SL-1.4 m) and 2.3 m (SL-2.3 m) below the stock line. 0.8 m above the stock line and 2.3 m below the stock line are the height positions where the sensitivity of the vibrometer was the best in the preliminary test.

振動計の感応性は、高炉炉壁の構造が高さ方向に一様であれば、設置高さ位置とコークスが衝突する位置の距離が近い方が良いはずであるが、現実には、高炉炉壁に構造的に振動が伝わりにくい部位が存在するので、高炉に合わせて適切な設置位置を見つければ良い。   As for the sensitivity of the vibrometer, if the structure of the blast furnace wall is uniform in the height direction, the distance between the installation height position and the position where the coke collides should be better. Since there is a part of the furnace wall where vibration is difficult to transmit structurally, it is only necessary to find an appropriate installation position according to the blast furnace.

操業中においては原料面の高さは逐次変動するため、ストックライン上方0.8mとストックライン下方2.3mの振動計の間を補完するために、ストックライン上方0.3m、ストックライン下方1.4mにも振動計を設置した。尚、以下に示す結果は振動計をストックライン下方1.4m位置に設置した場合である。   During operation, since the height of the raw material surface changes sequentially, in order to complement the vibration meter between 0.8 m above the stock line and 2.3 m below the stock line, 0.3 m above the stock line and 1 below the stock line. A vibration meter was also installed at 4m. In addition, the result shown below is a case where the vibrometer is installed at a position 1.4 m below the stock line.

炉壁への原料の衝突の無い場合の振動加速度の時間変化を図2に、衝突時の振動加速度の時間変化を図3に示す。尚、衝突の有無は、落下軌跡のシミュレーションで確認した。   FIG. 2 shows the time change of the vibration acceleration when there is no material collision with the furnace wall, and FIG. 3 shows the time change of the vibration acceleration at the time of the collision. In addition, the presence or absence of the collision was confirmed by the simulation of the fall trajectory.

旋回シュートによる原料の装入は、約6秒で1旋回する設定で実施したため、約6秒毎に振動のピークが測定された。装入原料が炉壁に衝突した図3は装入原料が炉壁に衝突しなかった図2に比べ、概ね大きな振動加速度となっているが、振動加速度の値が時間変化しているため、衝突の有無を閾値の設定により判断できる程には振動加速度の値に差は無かった。   Since the charging of the raw material by the turning chute was performed with a setting of making one turn in about 6 seconds, a vibration peak was measured every about 6 seconds. FIG. 3 in which the charged raw material collides with the furnace wall is substantially larger in vibration acceleration than FIG. 2 in which the charged raw material does not collide with the furnace wall, but the value of the vibration acceleration changes with time. There was no difference in the value of vibration acceleration so that the presence or absence of a collision could be judged by setting a threshold value.

図2、図3の周波数解析を行なった結果を図4に併せて示す。図4において、aが炉壁への装入原料の衝突の無い場合、bが装入原料の衝突がある場合である。装入原料の衝突があるbは、装入原料の衝突の無いaよりも、周波数200〜2000Hzの間では、他の周波数帯に比べ振動加速度が2〜10倍大きいことが分かる。   The results of the frequency analysis of FIGS. 2 and 3 are also shown in FIG. In FIG. 4, a is a case where there is no collision of the charged raw material to the furnace wall, and b is a case where there is a collision of the charged raw material. It can be seen that the vibration acceleration b is 2 to 10 times greater in the frequency range 200 to 2000 Hz than in the other frequency bands in the frequency range 200 to 2000 Hz.

図6、7は周波数フィルターを用いて図2、3の測定結果の200〜700Hzの周波数帯域(特定周波数)のみに限定して振動加速度の時間変化を出力したものである。図6の振動加速度ピーク値は最大でも0.2m/s2であるが、図7の振動加速度ピーク値は最小でも0.4m/s2である。従って、閾値を0.3m/s2とすることで炉壁への装入原料の衝突を検出することができる。 FIGS. 6 and 7 show changes in vibration acceleration over time using only a frequency band (specific frequency) of 200 to 700 Hz of the measurement results of FIGS. The vibration acceleration peak value in FIG. 6 is 0.2 m / s 2 at the maximum, but the vibration acceleration peak value in FIG. 7 is 0.4 m / s 2 at the minimum. Therefore, by setting the threshold value to 0.3 m / s 2 , it is possible to detect the collision of the charged raw material with the furnace wall.

