JP2011195854A - Method of producing electrogalvanized steel plate - Google Patents

Method of producing electrogalvanized steel plate Download PDF

Info

Publication number
JP2011195854A
JP2011195854A JP2010061392A JP2010061392A JP2011195854A JP 2011195854 A JP2011195854 A JP 2011195854A JP 2010061392 A JP2010061392 A JP 2010061392A JP 2010061392 A JP2010061392 A JP 2010061392A JP 2011195854 A JP2011195854 A JP 2011195854A
Authority
JP
Japan
Prior art keywords
plating
electrolytic treatment
current density
steel sheet
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010061392A
Other languages
Japanese (ja)
Other versions
JP5747441B2 (en
Inventor
Kazuaki Tsuchimoto
和明 土本
Toru Imokawa
透 妹川
Takahiro Kubota
隆広 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010061392A priority Critical patent/JP5747441B2/en
Publication of JP2011195854A publication Critical patent/JP2011195854A/en
Application granted granted Critical
Publication of JP5747441B2 publication Critical patent/JP5747441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing electrogalvanized steel plate capable of forming a plating layer having a preferable appearance without causing the deterioration of electric current efficiency even when performing electrolytic treatment with a high electric current density.SOLUTION: The electrolytic treatment satisfying the following is performed for a plurality of times: the Zn concentration of a plating bath is 1 mol/L or more; the temperature thereof is 50°C or more; the pH thereof falls into the range of -0.5 to 1.0; the relative flow rate between the plating bath and a steel to be treated is set to be 2 m/s or more and the energizing time t per one time in the electroplating treatment; the electrolytic treatment satisfies the relation expressed by formula (I) (therein, i is current density (A/dm), t is an energizing time (s)).

Description

本発明は、電気亜鉛めっき鋼板の製造方法に関し、特に、高電流密度で電解処理を行う場合であっても、電流効率の低下を生じることなく、良好な外観のめっき層を形成しようとするものである。   The present invention relates to a method for producing an electrogalvanized steel sheet, and in particular, it is intended to form a plated layer having a good appearance without causing a decrease in current efficiency even when electrolytic treatment is performed at a high current density. It is.

電気亜鉛めっき鋼板は、一般的に、電気亜鉛めっきライン設備によって製造される。ここで、電気亜鉛めっき鋼板の製造コストを大幅に低減するためには、電気亜鉛めっきラインの高速化や、めっきライン設備の小型化が有効であると考えられる。めっきラインの高速化によって、短時間で大量に電気亜鉛めっき鋼板を製造することができ、めっき設備の小型化によって、設備費や維持費、補修費等の経費を削減することができるためである。   Electrogalvanized steel sheets are generally manufactured by electrogalvanizing line equipment. Here, in order to significantly reduce the manufacturing cost of the electrogalvanized steel sheet, it is considered effective to increase the speed of the electrogalvanizing line and to reduce the size of the plating line equipment. This is because it is possible to manufacture electrogalvanized steel sheets in large quantities in a short time by speeding up the plating line, and by reducing the plating equipment size, it is possible to reduce expenses such as equipment costs, maintenance costs, and repair costs. .

めっきラインの高速化及びめっきライン設備の小型化を実現するためには、短時間で電気亜鉛めっき層を形成することが不可欠となる。そして、短時間で上記めっき層を形成するためには、めっき形成時の電解処理における電流密度を大幅に高める必要がある。例えば、めっきラインスピード300mpm以上、アノード電極長を合計1.5m以下とするためには、通電時間は0.3秒以下となり、所望のめっき付着量6g/m2以上を得るためには、600A/dm2以上の電流密度が必要となる。 In order to increase the speed of the plating line and reduce the size of the plating line equipment, it is essential to form the electrogalvanized layer in a short time. And in order to form the said plating layer in a short time, it is necessary to raise the current density in the electrolytic treatment at the time of plating formation significantly. For example, in order to achieve a plating line speed of 300 mpm or more and a total anode electrode length of 1.5 m or less, the energization time is 0.3 seconds or less, and in order to obtain a desired plating adhesion amount of 6 g / m 2 or more, 600 A / dm 2 The above current density is required.

高電流密度で電気亜鉛めっき層を形成するための技術として、例えば特許文献1には、硫酸濃度、伝導補助剤濃度、亜鉛濃度及び不純物濃度を適正範囲に保っためっき浴を用いることで、高電流密度であっても、所望のめっき層を形成できる亜鉛めっき鋼板の製造方法が開示されている。また、特許文献2には、硫酸濃度及び浴温が適正化されためっき浴を用い、被処理鋼板とめっき液との相対流速を調整することで、高電流密度で電解処理を行った場合であっても、所望の電気亜鉛めっき層を形成できる電気亜鉛めっき鋼板の製造方法が開示されている。さらに、特許文献3及び4には、亜鉛イオン、pH及び浴温の適正化が図られためっき浴を用い、被処理鋼板とめっき液との相対流速を調整することで、高電流密度で電解処理を行った場合であっても、所望の電気亜鉛めっき層を形成できる電気亜鉛めっき鋼板の製造方法が開示されている。   As a technique for forming an electrogalvanized layer at a high current density, for example, in Patent Document 1, a plating bath in which sulfuric acid concentration, conductive auxiliary agent concentration, zinc concentration and impurity concentration are kept in appropriate ranges is used. A method for producing a galvanized steel sheet capable of forming a desired plating layer even with a current density is disclosed. Patent Document 2 uses a plating bath in which the sulfuric acid concentration and the bath temperature are optimized, and adjusts the relative flow rate between the steel sheet to be treated and the plating solution to perform electrolytic treatment at a high current density. Even if it exists, the manufacturing method of the electrogalvanized steel plate which can form a desired electrogalvanized layer is disclosed. Further, Patent Documents 3 and 4 use a plating bath in which zinc ions, pH, and bath temperature are optimized, and adjust the relative flow rate between the steel sheet to be treated and the plating solution, thereby performing electrolysis at a high current density. A method for producing an electrogalvanized steel sheet capable of forming a desired electrogalvanized layer even when the treatment is performed is disclosed.

しかしながら、特許文献1〜4の電気亜鉛めっき鋼板の製造方法については、いずれも150〜500A/dm2程度の電流密度を対象としている。そのため、これらの方法を500A/dm2を超える高電流密度の電解処理に適用した場合、限界電流密度を超えるために電流効率が低下する問題や、また、鋼板表面でめっき浴のpHが上昇するために上記めっき層を適切に形成することができず、めっき焼けやめっきムラ等の外観劣化が生じるという問題があった。 However, for the method of manufacturing an electro-galvanized steel sheet of Patent Documents 1 to 4, both directed to a 150~500A / dm 2 about the current density. Therefore, when these methods are applied to electrolytic treatment with a high current density exceeding 500 A / dm 2 , the current efficiency decreases due to exceeding the limit current density, and the pH of the plating bath increases on the steel sheet surface. Therefore, there is a problem that the plating layer cannot be formed properly and appearance deterioration such as plating burn and plating unevenness occurs.

その他、安定した亜鉛系めっき層を形成することができる方法として、例えば特許文献5には、同一組成のめっき液を用いて、まず鋼板の少なくとも片面にパルス電流を使用して付着量10〜1000mg/m2の亜鉛系合金めっきを施し、次いで直流電源を使用することで、所望のめっき層を形成することを特徴とするめっき密着性に優れた亜鉛系合金電気めっき鋼板の製造方法が開示されている。 In addition, as a method for forming a stable zinc-based plating layer, for example, in Patent Document 5, using a plating solution having the same composition, first, a pulse current is applied to at least one surface of a steel sheet, and the adhesion amount is 10 to 1000 mg. Disclosed is a method for producing a zinc-based alloy electroplated steel sheet having excellent plating adhesion, characterized in that a desired plating layer is formed by applying a zinc-based alloy plating of / m 2 and then using a DC power source. ing.

しかしながら、特許文献5に記載の製造方法は、パルス電流を用いて薄い初期めっき層を形成した後、電流密度30〜150A/dm2で20〜40g/m2の亜鉛めっきを施すことから、全体のめっき時間が長くなり、めっきラインの高速化やめっき設備の小型化には寄与しない。 However, since the manufacturing method described in Patent Document 5 forms a thin initial plating layer using a pulse current, and then galvanizes 20 to 40 g / m 2 at a current density of 30 to 150 A / dm 2 , This increases the plating time and does not contribute to speeding up the plating line or downsizing the plating equipment.

特開平11−200087号公報Japanese Patent Laid-Open No. 11-200087 特開平6−336691号公報JP-A-6-336691 特開平6−136594号公報JP-A-6-136594 特開平6−2193号公報JP-A-6-2193 特開昭63−11688号公報JP 63-11688 A

本発明は、上記の現状に鑑み開発されたもので、製造条件の適正化を図ることにより、高電流密度で電解処理を行う場合であっても、電流効率の低下を生じることなく、良好な外観のめっき層を形成できる電気亜鉛めっき鋼板の製造方法を提供することを目的とする。   The present invention has been developed in view of the above-described present situation, and by optimizing the manufacturing conditions, even when electrolytic treatment is performed at a high current density, the current efficiency does not decrease and is favorable. It aims at providing the manufacturing method of the electrogalvanized steel plate which can form the plating layer of an external appearance.

本発明者らは、電気亜鉛めっき浴中で、被処理鋼板を陰極として600A/dm2以上の電流密度で電解処理することにより、上記被処理鋼板の表面に電気亜鉛めっき層を形成する電気亜鉛めっき鋼板の製造方法について、鋼板表面の拡散層の成長抑制に着目して検討を重ねた結果、上記めっき浴の、Zn濃度、温度、pH及び、上記被処理鋼板との相対流速の適正化を図ると共に、通電時間の調整を行った電解処理を、複数回実施することで、拡散層の成長が抑制され、限界電流密度を高めることが可能となるため、600A/dm2以上の高電流密度で電解処理を行った場合であっても、電流効率の低下を生じることなく、良好な外観のめっき層を形成できることを見出した。 In the electrogalvanizing bath, the present inventors have performed electrolytic treatment at a current density of 600 A / dm 2 or more with the steel plate to be treated as a cathode, thereby forming an electrogalvanized layer on the surface of the steel plate to be treated. As a result of repeated investigations focusing on the growth suppression of the diffusion layer on the steel sheet surface, the zinc concentration, temperature, pH, and relative flow rate with the steel sheet to be treated were optimized. At the same time, by carrying out the electrolytic treatment with adjusted energization time multiple times, the growth of the diffusion layer can be suppressed and the limit current density can be increased. Therefore, a high current density of 600 A / dm 2 or higher It was found that a plating layer having a good appearance can be formed without causing a decrease in current efficiency even when electrolytic treatment is performed.

本発明は、このような知見に基づきなされたもので、その要旨は以下の通りである。
(1)電気亜鉛めっき浴中で、被処理鋼板を陰極として600A/dm2以上の電流密度で電解処理することにより、上記被処理鋼板の表面に電気亜鉛めっき層を形成するに際し、上記めっき浴の、Zn濃度を1mol/L以上、温度を50℃以上、pHを−0.5〜1.0の範囲、上記めっき浴と上記被処理鋼板との相対流速を2m/s以上にすると共に、上記電解処理における1回当たりの通電時間tが、次式(I)

Figure 2011195854
(ただし、i:電流密度(A/dm2)、t:通電時間(s))
の関係を満足する電解処理を、複数回実施することを特徴とする電気亜鉛めっき鋼板の製造方法。 The present invention has been made based on such findings, and the gist thereof is as follows.
(1) In forming an electrogalvanized layer on the surface of the steel plate to be treated by electrolytic treatment at a current density of 600 A / dm 2 or more using the steel plate to be treated as a cathode in the electrogalvanizing bath, The Zn concentration is 1 mol / L or more, the temperature is 50 ° C. or more, the pH is in the range of −0.5 to 1.0, the relative flow rate between the plating bath and the steel sheet to be treated is 2 m / s or more, and in the electrolytic treatment The energization time t per time is expressed by the following formula (I)
Figure 2011195854
(Where i: current density (A / dm 2 ), t: energization time (s))
A method for producing an electrogalvanized steel sheet, wherein the electrolytic treatment satisfying the above relationship is performed a plurality of times.