上記の測定の結果を用い、これまで装入原料の炉壁への衝突を確実に避けるために従来は54度としていた旋回シュートの傾動角の上限値の設定を緩和し、傾動角54度から1単位量上げた55度を上限値として設定して、コークス層厚が炉周辺部で所定の厚さになるように制御性を高めた装入を行った。このようにして装入されたコークス層の炉壁周辺での模式図を図5に示す。炉壁7周辺において局所的なコークス8の層厚部を設けることが可能となり、これまで制御が困難であった炉壁から1mの範囲においても、原料の層厚をコントロールすることが可能となった。55度以上の傾動角では衝突の可能性が高まるが、振動が検知できることにより、上限値を逐次見直すことが可能となった。   Using the results of the above measurement, the setting of the upper limit value of the tilt angle of the swivel chute, which was conventionally set to 54 degrees in order to surely avoid the collision of the charged raw material with the furnace wall, has been relaxed. The unit was increased by one unit amount to 55 degrees as the upper limit value, and charging was performed with improved controllability so that the coke layer thickness would be a predetermined thickness at the periphery of the furnace. FIG. 5 shows a schematic view of the coke layer charged in this way around the furnace wall. It becomes possible to provide a local thickness portion of the coke 8 around the furnace wall 7, and it is possible to control the layer thickness of the raw material even within a range of 1 m from the furnace wall, which has been difficult to control so far. It was. Although the possibility of a collision is increased at an inclination angle of 55 degrees or more, it is possible to review the upper limit value successively by detecting vibration.

その結果、ガス利用率が全体として0.2%向上し、487.5kg/t―pだった還元材比は486.5kg/t―pに低下した。したがって、還元材比を1.0kg/t−p削減することができた。またCO2排出量も3.2kg/t−p低下した。 As a result, the gas utilization rate was improved by 0.2% as a whole, and the reducing agent ratio, which was 487.5 kg / tp, decreased to 486.5 kg / tp. Therefore, the reducing material ratio could be reduced by 1.0 kg / tp. Also, the CO 2 emission amount decreased by 3.2 kg / tp.

1 高炉
2 旋回シュート
3 原料
4 振動ピックアップ
5 検知部
6 傾動角設定器
7 炉壁
8 コークス
9 鉱石
10 ストックライン
11(11a、11b) 原料堆積面
θ 傾動角
DESCRIPTION OF SYMBOLS 1 Blast furnace 2 Swivel chute 3 Raw material 4 Vibration pickup 5 Detection part 6 Tilt angle setting device 7 Furnace wall 8 Coke 9 Ore 10 Stock line 11 (11a, 11b) Raw material deposition surface θ Tilt angle

Claims (3)

旋回シュートを用いて高炉への原料装入を行なう際に、高炉炉壁の振動を測定し、該振動の周波数解析を行ない、前記原料の前記高炉炉壁への衝突の有無により前記振動の振動加速度に差が生じる周波数である特定周波数を決定した後、該特定周波数での振動加速度のピーク値を検出することで炉壁への装入原料の衝突を検知することを特徴とする高炉の操業方法。   When the raw material is charged into the blast furnace using the swivel chute, the vibration of the blast furnace wall is measured, the frequency of the vibration is analyzed, and the vibration of the vibration depends on whether the raw material collides with the blast furnace wall. Operation of a blast furnace characterized by detecting a collision of a charged raw material to a furnace wall by detecting a peak value of vibration acceleration at the specific frequency after determining a specific frequency that causes a difference in acceleration Method. 予め装入原料が炉壁に衝突する旋回シュートの傾動角の最小値を検出し、前記旋回シュートの傾動角の上限値を設定して、前記装入原料の落下位置を調整することを特徴とする請求項1に記載の高炉の操業方法。   Detecting the minimum value of the tilt angle of the swivel chute where the charged raw material collides with the furnace wall in advance, setting the upper limit value of the tilt angle of the swivel chute, and adjusting the fall position of the charged raw material The method for operating a blast furnace according to claim 1. 200〜2000Hzの範囲の一部または全部の周波数帯域を特定周波数として振動加速度の時間変化を求めることにより、衝突の有無を検知することを特徴とする請求項1または請求項2に記載の高炉の操業方法。   The blast furnace according to claim 1 or 2, wherein the presence or absence of a collision is detected by obtaining a temporal change in vibration acceleration with a specific frequency in a part or all of a frequency band in a range of 200 to 2000 Hz. Operation method.
JP2011038260A 2010-02-25 2011-02-24 Blast furnace operation method Active JP5617689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011038260A JP5617689B2 (en) 2010-02-25 2011-02-24 Blast furnace operation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010039874 2010-02-25
JP2010039874 2010-02-25
JP2011038260A JP5617689B2 (en) 2010-02-25 2011-02-24 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2011195955A true JP2011195955A (en) 2011-10-06
JP5617689B2 JP5617689B2 (en) 2014-11-05