(2)前記通電時間tを、0.01s以上とすることを特徴とする上記(1)に記載の電気亜鉛めっき鋼板の製造方法。 (2) The method for producing an electrogalvanized steel sheet according to the above (1), wherein the energization time t is 0.01 s or more.

(3)前記電解処理の回数を、2〜6回の範囲とすることを特徴とする上記(1)又は(2)に記載の電気亜鉛めっき鋼板の製造方法。 (3) The method for producing an electrogalvanized steel sheet according to (1) or (2) above, wherein the number of times of the electrolytic treatment is in a range of 2 to 6 times.

(4)前記電解処理を行う間隔を、0.1〜0.5sの範囲とすることを特徴とする上記(1)〜(3)のいずれかに記載の電気亜鉛めっき鋼板の製造方法。 (4) The method for producing an electrogalvanized steel sheet according to any one of (1) to (3) above, wherein an interval for performing the electrolytic treatment is in a range of 0.1 to 0.5 s.

(5)前記電解処理の電流密度を、600〜1200A/dm2の範囲とすることを特徴とする上記(1)〜(4)のいずれかに記載の電気亜鉛めっき鋼板の製造方法。 (5) The method for producing an electrogalvanized steel sheet according to any one of (1) to (4) above, wherein the current density of the electrolytic treatment is in the range of 600 to 1200 A / dm 2 .

(6)前記めっき浴と前記被処理鋼板との相対流速が、7m/s以上であることを特徴とする上記(1)〜(5)のいずれかに記載の電気亜鉛めっき鋼板の製造方法。 (6) The method for producing an electrogalvanized steel sheet according to any one of (1) to (5) above, wherein a relative flow rate between the plating bath and the steel sheet to be treated is 7 m / s or more.

(7)前記亜鉛めっき層の付着量を、片面当たり6〜30g/m2の範囲とすることを特徴とする上記(1)〜(6)のいずれかに記載の電気亜鉛めっき鋼板の製造方法。 (7) The method for producing an electrogalvanized steel sheet according to any one of (1) to (6) above, wherein the amount of adhesion of the galvanized layer is in the range of 6 to 30 g / m 2 per side. .

本発明によれば、高電流密度で電解処理を行う場合であっても、電流効率の低下を生じることなく、めっきムラのない良好な外観のめっき層を形成することができる。   According to the present invention, even when electrolytic treatment is performed at a high current density, it is possible to form a plating layer having a good appearance without plating unevenness without causing a decrease in current efficiency.

電流密度及び通電時間と、めっきムラの発生状況との関係を示したグラフである。It is the graph which showed the relationship between a current density and energization time, and the generation | occurrence | production state of plating nonuniformity.

以下、本発明の解明経緯について説明する。
本発明に従う電気亜鉛めっき鋼板の製造方法は、電気亜鉛めっき浴中で、被処理鋼板を陰極として600A/dm2以上の電流密度で電解処理することにより、上記被処理鋼板の表面に電気亜鉛めっき層を形成するに際し、
上記めっき浴の、Zn濃度を1mol/L以上、温度を50℃以上、pHを−0.5〜1.0の範囲、上記めっき浴と上記被処理鋼板との相対流速を2m/s以上にすると共に、上記電解処理における1回当たりの通電時間tが、次式(I)

Figure 2011195854
(ただし、i:電流密度(A/dm2)、t:通電時間(s))
の関係を満足する電解処理を、複数回実施することを特徴とする。 The elucidation process of the present invention will be described below.
The method for producing an electrogalvanized steel sheet according to the present invention includes electrogalvanizing the surface of the steel sheet to be treated by electrolytically treating the steel sheet to be treated at a current density of 600 A / dm 2 or more in an electrogalvanizing bath. In forming the layer,
The plating bath has a Zn concentration of 1 mol / L or more, a temperature of 50 ° C. or more, a pH in the range of −0.5 to 1.0, a relative flow rate between the plating bath and the steel plate to be treated of 2 m / s or more, and The energization time t per time in the electrolytic treatment is expressed by the following formula (I)
Figure 2011195854
(Where i: current density (A / dm 2 ), t: energization time (s))
The electrolytic treatment that satisfies the above relationship is performed a plurality of times.

高速めっきを実現するためには、600A/dm2以上の高電流密度を利用することが有利であるが、従来の電気亜鉛めっき鋼板の製造方法では、600A/dm2以上の電流密度を用いた場合、陰極(前記被処理鋼板)表面におけるZnイオンの濃度が減少し、限界電流密度を超えることとなり、水素発生が優勢となる結果、電流効率(流した電流のうち目的とする電極反応に使用された電流の割合)の低下及び、めっき外観の劣化という問題があった。 In order to realize high-speed plating, it is advantageous to use a high current density of 600 A / dm 2 or more, but in the conventional method of manufacturing an electrogalvanized steel sheet, a current density of 600 A / dm 2 or more was used. In this case, the concentration of Zn ions on the surface of the cathode (the steel plate to be treated) decreases and exceeds the limit current density, resulting in the predominance of hydrogen generation, resulting in current efficiency (used for the target electrode reaction out of the flowed current) There was a problem that the ratio of the applied current) decreased and the appearance of the plating deteriorated.

前記限界電流密度は、反応が定常状態となれば一定の値を示すが、通電初期の数秒間は、t1/2(t:通電時間)に逆比例して減少する。そのため、本発明では、通電時間tが数秒以内であることから、通電時間tを短くすることで、限界電流密度を上昇させることが可能となる。 The limit current density shows a constant value when the reaction reaches a steady state, but decreases in inverse proportion to t 1/2 (t: energization time) for a few seconds at the beginning of energization. Therefore, in the present invention, since the energization time t is within several seconds, it is possible to increase the limit current density by shortening the energization time t.

そして、上記限界電流密度に関して、電流密度と1回当たりの通電時間tとの関係について調べたところ、次式(I)

Figure 2011195854
(ただし、i:電流密度(A/dm2)、t:通電時間(s))
の関係を満足させることで、限界電流密度以下でめっきを行うことが可能となり、電流効率の低下及びめっき層の外観劣化を抑制することができることがわかった。
ここで、図1は、その他の条件を全て同様にして、電流密度(A/dm2)及び1回当たりの通電時間tを変化させて電気亜鉛めっき鋼板のサンプルを17作製したときの、めっきムラの発生について目視での評価を示したグラフである。なお、図1中の斜線部分が、上記(I)式を満足させ且つ電流密度iが600(A/dm2)以上の領域であり、○はめっき外観が良好(めっきムラなし若しくはめっきムラが軽微)、×はめっき外観が不良(大きなめっきムラあり)であることを意味する。図1から、上記(I)式を満足させることで良好な外観のめっきを形成できることがわかる。
加えて、前記電解処理を複数回に分けて行っていることから、亜鉛結晶を連続的に成長させず、二次結晶核の成長を促すことができる結果、微細且つ均一な亜鉛めっき層を形成することが可能となる。 Then, regarding the limit current density, the relationship between the current density and the energization time t per time was examined, and the following formula (I)
Figure 2011195854
(Where i: current density (A / dm 2 ), t: energization time (s))
By satisfying the above relationship, it was found that plating can be performed at a limit current density or less, and it is possible to suppress a decrease in current efficiency and a deterioration in appearance of the plating layer.
Here, FIG. 1 shows the plating when 17 samples of the electrogalvanized steel sheet were produced by changing the current density (A / dm 2 ) and the energization time t per time in the same manner for all other conditions. It is the graph which showed visual evaluation about generation | occurrence | production of a nonuniformity. The shaded portion in FIG. 1 is a region that satisfies the above formula (I) and the current density i is 600 (A / dm 2 ) or more, and ◯ indicates a good plating appearance (no plating unevenness or plating unevenness). Minor), x means that the plating appearance is poor (there is a large plating unevenness). It can be seen from FIG. 1 that plating with a good appearance can be formed by satisfying the above formula (I).
In addition, since the electrolytic treatment is performed in a plurality of times, it is possible to promote the growth of secondary crystal nuclei without continuously growing zinc crystals, thereby forming a fine and uniform galvanized layer. It becomes possible to do.

また、前記電解処理の1回当たりの通電時間tは、0.01s以上とすることが好ましい。前記通電時間tが、0.01s以上であれば、所望の付着量の前記亜鉛めっき層を得るために相当数の電解が必要とならず、製造効率が低下することがないためである。一方、上限については、電流密度(600A/dm2以上)との関係で0.84s程度となる。 Moreover, it is preferable that the energization time t per time of the said electrolytic treatment shall be 0.01 s or more. This is because, if the energization time t is 0.01 s or more, a considerable number of electrolysis is not required to obtain a desired amount of the galvanized layer, and the production efficiency does not decrease. On the other hand, the upper limit is about 0.84 s in relation to the current density (600 A / dm 2 or more).

さらに、前記電解処理を行う間隔(インターバル)を、0.1〜0.5sの範囲とすることが好ましい。前記電解処理を行った後に一定時間空けることで、陰極(被処理鋼板)表面近傍の亜鉛濃度を回復させる必要があるからである。そして、前記間隔が0.1s以上であれば、十分に陰極(被処理鋼板)表面近傍の亜鉛濃度が回復でき、電流効率の低下及びめっきの外観劣化が発生することがなく、一方、前記間隔が0.5s以下であれば、間隔が長すぎることがなく、所望のめっき層を得るのに長時間を要さず、製造効率が低下しないからである。   Furthermore, it is preferable that the interval for performing the electrolytic treatment be in the range of 0.1 to 0.5 s. This is because it is necessary to recover the zinc concentration in the vicinity of the surface of the cathode (steel plate to be processed) by leaving a certain time after the electrolytic treatment. If the interval is 0.1 s or more, the zinc concentration in the vicinity of the surface of the cathode (steel plate) can be sufficiently recovered, and the current efficiency is not reduced and the appearance of the plating is not deteriorated. If it is 0.5 s or less, the interval is not too long, and it does not take a long time to obtain a desired plating layer, and the production efficiency does not decrease.

さらに、前記電解処理の回数を、2〜6回の範囲とすることが好ましい。前記電解処理の回数が2回以上であれば、所望の付着量のめっき層を得るために電流密度を大幅に高くしたり、一回当たりの電解処理時間を長くする必要がないため、電流効率の低下及びめっきの外観劣化が発生することがない。一方、前記電解処理の回数が6回以下であれば、処理回数が多過ぎることがないため、所望のめっき層を得るのに長時間を要することがなく、設備の小型化に寄与できる。なお、本発明での前記電解処理の回数は、前記被処理鋼板の任意の一箇所が、前記めっき浴に接触して(浸漬して)から該めっき浴から離れるまでの間に行われた電解処理の回数のことをいう。   Furthermore, the number of times of the electrolytic treatment is preferably in the range of 2 to 6 times. If the number of times of the electrolytic treatment is 2 times or more, it is not necessary to significantly increase the current density in order to obtain a plating layer having a desired adhesion amount, or it is not necessary to increase the electrolytic treatment time per time, so that the current efficiency No deterioration of the plating and appearance deterioration of the plating occur. On the other hand, if the number of times of electrolytic treatment is 6 times or less, the number of times of treatment is not excessive, so that it does not take a long time to obtain a desired plating layer, which can contribute to downsizing of equipment. In addition, the number of times of the electrolytic treatment in the present invention is the number of times that the electrolytic treatment was performed after any one place of the steel plate to be treated contacted (immersed) in the plating bath and left the plating bath. Refers to the number of processes.