Family

ID=44874531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038260A Active JP5617689B2 (en) 2010-02-25 2011-02-24 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP5617689B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923111A (en) * 1972-06-23 1974-03-01
JPH0259420B2 (en) * 1982-10-30 1990-12-12 Takasago Netsugaku Kogyo Kk
JPH08271330A (en) * 1995-03-28 1996-10-18 Kawasaki Steel Corp Monitoring method of equipment by acoustic analysis
JPH11315309A (en) * 1998-03-05 1999-11-16 Kobe Steel Ltd Method for grasping dropping condition of granular powder, instrument for measuring dropping material and instrument for measuring dropping material for blast furnace
JP2001049312A (en) * 1999-08-02 2001-02-20 Kawasaki Steel Corp Method for charging raw material in bell-less blast furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923111A (en) * 1972-06-23 1974-03-01
JPH0259420B2 (en) * 1982-10-30 1990-12-12 Takasago Netsugaku Kogyo Kk
JPH08271330A (en) * 1995-03-28 1996-10-18 Kawasaki Steel Corp Monitoring method of equipment by acoustic analysis
JPH11315309A (en) * 1998-03-05 1999-11-16 Kobe Steel Ltd Method for grasping dropping condition of granular powder, instrument for measuring dropping material and instrument for measuring dropping material for blast furnace
JP2001049312A (en) * 1999-08-02 2001-02-20 Kawasaki Steel Corp Method for charging raw material in bell-less blast furnace

Also Published As

Publication number Publication date
JP5617689B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
US20120312124A1 (en) System for furnace slopping prediction and lance optimization
Bolshakov et al. Study of the Flow of Burden Materials and their Distribution on the Furnace Top of a Modern Blast Furnace.
CN111886347A (en) Blast furnace facility and method for operating blast furnace
JP5617689B2 (en) Blast furnace operation method
CN102107108A (en) Rod, device and method for detecting dust position
US8097063B2 (en) System for furnace slopping prediction and lance optimization
Matsui et al. Stabilizing burden trajectory into blast furnace top under high ore to coke ratio operation
EP3546600A1 (en) Device and method for measuring surface level of molten metal
JP2015025199A (en) Unmelted ore detection method and blast furnace operation method
JP5633121B2 (en) Method for producing sintered ore
US6261513B1 (en) Device for directly monitoring the charging process on the inside of a shaft furnace
EP3896177A1 (en) Method for charging raw material into bell-less blast furnace, and blast furnace operation method
JP2007186759A (en) Method for operating blast furnace
JP5277636B2 (en) How to operate a vertical furnace
JP3487203B2 (en) Blast furnace condition prediction method
JP6547474B2 (en) Blast furnace and measurement method for measuring the level of blast furnace charge
JP3514120B2 (en) Distribution control method of blast furnace top charge
KR101134620B1 (en) Apparatus for inspecting molten iron in blast furnace
JP2003155507A (en) Method for estimating pig iron slag height in blast furnace and its estimating instrument
KR20120073475A (en) System for control of charging material level
JP6409490B2 (en) Method for estimating fall trajectory, method for correcting fall trajectory estimation method, and method for estimating charge distribution
US20240132982A1 (en) Residual liquid amount detection method and detection apparatus for the same, residual molten material amount detection method and detection apparatus for the same, and method for operating vertical furnace
US20240118029A1 (en) Liquid level detection method and detection apparatus for the same, molten material liquid level detection method and detection apparatus for the same, and method for operating vertical furnace
JP3828809B2 (en) Blast hearth porosity estimation method and management method
JP2018035398A (en) Blast furnace operation method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250