また、本発明では、前記めっき浴のZn濃度を1mol/L以上とする。前記Zn濃度が1mol/L未満の場合、Zn濃度が低すぎるため限界電流密度が低下し、電流効率が低下する結果、めっきの外観が劣化するからである。さらに、良好な前記亜鉛めっき層を得る点から、前記Zn濃度を1.5mol/L以上とすることが好ましい。なお、前記mol/Lの「L」とは、「リットル」を意味する。   In the present invention, the Zn concentration of the plating bath is 1 mol / L or more. This is because when the Zn concentration is less than 1 mol / L, the Zn concentration is too low, the limit current density is lowered, and the current efficiency is lowered, resulting in deterioration of the appearance of plating. Furthermore, the Zn concentration is preferably 1.5 mol / L or more from the viewpoint of obtaining a good galvanized layer. The mol / L “L” means “liter”.

また、本発明では、前記めっき浴の温度を50℃以上とする。前記温度が50℃未満の場合、亜鉛イオンの拡散係数が小さくなり、めっき浴の粘度が上昇するため、限界電流密度が低下する結果、高電流密度(600A/dm2以上)で電解処理を行った場合にめっき焼けが生じるからである。さらに、前記温度を50℃以上とすることで、前記めっき浴の電導度を十分に確保することができるからである。なお、前記めっき浴の温度の上限については特に限定しないが、温度上昇に伴うめっき浴の蒸発を抑制する点からは、上限を90℃とすることが好ましい。 Moreover, in this invention, the temperature of the said plating bath shall be 50 degreeC or more. When the temperature is less than 50 ° C., the diffusion coefficient of zinc ions decreases, and the viscosity of the plating bath increases. As a result, the critical current density decreases, so that the electrolytic treatment is performed at a high current density (600 A / dm 2 or more). This is because plating burns occur. Furthermore, it is because the electrical conductivity of the said plating bath can fully be ensured because the said temperature shall be 50 degreeC or more. The upper limit of the temperature of the plating bath is not particularly limited, but the upper limit is preferably set to 90 ° C. from the viewpoint of suppressing the evaporation of the plating bath accompanying the temperature rise.

また、本発明による製造方法では、前記めっき浴のpHを低く(−0.5〜1.0の範囲)する必要がある。高電流密度(600A/dm2以上)で電解処理を行った場合に、めっき浴のpHが上昇し、前記被処理鋼板の表面上に亜鉛水酸化物が生成する結果、形成されためっき層の白色度が低下(めっき焼け)したり、めっきムラが発生することを抑制するためである。なお、前記pHの範囲を−0.5〜1.0としたのは、pHが−0.5未満の場合、水素発生反応が起こりやすくなるため、電流効率が低下するからであり、一方、pHが1.0を超えると、前記被処理鋼板の表面上に亜鉛水酸化物が生成しやすくなり、めっき層の外観劣化を招くからである。さらに、水素発生反応を抑制しつつ、高い電導度を確保するという点からは、前記pHを−0.2〜0.5の範囲とすることが好ましい。 In the production method according to the present invention, it is necessary to lower the pH of the plating bath (in the range of −0.5 to 1.0). When electrolytic treatment is performed at a high current density (600 A / dm 2 or more), the pH of the plating bath rises, and as a result of the formation of zinc hydroxide on the surface of the treated steel plate, This is to suppress the decrease in whiteness (plating burn) or the occurrence of uneven plating. The reason why the pH range is -0.5 to 1.0 is that when the pH is less than -0.5, the hydrogen generation reaction is likely to occur, so that the current efficiency is lowered. On the other hand, if the pH exceeds 1.0, This is because zinc hydroxide is likely to be formed on the surface of the steel sheet to be treated, and the appearance of the plating layer is deteriorated. Furthermore, the pH is preferably in the range of −0.2 to 0.5 from the viewpoint of ensuring high conductivity while suppressing the hydrogen generation reaction.

また、本発明による製造方法では、前記めっき浴と前記被処理鋼板との相対流速を2m/s以上とする。相対流速が2m/s未満の場合、前記被処理鋼板の表面に前記拡散層が形成されやすくなるため、高電流密度(600A/dm2以上)で電解処理を行った場合にめっき焼け及びめっきムラが生じるからである。さらに、確実にめっき焼け及びめっきムラの発生を抑制する点からは、前記相対流速を7m/s以上とすることが好ましい。なお、前記相対流速とは、前記被処理鋼板に到達する直前の前記めっき浴の相対速度のことであり、本発明では、前記被処理鋼板に到達する直前(例えば50cm手前)のめっき液の流量を面積流量計により測定し、その値を前記被処理鋼板とアノード間を通過する液の流路の断面積で除した値を相対流速としている。 In the production method according to the present invention, the relative flow rate between the plating bath and the steel plate to be treated is 2 m / s or more. When the relative flow velocity is less than 2 m / s, the diffusion layer is likely to be formed on the surface of the steel plate to be treated. Therefore, when the electrolytic treatment is performed at a high current density (600 A / dm 2 or more), plating burn and uneven plating This is because. Furthermore, the relative flow rate is preferably 7 m / s or more from the viewpoint of surely suppressing the occurrence of plating burn and uneven plating. The relative flow rate is a relative speed of the plating bath immediately before reaching the treated steel plate, and in the present invention, the flow rate of the plating solution immediately before reaching the treated steel plate (for example, 50 cm before). Is measured by an area flow meter, and the value obtained by dividing the value by the cross-sectional area of the flow path of the liquid passing between the steel plate to be treated and the anode is taken as the relative flow velocity.

なお、前記めっき浴の浴種については、特に限定はせず、例えば、例えば、硫酸浴、塩化物浴、及びこれらの混合浴等を用いることができる。ただし、塩化物浴では、不溶性アノードを用いた際に発生する塩素ガスを処理する必要があるため、硫酸浴とすることが好ましい。   In addition, it does not specifically limit about the bath kind of the said plating bath, For example, a sulfuric acid bath, a chloride bath, these mixed baths, etc. can be used, for example. However, the chloride bath is preferably a sulfuric acid bath because it is necessary to treat chlorine gas generated when an insoluble anode is used.

さらに、必要に応じて、前記めっき浴中に、電導度補助剤を添加することができる。前記めっき浴の電導度を向上させることができるからである。上記電導度補助剤としては、例えば、硫酸ナトリウム、硫酸アンモニウム、硫酸カリウム等が挙げられる。ただし、添加量が多くなると、高電流密度(600A/dm2以上)で電解処理を行った場合にめっきの白色度が低下するおそれがあるため、前記電導度補助剤の添加量は、0.5mol/L以下であることが好ましい。
なお、前記めっき浴中には、不可避的に不純物(鋼板からの溶解成分、めっきライン設備からの溶出成分など)が混入される場合があるが、少量含有する場合であっても、本発明の効果に影響を与えることはない。
Furthermore, a conductivity auxiliary agent can be added to the plating bath as necessary. This is because the conductivity of the plating bath can be improved. Examples of the conductivity auxiliary agent include sodium sulfate, ammonium sulfate, and potassium sulfate. However, since the whiteness of the plating may decrease when electrolytic treatment is performed at a high current density (600 A / dm 2 or more) when the addition amount is large, the addition amount of the conductivity auxiliary agent is 0.5 mol. / L or less is preferable.
In the plating bath, impurities (dissolved components from the steel plate, elution components from the plating line equipment, etc.) may inevitably be mixed, but even if it is contained in a small amount, It does not affect the effect.

また、前記電解処理に用いられる電流密度は、効率的に前記亜鉛めっき層の形成を行うため、600A/dm2以上とする。ただし、前記電流密度が高くなりすぎると、形成された前記亜鉛めっき層の白色度がわずかに低下するおそれがあることから、前記電流密度は、1200A/dm2以下であることが好ましい。 The current density used for the electrolytic treatment is 600 A / dm 2 or more in order to efficiently form the galvanized layer. However, if the current density becomes too high, the whiteness of the formed galvanized layer may be slightly lowered. Therefore, the current density is preferably 1200 A / dm 2 or less.

なお、本発明の製造方法により形成した前記亜鉛めっき層については、その付着量が、片面当たり6〜30g/m2の範囲であることが好ましい。付着量が6g/m2以上であれば、目的とする耐食性を得ることができ、一方、付着量が30g/m2以下であれば、製造コストの高騰を招くことがないからである。 In addition, about the said zinc plating layer formed with the manufacturing method of this invention, it is preferable that the adhesion amount is the range of 6-30 g / m < 2 > per single side | surface. This is because if the adhesion amount is 6 g / m 2 or more, the desired corrosion resistance can be obtained, while if the adhesion amount is 30 g / m 2 or less, the manufacturing cost does not increase.

上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲の記載に応じて種々の変更を加えることができる。   The above description is merely an example of the embodiment of the present invention, and various modifications can be made according to the description of the scope of claims.

本発明の実施例について説明する。
(サンプル1〜32)
脱脂・酸洗処理を施した冷延鋼板を被処理鋼板として用意し、電気亜鉛めっき浴中で、上記被処理鋼板を陰極として表1に示す電流密度(A/dm2)で電解処理することにより、上記被処理鋼板の表面に、表1に示す片面当たりの付着量(g/m2)の電気亜鉛めっき層を形成し、各サンプルとなる電気亜鉛めっき鋼板を作製した。
なお、めっき浴の条件(硫酸亜鉛濃度(mol/L)、硫酸ナトリウム濃度(mol/L)温度(℃)、pH及び被処理鋼板との相対流速(m/s))、電解処理の条件(通電時間(s)、通電間隔(s)、回数(回)及びi×t1/2)については表1に示す。
Examples of the present invention will be described.
(Samples 1 to 32)
Prepare a cold-rolled steel sheet that has been degreased and pickled as a steel sheet to be treated, and perform electrolytic treatment in an electrogalvanizing bath at the current density (A / dm 2 ) shown in Table 1 using the steel sheet to be treated as a cathode. Thus, an electrogalvanized layer having an adhesion amount (g / m 2 ) per one side shown in Table 1 was formed on the surface of the steel plate to be treated, and electrogalvanized steel plates serving as samples were prepared.
In addition, plating bath conditions (zinc sulfate concentration (mol / L), sodium sulfate concentration (mol / L) temperature (° C.), pH and relative flow rate (m / s) with the steel plate to be treated), electrolytic treatment conditions ( The energization time (s), energization interval (s), number of times (times), and i × t 1/2 ) are shown in Table 1.

Figure 2011195854
Figure 2011195854

以上のようにして得られた電気亜鉛めっき鋼板のサンプル1〜32について評価を行った。評価方法を以下に示す。   Evaluation was performed on samples 1 to 32 of the electrogalvanized steel sheets obtained as described above. The evaluation method is shown below.

(評価方法)
(1)電流効率
各サンプルの亜鉛めっき層を希硫酸で溶解し、溶解液中のZn濃度をICP(質量分析装置)によって測定し、亜鉛めっきの付着量(g/m2)を得た。そして、測定により得られた亜鉛めっきの付着量(g/m2)と、めっき時に通電した電気量より得られる理論値から、以下の式に従ってめっきの電流効率(%)を算出した。
電流効率(%)=(測定により得られた亜鉛めっき付着量)/(理論付着量)×100
評価は、以下の基準に従って行い、評価結果を表2に示す。
◎:電流効率が、95%以上
○:電流効率が、90%以上、95%未満
×:電流効率が、90%未満
(Evaluation methods)
(1) Current efficiency The zinc plating layer of each sample was dissolved with dilute sulfuric acid, and the Zn concentration in the solution was measured with an ICP (mass spectrometer) to obtain the amount of zinc plating (g / m 2 ). And from the theoretical value obtained from the adhesion amount (g / m 2 ) of the galvanization obtained by the measurement and the amount of electricity energized during the plating, the current efficiency (%) of the plating was calculated according to the following formula.
Current efficiency (%) = (Amount of zinc plating obtained by measurement) / (Theoretical adhesion amount) x 100
Evaluation is performed according to the following criteria, and the evaluation results are shown in Table 2.
◎: Current efficiency is 95% or more ○: Current efficiency is 90% or more and less than 95% ×: Current efficiency is less than 90%

(2)外観色調
各サンプルについて、色差計(日本電色工業(株)製のSE2000)を用いてSCE(正反射光除去)による明度(L値)の測定を行った。評価は、以下の基準に従って行い、測定値及び評価結果を表2に示す。
◎:L値が、78以上
○:L値が、76%以上、78%未満
×:L値が、76%未満
(2) Appearance color tone About each sample, the lightness (L value) by SCE (regular reflection light removal) was measured using the color difference meter (SE2000 by Nippon Denshoku Industries Co., Ltd.). Evaluation is performed according to the following criteria, and the measured values and evaluation results are shown in Table 2.
◎: L value is 78 or more ○: L value is 76% or more and less than 78% ×: L value is less than 76%

(3)めっきムラ
各サンプルについて、めっきムラの発生状況について、目視によって評価した。評価は、以下の基準に従って行い、評価結果を表2に示す。
◎:めっきムラがない
○:軽微なめっきムラのみがある
×:大きなめっきムラがある
(3) Plating unevenness For each sample, the occurrence of plating unevenness was visually evaluated. Evaluation is performed according to the following criteria, and the evaluation results are shown in Table 2.
◎: No plating unevenness ○: Only slight plating unevenness ×: Large plating unevenness

Figure 2011195854
Figure 2011195854

表2の結果から、本発明の範囲である実施例のサンプル(1〜6、8〜11、14〜16、18、20、21、23、24及び29〜32)は、比較例のサンプル(7、12、13、17、19、22及び25〜28)に比べて、電流効率、外観色調及びめっきムラのいずれの項目についても良好な結果であることがわかる。   From the results in Table 2, the samples of the examples (1-6, 8-11, 14-16, 18, 20, 21, 23, 24 and 29-32) within the scope of the present invention are the samples of the comparative examples ( 7, 12, 13, 17, 19, 22, and 25 to 28), it can be seen that the results are favorable for all items of current efficiency, appearance color tone, and plating unevenness.

本発明によれば、高電流密度で電解処理を行う場合であっても、電流効率の低下を生じることなく、良好な外観のめっき層を形成できる電気亜鉛めっき鋼板の製造方法を提供することが可能である。   According to the present invention, it is possible to provide a method for producing an electrogalvanized steel sheet capable of forming a plated layer having a good appearance without causing a decrease in current efficiency even when electrolytic treatment is performed at a high current density. Is possible.

Claims (7)

電気亜鉛めっき浴中で、被処理鋼板を陰極として600A/dm2以上の電流密度で電解処理することにより、上記被処理鋼板の表面に電気亜鉛めっき層を形成するに際し、
上記めっき浴の、Zn濃度を1mol/L以上、温度を50℃以上、pHを−0.5〜1.0の範囲、上記めっき浴と上記被処理鋼板との相対流速を2m/s以上にすると共に、上記電解処理における1回当たりの通電時間tが、次式(I)
Figure 2011195854
(ただし、i:電流密度(A/dm2)、t:通電時間(s))
の関係を満足する電解処理を、複数回実施することを特徴とする電気亜鉛めっき鋼板の製造方法。
In electrogalvanizing bath, by performing electrolytic treatment at a current density of 600 A / dm 2 or more with the steel plate to be treated as a cathode, when forming the electrogalvanized layer on the surface of the steel plate to be treated,
The plating bath has a Zn concentration of 1 mol / L or more, a temperature of 50 ° C. or more, a pH in the range of −0.5 to 1.0, a relative flow rate between the plating bath and the steel plate to be treated of 2 m / s or more, and The energization time t per time in the electrolytic treatment is expressed by the following formula (I)
Figure 2011195854
(Where i: current density (A / dm 2 ), t: energization time (s))
A method for producing an electrogalvanized steel sheet, wherein the electrolytic treatment satisfying the above relationship is performed a plurality of times.
前記通電時間tを、0.01s以上とすることを特徴とする請求項1に記載の電気亜鉛めっき鋼板の製造方法。   The method for producing an electrogalvanized steel sheet according to claim 1, wherein the energization time t is 0.01 s or longer. 前記電解処理の回数を、2〜6回の範囲とすることを特徴とする請求項1又は2に記載の電気亜鉛めっき鋼板の製造方法。   The method for producing an electrogalvanized steel sheet according to claim 1 or 2, wherein the number of times of the electrolytic treatment is in a range of 2 to 6 times. 前記電解処理を行う間隔を、0.1〜0.5sの範囲とすることを特徴とする請求項1〜3のいずれか1項に記載の電気亜鉛めっき鋼板の製造方法。   The method for producing an electrogalvanized steel sheet according to any one of claims 1 to 3, wherein an interval for performing the electrolytic treatment is in a range of 0.1 to 0.5 s. 前記電解処理の電流密度を、600〜1200A/dm2の範囲とすることを特徴とする請求項1〜4のいずれか1項に記載の電気亜鉛めっき鋼板の製造方法。 5. The method for producing an electrogalvanized steel sheet according to claim 1, wherein a current density of the electrolytic treatment is in a range of 600 to 1200 A / dm 2 . 前記めっき浴と前記被処理鋼板との相対流速を、7m/s以上とすることを特徴とする請求項1〜5のいずれか1項に記載の電気亜鉛めっき鋼板の製造方法。   The method for producing an electrogalvanized steel sheet according to any one of claims 1 to 5, wherein a relative flow velocity between the plating bath and the steel sheet to be treated is 7 m / s or more. 前記亜鉛めっき層の付着量を、片面当たり6〜30g/m2の範囲とすることを特徴とする請求項1〜6のいずれか1項に記載の電気亜鉛めっき鋼板の製造方法。 The method for producing an electrogalvanized steel sheet according to any one of claims 1 to 6, wherein an adhesion amount of the galvanized layer is in a range of 6 to 30 g / m 2 per side.
JP2010061392A 2010-03-17 2010-03-17 Method for producing electrogalvanized steel sheet Active JP5747441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010061392A JP5747441B2 (en) 2010-03-17 2010-03-17 Method for producing electrogalvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010061392A JP5747441B2 (en) 2010-03-17 2010-03-17 Method for producing electrogalvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2011195854A true JP2011195854A (en) 2011-10-06
JP5747441B2 JP5747441B2 (en) 2015-07-15

Family

ID=44874444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010061392A Active JP5747441B2 (en) 2010-03-17 2010-03-17 Method for producing electrogalvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5747441B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167296A (en) * 2011-02-09 2012-09-06 Jfe Steel Corp Electrogalvanized steel plate
JP2012167297A (en) * 2011-02-09 2012-09-06 Jfe Steel Corp Electrogalvanized steel plate
JP2020132910A (en) * 2019-02-14 2020-08-31 Jfeスチール株式会社 METHOD FOR PRODUCING ELECTRIC Zn-Ni ALLOY PLATED STEEL SHEET

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127891A (en) * 1984-11-28 1986-06-16 Nippon Steel Corp Manufacture of galvanized steel sheet
JPH06136594A (en) * 1992-10-27 1994-05-17 Nkk Corp Production of electrogalvanized steel sheet
JPH06336691A (en) * 1993-05-27 1994-12-06 Kobe Steel Ltd Production of galvanized steel sheet with super high current density excellent in corrosion resistance and workability
JPH06336692A (en) * 1993-05-27 1994-12-06 Kobe Steel Ltd Production of zn-(8-15%)ni alloy electroplated steel sheet at high current density
JPH07316878A (en) * 1994-05-27 1995-12-05 Nippon Steel Corp Production of electrogalvanized steel sheet having excellent surface appearance
JPH08120483A (en) * 1994-10-21 1996-05-14 Nippon Steel Corp Production of electrogalvanized steel sheet excellent in surface appearance
JPH1171696A (en) * 1997-08-29 1999-03-16 Yuken Kogyo Kk Electrogalvanization of secondary formed article
JP2009275277A (en) * 2008-05-16 2009-11-26 Nippon Steel Corp Surface-treated metal plate and package for electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127891A (en) * 1984-11-28 1986-06-16 Nippon Steel Corp Manufacture of galvanized steel sheet
JPH06136594A (en) * 1992-10-27 1994-05-17 Nkk Corp Production of electrogalvanized steel sheet
JPH06336691A (en) * 1993-05-27 1994-12-06 Kobe Steel Ltd Production of galvanized steel sheet with super high current density excellent in corrosion resistance and workability
JPH06336692A (en) * 1993-05-27 1994-12-06 Kobe Steel Ltd Production of zn-(8-15%)ni alloy electroplated steel sheet at high current density
JPH07316878A (en) * 1994-05-27 1995-12-05 Nippon Steel Corp Production of electrogalvanized steel sheet having excellent surface appearance
JPH08120483A (en) * 1994-10-21 1996-05-14 Nippon Steel Corp Production of electrogalvanized steel sheet excellent in surface appearance
JPH1171696A (en) * 1997-08-29 1999-03-16 Yuken Kogyo Kk Electrogalvanization of secondary formed article
JP2009275277A (en) * 2008-05-16 2009-11-26 Nippon Steel Corp Surface-treated metal plate and package for electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167296A (en) * 2011-02-09 2012-09-06 Jfe Steel Corp Electrogalvanized steel plate
JP2012167297A (en) * 2011-02-09 2012-09-06 Jfe Steel Corp Electrogalvanized steel plate
JP2020132910A (en) * 2019-02-14 2020-08-31 Jfeスチール株式会社 METHOD FOR PRODUCING ELECTRIC Zn-Ni ALLOY PLATED STEEL SHEET

Also Published As

Publication number Publication date
JP5747441B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
Tuaweri et al. A study of process parameters for zinc electrodeposition from a sulphate bath
CN101397691B (en) Apparatus and technology for controlling and improving plating solution PH value on fingerprint resistant production chain
JP5747441B2 (en) Method for producing electrogalvanized steel sheet
JP4862445B2 (en) Method for producing electrogalvanized steel sheet
JPH0841679A (en) Electrogalvannealed steel sheet having excellent appearance
JP5812041B2 (en) Method for producing zinc-based electroplated steel sheet
WO2010055917A1 (en) Acidic zinc plating bath
JP2011111633A (en) Method for producing zinc based composite electroplated steel sheet
RU2437967C1 (en) Procedure for sedimentation of composite coating nickel-vanadium-phosphorus-boron nitride
JP2012167297A (en) Electrogalvanized steel plate
JP2012193419A (en) Method for producing chemical conversion steel plate
JP4862484B2 (en) Method for producing electrogalvanized steel sheet
JP5609344B2 (en) Method for producing electrogalvanized steel sheet
WO2020049657A1 (en) Electroplating bath, method for manufacturing electroplated product, and electroplating device
JP7400766B2 (en) Zinc-based electroplated steel sheet and its manufacturing method
JP3405669B2 (en) Nickel-plated steel sheet excellent in corrosion resistance and surface appearance and method for producing the same
RU2486294C1 (en) Method for electrolytic deposition of iron-aluminium alloy
JP2013079422A (en) Production method for zinc-electroplated steel sheet
KR102280086B1 (en) Trivalent chromium electroplating solution and electroplating method for using the same
JP5676329B2 (en) Electroplating equipment
RU2634555C2 (en) Method of electrolytic deposition of iron-cobalt alloy
JP2012167296A (en) Electrogalvanized steel plate
JPH06136594A (en) Production of electrogalvanized steel sheet
JP2005344208A (en) Treatment method for electroless nickel plating solution
US20230015534A1 (en) Electroplating composition and method for depositing a chromium coating on a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R150 Certificate of patent or registration of utility model

Ref document number: 5747441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250